

 [image: (missing alt)]

 Table of Contents

 PostgreSQL Replication Second Edition

 Credits

 About the Author

 About the Reviewers

 www.PacktPub.com

 Support files, eBooks, discount offers, and more

 Why subscribe?

 Free access for Packt account holders

 Preface

 What this book covers

 What you need for this book

 Who this book is for

 Conventions

 Reader feedback

 Customer support

 Errata

 Piracy

 Questions

 1. Understanding the Concepts of Replication

 The CAP theorem and physical limitations of replication

 Understanding the CAP theorem

 Understanding the limits of physics

 Different types of replication

 Synchronous versus asynchronous replication

 Considering performance issues

 Understanding replication and data loss

 Single-master versus multimaster replication

 Logical versus physical replication

 When to use physical replication

 When to use logical replication

 Using sharding and data distribution

 Understanding the purpose of sharding

 Designing a sharded system

 Querying different fields

 Pros and cons of sharding

 Choosing between sharding and redundancy

 Increasing and decreasing the size of a cluster

 Combining sharding and replication

 Various sharding solutions

 PostgreSQL-based sharding

 Summary

 2. Understanding the PostgreSQL Transaction Log

 How PostgreSQL writes data

 The PostgreSQL disk layout

 Looking into the data directory

 PG_VERSION – the PostgreSQL version number

 base – the actual data directory

 Growing data files

 Performing I/O in chunks

 Relation forks

 global – the global data

 Dealing with standalone data files

 pg_clog – the commit log

 pg_dynshmem – shared memory

 pg_hba.conf – host-based network configuration

 pg_ident.conf – ident authentication

 pg_logical – logical decoding

 pg_multixact – multitransaction status data

 pg_notify – LISTEN/NOTIFY data

 pg_replslot – replication slots

 pg_serial – information about committed serializable transactions

 pg_snapshot – exported snapshots

 pg_stat – permanent statistics

 pg_stat_tmp – temporary statistics data

 pg_subtrans – subtransaction data

 pg_tblspc – symbolic links to tablespaces

 pg_twophase – information about prepared statements

 pg_xlog – the PostgreSQL transaction log (WAL)

 postgresql.conf – the central PostgreSQL configuration file

 Writing one row of data

 A simple INSERT statement

 Crashing during WAL writing

 Crashing after WAL writing

 Read consistency

 The purpose of the shared buffer

 Mixed reads and writes

 The format of the XLOG

 The XLOG and replication

 Understanding consistency and data loss

 All the way to the disk

 From memory to memory

 From the memory to the disk

 A word about batteries

 Beyond the fsync function

 PostgreSQL consistency levels

 Tuning checkpoints and the XLOG

 Understanding the checkpoints

 Configuring the checkpoints

 Segments and timeouts

 To write or not to write?

 Scenario 1 – storing stock market data

 Scenario 2 – bulk loading

 Scenario 3 – I/O spikes and throughput considerations

 Conclusion

 Tweaking WAL buffers

 Experiencing the XLOG in action

 Understanding the XLOG records

 Making the XLOG deterministic

 Making the XLOG reliable

 LSNs and shared buffer interaction

 Debugging the XLOG and putting it all together

 Making use of replication slots

 Physical replication slots

 Logical replication slots

 Configuring replication identities

 Summary

 3. Understanding Point-in-time Recovery

 Understanding the purpose of PITR

 Moving to the bigger picture

 Archiving the transaction log

 Taking base backups

 Using pg_basebackup

 Modifying pg_hba.conf

 Signaling the master server

 pg_basebackup – basic features

 Backup throttling

 pg_basebackup – self-sufficient backups

 Making use of traditional methods to create base backups

 Tablespace issues

 Keeping an eye on the network bandwidth

 Replaying the transaction log

 Performing a basic recovery

 More sophisticated positioning in the XLOG

 Cleaning up the XLOG on the way

 Switching the XLOG files

 Summary

 4. Setting Up Asynchronous Replication

 Setting up streaming replication

 Tweaking the config files on the master

 Handling pg_basebackup and recovery.conf

 Making the slave readable

 The underlying protocol

 Configuring a cascaded replication

 Turning slaves into masters

 Mixing streaming-based and file-based recovery

 The master configuration

 The slave configuration

 Error scenarios

 Network connection between the master and slave is dead

 Rebooting the slave

 Rebooting the master

 Corrupted XLOG in the archive

 Making streaming-only replication more robust

 Using wal_keep_segments

 Utilizing replication slots

 Efficient cleanup and the end of recovery

 Gaining control over the restart points

 Tweaking the end of your recovery

 Conflict management

 Dealing with timelines

 Delayed replicas

 Handling crashes

 Summary

 5. Setting Up Synchronous Replication

 Synchronous replication setup

 Understanding the downside to synchronous replication

 Understanding the application_name parameter

 Making synchronous replication work

 Checking the replication

 Understanding performance issues

 Setting synchronous_commit to on

 Setting synchronous_commit to remote_write

 Setting synchronous_commit to off

 Setting synchronous_commit to local

 Changing durability settings on the fly

 Understanding the practical implications and performance

 Redundancy and stopping replication

 Summary

 6. Monitoring Your Setup

 Checking your archive

 Checking archive_command

 Monitoring the transaction log archive

 Checking pg_stat_replication

 Relevant fields in pg_stat_replication

 Checking for operating system processes

 Checking for replication slots

 Dealing with monitoring tools

 Installing check_postgres

 Deciding on a monitoring strategy

 Summary

 7. Understanding Linux High Availability

 Understanding the purpose of High Availability

 Measuring availability

 Durability and availability

 Detecting failures

 The split-brain syndrome

 Understanding Linux-HA

 Corosync

 Pacemaker

 Resource agents / fence agents

 PCS

 The PostgreSQL resource agent

 Setting up a simple HA cluster

 Preparing the servers

 Installing the necessary software

 Configuring the clustering software

 Preparing for the PostgreSQL installation

 Syncing the standby

 Configuring the cluster

 Configuring cluster resources

 Configuring the constraints

 Setting up fencing

 Verifying the setup

 Common maintenance tasks

 Performing maintenance on a single node

 Forcing a failover

 Recovering from failed PostgreSQL starts

 Performing cluster-wide maintenance

 Resynchronizing after master failure

 Summary

 8. Working with PgBouncer

 Understanding the fundamental PgBouncer concepts

 Installing PgBouncer

 Configuring your first PgBouncer setup

 Writing a simple config file and starting PgBouncer up

 Dispatching requests

 More basic settings

 Handling pool sizes

 max_client_conn

 default_pool_size

 min_pool_size

 reserve_pool_size

 pool_size

 Authentication

 Connecting to PgBouncer

 Java issues

 Pool modes

 Cleanup issues

 Improving performance

 A simple benchmark

 Maintaining PgBouncer

 Configuring the admin interface

 Using the management database

 Extracting runtime information

 Suspending and resuming operations

 Summary

 9. Working with pgpool

 Installing pgpool

 Installing additional modules

 Understanding the features of pgpool

 Understanding the pgpool architecture

 Setting up replication and load balancing

 Password authentication

 Firing up pgpool and testing the setup

 Attaching hosts

 Checking the replication

 Running pgpool with streaming replication

 Optimizing the pgpool configuration for master/slave mode

 Dealing with failovers and High Availability

 Using PostgreSQL streaming and Linux HA

 pgpool mechanisms for High Availability and failover

 Summary

 10. Configuring Slony

 Installing Slony

 Understanding how Slony works

 Dealing with logical replication

 The slon daemon

 Replicating your first database

 Deploying DDLs

 Adding tables to replication and managing problems

 Performing failovers

 Planned failovers

 Unplanned failovers

 Summary

 11. Using SkyTools

 Installing SkyTools

 Dissecting SkyTools

 Managing pgq queues

 Running pgq

 Creating queues and adding data

 Adding consumers

 Configuring the ticker

 Consuming messages

 Dropping queues

 Using pgq for large projects

 Using Londiste to replicate data

 Replicating our first table

 A word about walmgr

 Summary

 12. Working with Postgres-XC

 Understanding the Postgres-XC architecture

 Data nodes

 GTM

 Coordinators

 GTM proxy

 Installing Postgres-XC

 Configuring a simple cluster

 Creating the GTM

 Optimizing for performance

 Dispatching the tables

 Optimizing joins

 Optimizing for warehousing

 Creating a GTM proxy

 Creating tables and issuing queries

 Adding nodes

 Rebalancing data

 Handling failovers and dropping nodes

 Handling node failovers

 Replacing the nodes

 Running a GTM standby

 Summary

 13. Scaling with PL/Proxy

 Understanding the basic concepts

 Dealing with the bigger picture

 Partitioning the data

 Setting up PL/Proxy

 A basic example

 Partitioned reads and writes

 Extending and handling clusters in a clever way

 Adding and moving partitions

 Increasing the availability

 Managing foreign keys

 Upgrading the PL/Proxy nodes

 Summary

 14. Scaling with BDR

 Understanding BDR replication concepts

 Understanding eventual consistency

 Handling conflicts

 Distributing sequences

 Handling DDLs

 Use cases for BDR

 Good use cases for BDR

 Bad use cases for BDR

 Logical decoding does the trick

 Installing BDR

 Installing binary packages

 Setting up a simple cluster

 Arranging storage

 Creating database instances

 Loading modules and firing up the cluster

 Checking your setup

 Handling conflicts

 Understanding sets

 Unidirectional replication

 Handling data tables

 Controlling replication

 Summary

 15. Working with Walbouncer

 The concepts of walbouncer

 Filtering XLOG

 Installing walbouncer

 Configuring walbouncer

 Creating a base backup

 Firing up walbouncer

 Using additional configuration options

 Adjusting filtering rules

 Removing and filtering objects

 Adding objects to slaves

 Summary

 Index

PostgreSQL Replication Second Edition

PostgreSQL Replication Second Edition

Copyright © 2015 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: August 2013
Second edition: July 2015
Production reference: 1240715
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78355-060-9

www.packtpub.com

Credits

Author

Hans-Jürgen Schönig

Reviewers

Swathi Kurunji
Jeff Lawson
Maurício Linhares
Shaun M. Thomas
Tomas Vondra

Commissioning Editor

Kartikey Pandey

Acquisition Editor

Larissa Pinto

Content Development Editor

Nikhil Potdukhe

Technical Editor

Manali Gonsalves

Copy Editors

Dipti Mankame
Vikrant Phadke

Project Coordinator

Vijay Kushlani

Proofreader

Safis Editing

Indexer

Priya Sane

Graphics

Sheetal Aute

Production Coordinator

Komal Ramchandani

Cover Work

Komal Ramchandani

About the Author

Hans-Jürgen Schönig has 15 years of experience with PostgreSQL. He is the CEO of a PostgreSQL consulting and support company called Cybertec Schönig & Schönig GmbH (www.postgresql-support.de). It has successfully served countless customers around the globe.
Before founding Cybertec Schönig & Schönig GmbH in 2000, he worked as a database developer at a private research company focusing on the Austrian labor market, where he primarily focused on data mining and forecast models. He has also written several books about PostgreSQL.

This book is dedicated to all the members of the Cybertec family, who have supported me over the years and have proven to be true professionals. Without my fellow technicians here at Cybertec, this book would not have existed. I especially want to thank Ants Aasma for his technical input and Florian Ziegler for helping out with the proofreading and graphical stuff.
Special thanks also go to my girl, Sonja Städtner, who has given me all the personal support. Somehow, she managed to make me go to sleep when I was up late at night working on the initial drafts.

About the Reviewers

Swathi Kurunji is a software engineer at Actian Corporation. She recently completed her PhD in computer science from the University of Massachusetts Lowell (UMass Lowell), USA. She has a keen interest in database systems. Her PhD research involved query optimization, big data analysis, data warehousing, and cloud computing. Swathi has shown excellence in her field of study through research publications at international conferences and in journals. She has received awards and scholarships from UMass Lowell for research and academics.
Swathi also has a master's of science degree in computer science from UMass Lowell and a bachelor's of engineering degree in information science from KVGCE in India. During her studies at UMass Lowell, she worked as a teaching assistant, helping professors in teaching classes and labs, designing projects, and grading exams.
She has worked as a software development intern with IT companies such as EMC and SAP. At EMC, she gained experience on Apache Cassandra data modeling and performance analysis. At SAP, she gained experience on the infrastructure/cluster management components of the Sybase IQ product. She has also worked with Wipro Technologies in India as a project engineer, managing application servers.
She has extensive experience with database systems such as Apache Cassandra, Sybase IQ, Oracle, MySQL, and MS Access. Her interests include software design and development, big data analysis, optimization of databases, and cloud computing. Her LinkedIn profile is http://www.linkedin.com/pub/swathi-kurunji/49/578/30a/.
Swathi has previously reviewed two books, Cassandra Data Modeling and Analysis and Mastering Apache Cassandra, both by Packt Publishing.

I would like to thank my husband and my family for all their support.

Jeff Lawson has been a user and fan of PostgreSQL since he noticed it in 2001. Over the years, he has also developed and deployed applications for IBM DB2, Oracle, MySQL, Microsoft SQL Server, Sybase, and others, but he has always preferred PostgreSQL because of its balance of features and openness. Much of his experience has spanned development for Internet-facing websites and projects that required highly scalable databases with high availability or provisions for disaster recovery.
Jeff currently works as the director of software development at FlightAware, which is an airplane tracking website that uses PostgreSQL and other pieces of open source software to store and analyze the positions of thousands of flights that fly worldwide every day. He has extensive experience in software architecture, data security, and networking protocol design because of his roles as a software engineer at Univa/United Devices, Microsoft, NASA's Jet Propulsion Laboratory, and WolfeTech. He was a founder of distributed.net, which pioneered distributed computing in the 1990s, and continues to serve as the chief of operations and a member of the board. He earned a BSc in computer science from Harvey Mudd College.
Jeff is fond of cattle, holds an FAA private pilot certificate, and owns an airplane in Houston, Texas.

Maurício Linhares is a technical leader of the parsing and machine learning team at The Neat Company. At Neat, he helps his team scale their solutions on the cloud and deliver fast results to customers. He is the creator and maintainer of async, a Scala-based PostgreSQL database driver (https://github.com/mauricio/postgresql-async), and has been a PostgreSQL user and proponent for many years.

Shaun M. Thomas has been working with PostgreSQL since late 2000. He has presented at Postgres open conferences in 2011, 2012, and 2014 on topics such as handling extreme throughput, high availability, server redundancy, failover techniques, and system monitoring. With the recent publication of Packt Publishing's PostgreSQL 9 High Availability Cookbook, he hopes to make life easier for DBAs using PostgreSQL in enterprise environments.
Currently, Shaun serves as the database architect at Peak6, an options trading firm with a PostgreSQL constellation of over 100 instances, one of which is over 15 TB in size.
He wants to prove that PostgreSQL is more than ready for major installations.

Tomas Vondra has been working with PostgreSQL since 2003, and although he had worked with various other databases—both open-source and proprietary—he instantly fell in love with PostgreSQL and the community around it.
He is currently working as an engineer at 2ndQuadrant, one of the companies that provide support, training, and other services related to PostgreSQL. Previously, he worked as a PostgreSQL specialist for GoodData, a company that operates a BI cloud platform built on PostgreSQL. He has extensive experience with performance troubleshooting, tuning, and benchmarking.
In his free time, he usually writes PostgreSQL extensions or patches, or he hacks something related to PostgreSQL.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: Support files, eBooks, discount offers, and more]

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books.
Why subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print, and bookmark content
	On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view 9 entirely free books. Simply use your login credentials for immediate access.

Preface

Since the first edition of PostgreSQL Replication many new technologies have emerged or improved. In the PostgreSQL community, countless people around the globe have been working on important techniques and technologies to make PostgreSQL even more useful and more powerful.
To make sure that readers can enjoy all those new features and powerful tools, I have decided to write a second, improved edition of PostgreSQL Replication. Due to the success of the first edition, the hope is to make this one even more useful to administrators and developers alike around the globe.
All the important new developments have been covered and most chapters have been reworked to make them easier to understand, more complete and absolutely up to date.
I hope that all of you can enjoy this book and benefit from it.
What this book covers

This book will guide you through a variety of topics related to PostgreSQL replication. We will present all the important facts in 15 practical and easy-to-read chapters:

Chapter 1, Understanding the Concepts of Replication, guides you through fundamental replication concepts such as synchronous, as well as asynchronous, replication. You will learn about the physical limitations of replication, which options you have and what kind of distinctions there are.

Chapter 2, Understanding the PostgreSQL Transaction Log, introduces you to the PostgreSQL internal transaction log machinery and presents concepts essential to many replication techniques.

Chapter 3, Understanding Point-in-time Recovery, is the next logical step and outlines how the PostgreSQL transaction log will help you to utilize Point-in-time Recovery to move your database instance back to a desired point in time.

Chapter 4, Setting Up Asynchronous Replication, describes how to configure asynchronous master-slave replication.

Chapter 5, Setting Up Synchronous Replication, is one step beyond asynchronous replication and offers a way to guarantee zero data loss if a node fails. You will learn about all the aspects of synchronous replication.

Chapter 6, Monitoring Your Setup, covers PostgreSQL monitoring.

Chapter 7, Understanding Linux High Availability, presents a basic introduction to Linux-HA and presents a set of ideas for making your systems more available and more secure. Since the first edition, this chapter has been completely rewritten and made a lot more practical.

Chapter 8, Working with PgBouncer, deals with PgBouncer, which is very often used along with PostgreSQL replication. You will learn how to configure PgBouncer and boost the performance of your PostgreSQL infrastructure.

Chapter 9, Working with pgpool, covers one more tool capable of handling replication and PostgreSQL connection pooling.

Chapter 10, Configuring Slony, contains a practical guide to using Slony and shows how you can use this tool fast and efficiently to replicate sets of tables.

Chapter 11, Using SkyTools, offers you an alternative to Slony and outlines how you can introduce generic queues to PostgreSQL and utilize Londiste replication to dispatch data in a large infrastructure.

Chapter 12, Working with Postgres-XC, offers an introduction to a synchronous multimaster replication solution capable of partitioning a query across many nodes inside your cluster while still providing you with a consistent view of the data.

Chapter 13, Scaling with PL/Proxy, describes how you can break the chains and scale out infinitely across a large server farm.

Chapter 14, Scaling with BDR, describes the basic concepts and workings of the BDR replication system. It shows how BDR can be configured and how it operates as the basis for a modern PostgreSQL cluster.

Chapter 15, Working with Walbouncer, shows how transaction log can be replicated partially using the walbouncer tool. It dissects the PostgreSQL XLOG and makes sure that the transaction log stream can be distributed to many nodes in the cluster.

What you need for this book

This guide is a must for everybody interested in PostgreSQL replication. It is a comprehensive book explaining replication in a comprehensive and detailed way. We offer a theoretical background as well as a practical introduction to replication designed to make your daily life a lot easier and definitely more productive.

Who this book is for

This book has been written primary for system administrators and system architects. However, we have also included aspects that can be highly interesting for software developers as well—especially when it comes to highly critical system designs.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can include other contexts through the use of the include directive."
A block of code is set as follows:
checkpoint_segments = 3
checkpoint_timeout = 5min
checkpoint_completion_target = 0.5
checkpoint_warning = 30s

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
checkpoint_segments = 3
checkpoint_timeout = 5min
checkpoint_completion_target = 0.5
checkpoint_warning = 30s

Any command-line input or output is written as follows:

test=# CREATE TABLE t_test (id int4);
CREATE TABLE

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button moves you to the next screen."
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at <questions@packtpub.com>, and we will do our best to address the problem.

Chapter 1. Understanding the Concepts of Replication

Replication is an important issue and, in order to get started, it is highly important to understand some basic concepts and theoretical ideas related to replication. In this chapter, you will be introduced to various concepts of replication, and learn which kind of replication is most suitable for which kind of practical scenario. By the end of the chapter, you will be able to judge whether a certain concept is feasible under various circumstances or not.
We will cover the following topics in this chapter:
	The CAP theorem and physical limitations of replication
	Different types of replication
	Synchronous and asynchronous replication
	Sharding and data distribution

The goal of this chapter is to give you a lot of insights into the theoretical concepts. This is truly important in order to judge whether a certain customer requirement is actually technically feasible or not. You will be guided through the fundamental ideas and important concepts related to replication.
The CAP theorem and physical limitations of replication

You might wonder why theory is being covered in such a prominent place in a book that is supposed to be highly practical. Well, there is a very simple reason for that: some nice-looking marketing papers of some commercial database vendors might leave you with the impression that everything is possible and easy to do, without any serious limitation. This is not the case; there are physical limitations that every software vendor has to cope with. There is simply no way around the laws of nature, and shiny marketing cannot help overcome nature. The laws of physics and logic are the same for everybody, regardless of the power of someone's marketing department.
In this section, you will be taught the so-called CAP theorem. Understanding the basic ideas of this theorem is essential to avoid some requirements that cannot be turned into reality.
The CAP theorem was first described by Eric Brewer back in the year 2000. It has quickly developed into one of the most fundamental concepts in the database world. Especially with the rise of NoSQL database systems, Brewer's theorem (as the CAP theorem is often called) has become an important cornerstone of every distributed system.
Understanding the CAP theorem

Before we dig into the details, we need to discuss what CAP actually means. CAP is an abbreviation for the following three concepts:
	Consistency: This term indicates whether all the nodes in a cluster see the same data at the same time or not. A read-only node has to see all previously completed reads at any time.
	Availability: Reads and writes have to succeed all the time. In other words a node has to be available for users at any point of time.
	Partition tolerance: This means that the system will continue to work even if arbitrary messages are lost on the way. A network partition event occurs when a system is no longer accessible (think of a network connection failure). A different way of considering partition tolerance is to think of it as message passing. If an individual system can no longer send or receive messages from other systems, it means that it has been effectively partitioned out of the network. The guaranteed properties are maintained even when network failures prevent some machines from communicating with others.

Why are these three concepts relevant to normal users? Well, the bad news is that a replicated (or distributed) system can provide only two out of these three features at the same time.
Note
Keep in mind that only two out of the three promises can be fulfilled.

It is theoretically impossible to offer consistency, availability, and partition tolerance at the same time. As you will see later in this book, this can have a significant impact on system layouts that are safe and feasible to use. There is simply no such thing as the solution to all replication-related problems. When you are planning a large-scale system, you might have to come up with different concepts, depending on needs that are specific to your requirements.
Note
PostgreSQL, Oracle, DB2, and so on will provide you with CAp ("consistent" and "available"), while NoSQL systems, such as MongoDB and Cassandra, will provide you with cAP ("available" and "partition tolerant"). This is why NoSQL is often referred to as eventually consistent.

Consider a financial application. You really want to be consistent and partition tolerant. Keeping balances in sync is the highest priority.
Or consider an application collecting a log of weather data from some remote locations. If the data is a couple of minutes late, it is really no problem. In this case, you might want to go for cAP. Availability and partition tolerance might really be the most important things in this case.
Depending on the use, people have to decide what is really important and which attributes (consistency, availability, or partition tolerance) are crucial and which can be neglected.
Keep in mind there is no system which can fulfill all those wishes at the same time (neither open source nor paid software).

Understanding the limits of physics

The speed of light is not just a theoretical issue; it really does have an impact on your daily life. And more importantly, it has a serious implication when it comes to finding the right solution for your cluster.
We all know that there is some sort of cosmic speed limit called the speed of light. So why care? Well, let's do a simple mental experiment. Let's assume for a second that our database server is running at 3 GHz clock speed.
How far can light travel within one clock cycle of your CPU? If you do the math, you will figure out that light travels around 10 cm per clock cycle (in pure vacuum). We can safely assume that an electric signal inside a CPU will be very slow compared to pure light in vacuum. The core idea is, "10 cm in one clock cycle? Well, this is not much at all."
For the sake of our mental experiment, let's now consider various distances:
	Distance from one end of the CPU to the other
	Distance from your server to some other server next door
	Distance from your server in Central Europe to a server somewhere in China

Considering the size of a CPU core on a die, you can assume that you can send a signal (even if it is not traveling anywhere close to the speed of light) from one part of the CPU to some other part quite fast. It simply won't take 1 million clock cycles to add up two numbers that are already in your first level cache on your CPU.
But what happens if you have to send a signal from one server to some other server and back? You can safely assume that sending a signal from server A to server B next door takes a lot longer because the cable is simply a lot longer. In addition to that, network switches and other network components will add some latency as well.
Let's talk about the length of the cable here, and not about its bandwidth.
Sending a message (or a transaction) from Europe to China is, of course, many times more time-consuming than sending some data to a server next door. Again, the important thing here is that the amount of data is not as relevant as the so-called latency, consider the following criteria:
	Long-distance transmission: To explain the concept of latency, let's cover a very simple example. Let's assume you are a European and you are sending a letter to China. You will easily accept the fact that the size of your letter is not the limiting factor here. It makes absolutely no difference whether your letter is two or 20 pages long; the time it takes to reach the destination is basically the same. Also, it makes no difference whether you send one, two, or 10 letters at the same time. Given a reasonable numbers of letter, the size of the aircraft required (that is, the bandwidth) to ship the stuff to China is usually not the problem. However, the so-called round trip might very well be an issue. If you rely on the response to your letter from China to continue your work, you will soon find yourself waiting for a long time.
	Why latency matters: Latency is an important issue. If you send a chunk of data from Europe to China, you should avoid waiting for the response. But if you send a chunk of data from your server to a server in the same rack, you might be able to wait for the response, because your electronic signal will simply be fast enough to make it back in time.

Note
The basic problems of latency described in this section are not PostgreSQL-specific. The very same concepts and physical limitations apply to all types of databases and systems. As mentioned before, this fact is sometimes silently hidden and neglected in shiny commercial marketing papers. Nevertheless, the laws of physics will stand firm. This applies to both commercial and open source software.

The most important point you have to keep in mind here is that bandwidth is not always the magical fix to a performance problem in a replicated environment. In many setups, latency is at least as important as bandwidth.

Different types of replication

Now that you are fully armed with the basic understanding of physical and theoretical limitations, it is time to learn about different types of replication. It is important to have a clear image of these types to make sure that the right choice can be made and the right tool can be chosen. In this section, synchronous as well as asynchronous replication will be covered.
Synchronous versus asynchronous replication

Let's dig into some important concepts now. The first distinction we can make is whether to replicate synchronously or asynchronously.
What does this mean? Let's assume we have two servers and we want to replicate data from one server (the master) to the second server (the slave). The following diagram illustrates the concept of synchronous and asynchronous replication:
[image: Synchronous versus asynchronous replication]
We can use a simple transaction like the one shown in the following:
BEGIN;
INSERT INTO foo VALUES ('bar');
COMMIT;

In the case of asynchronous replication, the data can be replicated after the transaction has been committed on the master. In other words, the slave is never ahead of the master; and in the case of writing, it is usually a little behind the master. This delay is called lag.
Synchronous replication enforces higher rules of consistency. If you decide to replicate synchronously (how this is done practically will be discussed in Chapter 5, Setting Up Synchronous Replication), the system has to ensure that the data written by the transaction will be at least on two servers at the time the transaction commits. This implies that the slave does not lag behind the master and that the data seen by the end users will be identical on both the servers.
Tip
Some systems will also use a quorum server to decide. So, it is not always about just two or more servers. If a quorum is used, more than half of the servers must agree on an action inside the cluster.

Considering performance issues

As you have learned earlier in the section about the speed of light and latency, sending unnecessary messages over the network can be expensive and time-consuming. If a transaction is replicated in a synchronous way, PostgreSQL has to make sure that the data reaches the second node, and this will lead to latency issues.
Synchronous replication can be more expensive than asynchronous replication in many ways, and therefore, people should think twice about whether this overhead is really needed and justified. In the case of synchronous replication, confirmations from a remote server are needed. This, of course, causes some additional overhead. A lot has been done in PostgreSQL to reduce this overhead as much as possible. However, it is still there.
Tip
Use synchronous replication only when it is really needed.

Understanding replication and data loss

When a transaction is replicated from a master to a slave, many things have to be taken into consideration, especially when it comes to things such as data loss.
Let's assume that we are replicating data asynchronously in the following manner:
	A transaction is sent to the master.
	It commits on the master.
	The master dies before the commit is sent to the slave.
	The slave will never get this transaction.

In the case of asynchronous replication, there is a window (lag) during which data can essentially be lost. The size of this window might vary, depending on the type of setup. Its size can be very short (maybe as short as a couple of milliseconds) or long (minutes, hours, or days). The important fact is that data can be lost. A small lag will only make data loss less likely, but any lag larger than zero lag is susceptible to data loss. If data can be lost, we are about to sacrifice the consistency part of CAP (if two servers don't have the same data, they are out of sync).
If you want to make sure that data can never be lost, you have to switch to synchronous replication. As you have already seen in this chapter, a synchronous transaction is synchronous because it will be valid only if it commits to at least two servers.

Single-master versus multimaster replication

A second way to classify various replication setups is to distinguish between single-master and multi-master replication.
"Single-master" means that writes can go to exactly one server, which distributes the data to the slaves inside the setup. Slaves may receive only reads, and no writes.
In contrast to single-master replication, multi-master replication allows writes to all the servers inside a cluster. The following diagram shows how things work at a conceptual level:
[image: Single-master versus multimaster replication]
The ability to write to any node inside the cluster sounds like an advantage, but it is not necessarily one. The reason for this is that multimaster replication adds a lot of complexity to the system. In the case of only one master, it is totally clear which data is correct and in which direction data will flow, and there are rarely conflicts during replication. Multimaster replication is quite different, as writes can go to many nodes at the same time, and the cluster has to be perfectly aware of conflicts and handle them gracefully. An alterative would be to use locks to solve the problem, but this approach will also have its own challenges.
Tip
Keep in mind that the need to resolve conflicts will cause network traffic, and this can instantly turn into scalability issues caused by latency.

Logical versus physical replication

One more way of classifying replication is to distinguish between logical and physical replication.
The difference is subtle but highly important:
	Physical replication means that the system will move data as is to the remote box. So, if something is inserted, the remote box will get data in binary format, not via SQL.
	Logical replication means that a change, which is equivalent to data coming in, is replicated.

Let's look at an example to fully understand the difference:
test=# CREATE TABLE t_test (t date);
CREATE TABLE
test=# INSERT INTO t_test VALUES (now())
RETURNING *;
t

 2013-02-08
(1 row)

INSERT 0 1

We see two transactions going on here. The first transaction creates a table. Once this is done, the second transaction adds a simple date to the table and commits.
In the case of logical replication, the change will be sent to some sort of queue in logical form, so the system does not send plain SQL, but maybe something such as this:
test=# INSERT INTO t_test VALUES ('2013-02-08');
INSERT 0 1

Note that the function call has been replaced with the real value. It would be a total disaster if the slave were to calculate now() once again, because the date on the remote box might be a totally different one.
Tip
Some systems do use statement-based replication as the core technology. MySQL, for instance, uses a so-called bin-log statement to replicate, which is actually not too binary but more like some form of logical replication. Of course, there are also counterparts in the PostgreSQL world, such as pgpool, Londiste, and Bucardo.

Physical replication will work in a totally different way; instead of sending some SQL (or something else) over, which is logically equivalent to the changes made, the system will send binary changes made by PostgreSQL internally.
Here are some of the binary changes our two transactions might have triggered (but by far, this is not a complete list):
	Added an 8 K block to pg_class and put a new record there (to indicate that the table is present).
	Added rows to pg_attribute to store the column names.
	Performed various changes inside the indexes on those tables.
	Recorded the commit status, and so on.

The goal of physical replication is to create a copy of your system that is (largely) identical on the physical level. This means that the same data will be in the same place inside your tables on all boxes. In the case of logical replication, the content should be identical, but it makes no difference whether it is in the same place or not.
When to use physical replication

Physical replication is very convenient to use and especially easy to set up. It is widely used when the goal is to have identical replicas of your system (to have a backup or to simply scale up).
In many setups, physical replication is the standard method that exposes the end user to the lowest complexity possible. It is ideal for scaling out the data.

When to use logical replication

Logical replication is usually a little harder to set up, but it offers greater flexibility. It is also especially important when it comes to upgrading an existing database. Physical replication is totally unsuitable for version jumps because you cannot simply rely on the fact that every version of PostgreSQL has the same on-disk layout. The storage format might change over time, and therefore, a binary copy is clearly not feasible for a jump from one version to the next.
Logical replication allows decoupling of the way data is stored from the way it is transported and replicated. Using a neutral protocol, which is not bound to any specific version of PostgreSQL, it is easy to jump from one version to the next.
Since PostgreSQL 9.4, there is something called Logical Decoding. It allows users to extract internal changes sent to the XLOG as SQL again. Logical decoding will be needed for a couple of replication techniques outlined in this book.

Using sharding and data distribution

In this section, you will learn about basic scalability techniques, such as database sharding. Sharding is widely used in high-end systems and offers a simple and reliable way to scale out a setup. In recent years, it has become the standard way to scale up professional systems.
Understanding the purpose of sharding

What happens if your setup grows beyond the capacity of a single machine in a single-master setup? What if you want to run so many transactions that one server is simply not able to keep up with them? Let's assume you have millions of users and tens of thousands among them want to perform a certain task at the same time.
Clearly, at some point, you cannot buy servers that are big enough to handle an infinite load anymore. It is simply impossible to run a Facebook- or Google-like application on a single server. At some point, you have to come up with a scalability strategy that serves your needs. This is when sharding comes into play.
The idea of sharding is simple: What if you could split data in a way that it can reside on different nodes?
Designing a sharded system

To demonstrate the basic concept of sharding, let's assume the following scenario: we want to store information about millions of users. Each user has a unique user ID. Let's further assume that we have only two servers. In this case, we can store even user IDs on server 1 and odd user IDs on server 2.
The following diagram shows how this can be done:
[image: Designing a sharded system]
As you can see in our diagram, we have nicely distributed the data. Once this is done, we can send a query to the system, as follows:
SELECT * FROM t_user WHERE id = 4;

The client can easily figure out where to find the data by inspecting the filter in our query. In our example, the query will be sent to the first node because we are dealing with an even number.
As we have distributed the data based on a key (in this case, the user ID), we can search for any person easily if we know the key. In large systems, referring to users through a key is a common practice, and therefore, this approach is suitable. By using this simple approach, we have also easily doubled the number of machines in our setup.
When designing a system, we can easily come up with an arbitrary number of servers; all we have to do is to invent a nice and clever partitioning function to distribute the data inside our server farm. If we want to split the data between 10 servers (not a problem), how about using user ID % 10 as a partitioning function? If you are interested in sharding, consider checking out shard_manager, which is available on PGXN.
When you are trying to break up data and store it on different hosts, always make sure that you are using a proper partitioning function. It can be very beneficial to split data in such a way that each host has more or less the same amount of data.
Splitting users alphabetically might not be a good idea. The reason for that is that not all the letters are equally likely. We cannot simply assume that the letters from A to M occur as often as the letters from N to Z. This can be a major issue if you want to distribute a dataset to a thousand servers instead of just a handful of machines. As stated before, it is essential to have a proper partitioning function, that produces evenly distributed results.
Tip
In many cases, a hash function will provide you with nicely and evenly distributed data. This can especially be useful when working with character fields (such as names, e-mail addresses, and so on).

Querying different fields

In the previous section, you saw how we can easily query a person using their key. Let's take this a little further and see what happens if the following query is used:
SELECT * FROM t_test WHERE name = 'Max';

Remember that we have distributed data using the ID. In our query, however, we are searching for the name. The application will have no idea which partition to use because there is no rule telling us what is where.
As a logical consequence, the application has to ask every partition for the name parameter. This might be acceptable if looking for the name was a real corner case; however, we cannot rely on this fact. Requiring to ask many servers instead of one is clearly a serious deoptimization, and therefore, not acceptable.
We have two ways to approach the problem: coming up with a cleverer partitioning function, or storing the data redundantly.
Coming up with a cleverer partitioning function would surely be the best option, but it is rarely possible if you want to query different fields.
This leaves us with the second option, which is storing data redundantly. Storing a set of data twice, or even more often, is not too uncommon, and it's actually a good way to approach the problem. The following diagram shows how this can be done:
[image: Querying different fields]
As you can see, we have two clusters in this scenario. When a query comes in, the system has to decide which data can be found on which node. For cases where the name is queried, we have (for the sake of simplicity) simply split the data into half alphabetically. In the first cluster, however, our data is still split by user ID.

Pros and cons of sharding

One important thing to understand is that sharding is not a simple one-way street. If someone decides to use sharding, it is essential to be aware of the upsides as well as the downsides of the technology. As always, there is no Holy Grail that magically solves all the problems of mankind out of the box without them having to think about it.
Each practical use case is different, and there is no replacement for common sense and deep thinking.
First, let's take a look at the pros of sharding:
	It has the ability to scale a system beyond one server
	It is a straightforward approach
	It is widely supported by various frameworks
	It can be combined with various other replication approaches
	It works nicely with PostgreSQL (for example, using PL/Proxy)

Light and shade tend to go together, and therefore sharding also has its downsides:
	Adding servers on the fly can be far from simple (depending on the type of partitioning function)
	Your flexibility might be seriously reduced
	Not all types of queries will be as efficient as they would be on a single server
	There is an increase in overall complexity of the setup (such as failover, resyncing, maintenance and so on)
	Backups need more planning
	You might face redundancy and additional storage requirements
	Application developers need to be aware of sharding to make sure that efficient queries are written

In Chapter 13, Scaling with PL/Proxy, we will discuss how you can efficiently use sharding along with PostgreSQL, and how to set up PL/Proxy for maximum performance and scalability.

Choosing between sharding and redundancy

Learning how to shard a table is only the first step to designing a scalable system's architecture. In the example we showed in the previous section, we had only one table, which could be distributed easily using a key. But what if we have more than one table? Let's assume we have two tables:
	A table called t_user for storing the users in our system
	A table called t_language for storing the languages supported by our system

We might be able to partition the t_user table nicely and split it in such a way that it can reside on a reasonable number of servers. But what about the t_language table? Our system might support as many as 10 languages.
It can make perfect sense to shard and distribute hundreds of millions of users, but splitting up 10 languages? This is clearly useless. In addition to all this, we might need our language table on all the nodes so that we can perform joins.
One solution to the problem is simple: you need a full copy of the language table on all the nodes. This will not cause a storage-consumption-related problem because the table is so small. Of course, there are many different ways to attack the problem.
Tip
Make sure that only large tables are sharded. In the case of small tables, full replicas of the tables might just make much more sense.

Again, every case has to be thought over thoroughly.

Increasing and decreasing the size of a cluster

So far, we have always considered the size of a sharded setup to be constant. We have designed sharding in a way that allowed us to utilize a fixed number of partitions inside our cluster. This limitation might not reflect in everyday requirements. How can you really tell for certain how many nodes will be needed at the time a setup is designed? People might have a rough idea of the hardware requirements, but actually knowing how much load to expect is more art than science.
Tip
To reflect this, you have to design a system in such a way that it can be resized easily.

A commonly made mistake is that people tend to increase the size of their setup in unnecessarily small steps. Somebody might want to move from five to maybe six or seven machines. This can be tricky. Let's assume for a second that we have split data using user id % 5 as the partitioning function. What if we wanted to move to user id % 6? This is not so easy; the problem is that we have to rebalance the data inside our cluster to reflect the new rules.
Remember that we have introduced sharding (that is, partitioning) because we have so much data and so much load that one server cannot handle the requests anymore. Now, if we come up with a strategy that requires rebalancing of data, we are already on the wrong track. You definitely don't want to rebalance 20 TB of data just to add two or three servers to your existing system.
Practically, it is a lot easier to simply double the number of partitions. Doubling your partitions does not require rebalancing of data because you can simply follow the strategy outlined here:
	Create a replica of each partition
	Delete half of the data on each partition

If your partitioning function was user id % 5 before, it should be user id % 10 afterwards. The advantage of doubling is that data cannot move between partitions. When it comes to doubling, users might argue that the size of your cluster might increase too rapidly. This is true, but if you are running out of capacity, adding 10 percent storage to your resources won't fix the problem of scalability anyway.
Instead of just doubling your cluster (which is fine for most cases), you can also give more thought to writing a more sophisticated partitioning function that leaves the old data in place but handles the more recent data more intelligently. Having time-dependent partitioning functions might cause issues of its own, but it might be worth investigating this path.
Tip
Some NoSQL systems use range partitioning to spread out data. Range partitioning means that each server has a fixed slice of data for a given time frame. This can be beneficial if you want to perform time series analysis or something similar. However, it can be counterproductive if you want to make sure that data is split evenly.

If you expect your cluster to grow, we recommend starting with more partitions than those initially necessary, and packing more than just one partition on a single server. Later on, it will be easy to move single partitions to additional hardware joining the cluster setup. Some cloud services are able to do that, but those aspects are not covered in this book.
To shrink your cluster again, you can simply apply the opposite strategy and move more than just one partition to a single server. This leaves the door for a future increase of servers wide open, and can be done fairly easily.

Consistent hashing is another approach to distributing data. This technique is widely used in NoSQL systems and allows us to extend clusters in a more flexible way. However, the same technique can be used for PostgreSQL, of course.
Let's assume we have three servers (A, B, and C). What happens in consistent hashing is that an array of, say, 1,000 slots can be created. Then each server name is hashed a couple of times and entered in the array. The result might look like this:
 43 B, 153 A, 190 C, 340 A, 450 C, 650 B, 890 A, 930 C, 980 B

Each value shows up multiple times. In the case of insertion, we take the input key and calculate a value. Let's assume hash (some input value) equals 58. The result will go to server A. Why? There is no entry for 58, so the system moves forward in the list, and the first valid entry is 153, which points to A. If the hash value returned 900, the data would end up on C. Again, there is no entry for 900 so the system has to move forward in the list until something is found.
If a new server is added, new values for the server will be added to the array (D might be on 32, 560, 940, or so). The system has to rebalance some data, but of course, not all of the data. It is a major advantage over a simple hashing mechanism, such as a simple key % server_number function. Reducing the amount of data to be resharded is highly important.
The main advantage of consistent hashing is that it scales a lot better than simple approaches.

OEBPS/graphics/B04079_01_02.jpg

OEBPS/graphics/PacktLibLogo.jpg

OEBPS/graphics/B04079_01_04.jpg
'~

Server 1 Server 2

OEBPS/cover/cover.jpg
PostgreSQL Replication
Second Edition

Leverage the power of PostgreSQL replication to make your
databases more robust, secure, scalable, and fast

PACKT

OEBPS/graphics/B04079_01_03.jpg

OEBPS/graphics/B04079_01_01.jpg
ASYNCHRONOUS REPLICATION

ﬂ-»

Master

time difference >0ms.

SYNCHRONOUS REPLICATION
Master Slave

8» D time difference = Oms D

