

 [image: (missing alt)]

 Table of Contents

 Game Physics Cookbook

 Credits

 About the Author

 Acknowledgements

 About the Reviewer

 Acknowledgements

 www.PacktPub.com

 eBooks, discount offers, and more

 Why Subscribe?

 Customer Feedback

 Preface

 What this book covers

 What you need for this book

 Who this book is for

 Sections

 Getting ready

 How to do it…

 How it works…

 There's more…

 See also

 Conventions

 Reader feedback

 Customer support

 Downloading the example code

 Errata

 Piracy

 Questions

 1. Vectors

 Introduction

 Vector definition

 Getting ready

 How to do it…

 How it works…

 There's more…

 The W component

 Component-wise operations

 Getting ready

 How to do it…

 How it works…

 Addition

 Subtraction

 Multiplication (Vector and Scalar)

 Comparison

 There's more…

 Dot product

 How to do it…

 How it works…

 There's more…

 Geometric definition

 Magnitude

 Getting ready

 How to do it…

 How it works…

 There's more…

 Normalizing

 Getting ready

 How to do it…

 How it works…

 Cross product

 Getting ready

 How to do it…

 How it works…

 Angles

 Getting ready

 How to do it…

 How it works…

 There's more…

 Radians and degrees

 Projection

 Getting ready

 How to do it…

 How it works…

 Reflection

 Getting ready

 How to do it…

 How it works…

 2. Matrices

 Introduction

 Matrix definition

 Getting ready

 How to do it…

 How it works…

 Transpose

 Getting ready

 How to do it…

 How it works…

 Multiplication

 Getting ready

 How to do it…

 How it works…

 Identity matrix

 Getting ready

 How to do it…

 How it works…

 Determinant of a 2x2 matrix

 How to do it…

 How it works…

 Matrix of minors

 Getting ready

 How to do it…

 How it works…

 Minor of a 2x2 matrix

 Minor of a 3x3 matrix

 Cofactor

 Getting ready

 How to do it…

 How it works…

 Determinant of a 3x3 matrix

 Getting ready

 How to do it…

 How it works…

 Operations on a 4x4 matrix

 Getting ready

 How to do it…

 How it works…

 Adjugate matrix

 Getting ready

 How to do it…

 How it works…

 Matrix inverse

 Getting ready

 How to do it…

 How it works…

 There's more…

 Expanding the inverse

 3. Matrix Transformations

 Introduction

 Matrix majors

 Translation

 Getting Ready

 How to do it…

 How it works…

 Scaling

 Getting ready

 How to do it…

 How it works…

 How rotations work

 Getting ready

 How to do it…

 How it works…

 Rotation matrices

 Getting ready

 How to do it…

 How it works…

 X-Basis vector

 Y-Basis vector

 Z-Basis vector

 There's more…

 X and Y rotation

 Axis angle rotation

 Getting ready

 How to do it…

 How it works…

 Vector matrix multiplication

 Getting ready

 How to do it…

 How it works…

 Transform matrix

 Getting ready

 How to do it…

 How it works…

 View matrix

 Getting ready

 How to do it…

 How it works…

 Projection matrix

 Getting ready

 How to do it…

 How it works…

 4. 2D Primitive Shapes

 Introduction

 2D points

 Getting ready

 How to do it…

 How it works…

 2D lines

 Getting ready

 How to do it…

 How it works…

 Circle

 Getting ready

 How to do it…

 How it works…

 Rectangle

 Getting ready

 How to do it…

 How it works…

 Oriented rectangle

 Getting ready

 How to do it…

 How it works…

 Point containment

 Getting ready

 How to do it…

 How it works…

 Point on a line

 Point in a circle

 Point in a rectangle

 Point in an oriented rectangle

 Line intersection

 Getting ready

 How to do it…

 How it works…

 Line circle

 Line rectangle

 Line oriented rectangle

 5. 2D Collisions

 Introduction

 Circle to circle

 Getting ready

 How to do it…

 How it works…

 Circle to rectangle

 Getting ready

 How to do it…

 How it works…

 There's more…

 Circle to oriented rectangle

 Getting ready

 How to do it…

 How it works…

 Rectangle to rectangle

 Getting ready

 How to do it…

 How it works…

 Separating Axis Theorem

 Getting ready

 How to do it…

 How it works…

 There's more…

 Determining which axis to test

 Rectangle to oriented rectangle

 Getting ready

 How to do it…

 How it works…

 Oriented rectangle to oriented rectangle

 Getting ready

 How to do it…

 How it works…

 6. 2D Optimizations

 Introduction

 Containing circle

 Getting ready

 How to do it…

 How it works…

 Containing rectangle

 Getting ready

 How to do it…

 How it works…

 Simple and complex shapes

 Getting ready

 How to do it…

 How it works…

 Quad tree

 Getting ready

 How to do it…

 How it works…

 Broad phase collisions

 Getting ready

 How to do it…

 How it works…

 7. 3D Primitive Shapes

 Introduction

 Point

 Getting ready

 How to do it…

 How it works…

 Line segment

 Getting ready

 How to do it…

 How it works…

 Ray

 Getting ready

 How to do it…

 How it works…

 Sphere

 Getting ready

 How to do it…

 How it works…

 Axis Aligned Bounding Box

 Getting ready

 How to do it

 How it works

 Oriented Bounding Box

 Getting ready

 How to do it

 How it works

 Plane

 Getting ready

 How to do it

 How it works

 Triangle

 Getting ready

 How to do it

 How it works

 8. 3D Point Tests

 Introduction

 Point and sphere

 Getting ready

 How to do it…

 How it works…

 Point and AABB

 Getting ready

 How to do it…

 How it works…

 Point and Oriented Bounding Box

 Getting ready

 How to do it…

 How it works…

 Point and plane

 Getting ready

 How to do it…

 How it works…

 Point and line

 Getting ready

 How to do it…

 How it works…

 Point and ray

 Getting ready

 How to do it…

 How it works…

 9. 3D Shape Intersections

 Introduction

 Sphere-to-sphere

 Getting ready

 How to do it…

 How it works…

 Sphere-to-AABB

 Getting ready

 How to do it…

 How it works…

 Sphere-to-OBB

 Getting ready

 How to do it…

 How it works…

 Sphere-to-plane

 Getting ready

 How to do it…

 How it works…

 AABB-to-AABB

 Getting ready

 How to do it…

 How it works…

 AABB-to-OBB

 Getting ready

 How to do it…

 How it works…

 AABB-to-plane

 Getting ready

 How to do it…

 How it works…

 OBB-to-OBB

 Getting ready

 How to do it…

 How it works…

 OBB-to-plane

 Getting ready

 How to do it…

 How it works…

 Plane-to-plane

 Getting ready

 How to do it…

 How it works…

 10. 3D Line Intersections

 Introduction

 Raycast Sphere

 Getting ready

 How to do it…

 How it works…

 Raycast Axis Aligned Bounding Box

 Getting ready

 How to do it…

 How it works…

 Raycast Oriented Bounding Box

 Getting ready

 How to do it…

 How it works…

 Raycast plane

 Getting ready

 How to do it…

 How it works…

 Linetest Sphere

 Getting ready

 How to do it…

 How it works…

 Linetest Axis Aligned Bounding Box

 Getting ready

 How to do it…

 How it works…

 Linetest Oriented Bounding Box

 Getting ready

 How to do it…

 How it works…

 Linetest Plane

 Getting ready

 How to do it…

 How it works…

 11. Triangles and Meshes

 Introduction

 Point in triangle

 Getting ready

 How to do it…

 How it works…

 Closest point triangle

 Getting ready

 How to do it…

 How it works…

 Triangle to sphere

 Getting ready

 How to do it…

 How it works…

 Triangle to Axis Aligned Bounding Box

 Getting ready

 How to do it…

 How it works…

 Triangle to Oriented Bounding Box

 Getting ready

 How to do it…

 How it works…

 Triangle to plane

 Getting ready

 How to do it…

 How it works…

 Triangle to triangle

 Getting ready

 How to do it…

 How it works…

 Robustness of the Separating Axis Theorem

 Getting ready

 How to do it…

 How it works…

 Raycast Triangle

 Getting ready

 How to do it…

 How it works…

 Linetest Triangle

 Getting ready

 How to do it…

 How it works…

 Mesh object

 Getting ready

 How to do it…

 How it works…

 Mesh optimization

 Getting ready

 How to do it…

 How it works…

 Mesh operations

 Getting ready

 How to do it…

 How it works…

 There's more…

 12. Models and Scenes

 Introduction

 The Model object

 Getting ready

 How to do it…

 How it works…

 Operations on models

 Getting ready

 How to do it…

 How it works…

 The Scene object

 Getting ready

 How to do it…

 How it works…

 There's more

 Operations on the scene

 Getting ready

 How to do it…

 How it works…

 The Octree object

 Getting ready

 How to do it…

 How it works…

 Octree contents

 Getting ready

 How to do it…

 How it works…

 Operations on the Octree

 Getting ready

 How to do it…

 How it works…

 Octree scene integration

 Getting ready

 How to do it…

 How it works…

 13. Camera and Frustum

 Introduction

 Camera object

 Getting ready

 How to do it…

 How it works…

 Camera controls

 Getting ready

 How to do it…

 How it works…

 Frustum object

 Getting ready

 How to do it…

 How it works…

 Frustum from matrix

 Getting ready

 How to do it…

 How it works…

 Sphere in frustum

 Getting ready

 How to do it…

 How it works…

 Bounding Box in frustum

 Getting ready

 How to do it…

 How it works…

 Octree culling

 Getting Ready

 How to do it…

 How it works…

 Picking

 Getting ready

 How to do it…

 How it works…

 There's more…

 14. Constraint Solving

 Introduction

 Framework introduction

 Getting ready

 How to do it…

 How it works…

 There's more…

 Raycast sphere

 Getting ready

 How to do it…

 How it works…

 Raycast Bounding Box

 Getting ready

 How to do it…

 How it works…

 Raycast plane and triangle

 Getting ready

 How to do it…

 How it works…

 Physics system

 Getting ready

 How to do it…

 How it works…

 Integrating particles

 Getting ready

 How to do it…

 How it works…

 There's more…

 Solving constraints

 Getting ready

 How to do it…

 How it works…

 Verlet Integration

 Getting ready

 How to do it…

 How it works…

 15. Manifolds and Impulses

 Introduction

 Manifold for spheres

 Getting ready

 How to do it…

 How it works…

 Manifold for boxes

 Getting ready

 How to do it…

 How it works…

 There's more…

 Duplicate points

 Rigidbody Modifications

 Getting ready

 How to do it…

 How it works…

 Linear Velocity

 Getting ready

 How to do it...

 How it works...

 Linear Impulse

 Getting ready

 How to do it...

 How it works...

 Linear Impulse

 Friction

 There's more...

 Physics System Update

 Getting ready

 How to do it...

 How it works...

 Angular Velocity

 Angular Velocity and Acceleration

 Tangential Acceleration

 Centripetal Acceleration

 Torque

 Inertia Tensor

 Getting ready

 How to do it...

 How it works...

 There's more...

 Tensors

 Angular Impulse

 Getting ready

 How to do it...

 How it works...

 There's more...

 Non-linear projection

 16. Springs and Joints

 Introduction

 Particle Modifications

 Getting ready

 How to do it…

 How it works…

 Springs

 Getting ready

 How to do it…

 How it works…

 Cloth

 Getting ready

 How to do it…

 How it works…

 Physics System Modification

 Getting ready

 How to do it…

 How it works…

 Joints

 Getting ready

 How to do it…

 How it works…

 There's more…

 A. Advanced Topics

 Introduction

 Generic collisions

 Minkowski Sum

 Gilbert Johnson Keerthi (GJK)

 Expanding Polytope Algorithm (EPA)

 Stability improvements

 Arbiters

 Accumulated impulse

 Springs

 Collision resolution

 Softbody objects

 Open source physics engines

 Box2D Lite

 Box2D

 Dyn4j

 Bullet

 ODE

 JigLib

 React 3D

 Qu3e

 Cyclone Physics

 Books

 Online resources

 Summary

 Index

Game Physics Cookbook

Game Physics Cookbook

Copyright © 2017 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: March 2017
Production reference: 1200317
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78712-366-3

www.packtpub.com

Credits

Author

Gabor Szauer

Reviewers

Francesco Sapio

Commissioning Editor

Ashwin Nair

Acquisition Editor

Divya Poojari

Content Development Editor

Onkar Wani

Technical Editor

Rashil Shah

Copy Editors

Safis Editing
Shaila Kusanale

Project Coordinator

Devanshi Doshi

Proofreader

Safis Editing

Indexer

Francy Puthiry

Graphics

Abhinash Sahu

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

About the Author

Gabor Szauer graduated from Full Sail University with a bachelor's degree in game development. He has been making video games professionally for over 6 years. He has worked on games for the Nintendo 3DS, Xbox 360, browser-based games, and mobile games.
In his free time Gabor makes video games, researches video game-related technologies, and likes to design and construct furniture. Gabor currently resides in San Francisco, working in the mobile game industry.

Acknowledgements

I would like to thank my mom and dad, Gabriella and János. Without your constant love and support this book would not be possible.
I also want to thank my wife Lisa Jennifer Gordon who not only managed to put up with me through the process of writing this book, but helped create many of the illustrations in the book as well.
Finally, I want to thank my brother Martin, without his curiosity for programming the first draft of this book would not have been written.

About the Reviewer

Francesco Sapio obtained his Computer Science and Control Engineering degree from Sapienza University of Rome, Italy, with a couple of semesters in advance, scoring summa cum laude. He is currently studying a Master of Science in Engineering in Artificial Intelligence and Robotics at the same university.
He is a Unity3D and Unreal expert, a skilled game designer, and an experienced user of the major graphics programs. He developed Gea2, formerly Game@School (Sapienza University of Rome), an educational game for high school students to learn the concepts of physics, and Sticker Book (series) (Dataware Games), a cross-platform series of games for kids. In addition, he worked as a consultant for the (successfully funded by Kickstarter) game Prosperity – Italy 1434 (Entertainment Game Apps, Inc.), and for the open online collaborative ideation system titled Innovoice (Sapienza University of Rome). Moreover, he has been involved in different research projects such as Belief-Driven-Pathfinding (Sapienza University of Rome), a new technique for pathfinding in videogames that was presented as a paper at the DiGRA-FDG Conference 2016; and perfekt.ID (Royal Melbourne Institute of Technology), which included developing a recommendation system for games.
He is an active writer on the topic of game development. Recently, he authored the book Getting Started with Unity 5.x 2D Game Development (Packt Publishing) which takes your hand and guides you through the amazing journey of game development, the successful Unity UI Cookbook (Packt Publishing), which has been translated into other languages and teaches readers how to develop exciting and practical user interfaces for games within Unity, and a short e-guide What do you need to know about Unity (Packt Publishing). In addition, he co-authored the book Unity 5.x 2D Game Development Blueprints (Packt Publishing). Furthermore, he has also been a reviewer for the following books: Mastering Unity 5.x (Packt Publishing), Unity 5.x by Example (Packt Publishing), and Unity Game Development Scripting (Packt Publishing).
Francesco is also a musician and a composer, especially of soundtracks for short films and video games. For several years, he worked as an actor and dancer, where he was a guest of honor at the theatre Brancaccio in Rome. In addition, he is a very active person, having volunteered as a children's entertainer at the Associazione Culturale Torraccia in Rome.
Finally, Francesco loves math, philosophy, logic, and puzzle solving, but most of all, creating video games — thanks to his passion for game designing and programming.
You can find him at www.francescosapio.com.

Acknowledgements

I'm deeply thankful to my parents for their infinite patience, enthusiasm, and support throughout my life. Moreover, I'm thankful to the rest of my family, in particular to my grandparents, since they have always encouraged me to do better in my life with the Latin expressions "Ad maiora" and "Per aspera ad astra".
Finally, a huge thanks to all the special people around me whom I love, in particular to my girlfriend; I'm grateful for all of your help in everything. I do love you.

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <customercare@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: eBooks, discount offers, and more]

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.
Why Subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print, and bookmark content
	On demand and accessible via a web browser

Customer Feedback

Thank you for purchasing this Packt book. We take our commitment to improving our content and products to meet your needs seriously—that's why your feedback is so valuable. Whatever your feelings about your purchase, please consider leaving a review on this book's Amazon page. Not only will this help us, more importantly it will also help others in the community to make an informed decision about the resources that they invest in to learn.
You can also review for us on a regular basis by joining our reviewers' club. If you're interested in joining, or would like to learn more about the benefits we offer, please contact us: <customerreviews@packtpub.com>.

Preface

At some point in your game development career, you might need to build a physics engine, modify the source code of an existing physics engine, or even just model some interaction using an existing physics engine. Each of these tasks is a real challenge. Knowing how a physics engine is implemented under the hood will make all of these scenarios a lot simpler.
Building a physics engine from scratch might seem like a large, complex and confusing project, but it doesn't have to be. Behind every physics engine are the same three core components: a solid math library, accurate intersection testing, and usually impulse-based collision resolution. The collision resolution does not have to use an impulse-based solver; other resolution strategies exist as well.
This book covers the three core components of a physics engine in great detail. By the end of the book you will have implemented particle-based physics, rigid body physics, and even soft body physics through cloth simulation. This cookbook aims to break the components of a physics engine down into bite-sized, independent recipes.
What this book covers

Chapter 1, Vectors, covers vector math using 2D and 3D vectors. Vectors will be heavily used throughout the book, so having a solid understanding of the math behind vectors is essential.

Chapter 2, Matrices, covers the basics of 2D, 3D, and 4D matrices. Operations such as matrix multiplication and inversion are covered. This chapter is an introduction to the implementation matrices in C++.

Chapter 3, Matrix Transformations, covers applying matrices to games. This chapter builds upon the understanding of vectors and matrices built up in the previous chapters to explain how matrices and vectors can be used to represent transformations in 3D space.

Chapter 4, 2D Primitive Shapes, covers common 2D shapes games may need. This chapter provides practical definitions and implementations of common 2D primitives.

Chapter 5, 2D Collisions, covers testing the 2D shapes defined in the last chapter for intersection. This chapter covers the fundamental concepts of intersection testing in 2D, which later chapters will expand into 3D.

Chapter 6, 2D Optimizations, covers speeding up the intersection tests written in the last chapter. Once hundreds or even thousands of objects are colliding, brute force collision detection will no longer work in real time. The topics covered in this chapter are vital for keeping collision detection running in real time, even with a large number of objects.

Chapter 7, 3D Primitive Shapes, covers the common 3D shapes games may need. This chapter provides the definition of the geometric primitives we will later build upon to create a working 3D physics engine.

Chapter 8, 3D Point Tests, covers nearest point and containment tests in a 3D environment. This chapter covers finding the closest point on the surface of a 3D primitive to a given point and provides containment tests for the 3D primitives previously covered.

Chapter 9, 3D Shape Intersections, covers testing all of the 3D primitive shapes for intersection. This chapter expands many of the 2D intersection tests covered previously in the book into 3D space. The chapter also provides additional insight into optimizing intersection tests in 3D space.

Chapter 10, 3D Line Intersections, covers testing the intersection of a line and any 3D primitive, as well as raycasting against any 3D primitive. Ray casting is perhaps one of the most versatile intersection tests. We will use ray casting in later chapters to avoid the common problem of tunneling.

Chapter 11, Triangles and Meshes, covers a new primitive, the triangle, and how to use triangles to represent a mesh. In a 3D game world, objects are often represented by complex meshes rather than primitive 3D shapes. This chapter presents the most straightforward way of representing these complex meshes in the context of a physics engine.

Chapter 12, Models and Scenes, covers adding a transformation to a mesh, as well as using a hierarchy of meshes to represent a scene. Games often reuse the same mesh transformed into a different space. This chapter defines a model, which is a mesh with some transformation. The chapter also covers multiple models in a scene.

Chapter 13, Camera and Frustum, covers the frustum primitive and building a camera out of matrices. The focus of this chapter is to build an easy to use camera which can be used to view any 3D scene. Each camera will have a frustum primitive attached. The attached frustum primitive can optimize render times by culling unseen objects.

Chapter 14, Constraint Solving, covers a basic introduction to physics. This chapter introduces particle physics and world space constraints for particles. In this chapter, the word constraint refers to an immovable object in the physics simulation.

Chapter 15, Manifolds and Impulses, extends the particle physics engine built in the last chapter by defining a rigid body object, which unlike a particle has some volume. Impulse-based collision resolution is also covered in this chapter.

Chapter 16, Springs and Joints, creates springs and simple joint constraints for springs. Using springs and particles, this chapter covers the basic concept of soft body physics. The chapter focuses on implementing 3D cloth using springs and particles.

Appendix, Advanced Topics, covers issues this book did not have the scope to address. Building a physics engine is a huge undertaking. While this book built a basic physics engine, there are many topics that fell outside the scope of this book. This chapter provides guidance, references, and resources to help the reader explore these advanced topics further.

What you need for this book

Working knowledge of the C++ language is required for this book, as the book is not a tutorial about programming. Having a basic understanding of calculus and linear algebra will be useful, but is not required. You will need a Windows PC (preferably with Windows 7 or higher) with Microsoft Visual Studio 2015 installed on it.

Who this book is for

This book is for beginner to intermediate game developers. You don't need to have a formal education in games—you can be a hobbyist or indie developer who started making games with Unity 3D.

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to do it…, How it works…, There's more…, and See also).
To give clear instructions on how to complete a recipe, we use these sections as follows:
Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software or any preliminary settings required for the recipe.

How to do it…

This section contains the steps required to follow the recipe.

How it works…

This section usually consists of a detailed explanation of what happened in the previous section.

There's more…

This section consists of additional information about the recipe in order to make the reader more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can include other contexts through the use of the include directive."
A block of code is set as follows:
#ifndef _H_MATH_VECTORS_
#define _H_MATH_VECTORS_

// Structure definitions
// Method declarations

#endif

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Under the Application divider you will find the code"
Note
Creating a Win32 window with an active OpenGL Context is outside the scope of this book. For a better understanding of how Win32 code works with OpenGL read: https://www.khronos.org/opengl/wiki/Creating_an_OpenGL_Context_(WGL)

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.
You can download the code files by following these steps:
	Log in or register to our website using your e-mail address and password.
	Hover the mouse pointer on the SUPPORT tab at the top.
	Click on Code Downloads & Errata.
	Enter the name of the book in the Search box.
	Select the book for which you're looking to download the code files.
	Choose from the drop-down menu where you purchased this book from.
	Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's webpage at the Packt Publishing website. This page can be accessed by entering the book's name in the Search box. Please note that you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:
	WinRAR / 7-Zip for Windows
	Zipeg / iZip / UnRarX for Mac
	7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Game-Physics-Cookbook. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at <questions@packtpub.com>, and we will do our best to address the problem.

Chapter 1. Vectors

In this chapter, we will cover the following vector operations:
	Addition
	Subtraction
	Multiplication
	Scalar Multiplication
	Cross Product
	Dot Product
	Magnitude
	Distance
	Normalization
	Angle
	Projection
	Reflection

Introduction

Throughout this book we are going to explore the mathematical concepts required to detect and react to intersections in a 3D environment. In order to achieve robust collision detection and build realistic reactions, we will need a strong understanding of the math required. The most important mathematical concepts in physics are Vectors and Matrices.
Physics and collisions rely heavily on Linear Algebra. The math involved may sound complicated at first, but it can be broken down into simple steps. The recipes in this chapter will explain the properties of vectors using math formulas. Each recipe will also contain a visual guide. Every formula will also have an accompanying code sample.
Note
This chapter does not assume you have any advanced math knowledge. I try to cover everything needed to understand the formulas presented. If you find yourself falling behind, Khan Academy covers the basic concepts of linear algebra at: www.khanacademy.org/math/linear-algebra.

Vector definition

A vector is an n-tuple of real numbers. A tuple is a finite ordered list of elements. An n-tuple is an ordered list of elements which has n dimensions. In the context of games n is usually 2, 3, or 4. An n-dimensional vector [image: Vector definition] is represented as follows:
[image: Vector definition]
The subscript numbers [image: Vector definition] are called the components of the vector. Components are expressed as a number or as a letter corresponding to the axis that component represents. Subscripts are indexed starting with 0. For example, [image: Vector definition] is the same as [image: Vector definition]. Axis x, y, z, and w correspond to the numbers 0, 1, 2, and 3, respectively.
Vectors are written as a capital bold letter with or without an arrow above it. [image: Vector definition] and V are both valid symbols for vector V. Throughout this book we are going to be using the arrow notation.
A vector does not have a position; it has a magnitude and a direction. The components of a vector measure signed displacement. In a two-dimensional vector for example, the first component represents displacement on the X axis, while the second number represents displacement on the Y axis.
Visually, a vector is drawn as a displacement arrow. The two dimensional vector [image: Vector definition] would be drawn as an arrow pointing to 3 units on the X axis and 2 units on the Y axis.
[image: Vector definition]
A vector consists of a direction and a magnitude. The direction is where the vector points and the magnitude is how far along that direction the vector is pointing. You can think of a vector as a series of instructions. For example, take three steps right and two steps up. Because a vector does not have a set position, where it is drawn does not matter as shown in the following diagram:
[image: Vector definition]
The preceding figure shows several vectors, with vector (3,2) appearing multiple times. The origin of a vector could be anywhere; the coordinate system of the preceding figure was omitted to emphasize this.
Getting ready

Video games commonly use two, three, and four-dimensional vectors. In this recipe, we are going to define C++ structures for two and three-dimensional vectors. These structures will expose each component of the vector by the name of an axis, as well as a numeric index.

How to do it…

Follow these steps to start implementing a math library with vector support:
	Create a new C++ header file; call this file vectors.h; add standard C-style header guards to the file:#ifndef _H_MATH_VECTORS_
#define _H_MATH_VECTORS_

// Structure definitions
// Method declarations

#endif

	Replace the // Structure definitions comment with the definition of a two-dimensional vector:typedef struct vec2 {
 union {
 struct {
 float x;
 float y;
 };
 float asArray[2];
 };

 float& operator[](int i) {
 return asArray[i];
 }
} vec2;

	After the definition of vec2, add the definition for a three-dimensional vector:typedef struct vec3 {
 union {
 struct {
 float x;
 float y;
 float z;
 };
 float asArray[3];
 };

 float& operator[](int i) {
 return asArray[i];
 }
} vec3;

How it works…

We have created two new structures, vec2 and vec3. These structures represent two and three-dimensional vectors, respectively. The structures are similar because with every new dimension the vector just adds a new component.
Inside the vector structures we declare an anonymous union. This anonymous union allows us to access the components of the vector by name or as an index into an array of floats. Additionally, we overloaded the indexing operator for each structure. This will allow us to index the vectors directly.
With the access patterns we implemented, the components of a vector can be accessed in the following manner:
vec3 right = {1.0f, 0.0f, 0.0f};
std::cout<< "Component 0: " <<right.x<< "\n";
std::cout<< "Component 0: " <<right.asArray[0] << "\n";
std::cout<< "Component 0: " <<right[0] << "\n";

There's more…

Games often use a four-dimensional vector, which adds a W component. However, this W component is not always treated as an axis. The W component is often used simply to store the result of a perspective divide, or to differentiate a vector from a point.
The W component

A vector can represent a point in space or a direction and a magnitude. A three-dimensional vector has no context; there is no way to tell from the x, y, and z components if the vector is supposed to be a point in space or a direction and a magnitude. In the context of games, this is what the W component of a four-dimensional vector is used for.
If the W component is 0, the vector is a direction and a magnitude. If the W component is anything else, usually 1, the vector is a point in space. This distinction seems arbitrary right now; it has to do with matrix transformations, which will be covered in Chapter 3, Matrix Transformations.
We did not implement a four-dimensional vector because we will not need it. Our matrix class will implement explicit functions for multiplying points and vectors. We will revisit this topic in Chapter 3, Matrix Transformations.

Component-wise operations

Given two vectors, there are several component-wise operations we can perform. These operations will operate on each component of the vector and yield a new vector.
You can add two vectors component wise. Given two n-dimensional vectors [image: Component-wise operations] and [image: Component-wise operations], addition is defined as follows:
[image: Component-wise operations]
You can also subtract two vectors component wise. Given two n-dimensional vectors [image: Component-wise operations]and [image: Component-wise operations], subtraction is defined as follows:
[image: Component-wise operations]

Multiplying two vectors can also be done component wise. There are other ways to multiply two vectors; the dot product or cross product. Both of these alternate methods will be covered later in this chapter. Given two n-dimensional vectors [image: Component-wise operations] and [image: Component-wise operations], multiplication is defined as follows:
[image: Component-wise operations]
In addition to multiplying two vectors, you can also multiply a vector by a scalar. In this context, a scalar is any real number. Given vector [image: Component-wise operations] and scalar S, scalar multiplication is defined as follows:
[image: Component-wise operations]
Finally, we can check for vector equality by comparing each component of the vectors being tested. Two vectors are the same only if all of their components are equal.
Getting ready

We're going to implement all of the preceding component-wise operations by overloading the appropriate C++ operators. All of the operators presented in this section can be overloaded in C# as well. In languages that do not support operator overloading, you will have to make these into regular functions.

How to do it…

Follow these steps to override common operators for the vector class. This will make working with vectors feel more intuitive:
	In vectors.h, add the following function declarations:vec2 operator+(const vec2& l, const vec2& r);
vec3 operator+(const vec3& l, const vec3& r);
vec2 operator-(const vec2& l, const vec2& r);
vec3 operator-(const vec3& l, const vec3& r);
vec2 operator*(const vec2& l, const vec2& r);
vec3 operator*(const vec3& l, const vec3& r);
vec2 operator*(const vec2& l, float r);
vec3 operator*(const vec3& l, float r);
bool operator==(const vec2& l, const vec2& r);
bool operator==(const vec3& l, const vec3& r);
bool operator!=(const vec2& l, const vec2& r);
bool operator!=(const vec3& l, const vec3& r);

	Create a new C++ source file, vectors.cpp. Include the following headers in the new file:#include "vectors.h"
#include <cmath>
#include <cfloat>

	Add a macro for comparing floating point numbers to vectors.cpp:#define CMP(x, y) \
 (fabsf((x)–(y)) <= FLT_EPSILON * \
 fmaxf(1.0f, \
 fmaxf(fabsf(x), fabsf(y))) \
)

	Add the implementation of vector addition to the vectors.cpp file:vec2 operator+(const vec2& l, const vec2& r) {
 return { l.x + r.x, l.y + r.y };
}

vec3 operator+(const vec3& l, const vec3& r) {
 return { l.x + r.x, l.y + r.y, l.z + r.z };
}

	Add the implementation of vector subtraction to the vectors.cpp file:vec2 operator-(const vec2& l, const vec2& r) {
 return { l.x - r.x, l.y - r.y };
}

vec3 operator-(const vec3& l, const vec3& r) {
 return { l.x - r.x, l.y - r.y, l.z - r.z };
}

	Add the implementation for vector multiplication to the vectors.cpp file:vec2 operator*(const vec2& l, const vec2& r) {
 return { l.x * r.x, l.y * r.y };
}

vec3 operator*(const vec3& l, const vec3& r) {
 return { l.x * r.x, l.y * r.y, l.z * r.z };
}

	Add the implementation for scalar multiplication to the vectors.cpp file:vec2 operator*(const vec2& l, float r) {
 return { l.x * r, l.y * r };
}

vec3 operator*(const vec3& l, float r) {
 return { l.x * r, l.y * r, l.z * r };
}

	Finally, add the implementation for vector equality to the vectors.cpp file. This is where the compare macro we created in step 3 comes in:bool operator==(const vec2& l, const vec2& r) {
 return CMP(l.x, r.x) && CMP(l.y, r.y);
}

bool operator==(const vec3& l, const vec3& r) {
 return CMP(l.x, r.x) && CMP(l.y, r.y) && CMP(l.z, r.z);
}

bool operator!=(const vec2& l, const vec2& r) {
 return !(l == r);
}

bool operator!=(const vec3& l, const vec3& r) {
 return !(l == r);
}

How it works…

What these components-wise operations are doing might not be obvious from the definitions and code provided alone. Let's explore the component-wise operations of vectors visually.
Addition

Every vector describes a series of displacements. For example, the vector (2, 3) means move two units in the positive X direction and three units in the positive Y direction. We add vectors by following the series of displacements that each vector represents. To visualize this, given vectors [image: Addition] and [image: Addition], draw them so the head of [image: Addition]touches the tail of [image: Addition] The result of the addition is a new vector spanning from the tail of [image: Addition] to the head of [image: Addition]:
[image: Addition]

Subtraction

Subtraction works the same way as addition. We have to follow the negative displacement of vector [image: Subtraction] starting from vector [image: Subtraction]. To visually subtract vectors [image: Subtraction] and [image: Subtraction], draw [image: Subtraction] and [image: Subtraction] with their tails touching. The result of the subtraction is a vector spanning from the head of [image: Subtraction] to the head of [image: Subtraction]:
[image: Subtraction]
A more intuitive way to visualize subtraction might be to think of it as adding negative [image: Subtraction] to[image: Subtraction], like so; [image: Subtraction]. If we represent the subtraction like this, visually we can follow the rules of addition:
[image: Subtraction]
In the above image, the vector [image: Subtraction]appears multiple times. This is to emphasize that the position of a vector does not matter. Both of the [image: Subtraction] vectors above represent the same displacement!

Multiplication (Vector and Scalar)

Multiplying a vector by a scalar will scale the vector. This is easy to see when we visualize the result of a multiplication. The scalar multiplication of a vector will result in a uniform scale, where all components of the vector are scaled by the same amount. Multiplying two vectors on the other hand results in a non-uniform scale. This just means that each component of the vector is scaled by the corresponding component of the other vector:
[image: Multiplication (Vector and Scalar)]

Comparison

Comparing vectors is a component-wise operation. If every component of each vector is the same, the vectors are equal. However, due to floating point error we can't compare floats directly. Instead, we must do an epsilon comparison. Epsilon tests commonly fall in one of two categories: absolute tolerance and relative tolerance:
#define ABSOLUTE(x, y) (fabsf((x)–(y)) <= FLT_EPSILON)
#define RELATIVE(x, y) \
(fabsf((x) – (y)) <= FLT_EPSILON * Max(fabsf(x), fabsf(y)))

The absolute tolerance test fails when the numbers being compared are large. The relative tolerance test fails when the numbers being compared are small. Because of this, we implemented a tolerance test with the CMP macro that combines the two. The logic behind the CMP macro is described by Christer Ericson at www.realtimecollisiondetection.net/pubs/Tolerances.

There's more…

It's desirable to make vectors easy to construct in code. We can achieve this by adding default constructors. Each vector should have two constructors: one that takes no arguments and one that takes a float for each component of the vector. We do not need a copy constructor or assignment operator as the vec2 and vec3 structures do not contain any dynamic memory or complex data. The pair of constructors for the vec2 structure will look like this:
vec2() : x(0.0f), y(0.0f) { }
vec2(float _x, float _y) : x(_x), y(_y) { }

The vec3 constructors will look similar, it adds an additional component. The constructors for the vec3 structure will look like this:
vec3() : x(0.0f), y(0.0f), z(0.0f) { }
vec3(float _x, float _y, float _z) : x(_x), y(_y), z(_z) { }

Dot product

The dot product, sometimes referred to as scalar product or inner product between two vectors, returns a scalar value. It's written as a dot between two vectors, [image: Dot product]. The formula for the dot product is defined as follows:
[image: Dot product]
The sigma symbol [image: Dot product] means sum (add) everything up that follows. The number on top of the sigma is the upper limit; the variable on the bottom is the lower limit. If n and i is 0, the subscripts 0, 1, and 2 are processed. Without using the sigma symbol, the preceding equation would look like this:
[image: Dot product]
The resulting scalar represents the directional relation of the vectors. That is, [image: Dot product] represents how much [image: Dot product] is pointing in the direction of [image: Dot product]. Using the dot product we can tell if two vectors are pointing in the same direction or not following these rules:
	If the dot product is positive, the vectors are pointing in the same direction
	If the dot product is negative, the vectors point in opposing directions
	If the dot product is 0, the vectors are perpendicular

How to do it…

Follow these steps to implement the dot product for two and three dimensional vectors:
	Add the declaration for the dot product to vectors.h:float Dot(const vec2& l, const vec2& r);
float Dot(const vec3& l, const vec3& r);

	Add the implementation for the dot product to vector.cpp:float Dot(const vec2& l, const vec2& r) {
 return l.x * r.x + l.y * r.y;
}

float Dot(const vec3& l, const vec3& r) {
 return l.x * r.x + l.y * r.y + l.z * r.z;
}

How it works…

Given the formula and the code for the dot product, let's see an example of what we could use it for. Assume we have a spaceship S. We know its forward vector, [image: How it works…] and a vector that points to its right, [image: How it works…]:
[image: How it works…]
We also have an enemy ship E, and a vector that points from our ship S to the enemy ship E, vector [image: How it works…]:
[image: How it works…]
How can we tell if the the ship S needs to turn left or right to face the enemy ship E?
We need to take the dot product of [image: How it works…] and [image: How it works…]. If the result of the dot product is positive, the ship needs to turn right. If the result of the dot product is negative, the ship needs to turn to the left. If the result of the dot product is 0, the ship does not need to turn.

There's more…

Our definition of the dot product is fairly abstract. We know that the dot product gives us some information as to the angle between the two vectors, [image: There's more…] and [image: There's more…]. We can use the dot product to find the exact angle between these two vectors. The key to this is an alternate definition of the dot product.
Geometric definition

Given the vectors [image: Geometric definition] and [image: Geometric definition], the geometric definition of the dot product is the length of [image: Geometric definition] multiplied by the length of [image: Geometric definition] multiplied by the cosine of the angle between them:
[image: Geometric definition]
The || operator in the above equation means length and will be covered in the next section. We will cover the geometric definition and other properties of the dot product later in this chapter.

Magnitude

The magnitude or length of a vector is written as the letter of the vector surrounded by two bars, [image: Magnitude]. The magnitude of a vector is the square root of the dot product of the vector with itself:
[image: Magnitude]
In addition to implementing the magnitude function, we're also going to implement a magnitude squared function. The formula is the same, but it avoids the expensive square root operation:
[image: Magnitude]
In games we often compare the magnitude of a vector to known numbers; however, doing a comparison between a number and the magnitude is expensive because of the square root operation. A simple solution to this problem is to square the number, and then compare against square magnitude. This means, instead of the following:
if (Magnitude(someVector) < 5.0f) {

We could instead write the following:
if (MagnitudeSq(someVector) < 5.0f * 5.0f) {

We'd then get the same result, avoiding the expensive square root operation.
Getting ready

To find the magnitude of a vector, take the square root of the vector's dot product with its-self. The square root operation is a relatively expensive one that should be avoided whenever possible. For this reason, we are also going to implement a function to find the square magnitude of a vector.

How to do it…

Follow these steps to implement a function for finding the length and squared length of two and three dimensional vectors.
	Add the declaration for magnitude and magnitude squared to vectors.h:float Magnitude(const vec2& v);
float Magnitude(const vec3& v);

float MagnitudeSq(const vec2& v);
float MagnitudeSq(const vec3& v);

	Add the implementation for these functions to vectors.cpp:float Magnitude(const vec2& v) {
 return sqrtf(Dot(v, v));
}

float Magnitude(const vec3& v) {
 return sqrtf(Dot(v, v));
}

float MagnitudeSq(const vec2& v) {
 return Dot(v, v);
}

float MagnitudeSq(const vec3& v) {
 return Dot(v, v);
}

How it works…

We can derive the equation for the magnitude of a vector from the geometric definition of the dot product that we briefly looked at in the last section:
[image: How it works…]
Because we are taking the dot product of the vector with itself, we know the test vectors point in the same direction; they are co-directional. Because the vectors being tested are co-directional, the angle between them is 0. The cosine of 0 is 1, meaning the [image: How it works…] part of the equation can be eliminated, leaving us with the following:
[image: How it works…]
If both the test vectors are the same (which in our case they are) the equation can be written using only [image: How it works…]:
[image: How it works…]
We can rewrite the preceding equation, taking the square root of both sides to find the length of vector [image: How it works…]:
[image: How it works…]

There's more…

The magnitude of a vector can be used to find the distance between two points. Assuming we have points [image: There's more…] and [image: There's more…], we can find a vector ([image: There's more…]) that connects them by subtracting [image: There's more…]from [image: There's more…], as shown in the following diagram:
[image: There's more…]
The distance between the two points is the length of [image: There's more…]. This could be expressed in code as follows:
float Distance(const vec3& p1, const vec3& p2) {
 vec3 t = p1 - p2;
 return Magnitude(t);
}

Normalizing

A vector with a magnitude of 1 is a normal vector, sometimes called a unit vector. Whenever a vector has a length of 1, we can say that it has unit length. A normal vector is written as the letter of the vector with a caret symbol on top instead of an arrow, [image: Normalizing]. We can normalize any vector by dividing each of its components by the length of the vector:
[image: Normalizing]
We never implemented division operators for the vector class. We can rewrite the preceding equation as reciprocal multiplication. This means we can obtain the normal of a vector if we multiply that vector by the inverse of its length:
[image: Normalizing]
Getting ready

We are going to implement two functions, Normalize and Normalized. The first function will change the input vector to have a length of 1. The second function will not change the input vector; rather it will return a new vector with a length of 1.

How to do it…

Follow these steps to implement functions which will make a vector unit length or return a unit length vector. These steps utilize reciprocal multiplication.
	Declare the Normalize and Normalized functions in vectors.h:void Normalize(vec2& v);
void Normalize(vec3& v);

vec2 Normalized(const vec2& v);
vec3 Normalized(const vec3& v);

	Add the implementation of these functions to vectors.cpp:void Normalize(vec2& v) {
 v = v * (1.0f / Magnitude(v));
}

void Normalize(vec3& v) {
 v = v * (1.0f / Magnitude(v));
}

vec2 Normalized(const vec2& v) {
 return v * (1.0f / Magnitude(v));
}

vec3 Normalized(const vec3& v) {
 return v * (1.0f / Magnitude(v));
}

How it works…

Normalizing works by scaling the vector by the inverse of its length. This scale makes the vector have unit length, which is a length of 1. Unit vectors are special as any number multiplied by 1 stays the same number. This makes unit vectors ideal for representing a direction. If a direction has unit length, scaling it by some velocity becomes trivial.

OEBPS/graphics/B05887_1_030.jpg

OEBPS/graphics/B05887_1_043.jpg

OEBPS/graphics/B05887_1_005.jpg

OEBPS/graphics/B05887_1_021.jpg

OEBPS/graphics/B05887_1_007.jpg

OEBPS/graphics/B05887_1_016.jpg
-

OEBPS/graphics/B05887_1_020.jpg
NS

OEBPS/graphics/B05887_1_027.jpg
=i

OEBPS/graphics/B05887_1_048.jpg

OEBPS/graphics/B05887_1_040.jpg

OEBPS/graphics/B05887_1_006.jpg

OEBPS/graphics/B05887_1_039.jpg
N

N}

OEBPS/graphics/B05887_1_047.jpg
AxB=(AB.-AB, AB. ~AB_AB —AB)

OEBPS/graphics/B05887_1_051.jpg
R}

OEBPS/graphics/B05887_1_032.jpg

OEBPS/graphics/B05887_1_008.jpg

OEBPS/graphics/B05887_1_054.jpg

OEBPS/graphics/B05887_1_060.jpg

OEBPS/graphics/B05887_1_044.jpg
.....

OEBPS/graphics/B05887_1_009.jpg
()

OEBPS/graphics/B05887_1_013.jpg
Us = (UOS,UIS,UZS,...,UHS)

OEBPS/graphics/B05887_1_019.jpg
-B

OEBPS/graphics/B05887_1_038.jpg
A-4= 4|4 =] 4]

OEBPS/graphics/B05887_1_049.jpg

OEBPS/graphics/B05887_1_052.jpg

OEBPS/graphics/B05887_1_063.jpg

OEBPS/cover/cover.jpg
Game Physics

Cookbook

Discover over 100 easy-to-follow recipes to help you
implement efficient game physics and collision detection
in your games

L]

OEBPS/graphics/B05887_1_056.jpg
k

(0,0.1)

OEBPS/graphics/B05887_1_036.jpg
cosf

OEBPS/graphics/B05887_1_014.jpg
N3

OEBPS/graphics/B05887_1_002.jpg
V=V VsV, sV,

OEBPS/graphics/B05887_1_031.jpg
A-B= HAHHBHCOSQ

OEBPS/graphics/B05887_1_022.jpg

OEBPS/graphics/B05887_1_033.jpg
=44

N}

OEBPS/graphics/B05887_1_058.jpg

OEBPS/graphics/Mapt_logo.jpg

OEBPS/graphics/B05887_1_041.jpg
P2

OEBPS/graphics/B05887_1_012.jpg
OV = (U, UV, UpY,s,..., UV,)

1"1° >~ n" n

OEBPS/graphics/B05887_1_025.jpg
A-B=AB,+AB + A,B, +...+ A B

n n

OEBPS/graphics/B05887_1_018.jpg

OEBPS/graphics/B05887_1_034.jpg

OEBPS/graphics/B05887_1_042.jpg
P1

T=P1-P2

P2

OEBPS/graphics/B05887_1_050.jpg
=

OEBPS/graphics/B05887_1_061.jpg
=~

~u

OEBPS/graphics/B05887_1_059.jpg

OEBPS/graphics/B05887_1_035.jpg
A-B= HAHHBHCOSQ

OEBPS/graphics/B05887_1_004.jpg

OEBPS/graphics/B05887_1_001.jpg
=i

OEBPS/graphics/B05887_1_064.jpg

OEBPS/graphics/B05887_1_029.jpg
~u

OEBPS/graphics/B05887_1_055.jpg
j=(0.1,0)

OEBPS/graphics/B05887_1_028.jpg

OEBPS/graphics/B05887_1_023.jpg

OEBPS/graphics/B05887_1_045.jpg
V=v ()

OEBPS/graphics/B05887_1_017.jpg

OEBPS/graphics/B05887_1_037.jpg

OEBPS/graphics/B05887_1_010.jpg
U+V =(U,+V,, U + VU, +V,,....U, +V,)

n

OEBPS/graphics/B05887_1_015.jpg
o

OEBPS/graphics/B05887_1_024.jpg

OEBPS/graphics/B05887_1_062.jpg

OEBPS/graphics/B05887_1_046.jpg
N)

[>°T)

OEBPS/graphics/B05887_1_003.jpg

OEBPS/graphics/B05887_1_026.jpg

OEBPS/graphics/B05887_1_011.jpg
U—V:(UO—VO,UL—VI,UZ—VZ,.._,UH_

OEBPS/graphics/B05887_1_053.jpg
i =(1,0,0)

OEBPS/graphics/B05887_1_065.jpg

