

 [image: cover.png]

 Contents

 	Preface

 	Who this book is for

 	What this book covers

 	To get the most out of this book

 	Share your thoughts

 	Basics of Agile Systems Modeling

 	What’s agile all about?

 	Incremental development

 	Continuous verification

 	Continuous integration

 	Avoid big design up front

 	Working with stakeholders

 	Model-Based Systems Engineering (MBSE)

 	Managing your backlog

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Measuring your success

 	Purpose

 	How to do it

 	Example

 	Some considerations

 	Measuring the wrong thing

 	Managing risk

 	Purpose

 	Inputs and proconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Product roadmap

 	Purpose

 	Inputs and preconditions

 	How to do it

 	Example

 	Release plan

 	Purpose

 	Inputs and preconditons

 	Outputs and postconditions

 	How to do it

 	Example

 	Iteration plan

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Estimating Effort

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	How it works

 	Example

 	Work item prioritization

 	Purpose

 	Inputs and preconditions

 	How to do it

 	How it works

 	Example

 	Iteration 0

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Architecture 0

 	Subsystem and component view

 	Concurrency and resource view

 	Distribution view

 	Dependability view

 	Deployment view

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Additional note

 	Organizing your models

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	How it works

 	Example

 	Managing change

 	Purpose

 	Inputs and preconditions

 	How to do it

 	Example

 	System Specification

 	Recipes in this chapter

 	Why aren’t textual requirements enough?

 	Definitions

 	Functional Analysis with Scenarios

 	Functional analysis with activities

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Functional analysis with state machines

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Functional Analysis with User Stories

 	A little bit about user stories

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Model-Based Safety Analysis

 	A little bit about safety analysis

 	Some Profiles

 	Hazard analysis

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Model-Based Threat Analysis

 	Basics of Cyber-Physical Security

 	Modeling for Security Analysis

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Specifying Logical System Interfaces

 	A Note about SysML Ports and Interfaces

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Creating the Logical Data Schema

 	Definitions

 	Example

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Developing System Architectures

 	Recipes in this chapter

 	Five critical views of architecture

 	Architectural trade studies

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Architectural merge

 	Example

 	Pattern-driven architecture

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Subsystem and component architecture

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Architectural allocation

 	Creating subsystem interfaces from use case scenarios

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Specializing a reference architecture

 	What is a reference architecture?

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Handoff to Downstream Engineering

 	Recipes in this chapter

 	Activities for the handoff to downstream engineering

 	Starting point for the examples

 	Preparation for Handoff

 	Federating Models for Handoff

 	Logical to Physical Interfaces

 	Deployment Architecture I: Allocation to Engineering Facets

 	Deployment Architecture II: Interdisciplinary Interfaces

 	Demonstration of Meeting Needs: Verification and Validation

 	Recipes in this chapter

 	Verification and validation

 	Model simulation

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Model-based testing

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Computable constraint modeling

 	Purpose

 	Inputs and preconditions

 	How to do it

 	Example

 	Traceability

 	Some definitions

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Effective Reviews and walkthroughs

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Managing Model Work Items

 	Purpose

 	Inputs and preconditions

 	How to do it

 	Example

 	Test Driven Modeling

 	Purpose

 	Inputs and preconditions

 	Outputs and postconditions

 	How to do it

 	Example

 	Appendix A: The Pegasus Bike Trainer

 	Overview

 	Pegasus High-Level Features

 	Highly customizable bike fit

 	Monitor exercise metrics

 	Export/upload exercise metrics

 	Variable power output

 	Gearing emulation

 	Controllable power level

 	Incline control

 	User interface

 	Online training system compatible

 	Configuration and OTA firmware updates

 	Other Books You May Enjoy

 	Index

 Landmarks

 	
 Cover

 	
 Index

 Agile Model-Based Systems Engineering Cookbook

 Second Edition

 Improve system development by applying proven recipes for effective agile systems engineering

 Dr. Bruce Powel Douglass

 [image:]

 BIRMINGHAM—MUMBAI

 Agile Model-Based Systems Engineering Cookbook

 Second Edition

 Copyright © 2022 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Senior Publishing Product Manager: Denim Pinto

 Acquisition Editor – Peer Reviews: Saby Dsilva

 Project Editor: Meenakshi Vijay

 Content Development Editor: Rebecca Robinson

 Copy Editor: Safis Editing

 Technical Editor: Srishty Bhardwaj

 Proofreader: Safis Editing

 Indexer: Pratik Shirodkar

 Presentation Designer: Rajesh Shirsath

 First published: March 2021

 Second edition: December 2022

 Production reference: 3050123

 Published by Packt Publishing Ltd.

 Livery Place

 35 Livery Street

 Birmingham

 B3 2PB, UK.

 ISBN 978-1-80323-582-0

 www.packt.com

 Foreword

 As a systems engineer, you may know that viewpoints are important to understand context. When you read this foreword, you should be aware that I wrote it from my individual viewpoint. My own professional role involves the development of methods, templates, and training to make Systems engineering applicable for organizations, and also producing complex systems consisting of mechanical and electrical hardware, software, and the human beings operating it or interacting with it. Systems engineering is nowadays challenged with several constraints and boundary conditions requiring permanent change in the organization and its processes, methods, and tools. The need to work closely cross-domain (e. g. mechanical and hardware designers working together with software programmers, testers, and stakeholders), the need to quickly react to external (and internal) disruptions, and the need to bridge cross-cultural gaps require several significant changes in parallel. And this is difficult for bigger organizations and hard to realize. This is where this book helps significantly and contributes to mastering such challenges. The answer to those challenges lies in the introduction and application of Systems Engineering (SE) and in agile methods. The definition, deployment, implementation, maturation, and management of those two changes is a huge challenge to bigger companies and this book provides simple (not easy!) recipes to approach those changes.

 This book perfectly fills a couple of gaps existing today in this area. Typically, there are two ways for companies to start their Systems Engineering journey: either they start first with training and educating Systems engineers theoretically or they start introducing a Model-Based Systems Engineering (MBSE) tool to provide a tool to “do Systems Engineering”. I’m not saying that the one or other method is better or worse, but I have observed this for years. Actually, both are necessary as, Systems Engineers need a good theoretical background on the methods and on tools. For re-use and communication, modern MBSE tools are optimally suited to implement SE formally in all development processes. However, to implement Systems Engineering broadly in a cross-domain development organization it is critical to follow strict modelling rules and to install syntactic and semantic guidelines.

 In this area this book perfectly meets the needs of any SE practitioner and each company implementing or applying SE. The practical guidelines, the “step-by-step” descriptions, the cross-domain designed examples, and the provided downloads allow companies and individuals to get quickly and easily to the core of the method and mind set. With the provided references and additional sources, this book offers many further paths to go into more detail in many domains if needed or desired.

 The second critical area covered by this book is the “agile” aspects of modern development organizations. The beauty of this book is that it holds “agile” at its core, the agile manifesto, and does not reduce or limit it to one of the many agile process implementations. The book provides excellent directions and practices to become more agile, independent of the development domain (not limited to software development), and also builds the bridge on how to use SE and MBSE in particular to foster an agile development process in general. Using the different SE artifacts as deliverables, prioritizing them accordingly to build a useful backlog, employing methods to track progress and risk, etc. are well described and practically applicable. As said before, practical examples and “step-by-step” guidelines are the core enablers for immediate practical application.

 Last but not least, while the book follows the full development cycle and covers the aspects of functional analysis, architecting, trade studies, system design, verification, and validation, it also details the important aspects of system safety and security.

 I highly recommend this book to all SE practitioners and to anyone considering how to implement SE in a company or how to become more agile. This second edition, with all of its enhancements and improvements in the step-by-step description and its additional areas covering things such as system security, is a must have in each SE’s library.

 Thank you Bruce, and well done!

 Christian von Holst

 Global Tractor Systems Engineering Lead at John Deere

 Contributors

 About the author

 Dr. Bruce Powel Douglass has received an MS in exercise physiology from the University of Oregon and a Ph.D. in neurocybernetics from the USD Medical School. He has worked as a software developer and systems engineer in safety-critical real-time embedded systems for almost 40 years and is a well-known speaker, author, and consultant in the area of real-time embedded systems, UML, and SysML. He is a coauthor of the UML and SysML standards, and teaches courses in real-time systems and software design and project management. Bruce has also authored articles for many journals and periodicals, especially in the real-time domain, and authored several other books on systems and software development. He has worked at I-Logix, Telelogic, and IBM on the Rhapsody modeling tool. He is currently a senior principal agile systems engineer at MITRE, and the principal at A-Priori Systems.

 About the reviewers

 Jaime Robles has more than a decade of experience in the development of complex engineered systems across the entire lifecycle. Currently, he is working as a Systems Engineer at the ALMA Observatory, the world’s most powerful telescope at millimeter and submillimeter wavelengths. Previously, he has worked in the development of small space systems for planetary surface exploration and as a consultant in systems engineering with MBSE focus at SPEX Systems.

 He is an aerospace engineer, an OMG certified Systems Modeling Professional – Model Builder Advanced (OCSMP-MBA), an INCOSE associate Systems Engineering professional, and an active member of this professional organization participating in several groups (Space Systems WG, Requirements WG, LATAM Chapter). He also holds an MIT certificate in Architecture and Systems Engineering and has gained work experience in the United States, Switzerland, and Chile.

 A word of acknowledgment to the author for sharing his vast knowledge with the MBSE community and for the opportunity to contribute with a grain of sand as a technical reviewer. Also, a special thanks to my family for their kind support and patience during the time invested in the review process.

 Dr. Saulius Pavalkis is global MBSE Ecosystem Transformation Leader and MBSE R&D Cyber Portfolio Manager NAM at Dassault Systemes. He is also an INCOSE CAB Representative and on the CSE Board of Advisors at the University of Texas.

 He has 20 years of MBSE solutions experience, and is a product owner and analyst with the Cameo core team, chief solution architect, consultant, and trainer. He is a world-leading expert in MBSE ecosystem, digital engineering, system architecture and simulation.

 Throughout his career, he has been actively involved in building excellent MBSE ecosystem solutions in aerospace, defense, automotive and other areas as a former affiliate for JPL NASA for MBSE consulting and a contractor for Boeing's MBSE transformation.

 Dr Saulius Pavalkis contributed to the MBSE SysML Based Method and Framework MagicGrid book and recently the Agile MBSE Cookbook by Dr. Bruce Douglass. He guides 2,000 subscribers—the largest SysML systems simulation community on YouTube (youtube.com/c/MBSEExecution). Saulius has INCOSE CSEP, OMG OCSMP, the No Magic lifetime modeling and simulation excellence award, a PhD in software engineering in the models query area, and a MS and BS in telecommunications and electronics from Kaunas University of Technology.

 I would like to thank Dr. Bruce Douglass for amazing opportunity to review his latest book on Agile MBSE application. Dr. Bruce is a leading expert in effective and efficient MBSE application and has made this book is the best in class as an MBSE transformation guide. It is a must-have for any company or expert. Thank you, Dr. Bruce Douglass!

 Join our community on Discord

 Join our community’s Discord space for discussions with the author and other readers:

 https://packt.link/cpVUC

 [image:]

 Preface

 Welcome to the Agile Model-Based Systems Engineering Cookbook! There is a plethora of published material for agile methods, provided that you want to create software. And the system is small. And the team is co-located. And it needn’t be certified. Or safety-critical or high-reliability.

 MBSE is none of these things. The output of MBSE isn’t software implementation but system specification. It is usually applied to more complex and larger-scale systems. The teams are diverse and often spread out across departments and companies. Much of the time, the systems produced must be certified under various standards, including safety standards. So how do you apply agile methods to such an endeavor?

 Most of the work in MBSE can be thought of as a set of workflows that produce a set of interrelated work products. Each of these workflows can be described with relatively simple recipes for creating the work products for MBSE including system requirements, systems architecture, system interfaces, and deployment architectures. That’s what this book brings to the table and what sets it apart.

 In this second edition, some new recipes have been added and all the examples and figures have been done using the Cameo Systems Modeler SysML tool.

 Who this book is for

 The book is, first and foremost, for systems engineers who need to produce work products for the specification of systems that include combinations of engineering disciplines, such as software, electronics, and mechanical engineering. More specifically, this book is about model-based systems engineering using the SysML language to capture, render, and organize the engineering data. Further, the book is especially about how to do all that in a way that achieves the benefits of agile methods – verifiably correct, adaptable, and maintainable systems. We assume basic understanding of the Systems Modeling Language (SysML) and at least some experience as a systems engineer.

 What this book covers

 Chapter 1, Basics of Agile Systems Modeling, discusses some fundamental agile concepts, expressed as recipes, such as managing your backlog, using metrics effectively, managing project risk, agile planning, work effort estimation and prioritization, starting up projects, creating an initial systems architecture, and organizing your systems engineering models. The recipes all take a systems engineering slant and focus on the work products commonly developed in a systems engineering effort.

 Chapter 2, System Specification, is about agile model-based systems requirements – capturing, managing, and analyzing the system specification. One of the powerful tools that MBSE brings to the table is the ability to analyze requirements by developing computable and executable models. This chapter provides recipes for several different ways of doing that, as well as recipes for model-based safety and cyber-physical security analysis, and specifying details of information held within the system.

 Chapter 3, Developing Systems Architecture, has recipes focused on the development of systems architectures. It begins with a way of doing model-based trade-studies (sometimes known as “analysis of alternatives”). The chapter goes on to provide recipes for integrating use case analyses into a systems architecture, applying architectural patterns, allocation of requirements into a systems architecture, and creating subsystem-level interfaces.

 Chapter 4, Handoff to Downstream Engineering, examines one of the most commonly asked questions about MBSE: how to hand the information developed in the models off to implementation engineers specializing in software, electronics, or mechanical engineering. This chapter provides detailed recipes for getting ready to do the hand off, creating a federation of models to support the collaborative engineering effort to follow, converting the logical systems engineering interfaces to physical interface schemas, and actually doing the allocation to the engineering disciplines involved.

 Chapter 5, Demonstration of Meeting Needs Verification and Validation, considers a key concept in agile methods: that one should never be more than minutes away from being able to demonstrate that, while the system may be incomplete, what’s there is correct. This chapter has recipes for model simulation, model-based testing, computable constraint modeling, adding traceability, how to run effective walkthroughs and reviews, and – my favorite – Test-driven modeling.

 Appendix, The Pegasus Bike Trainer, details a case study that will serve as the basis for most of the examples in the book. This is a “smart” stationary bike trainer that interacts with net-based athletic training systems to allow athletes to train in a variety of flexible ways.

 It contains aspects that will be implemented in mechanical, electronic, and software disciplines in an ideal exemplar for the recipes in the book.

 To get the most out of this book

 To get the most out of this book, you will need a solid, but basic, understanding of the Systems Modeling Language (SysML). In addition, to create the models, you will need a modeling tool. The concepts here are expressed in SysML so any standards-compliant SysML modeling tool can be used.

 All the example models in this book are developed using the Cameo Systems Modeler tool. To execute models and run simulations, you will need the Simulation Toolkit, included with the tool:

 	
 Software/hardware covered in the book

 	
 OS requirements

 	
 Cameo Systems Modeler

 	
 Windows, macOS, or Linux

 Download the example models

 You can download the example models for this book from the author’s website at www.bruce-douglass.com. Note that these models are all in Cameo-specific format and won’t generally be readable by other modeling tools.

 We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Where to go from here

 Visit the authors, website at www.bruce-douglass.com for papers, presentations, models, engineering forums, to download the models from this book, and more.

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/av1n2.

 Conventions used

 There are a number of text conventions used throughout this book.

 Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, words in menus or dialog boxes appear in the text like this. For example: “Select System info from the Administration panel.

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

 Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

 Share your thoughts

 Once you’ve read Agile Model-Based Systems Engineering Cookbook, Second Edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

 Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

 Download a free PDF copy of this book

 Thanks for purchasing this book!

 Do you like to read on the go but are unable to carry your print books everywhere?Is your eBook purchase not compatible with the device of your choice?

 Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

 Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

 The perks don’t stop there- you can get exclusive access to discounts, newsletters, and great free content in your inbox daily.

 Follow these simple steps to get the benefits:

 	Scan the QR code or visit the link below:

 [image:]
 https://packt.link/free-ebook/9781803235820

 	Submit your proof of purchase.

 	That’s it! We’ll send your free PDF and other benefits to your email directly.

 1

 Basics of Agile Systems Modeling

 For the most part, this book is about systems modeling with SysML, but doing it in an agile way. Before we get into the detailed practices of systems modeling with that focus, however, we’re going to spend some time discussing important project-related agile practices that will serve as a backdrop for the modeling work.

 Almost all of the agile literature focuses on the “three people in a garage developing a simple application” scope. The basic assumptions of such projects include:

 	The end result is software that runs on a general-purpose computing platform (i.e., it is not embedded).

 	Software is the only truly important work product. Others may be developed but they are of secondary concern. Working software is the measure of success.

 	The software isn’t performance, safety, reliability, or security-critical.

 	It isn’t necessary to meet regulatory standards.

 	The development team is small and co-located.

 	The development is time-and-effort, not fixed-price cost.

 	The development is fundamentally code-based and not model- (or design)-based.

 	Any developer can do any task (no specialized skills are necessary).

 	Formalized requirements are not necessary.

 Yes, of course, there is much made about extensions to agile practices to account for projects that don’t exactly meet these criteria. For example, some authors will talk about a “scrum of scrums” as a way to scale up to larger teams. That works to a point, but it fails when you get to much larger development teams and projects. I want to be clear – I’m not saying that agile methods aren’t application to projects that don’t fall within these basic guidelines – only that the literature doesn’t address how it will do so in a coherent, consistent fashion. The further away your project strays from these assumptions, the less you will find in the literature for agile ways to address your needs.

 In this book, we’ll address a domain that is significantly different than the prototypical agile project. Our concerns will be projects that:

 	Are systems-oriented, which may contain software but will typically also contain electronic and mechanical aspects. It’s about the system and not the software.

 	Employ a Model-Based Systems Engineering (MBSE) approach using the SysML language.

 	May range from small- to very large-scale.

 	Must develop a number of different work products. These include, but are not limited to:
 	Requirements specification

 	Analysis of requirements, whether it is done with use case or user stories

 	System architectural specification

 	System interface specification

 	Trace relations between the elements of the different work products

 	Safety, reliability, and security (and resulting requirements) analyses

 	Architectural design trade studies

 	Have a handoff to downstream engineering that includes interdisciplinary subsystem teams containing team members who specialize in software, electronics, mechanical, and other design aspects.

 But at its core, the fundamental difference between this book and other agile books is that the outcome of systems engineering isn’t software, it’s system specification. Downstream engineering will ultimately do low-level design and implementation of those specifications. Systems engineering provides the road map that enables different engineers with different skill sets, working in different engineering disciplines, to collaborate together to create an integrated system, combining all their work into a cohesive whole.

 The International Council of Systems Engineering (INCOSE) defines systems engineering as “a transdisciplinary and integrative approach to enable the successful realization, use, and retirement of engineered systems, using systems principles and concepts, and scientific, technological, and management methods” (https://www.incose.org/about-systems-engineering/system-and-se-definition/systems-engineering-definition). This book will not provide a big overarching process that ties all the workflows and work products together, although it is certainly based on one. That process – should you be interested in exploring it – is detailed in the author’s Agile Systems Engineering book; a detailed example is provided with the author’s Harmony aMBSE Deskbook, available at www.bruce-douglass.com. Of course, these recipes will work with any other reasonable MBSE process. It is important to remember that:

 The outcome of software development is implementation;

 The outcome of systems engineering is specification.

 What’s agile all about?

 Agile methods are – first and foremost – a means for improving the quality of your engineering work products. This is achieved through the application of a number of practices meant to continuously identify quality issues and immediately address them. Secondarily, agile is about improving engineering efficiency and reducing rework. Let’s talk about some basic concepts of agility.

 Incremental development

 This is a key aspect of agile development. Take a big problem and develop it as a series of small increments, each of which is verified to be correct (even if incomplete).

 Continuous verification

 The best way to have high-quality work products is to continuously develop and verify their quality. In other books, such as Real-Time Agility or the aforementioned Agile Systems Engineering books, I talk about how verification takes place in three timeframes:

 	Nanocycle: 30 minutes to 1 day

 	Microcycle: 1–4 weeks

 	Macrocycle: Project length

 Further, this verification is best done via the execution and testing of computable models. We will see in later chapters how this can be accomplished.

 Continuous integration

 Few non-trivial systems are created by a single person. Integration is the task of putting together work products from different engineers into a coherent whole and demonstrating that, as a unit, it achieves its desired purpose. This integration is often done daily, but some teams increment this truly continuously, absorbing work as engineers complete it and instantly verifying that it works in tandem with the other bits.

 Avoid big design up front

 The concept of incremental development means that one thing that we don’t do is develop big work products over long periods of time and only then try to demonstrate their correctness. Instead, we develop and verify the design work we need right now, and defer design work that we won’t need until later. This simplifies the verification work and also means much less rework later in a project.

 Working with stakeholders

 A key focus of the Agilista is the needs of the stakeholders. The Agilista understands that there is an “air gap” between what the requirements say and what the stakeholder actually needs. By working with the stakeholder, and frequently offering them versions of the running system to try, they are more likely to actually meet their needs. Additionally, user stories – a way to organize requirements into short usage stakeholder-system usage scenarios – are a way to work with the stakeholder to understand what they actually need.

 Model-Based Systems Engineering (MBSE)

 Systems engineering is an independent engineering discipline that focuses on system properties – including functionality, structure, performance, safety, reliability, and security. MBSE is a model-centric approach to performing systems engineering. Systems engineering is largely independent of the engineering disciplines used to implement these properties. Systems engineering is an interdisciplinary activity that focuses more on this integrated set of system properties than on the contributions of the individual engineering disciplines. It is an approach to developing complex and technologically diverse systems. Although normally thought of in a V-style process approach (see Figure 1.1), the “left side of the V” emphases the specification of the system properties (requirements, architecture, interfaces, and overall dependability), the “lower part of the V” has to do with the discipline-specific engineering and design work, and the “right side of the V” has to do with the verification of the system against the specifications developed on the left side:

 [image:]
 Figure 1.1: Standard V model life cycle

 Of course, we’ll be doing things in a more agile way (Figure 1.2). Mostly, we’ll focus on incrementally creating the specification work products and handing them off to downstream engineering in an agile way:

 [image:]
 Figure 1.2: Basic Agile systems engineering workflow

 The basis of most of the work products developed in MBSE is, naturally enough, the model. For the most part, this refers to the set of engineering data relevant to the system captured in a SysML model. The main model is likely to be supplemented with models in other languages, such as performance, safety, and reliability (although you can use SysML for that too – we’ll discuss that in Chapter 2, System Specification—Functional, Safety and Security Analysis). The other primary work product will be textual requirements. While they are imprecise, vague, ambiguous, and hard to verify, they have the advantage of being easy to communicate. Our models will cluster these requirements into usage chunks – epics, use cases, and user stories – but we’ll still need requirements. These may be managed either as text or in text-based requirements management tools, such as IBM DOORS™, or they can be managed as model elements within a SysML specification model.

 Our models will consist of formal representations of our engineering data as model elements and the relationships among them. These elements may appear in one or more views, including diagrams, tables, or matrices. The model is, then, a coherent collection of model elements that represent the important engineering data around our system of interest.

 In this book, we assume you already know SysML. If you don’t, there are many books around for that. This book is a collection of short, high-focused workflows that create one or a small set of engineering work products that contain relevant model elements.

 Now, let’s talk about some basic agile recipes and how they can be done in a model-centric environment.

 Managing your backlog

 The backlog is a prioritized set of work items that identify work to be done. There are generally two such backlogs. The project backlog is a prioritized list of all work to be done in the current project. A subset of these is selected for the current increment, forming the iteration backlog. Since engineers usually work on the tasks relevant to the current iteration, that is where they will go to get their tasks. Figure 1.3 shows the basic idea of backlogs:

 [image:]
 Figure 1.3: Backlogs

 The work to be done, nominally referred to as work items, is identified. Work items can be application work items (producing work that will be directly delivered) or technical work items (doing work that enables technical aspects of the product or project). Work items identify work to do such as:

 	Analyzing, designing, or implementing an epic, use case, or user story, to ensure a solid understanding of the need and the adequacy of its requirements

 	Creating or modifying a work product, such as a requirements specification or a safety analysis

 	Arranging for an outcome, such as certification approval

 	Addressing a risk, such as determining the adequacy of the bus bandwidth

 	Removing an identified defect

 	Supporting a target platform, such as an increment with hand-built mechanical parts, lab-constructed wire wrap boards, and partial software

 The work items go through an acceptance process, and if approved, are put into the project backlog. Once there, they can be allocated to an iteration backlog.

 Purpose

 The purpose of managing your backlog is to provide clear direction for the engineering activities, to push the project forward in a coherent, collaborative way.

 Inputs and preconditions

 The inputs are the work items. The functionality-based work items originate with one or more stakeholders, but other work items might come from discovery, planning, or analysis.

 Outputs and postconditions

 The primary outputs are the managed project and iteration backlogs. Each backlog consists of a set of work items around a common purpose, or mission. The mission of an iteration is the set of work products and outcomes desired at the end of the iteration. An iteration mission is defined as shown in Figure 1.4:

 [image:]
 Figure 1.4: Iteration mission

 In a modeling tool, this information can be captured as metadata associated with tags.

 The term “metadata” literally means “data about data”; in this context, we add metadata to elements using tags.

 How to do it

 There are two workflows to this recipe. The first, shown in Figure 1.5, adds a work item to the backlog. The second, shown in Figure 1.6, removes it:

 [image:]
 Figure 1.5: Add work item

 [image:]
 Figure 1.6: Resolve work item

 Create a workflow item

 From the work to be done, a work item is created to put into the backlog. The work item should include the properties shown in Figure 1.7:

 [image:]
 Figure 1.7: Work item

 	Name.

 	Description of the work to be done, the work product to be created, or the risk to be addressed.

 	The acceptance criteria – how the adequacy of the work performed, the work product created, or the outcome produced will be determined.

 	The work item classification identifies the kind of work item it is, as shown on the left side of Figure 1.3.

 	The work item’s priority is an indication of how soon this work item should be addressed. This is discussed in the Prioritize work item step of this recipe.

 	The estimated effort is how much effort it will take to perform the task. This can be stated in absolute terms (such as hours) or relative terms (such as user story points). This topic is addressed in the Estimating effort recipe later in this chapter.

 	Links to important related information, such as standards that must be met, or sources of information that will be helpful for the performance of the work.

 Approve work item

 Before a work item can be added, it should be approved by the team or the project leader, whoever is granted that responsibility.

 Prioritize work item

 The priority of a work item determines in what iteration the work will be performed. Priority is determined by a number of factors, including the work item’s criticality (how important it is), its urgency (when it is needed), the availability of specialized resources needed to perform it, usefulness to the mission of the iteration, and risk. The general rule is that high-priority tasks are performed before lower-priority tasks. This topic is covered in the Work item prioritization recipe later in this chapter.

 Estimate effort

 An initial estimate of the cost of addressing the work item is important because as work items are allocated to iterations, the overall effort budget must be balanced. If the effort to address a work item is too high, it may not be possible to complete it in the iteration with all of its other work items. The agile practice of work item estimation is covered in the Estimating effort recipe later in this chapter.

 Place work item in project backlog

 Once approved and characterized, the work item can then be put into the project backlog. The backlog is priority-ordered so that higher-priority work items are “on top” and lower-priority work items are “below”.

 Allocate work item to iteration backlog

 Initial planning includes the definition of a planned set of iterations, each of which has a mission, as defined above. Consistent with that mission, work items are then allocated to the planned iterations. Of course, this plan is volatile, and later work or information can cause replanning and a reallocation of work items to iterations. Iteration planning is the topic of the recIteration plan recipe later in this chapter.

 In the second work flow of this recipe, the work is actually being done. Of relevance here is how the completion of the work affects the backlog (Figure 1.6).

 Perform work item

 This action is where the team member actually performs the work to address the work item, whether it is to analyze a use case, create a bit of architecture, or perform a safety analysis.

 Review work performed

 The output and/or outcome of the work item is evaluated with respect to its acceptance criteria and is accepted or rejected on that basis.

 Reject work performed

 If the output and/or outcome does not meet the acceptance criteria, the work is rejected and the work item remains on the backlog.

 Remove resolved work item

 If the output and/or outcome does meet the acceptance criteria, the work is accepted and the work item is removed from the project and iteration to-do backlog. This usually means that it is moved to a “to-done” backlog, so that there is a history of the work performed.

 Review backlog

 It is important that as work progresses, the backlog is maintained. Often, valuable information is discovered that affects work item effort, priority, or value during project work. When this occurs, other affected work items must be reassessed and their location within the backlogs may be adjusted.

 Reorganize backlog

 Based on the review of the work items in the backlog, the set of work items, and their prioritized positions within those backlogs, may require adjustment.

 Example

 Consider a couple of use cases for the sample problem, the Pegasus Bike Trainer summarized in Appendix A (see Figure 1.8):

 [image:]
 Figure 1.8: Example user case work items in backlog

 You can also show at least high-level backlog allocation to an iteration on a use case diagram, as shown in Figure 1.9. You may, of course, manage backlogs in generic agile tools such as Rational Team Concert, Jira, or even with Post-It notes:

 [image:]
 Figure 1.9: Use case diagram for iteration backlog

 Let’s apply the workflow shown in Figure 1.5 to add the use cases and user stories from Figure 1.8 and Figure 1.9.

 Create work item

 In Figure 1.8 and Figure 1.9, we see a total of seven use cases and eight user stories. For our purpose, we will just represent the use case data in tabular form and will concentrate only on the two use cases and their contained user stories from Figure 1.9. The description of the user stories is provided in the canonical form of a user story (see the chapter introduction in Chapter 2, System Specification: Functional, Safety, and Security Analysis for more details).

 [image:]
 Figure 1.10: Initial work item list

 For the work item list, I created a stereotype work item that has the tag definitions shown as columns in the table and then applied it to the use cases and user stories.

 Approve work item

 [image:]
 Figure 1.11: Working with the team and the stakeholders, we get approval for the work items in

 As we get approval, we marked the Approved column in the table.

 Prioritize work item

 Using the techniques from the Work item prioritization recipe later in this chapter, we add the priorities to the work items.

 Estimate effort

 Using the techniques from the Estimating effort recipe later in this chapter, we add the estimated effort to the work items.

 Our final set of work items from this effort is shown in Table 1.1:

 	
 Name

 	
 OK

 	
 Description

 	
 Acceptance

 	
 Classification

 	
 Priority

 	
 Effort

 	
 Iteration

 	
 Related

 	
 Setup bike fit

 	
 	
 Enable rider to adjust bike fit prior to ride

 	
 Standard riders* can replicate their road bike fit on the Pegasus.

 	
 Use Case

 	
 4.38

 	
 13

 	
 	
 *Standard riders include five riders of heights 60, 65, 70, 75, and 76 inches.

 	
 Adjust handlebar reach

 	
 	
 As a rider, I want to replicate the handlebar reach on my fitted road bike.

 	
 Standard riders* can replicate their handlebar reach from their fitted road bikes.

 	
 User Story

 	
 3.33

 	
 3

 	
 	

 	
 Adjust handlebar height

 	
 	
 As a rider, I want to replicate the handlebar height on my fitted road bike.

 	
 Standard riders* can replicate their handlebar height from their fitted road bikes.

 	
 User Story

 	
 4.33

 	
 3

 	
 	

 	
 Adjust seat reach

 	
 	
 As a rider, I want to replicate the seat reach on my fitted road bike.

 	
 Standard riders* can replicate their seat reach from their fitted road bikes.

 	
 User Story

 	
 11.67

 	
 3

 	
 	

 	
 Adjust seat height

 	
 	
 As a rider, I want to replicate the seat height on my fitted road bike.

 	
 Standard riders* can replicate their seat height from their fitted road bikes.

 	
 User Story

 	
 13.33

 	
 3

 	
 	

 	
 Select crank length

 	
 	
 As a rider, I want to replicate the crank arm length on my road bike.

 	
 Support crank lengths of 165, 167.5, 170, 172.5, and 175 mm.

 	
 User Story

 	
 1.2

 	
 1

 	
 	

 	
 Control resistance

 	
 	
 Control the resistance to pedaling in a steady and well-controlled fashion within the limits of normal terrain road riding.

 	
 Replicate pedal resistance to within 1% of measured pedal torque under the standard ride set*.

 	
 Use Case

 	
 2

 	
 115

 	
 	
 *Standard ride set includes ride of all combination of rider weights (50, 75, and 100kg), inclines (-10, 0, 5, 10, and 20%) and cadences (50, 70, 80, 90, and 110).

 	
 Provide basic resistance

 	
 	
 As a rider, I want basic resistance provided to the pedals so I can get a workout with an on-road feel in Resistance Mode.

 	
 Control resistance by setting the pedal resistance to 0–2000W in 50-watt increments for the standard ride set.*

 	
 User Story

 	
 1.42

 	
 55

 	
 	

 	
 Set resistance under user control

 	
 	
 As a rider, I want to set the resistance level provided to the pedals to increase or decrease the effort for a given gearing, cadence, and incline.

 	
 Control resistance via user input by manually setting incline, gearing, and cadence for the standard ride set.*

 	
 User Story

 	
 1.00

 	
 21

 	
 	

 	
 Set resistance under external control

 	
 	
 As a rider, I want the external training app to set the resistance to follow the app’s workout protocol to get the desired workout.

 	
 Control resistance via app control, manually setting incline, gearing, and allow the user to supply cadence for the standard ride set.*

 	
 User Story

 	
 0.30

 	
 39

 	
 	

 Table 1.1: Final work item list

 Place WI in project backlog

 As we complete the effort, we put all the approved work items into the project backlog, along with other previously identified use cases, user stories, technical work items, and spikes. The backlog can be managed within the modeling tool, but usually external tools – such as Jira or Team Concert – are used.

 Allocate WI to iteration backlog

 Using the technique from the Iteration plan recipe later in this chapter, we put relevant work items from the project backlog into the backlog for the upcoming iteration. In Table 1.1, this would be done by filling in the Iteration column with the number of the iteration in which the work item is performed.

 With regard to the second workflow from Figure 1.6, we can illustrate how the workflow might unfold as we perform the work in the current iteration.

 Perform work item

 As we work in the iterations, we detail the requirements, and create and implement the technical design. For example, we might perform the mechanical design of the handlebar reach adjust or the delivery of basic resistance to the pedals with an electric motor.

 Review work performed

 As the work on the use case and user stories completes, we apply the acceptance criteria via verification testing and validation. In the example we are considering, for the set of riders of heights 60, 65, 60, 75, and 76 inches, we would measure the handlebar height from their fitted road bikes and ensure that all these conditions can be replicated on the bike. For the Provide Basic Resistance user story, we would verify that we can create a pedal resistance of [0, 50, 100, 150, … 2000] watts of resistance at pedal cadences of 50, 70, 80, 90, and 110 RPM ± 1%.

 Measuring your success

 One of the core concepts of effective agile methods is to continuously improve how you perform your work. This can be done to improve quality or to get something done more quickly. In order to improve how you work, you need to know how well you’re doing now. That means applying metrics to identify opportunities for improvement and then changing what you do or how you do it. Metrics are a general measurement of success in either achieving business goals or compliance with a standard or process. A related concept – a Key Performance Indicator (KPI) – is a quantifiable measurement of accomplishment against a crucial goal or objective. The best KPIs measure achievement of goals rather than compliance with a plan. The problem with metrics is that they measure something that you believe correlates to your objective, but not the objective itself. Some examples from software development:

 	
 Objective

 	
 Metric

 	
 Issues

 	
 Software size

 	
 Lines of code

 	
 Lines of code for simple, linear software aren’t really the same as lines of code for complex algorithms

 	
 Productivity

 	
 Shipping velocity

 	
 Ignores the complexity of the shipped features, penalizing systems that address complex problems

 	
 Accurate planning

 	
 Compliance with schedule

 	
 This metric rewards people who comply with even a bad plan

 	
 Efficiency

 	
 Cost per defect

 	
 Penalizes quality and makes buggy software look cheap

 	
 Quality

 	
 Defect density

 	
 Treats all defects the same whether they are using the wrong-sized font or something that brings aircraft down

 Table 1.2: Examples from software development

 See The Mess of Metrics by Capers Jones (2017) at http://namcook.com/articles/The%20Mess%20of%20Software%20Metrics%202017.pdf

 Consider a common metric for high-quality design, cyclomatic complexity. It has been observed that highly complex designs contain more defects than designs of low complexity. Cyclomatic complexity is a software metric that computes complexity by counting the number of linearly independent paths through some unit of software. Some companies have gone so far as to require all software to not exceed some arbitrary cyclomatic complexity value to be considered acceptable. This approach disregards the fact that some problems are harder than others and any design addressing such problems must be more complex. A better application of cyclomatic complexity is to use the metric as a guide. It can identify those portions of a design that are more complex so that they can be subjected to additional testing. Ultimately, the problem with this metric is that complexity correlates only loosely to quality. A better metric for the goal of improving quality might be the ability to successfully pass tests that traverse all possible paths of the software.

 Good metrics are easy to measure, and, ideally, easy to automate. Creating test cases for all possible paths can be tedious, but it is possible to automate with appropriate tools. Metrics that require additional work by engineering staff will be resented and achieving compliance with the use of the metric may be difficult.

 While coming up with good metrics may be difficult, the fact remains that you can’t improve what you don’t measure. Without measurements, you’re guessing where problems are and your solutions are likely to be ineffective or solve the wrong problem. By measuring how you’re doing against your goals, you can improve your team’s effectiveness and your product quality. However, it is important that metrics are used as indicators rather than as performance standards because, ultimately, the world is more complex than a single, easily computed measure.

 Metrics should be used for guidance, not as goals for strict compliance.

 Purpose

 The purpose of metrics is to measure, rather than guess, how your work is proceeding with respect to important qualities so that you can improve.

 Inputs and proconditions

 The only preconditions for this workflow are the desire, ability, and authority to improve.

 Outputs and postconditions

 The primary output of this recipe is objective measurements of how well your work is proceeding or the quality of one or more work products. The primary outcome is the identification of some aspect of your project work to improve.

 How to do it

 Metrics can be applied to any work activity for which there is an important output or outcome (which should really be all work activities). The workflow is fairly straightforward, as shown in Figure 1.11:

 [image:]
 Figure 1.12: Measuring success

 Identify work or work product property important to success

 One way to identify a property of interest is to look where your projects have problems or where the output work products fail. For engineering projects, work efficiency being too low is a common problem. For work products, the most common problem is the presence of defects.

 Define how you will measure the property (success metric)

 Just as important to identifying what you want to measure is coming up with a quantifiable measurement that is simultaneously easy to apply, easy to measure, easy to automate, and accurately captures the property of interest. It’s one thing to say “the system should be fast” but quite another to define a way to measure the speed in a fashion that can be compared to other work items and iterations.

 Frequently measure the success metric

 It is common to gather metrics for a review at the end of a project. This review is commonly called a project post-mortem. I prefer to do frequent retrospectives, at least one per iteration, which I refer to as a celebration of ongoing success. To be applied in a timely way, you must measure frequently. This means that the measurements must require low effort and be quick to compute. In the best case, the environment or tool can automate the gathering and analysis of the information without any ongoing effort by the engineering staff. For example, time spent on work items can be captured automatically by tools that check out and check in work products.

 Update the success metric history

 For long-term organizational success, recorded performance history is crucial. I’ve seen far too many organizations miss their project schedules by 100% or more, only to do the very same thing on the next project, and for exactly the same reasons. A metric history allows the identification of longer-term trends and improvements. That enables the reinforcement of positive aspects and the discarding of approaches that fail.

 Determine how to improve performance against the success metric

 If the metric result is unacceptable, then you must perform a root cause analysis to uncover what can be done to improve it. If you discover that you have too many defects in your requirements, for example, you may consider changing how requirements are identified, captured, represented, analyzed, or assessed.

 Make timely adjustments to how the activity is performed

 Just as important to measuring how you’re doing against your project and organizational goals is acting on that information. This may be changing a project schedule to be more accurate, performing more testing, creating some process automation, or even getting training on some technology.

 Assess the effectiveness of the success metric application

 Every so often, it is important to look at whether applying a metric is generating project value. A common place to do this is the project retrospective held at the end of each iteration. Metrics that are adding insufficient value may be dropped or replaced with other metrics that will add more value.

 Some commonly applied metrics are shown in Figure 1.13:

 [image:]
 Figure 1.13: Some common success metrics

 It all comes back to you can’t improve what you don’t measure. First, you must understand how well you are achieving your goals now. Then you must decide how you can improve and make the adjustment. Repeat. It’s a simple idea.

 Visualizing velocity is often done as a velocity or burn down chart. The former shows the planned velocity in work items per unit time, such as use cases or user stories per iteration. The latter shows the rate of progress of handling the work items over time. It is common to show both planned values in addition to actual values. A typical velocity chart is shown in Figure 1.14.

 Velocity is the amount of work done per time unit, such as the number of user stories implemented per iteration. A burn down chart is a graph showing the decreasing number of work items during a project.

 [image:]
 Figure 1.14: Velocity chart

 Example

 Let’s look at an example of the use of metrics in our project:

 Identify work or work product property important to success

 Let’s consider a common metric used in agile software development and apply them to systems engineering: velocity. Velocity underpins all schedules because it represents how much functionality is delivered per unit time. Velocity is generally measured as the number of completed user stories delivered per iteration. In our scope, we are not delivering implemented functionality, but we are incrementally delivering a hand-off to downstream engineering. Let’s call this SE Velocity, which is “specified use cases per iteration” and includes the requirements and all related SE work products.

 This might not provide the granularity we desire, so let’s also define a second metric, SE Fine-Grained Velocity, which is the number of story points specified in the iteration:

 Define how you will measure the property (success metric)

 We will measure the number of use cases delivered, but have to have a “definition of done” to ensure consistency of measurement. SE Velocity will include:

 	Use case with:
 	Full description identifying purpose, pre-conditions, post-conditions, and invariants.

 	Normative behavioral specification in which all requirements traced to and from the use case are represented in the behavior. This is a “minimal spanning set” of scenarios in which all paths in the normative behavior are represented in at least one scenario

 	Trace links to all related functional requirements and quality of service (performance, safety, reliability, security, etc) requirements

 	Architecture into which the implementation of the use cases and user stories will be placed

 	System interfaces with a physical data schema to support the necessary interactions of the use cases and user stories

 	Logical test cases to verify the use cases and user stories

 	Logical validation cases to ensure the implementation of the use cases and user stories meets the stakeholder needs

 SE Velocity will be simply the number of such use cases delivered per iteration. SE Fine-Grained Velocity will be the estimated effort (as measured in story points; see the Estimating effort recipe).

 Frequently measure the success metric

 We will measure this metric each iteration. If our project has 35 use cases, our project heartbeat is 4 weeks, and the project is expected to take one year, then our SE Velocity should be 35/12 or about 3. If the average use case is 37 story points, then our SE Fine-Grained Velocity should be about 108 story points per iteration.

 Update the success metric history

 As we run the project, we will get measured SE Velocity and SE Fine-Grained Velocity. We can plot those values over time to get velocity charts:

 [image:]
 Figure 1.15: SE velocity charts

 Determine how to improve performance against the success metric

 Our plan calls for 3 use cases and 108 story points per iteration; we can see that we are underperforming. This could be either because 1) we overestimated the planned velocity, or 2) we need to improve our work efficiency in some way. We can, therefore, simultaneously attack the problem on both fronts.

 To start, we should replan based on our measured velocity, which is averaging 2.25 use cases and 81 story points per iteration, as compared to the planned 3 use cases and 108 story points. This will result in a longer but hopefully more realistic project plan and extend the planned project by an iteration or so.

 In addition, we can analyze why the specification effort is taking too long and perhaps implement changes in process or tooling to improve.

 Make timely adjustments to how the activity is performed

 As we discover variance between our plan and our reality, we must adjust either the plan or how we work, or both. This should happen at least every iteration, as the metrics are gathered and analyzed. The iteration retrospective that takes place at the end of the iteration performs this service.

 Assess the affectiveness of the success metric applicaiton

 Lastly, are the metrics helping the project? It might be reasonable to conclude that the fine-grained metric provides more value than the more general SE Velocity metric, so we abandon the latter.

 Some considerations

 I have seen metrics fail in a number of organizations trying to improve. Broadly speaking, the reasons for failure are one of the following:

 Measuring the wrong thing

 Many qualities of interest are hard to identify precisely (think of “code smell”) or difficult to measure directly. Metrics are usually project qualities that are easy to measure but you can only imprecisely measure what you want. The classic measure of progress – lines of code per day – turns out to be a horrible measure because it doesn’t measure the quality of the code, so it cannot take into account the rework required when fast code production results in low code quality. Nor is refactoring code “negative work” because it results in fewer lines of code. A better measure would be velocity, which is a measure of tested and verified features released per unit of time.

 Another often abused measure is “hours worked.” I have seen companies require detailed reporting on hours spent per project only to also levy the requirement that any hours worked over 40 hours per week should not be reported. This constrained metric does not actually measure the effort expended on project tasks.

 Ignoring the metrics

 I have seen many companies spend a lot of time gathering metric data (and yes, it does require some effort and does cost some time, even when mostly automated), only to make the very same mistake time after time. This is because while these companies capture the data, they never actually use the data to improve.

 No authority to intiate change

 Gathering and analyzing metrics is often seen as less valuable than “real work” and so personnel tasked with these activities have little or no authority.

 Lack of willingness to follow through

 I have seen companies pay for detailed, quantified project performance data only to ignore it because there was little willingness to follow through with needed changes. This lack of willingness can come from management being unwilling to pay for organizational improvement, or from technical staff being afraid of trying something different.

 Metrics should always be attempting to measure an objective rather than a means. Rather than “lines of code per day,” it is better to measure “delivered functionality per day.”

 Managing risk

 In my experience, most unsuccessful projects fail because they don’t properly deal with project risk. Project risk refers to the potential for change that a team will fail to meet some or all of a project’s objectives. Risk is defined to be the product of an event’s likelihood of occurrence times its severity. Risk is always about the unknown. There are many different kinds of project risk. For example:

 	Resource risk

 	Technical risk

 	Schedule risk

 	Business risk

 Risks are always about the unknown and risk mitigation activities – known as spikes in agile literature – are work undertaken to uncover information to reduce risk. For example, a technical risk might be that the selected bus architecture might not have sufficient bandwidth to meet the system performance requirements. A spike to address the risk might measure the bus under stress similar to what is expected for the product. Another technical risk might be the introduction of new development technology, such as SysML, to a project. A resulting spike might be to bring in an outsider trainer and mentor for the project.

 The most important thing you want to avoid is ignoring risk. It is common, for example, for projects to have “aggressive schedules” (that is to say, “unachievable”) and for project leaders and members to ignore obvious signs of impending doom. It is far better to address the schedule risk by identifying and addressing likely causes of schedule slippage and replan the schedule.

 Purpose

 The purpose of the Managing risk recipe is to improve the likelihood of project success.

 Inputs and proconditions

 Project risk management begins early and should be an ongoing activity throughout the project. Initially, a project vision, preliminary plan, or roadmap serves as the starting point for risk management.

 Outputs and postconditions

 Intermediate outputs include a risk management plan (sometimes called a risk list) and the work effort resulting from it, allocated into the release and iteration plans. The risk management plan provides not only the name of the risk but also important information about it. Longer-term results include a (more) successful project outcome than one that did not include risk management.

 How to do it

 Figure 1.16 shows how risks are identified, put into the risk management plan, and result in spikes. Figure 1.17 shows how, as spikes are performed in the iterations, the risk management plan is updated:

 [image:]
 Figure 1.16: Managing risk

 [image:]
 Figure 1.17: Reducing risk

 Identify a potential source of risk

 This is how it starts, but risk identification shouldn’t just be done at the outset of the project. At least once per iteration, typically during the project retrospective activity, the team should look for new risks that have arisen as the project has progressed. Thus, the workflow in Figure 1.16 isn’t performed just once but many times during the execution of the project. In addition, it sometimes happens that risks disappear if their underlying causes are removed, so you might end up removing risk items, or at least marking them as avoided, during these risk reassessments.

 Characterize risk

 The name of the risk isn’t enough. We certainly need a description of how the risk might manifest and what it means. We also need to know how likely the negative outcome is to manifest (likelihood) and how bad it is should that occur (severity). Some outcomes have a minor impact, while others may be show-stoppers.

 Add to risk list in priority order

 The risk management plan maintains the list in order sorted by risk magnitude. If you have quantified both the risk’s likelihood and severity, then risk magnitude is the product of those two values. The idea is that the higher-priority risks should have more attention and be addressed earlier than the lower-priority risks.

 Identify a spike to address risk

 A spike is work that is done to reduce either the likelihood or the severity of the risk outcome, generally the former. We can address knowledge gaps with training; we can address bus performance problems with a faster bus; we can solve schedule risks with featurecide. Featurecide is the removal of features of low or questionable stakeholder value, or work items that you just don’t have the bandwidth to address. Whatever the approach, a spike seeks to reduce risk, so it is important that the spike uncovers or addresses the risk’s underlying cause.

 Create a work item for a spike

 Work items come in many flavors. Usually, we think of use cases or user stories (functionality) as work items. But work items can refer to any work activity, as we discussed in the earlier recipe for backlog management. Specifically, in this case, spikes are important work items to be put into the product backlog.

 Allocate a spike work item to an iteration plan

 As previously discussed, work items must be allocated to iterations to result in a release plan.

 Perform a spike

 This action means performing the identified experiment or activity. If the activity is to get training, then complete the training session. If it is to perform a lab-based throughput test, then do that.

 Assess the outcome

 Following the spike, it is important to assess the outcome. Was the risk reduced? Is a change in the plan, approach, or technology warranted?

 Update the risk management plan

 The risk management plan must be updated with the outcome of the spike.

 Replan

 If appropriate, adjust the plan in accordance with the outcome of the spike. For example, if a proposed technology cannot meet the project needs, then a new technology or approach must be selected and the plan must be updated to reflect that.

 Example

 Here is an example risk management plan, captured as a spreadsheet of information. Rather than show the increasing level of detail in the table step by step, we’ll just show the end state (Table 1.13) to illustrate a typical outcome from the workflow shown in Figure 1.16.

 It can be sorted by the State and Risk Magnitude columns to simplify its use:

 	
 Risk Management Plan (Risk List)

 	
 Risk ID

 	
 Headline

 	
 Description

 	
 Type

 	
 Impact

 	
 Probability

 	
 Risk magnitude

 	
 State

 	
 Precision

 	
 Raised on

 	
 Iteration #

 	
 Impacted stakeholder

 	
 Owner

 	
 Mitigation strategy (spike)

 	
 1

 	
 Robustness of the main motor

 	
 The system must be able to maintain 2,000 W for up to 5 minutes and sustain 1,000 W for 4 hours, with an MTBF of 20,000 hours. The current motor is unsuitable.

 	
 Technical

 	
 80%

 	
 90%

 	
 72%

 	
 Open

 	
 High

 	
 1/5/2020

 	
 1

 	
 Maintainer, user

 	
 Sam

 	
 Meet with motor vendors to see if 1) they have an existing motor that meets our needs, or 2) they can design a motor within budget to meet the need.

 	
 2

 	
 Agile MBSE impact

 	
 The team is using both agile and MBSE for the first time. The concern is that this may lead to poor technical choices.

 	
 Technical

 	
 80%

 	
 80%

 	
 64%

 	
 Open

 	
 Medium

 	
 1/4/2020

 	
 0

 	
 User, buyer, product owner

 	
 Jill

 	
 Bring in a consultant from aPriori Systems for training and mentoring

 	
 3

 	
 Robustness of USB connection

 	
 Users will be inserting and removing the USB while under movement stress, so it is likely to break.

 	
 Technical

 	
 40%

 	
 80%

 	
 32%

 	
 Open

 	
 Medium

 	
 2/16/2020

 	
 3

 	
 User, manufacturing

 	
 Joe

 	
 Standard USB connectors are too weak. We need to mock up a more robust physical design.

 	
 4

 	
 Aggressive schedule

 	
 Customer schedule is optimistic. We need to address this either by changing the expectations or figuring out how to satisfy the schedule.

 	
 Schedule

 	
 40%

 	
 100%

 	
 40%

 	
 Mitigated

 	
 Low

 	
 12/5/2019

 	
 0

 	
 Buyer

 	
 Susan

 	
 Iteration 0, work with the customer to see if the project can be delivered in phases, or if ambitious features can be cut.

 	
 5

 	
 Motor response lag time

 	
 To simulate short high-intensity efforts, the change in resistance must be fast enough to simulate the riding experience.

 	
 Technical

 	
 20%

 	
 20%

 	
 4%

 	
 Open

 	
 High

 	
 12/19/2019

 	
 6

 	
 User

 	
 Sam

 	
 Do a response time study with professional riders to evaluate the acceptability of the current solution.

 	
 6

 	
 Team availability

 	
 Key team members have yet to come off the Aerobike project and are delayed by an estimated 6 months.

 	
 Resource

 	
 60%

 	
 75%

 	
 45%

 	
 Obsolete

 	
 Low

 	
 3/1/2020

 	
 0

 	
 Product owner, buyer

 	

 	
 See if the existing project can be sped up. If not, work on a contingency plan to either hire more or delay the project start.

 Table 1.3: Example risk list

 For an example of the risk mitigation workflow in Figure 1.17, let’s consider the first two risks in Table 1.3.

 Perform a spike

 For Risk 2, “Agile MBSE impact,” the identified spike is “Bring in a consultant from A Priori Systems for training and mentoring.” We hire a consultant from A Priori Systems. They then train the team on agile MBSE, gives them each a copy of their book Agile Systems Engineering, and mentors the team through the first three iterations. This spike is initiated in Iteration 0, and the mentoring lasts through Iteration 3.

 For Risk 1, “Robustness of the main motor,” the identified spike is “Meet with motor vendors to see if 1) they have an existing motor that meets our needs, or 2) they can design a motor within our budget to meet the need.” Working with our team, the application engineer from the vendor assesses the horsepower, torque, and reliability needs and then finds a version of the motor that is available within our cost envelope. The problem is resolved.

 Assess outcome

 The assessment of the outcome of the spike for Risk 2 is evaluated in four steps. First, the engineers attending the agile MBSE workshop provide an evaluation of the effectiveness of the workshop. While not giving universally high marks, the team was very satisfied overall with their understanding of the approach and how to perform the work. The iteration retrospective for the next three iterations look at expected versus actual outcomes and find that the team is performing well. The assessment of the risk is that it has been successfully mitigated.

 For Risk 1, the assessment of the outcome is done by the lead electronics engineer. He obtains five instances of the suggested motor variant and stress-tests them in the lab. He is satisfied that the risk has been successfully mitigated and that the engineering can proceed.

 Update the risk management plan

 The risk management plan is updated to reflect the outcomes as they occur. In this example, Table 1.4, we can see the updated State field in which the two risk states are updated to Mitigated:

 	
 Risk Management Plan (Risk List)

 	
 Risk ID

 	
 Headline

 	
 Description

 	
 Type

 	
 Impact

 	
 Probability

 	
 Risk Magnitude

 	
 State

 	
 Precision

 	
 Raised On

 	
 Iteration #

 	
 Impacted Stakeholder

 	
 Owner

 	
 Mitigation Strategy (Spike)

 	
 1

 	
 Robustness of the main motor

 	
 The system must be able to maintain 2,000 W for up to 5 minutes and sustain 1,000 W for 4 hours, with an MTBF of 20,000 hours. The current motor is unsuitable.

 	
 Technical

 	
 80%

 	
 90%

 	
 72%

 	
 Mitigated and updated motor selection to the appropriate variant

 	
 High

 	
 1/5/2020

 	
 1

 	
 Maintainer, user

 	
 Sam

 	
 Meet with the motor vendors to see if 1) they have an existing motor that meets our needs, or 2) they can design a motor without our OEM costing to meet the need.

 	
 2

 	
 Agile MBSE impact

 	
 The team is using both agile and MBSE for the first time. The concern is that this may lead to back technical choices.

 	
 Technical

 	
 80%

 	
 80%

 	
 64%

 	
 Mitigated, updated modeling tool for Rhapsody, and MBSE workflows updated.

 	
 Medium

 	
 1/4/2020

 	
 0

 	
 User, buyer, product owner

 	
 Jill

 	
 Bring in a consultant from A Priori Systems for training and mentoring.

 Table 1.4: Updated risk plan (Partial)

 Replan

 In this example, the risks are successfully mitigated and the changes are noted in the State field. For Risk 1, a more appropriate motor is selected with help from the motor vendor. For Risk 2, the tooling was updated to better reflect the modeling needs of the project, and minor tweaks were made to the detailed MBSE workflows.

 Product roadmap

 A product roadmap is a plan of action for how a product will be introduced and evolved over time. It is developed by the product owner, an agile role responsible for managing the product backlog and feature set. The product roadmap is a high-level strategic view of the series of delivered systems mapped to capabilities and customer needs. The product roadmap takes into account the market trajectories, value propositions, and engineering constraints. It is ultimately expressed as a set of initiatives and capabilities delivered over time.

 Purpose

 The purpose of the product roadmap is to plan and provide visibility to the released capabilities of the customers over time. The roadmap is initially developed in Iteration 0, but as in all things agile, the roadmap is updated over time. A typical roadmap has a 12–24 month planning horizon, but for long-lived systems, the horizon may be much longer.

 Inputs and preconditions

 A product vision has been established which includes the business aspects (such as market and broad customer needs) and technical aspects (the broad technical approach and its feasibility).

 Outputs and postconditions

 The primary work product is the product roadmap, a time-based view of capability releases of the system.

 How to do it

 The product roadmap is organized around larger-scale activities (epics) for the most part, but can contain more detail if desired. An epic is a capability whose delivery spans multiple iterations. Business epics provide visible value to the stakeholders, while technical epics (also known as enabler epics) provide behind-the-scenes infrastructure improvements such as architecture implementation or the reduction of technical debt.

 In an MBSE approach, epics can be modeled as stereotypes of use cases that are decomposed to the use cases, which are in turn, decomposed into user stories (stereotyped use cases) and scenarios (refining interactions). While epics are implemented across multiple iterations, a use case is implemented in a single iteration. A user story or scenario takes only a portion of an iteration to complete. User stories and scenarios are comparable in scope and intent.

 This taxonomy is shown in Figure 1.18, along with where they typically appear in the planning:

 [image:]
 Figure 1.18: Epics, use cases, and user stories

 The product roadmap is a simple planning mechanism relating delivered capability to time, iterations, and releases. Like all agile planning, the roadmap is adjusted as additional information is discovered, improving its accuracy over time. The roadmap updates usually occur at the end of each iteration during the iteration retrospective, as the actual iteration outcomes are compared with planned outcomes.

 The roadmap also highlights milestones of interest and technical evolution paths as well. Milestones might include customer reviews or important releases, such as alpha, beta, an Initial Operating Condition (IOC), or a Final Operating Condition (FOC):

 [image:]C
 Figure 1.19: Create product roadmap

 Enumerate your product themes

 The product themes are the strategic objectives, values, and goals to be realized by the product. The epics must ultimately refer back to how they aid in the achievement of these themes. This step lists the product themes to drive the identification of the epics and work items going forward. In some agile methods, the themes correlate to value streams.

 Create epics

 Epics describe either the strategic capabilities of the system to realize the product themes. They can be either business epics that bring direct value to the stakeholders, or technical (aka enabler) epics that provide technological infrastructure to support the business epics. Epics may be thought of as large use cases that generally span several iterations. This step identifies the key epics to be put into the product roadmap.

 Prioritize epics

 Prioritization identifies the order in which epics are to be developed. Prioritization can be driven by urgency (the timeliness of the need), criticality (the importance of meeting the need), the usefulness of the capability, the availability of the required resource, reduction in project risk, natural sequencing, or meeting opportunities – or any combination of the above. The details of how to perform prioritization are the subject of their own recipe (see the Work item prioritization recipe in this chapter), but this is one place where prioritization can be effectively used.

 Assign a broad product timeframe

 The product roadmap ultimately defines a range of time in which capabilities are to be delivered. This differs from traditional planning, which attempts to nail down the second when a product will be delivered in spite of the lack of adequate information to do so. The product roadmap usually defines a large period of time – say a month, season, or even year – in which a capability is planned to be delivered, but with the expectation that this timeframe can be made more precise as the project proceeds.

 Allocate epics in the product timeframe

 Epics fit into the product timeframe to allow project planning at a strategic level.

 Get agreement on the product roadmap

 Various stakeholders must agree on the timeframe. Users, purchasers, and marketers must agree that the timeframe meets the business needs and that the epics provide the appropriate value proposition. Engineering staff must agree that the capabilities can be reasonably expected to be delivered with an appropriate level of quality within the timeframe. Manufacturing staff must agree that the system can be produced in the plan. Regulatory authorities must agree that the regulatory objectives will be achieved.

 Update the roadmap

 If stakeholders are not all satisfied, then the plan should be reworked until an acceptable roadmap is created. This requires modification and reevaluation of an updated roadmap.

 Example

 Let’s create a product roadmap for the Pegasus system by following the steps outlined.

 Enumerate your product themes

 The product themes include:

 	Providing a bike fit as close as possible to the fit of a serious cyclist on their road bike

 	Providing a virtual ride experience that closely resembles outside riding, including:
 	Providing resistance to pedals for a number of conditions, including flats, climbing, sprinting, and coasting for a wide range of power outputs from casual to professional riders

 	Simulating gearing that closely resembles the most popular gearing for road bicycles

 	Incline control to physically incline or decline the bike

 	Permitting programmatic control of resistance to simulate changing road conditions in a realistic fashion

 	Interfacing with cycling training apps, including Zwift, Trainer Road, and the Sufferfest

 	Gathering ride, performance, and biometrics for analysis by a third-party app

 	Providing seamless Over-The-Air (OTA) updates of product firmware to simplify maintenance

 Create epics

 Epics describe either the strategic capabilities of the system to realize the product themes. This step identifies the key epics to be put into the product roadmap. Epics include:

 Business epics:

 	Physical bike setup

 	Ride configuration

 	Firmware updates

 	Controlling resistance

 	Monitoring road metrics

 	Communicating with apps

 	Emulating gearing

 	Incline control

 Enabler epics:

 	Mechanical frame development

 	Motor electronics development

 	Digital electronics development

 Prioritize epics

 These epics are not run fully sequentially, as some can be done in parallel. Nevertheless, the basic prioritized list is:

 	Mechanical frame development

 	Motor electronics development

 	Digital physical bike setup

 	Monitor road metrics

 	Ride configuration

 	Control resistance

 	Emulating gearing

OEBPS/Images/B18595_01_02.png

OEBPS/Images/B18595_01_07.png
Work Item
Name
Description
Acceptance Criteria

Classification
Priority

Estimated Effort
Related Information

OEBPS/Images/B18595_01_15.png

OEBPS/Images/B18595_01_11.png
Velocity Defect Density
Progress s e kv, sch 30
e s ot s Moy b
ormetze by e by § o
s ey o)

Mased rumber ofdeects
ramatzed orut size (4.0 or
moses. commens) (qusty messuse)

Bum Down Rate Complexity
Noosuscorgnty o
e o i e
GysomaComplnty
martarsity resere)

‘s tha ko e rmber of
otk .o P oot sy
poris. ver e (cmpeeness
e

.

Done/ Planned Ratio

[Escaped Defects
e
e [—— st
aset

(adherance 1 plan measre) -
—
Requirements Chi
equirements Chur — AN
Shaws the rate of change and addtion o Running Tested Features
oo, o o o, 8 [—
ecacn of v etk e e ke ok v vrd
pris—
Open Defect Age
Remaining Risk Trcks o averogesgnof et i h wok

ten . meatrod o when ey e
scovrs i e e it s e
vt (ssp0namensss mossors)

ety b cown chert o ok
[———————————
asch ik i Rk it sasirad 3 mber
[——— Team Happiness

¥ em—. Monlors e sty o a a1 conte workng

e curd ey, A feam i mosts h
Frochctive lan ot s by sy b b
ol (minabily messure)

OEBPS/Images/blockquote-top.png

OEBPS/Images/B18595_MockupCover_LowRes.png
EXPERT INSIGHT

Agile Model-Based
Systems Engineering
Cookbook

Improve system development by applying proven
recipes for effective agile systems engineering

Second Edition

Dr. Bruce Powel Douglass (pQCk'l')

OEBPS/Images/B18595_01_08.png

OEBPS/Images/B18595_01_16.png
Iteration Plan

Roadmap

EPIC /
_— >~— Ascenariois an nferaction of
System with sel of acors: L1 single

path in a use case. It s implemented in a
few days.

~E

A user story is a single interaction of
one or more actors with the product to
achieve a goal, It is implemented in a few
days.

L~

Ause case Is composed of a few o
many scenarios, roughly corresponding to
afew up 1o 100 requirements. A use case
s implemented within a single Iteration.

-

An epic is a coherent set of
fealures, use cases, and user
stories at a siralegic level. Epics
typically require 2 - 6 terations o
complete.

OEBPS/Images/B18595_01_03.png
Work Item

3
El
3
(LT
R

Create, modify, design or implement
* Epic
* Business Epic
* Enabler Epic
* UseCase
= UserStory
* Requirement
Modify a work product
Produce outcome
Reduce risk
Remove defect
Reduce technical debt
Support target platform

Iteration Backlogs
" Ireration 1
—4
——>
—>
 —
E Iteration 1
 —
—>
‘ —
jm—
—>

teration n
—3
—
[—

| —
 —

OEBPS/Images/tip.png

OEBPS/Images/B18595_01_12.png
«

Use Cases Handed off

SE Velocity

Iteration 1

Iteration 2

Iteration 3

teration 4

Iterations

Iteration 5

Interation 6

Iteration 7

—e-initial Plan
= -Replan
—a—Actual

OEBPS/Images/Image21836.png
<PACKTD

OEBPS/Images/cover.png
EXPERT INSIGHT

Agile Model-Based
Systems Engineering
Cookbook

Improve system development by applying proven
recipes for effective agile systems engineering

Foreword by:
Dr. Christianvon Holst,
Global Tractor Systems Engineering Lead at John Deere

Second Edition \

Dr. Bruce Powel Douglass (paCk'I')

OEBPS/Images/info.png

OEBPS/Images/Table_1.1.png
S e

Rt R e o

e Pt
Novms ey i 2% i
P T e o s
o et L
e e e e Stk e i
T = . e ———
e T et ety
B T et 8 8
o oty s o et it e e i
N —— el - ettt R
e Ty s
v i e B om0
i — i e I
e el
N pr— et Pk S
e e ey = e i Contmtms e et
P I,

OEBPS/Images/B18595_01_13.png
SE Velocity Charts

teration Use Cases Cum UC Story Points Cum SP

1 2 2 70 70
2 2 4 8 155
3 2 6 s 2
4 3 9 92 325
Average 225 8125
SE Velocity
2 00
. J s
2 n
2
- je
g1 £ w
LI i
»
os 5
o o
1 2 s “
Keration
Cumulative SE Velocity
0 0
N 300
N
? 20
e ™
- 2
3. G0
3 # 100
2
)
o o

eration

SE Fine-Grained Velocity

———

s 1 15 2 25 3 35 4

Cumulative SE Fine-Grained Velocity

teration

OEBPS/Images/blockquote-bottom.png

OEBPS/Images/B18595_01_04.png
Iteration Mission
* Use cases specified

* Defects repaired

* Platforms supported
* Risks reduced

* Work products developed

OEBPS/Images/B18595_01_05.png
Create Work
Item

Approve Work
Item

%;__wssl_a@

[approved]

Prioritize Work
Item

Place Work
Item in Project
Backlog

Allocate Work
Item to L
Iteration
Backlog

OEBPS/Images/B18595_01_17.png
. % Enum erate your product themes J

T
Assign a broad
Create Epics e
tim eline
|
|

Allocate epics into
product timefram e

-,

Get agreement on
Product oadmap | el
timeframe |

| [agreement reached]

E) -~

OEBPS/Images/B18595_01_09.png
ue [Package] Manage Backiog| User Storiss] J

s Sty <ner Starys Diagram name _||User Stores
- Adst seat reach Adjust seat height [Aathor (Bruce Dougiass
L eeand N [creation sate (427722 4:18 1

Modication date 4727722 428 PM.

[Diagram Mission: Show the

b on || user cases for development in
teraton 1 and their

|decompositon into user stories.

OEBPS/Images/B18595_QR_Free_PDF.png

OEBPS/Images/QR_Code1186414361322108625.png

OEBPS/Images/B18595_01_14.png
Identify spike
to address risk

Create work
item for spike

potenti
ource of

Allocate spike work
item to an iteration
backlog

OEBPS/Images/B18595_01_01.png
Stakeholder System
Requirements Validation

Downstream Engineering

Software
Design

Detailed Design and Implementation

OEBPS/Images/B18595_01_06.png
([]
=) -+

Review Work Reject Work
Performed

)

|
[work item meets acceptance criteria]

Remove
Resolved Work
Item

OEBPS/Images/Table_1-1.png
S e

Rt R e o

e Pt
Novms ey i, 2% i
P T e o s
o et L
e e e e Stk e i
T = . e ———
e T et ety
B T et 8 8
o oty s o et it e e i
N —— el - ettt R
e Ty s
v i e B om0
i — i e I
e el
N pr— et Pk S
e e ey = ey Contmtms e et
P I,

OEBPS/Images/B18595_01_10.png
) =)

Make timely adjustment to

tormine how to improve.
‘success metric

‘performance against the

f

