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			Preface

			In the realm of cybersecurity, the ability to dissect and understand software, especially malware and vulnerable applications, is of paramount importance. Ghidra, the powerful open source reverse-engineering tool developed by the National Security Agency (NSA), has rapidly become an essential resource for professionals aiming to analyze code to find vulnerabilities, examine malicious software, and develop robust security solutions. This second edition builds upon the foundational knowledge of reverse-engineering, providing deeper insights into advanced techniques such as binary diffing, debugging, and real-world malware analysis, including ransomware.

			This book is a comprehensive guide that not only introduces you to the core functionalities of Ghidra but also empowers you to extend its capabilities through scripting and plugin development. Whether you’re aiming to uncover vulnerabilities in software, analyze malicious code, or contribute to the Ghidra community, this book will equip you with the skills and knowledge needed to excel in the field of software reverse-engineering.

			Who this book is for

			This book is intended for security researchers, malware analysts, bug hunters, software engineers, and cybersecurity professionals or students who are involved in software development, testing, and security analysis. It is also suitable for individuals aspiring to enter the security industry as malware or vulnerability researchers. In fact, any person who wants to learn Ghidra by minimizing the learning curve and starting to write their own tools will certainly enjoy this book and accomplish their goal. Readers should have prior knowledge of programming in Java or Python and experience with software development or application programming to fully benefit from the concepts and practical examples presented here.

			What this book covers

			Chapter 1, Getting Started with Ghidra, introduces you to the Ghidra platform and its history, covering installation procedures and a basic overview of the program from the user perspective.

			Chapter 2, Automating RE Tasks with Ghidra Scripts, explores how to use Ghidra’s scripting capabilities to automate reverse-engineering tasks, and introduces script development.

			Chapter 3, Ghidra Debug Mode, delves into how to set up a Ghidra development environment, the methods for debugging Ghidra, and details regarding the Ghidra debug mode vulnerability.

			Chapter 4, Using Ghidra Extensions, provides you with background for developing Ghidra extensions, as well as showing you how to install and use them.

			Chapter 5, Reversing Malware Using Ghidra, demonstrates how to use Ghidra for malware analysis by reversing a real-world malware sample.

			Chapter 6, Scripting Malware Analysis, teaches you how to automate malware analysis with Java and Python scripts. It builds on the previous chapter by providing scripts for analyzing shellcode in malware samples.

			Chapter 7, Using Ghidra’s Headless Analyzer, explains how to run Ghidra in headless mode for automated batch processing and analyzing malware samples using a script developed during the chapter.

			Chapter 8, Binary Diffing, explains the Ghidra BSim feature, detailing how to set it up and use it for analysis. It covers techniques for comparing binaries to identify changes, analyze patches, and discover vulnerabilities.

			Chapter 9, Auditing Program Binaries, introduces the topic of finding memory corruption vulnerabilities using Ghidra and how to exploit them.

			Chapter 10, Scripting Binary Audits, continues the previous chapter, teaching how to automate the bug-hunting process via scripting, taking advantage of the powerful PCode intermediate representation.

			Chapter 11, Developing Ghidra Plugins, provides insights into creating custom plugins to extend Ghidra’s functionality and tailor it to specific reverse-engineering needs.

			Chapter 12, Incorporating New Binary Formats, shows you how to add support for new and custom binary formats within Ghidra using a real-world example, broadening the scope of your analyses.

			Chapter 13, Analyzing Processor Modules, discusses how to write Ghidra processor modules using the SLEIGH processor specification language.

			Chapter 14, Contributing to the Ghidra Community, explains how to interact with the community using social networks, chats, and how to contribute with your own development, feedback, bug reports, comments, and so on.

			Chapter 15, Extending Ghidra for Advanced Reverse-Engineering, introduces advanced reverse-engineering topics and tools such as SMT solvers, Microsoft Z3, static and dynamic symbex, LLVM, and Angr, and explains how to incorporate them with Ghidra.

			Chapter 16, Debugging, covers the Ghidra debugging tool and outlines various debugging strategies. It also describes different debugging modes, including remote and kernel debugging, for analyzing complex code execution scenarios.

			Chapter 17, Unpacking in-the-Wild Malware, teaches you how to unpack and analyze real-world malware samples, revealing the techniques used by threat actors.

			Chapter 18, Reverse-Engineering Ransomware, delves into a detailed analysis of ransomware to comprehend its internal mechanisms. The chapter also offers an overview of the encryption techniques utilized by ransomware and methods for identifying encryption algorithms using Ghidra.

			Appendix A, Answer Key, provides answers to the questions posed in the various chapters of the book.

			To get the most out of this book

			To maximize the benefits from this book, you should have a sufficient understanding of the Assembly, C, Python, and Java languages to be able to read the code in the book. Access to a computer where you can install Ghidra and other necessary tools is essential, as the book includes hands-on exercises and practical examples that require active participation.
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			The required software is listed in the Technical requirements section of the applicable chapter.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Ghidra-Software-Reverse-Engineering-for-Beginners---Second-Edition. If there’s an update to the code, it will be updated on the existing GitHub repository.

			We also have other code bundles from our rich catalogue of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “To fix the vulnerability, the DEBUG_ADDRESS variable is set to 127.0.0.1:18001, which restricts the incoming debugging connections to localhost.”

			A block of code is set as follows:

			
if "%DEBUG%"=="y" (
    if "%DEBUG_ADDRESS%"=="" (
        set DEBUG_ADDRESS=127.0.0.1:18001
    )
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
if "%DEBUG%"=="y" (
    if "%DEBUG_ADDRESS%"=="" (
        set DEBUG_ADDRESS=127.0.0.1:18001
    )
			Any command-line input or output is written as follows:

			
bm kernel32!VirtualAlloc
bm kernel32!VirtualProtect
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Launch the executable from the menu bar using Debugger | dbgeng.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Reviews

			Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

			For more information about Packt, please visit packtpub.com

			Share Your Thoughts

			Once you’ve read Ghidra Software Reverse Engineering for Beginners, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application. 

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image: ]
				

			

			https://packt.link/free-ebook/9781835889824
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			Part 1: Introduction to Ghidra

			This part aims to introduce you to Ghidra and its history, the project structure, scripting capabilities, and extension development. Additionally, it covers the essential process of debugging the Ghidra tool itself.

			This part contains the following chapters:

			
					Chapter 1, Getting Started with Ghidra

					Chapter 2, Automating RE Tasks with Ghidra Scripts

					Chapter 3, Ghidra Debug Mode

					Chapter 4, Using Ghidra Extensions

			

		

		
			
			

		

	


		
			1

			Getting Started with Ghidra

			In this introductory chapter, we will provide an overview of Ghidra in some respects. Before starting, it would be convenient to know how to acquire and install the program. This is obviously something simple and trivial if you want to install a release version of the program. However, you probably want to know this program in depth. In that case, I can tell you in advance that it is possible to compile the program by yourself from the source code.

			Since the source code of Ghidra is available and ready to be modified and extended, you will probably also be interested in knowing how it is structured, what kinds of pieces of code exist, and so on. This is a great opportunity to discover the enormous possibilities that Ghidra offers us.

			It is also interesting to review the main functionalities of Ghidra from the point of view of a reverse engineer. This will spark your interest in this tool since it has its own peculiarities, and this is precisely the most interesting thing about Ghidra.

			In this chapter, we’re going to cover the following main topics:

			
					WikiLeaks Vault 7

					Ghidra versus IDA and many other competitors

					Ghidra overview

			

			Technical requirements

			
					The GitHub repository containing all the necessary code for this chapter can be found at https://github.com/PacktPublishing/Ghidra-Software-Reverse-Engineering-for-Beginners---Second-Edition/tree/main/Chapter01

					Go to https://www.msys2.org/ and follow the instructions to install MSYS2 and mingw-w64 GCC (pacman -S mingw-w64-ucrt-x86_64-gcc)

			

			WikiLeaks Vault 7

			On March 7, 2017, WikiLeaks started to leak Vault 7, which became the biggest leak of confidential documents on the US Central Intelligence Agency (CIA). This leak included secret cyber-weapons and spying techniques divided into 24 parts, named Year Zero, Dark Matter, Marble, Grasshopper, HIVE, Weeping Angel, Scribbles, Archimedes, AfterMidnight and Assassin, Athena, Pandemic, Cherry Blossom, Brutal Kangaroo, Elsa, OutlawCountry, BothanSpy, Highrise, UCL/Raytheon, Imperial, Dumbo, CouchPotato, ExpressLane, Angelfire, and Protego.

			It is believed that NSA intelligence officials leaked the confidential CIA documents, but this was never officially confirmed or denied by CIA Director Michael Vincent Hayden, who served between 2006 and 2009.

			The existence of Ghidra was leaked in the first part of Vault 7: Year Zero. This first part consists of a huge leak of documents and files stolen from the CIA’s Center for Cyber Intelligence in Langley, Virginia. The leak’s content is about the CIA’s malware arsenal and zero-day weaponized exploits, as well as how Apple’s iPhone, Google’s Android, Microsoft’s Windows devices, and even Samsung TVs are turned into covert microphones.

			Ghidra was referenced three times in this leak (https://wikileaks.org/ciav7p1/cms/index.html), showing how to install it, a step-by-step tutorial (with screenshots) of how to perform a manual analysis of a 64-bit kernel cache by using Ghidra, and the latest Ghidra version available at the time, which was Ghidra 7.0.2.

			NSA release

			As announced during RSA Conference 2019 in San Francisco, Rob Joyce, senior advisor for cybersecurity at NSA, explained the unique capabilities and features of Ghidra during a session called Get your free NSA reverse engineering tool, and Ghidra program binaries were also published.

			During this session, some features were explained:

			
					Team collaboration on a single project feature

					The capabilities to extend and scale Ghidra

					The generic processor model, also known as SLEIGH

					The two working modes: interactive and non-GUI

					The powerful analysis features of Ghidra

			

			Finally, on April 4, 2019, the NSA released the source code of Ghidra on GitHub (https://github.com/NationalSecurityAgency/ghidra), as well as on the Ghidra website, where you can download Ghidra release versions that are ready to use (https://ghidra-sre.org). The first version of Ghidra that was available on this website was Ghidra 9.0. Ghidra’s website may or may not be available to visitors outside the US, depending on your country; if this is the case, you can access it by using a VPN or an online proxy such as HideMyAss (https://www.hidemyass.com/).

			Unfortunately for the NSA, a few hours later, the first Ghidra vulnerability was published by Matthew Hickey, also known as @hackerfantastic, at 1:20 AM, March 6, 2019. He said the following via X (formerly Twitter):

			Ghidra opens up JDWP in debug mode listening on port 18001, you can use it to execute code remotely (Man facepalming). to fix change line 150 of support/launch.sh from * to 127.0.0.1 https://github.com/hackerhouse-opensource/exploits/blob/master/jdwp-exploit.txt.

			Then, a lot of suspicions about the NSA and Ghidra arose. However, taking into account the cyber-espionage capabilities of the NSA, do you think the NSA needs to include a backdoor in its own software in order to hack its users?

			Obviously, no. They don’t need to do this because they already have cyberweapons for that.

			You can feel comfortable when using Ghidra; probably, the NSA only wanted to do something honorable to improve its own image. Since Ghidra’s existence was leaked by WikiLeaks, what better way to do that than to publish it at RSA Conference and release it as open source?

			Ghidra versus IDA and many other competitors

			Even if you have already mastered a powerful reverse-engineering framework, such as Interactive Disassembler (IDA), Binary Ninja, or Radare2, there are good reasons to start learning Ghidra.

			No single reverse-engineering framework is the ultimate one. Each reverse-engineering framework has its own strengths and weaknesses. Some of them are even incomparable to each other because they were conceived with different philosophies (for instance, GUI-based frameworks versus command line-based frameworks).

			On the other hand, you will see how those products are competing with and learning from each other all the time. For instance, IDA Pro 7.3 incorporated the undo feature, which was previously made available by its competitor, Ghidra.

			In the following screenshot, you can see the epic and full-of-humor @GHIDRA_RE official X (formerly Twitter) account’s response to IDA Pro’s undo feature:

			
				
					[image: Figure 1.1 – IDA Pro 7.3 added an undo feature to compete with Ghidra]
				

			

			Figure 1.1 – IDA Pro 7.3 added an undo feature to compete with Ghidra

			Differences between frameworks are susceptible to change due to the competition, but we can mention some current strengths of Ghidra:

			
					It is open source and free (including its decompiler).

					It supports a lot of architectures (which the framework you are using may not support yet).

					It can load multiple binaries at the same time in a project. This feature allows you to easily apply operations over many related binaries (for example, an executable binary and its libraries).

					It allows collaborative reverse-engineering by design.

					It supports big firmware images (1 GB+) without problems.

					It has awesome documentation that includes examples and courses.

					It allows version tracking of binaries, allowing you to match functions and data and their markup between different versions of the binary.

			

			In conclusion, it is recommended to learn as many frameworks as possible to know and take advantage of each one. In this sense, Ghidra is a powerful framework that you must know.

			Ghidra overview

			In a similar way to what happened at RSA Conference, we will provide a Ghidra overview to present the tool and its capabilities. You will soon realize how powerful Ghidra is and why this tool is not simply yet another open source reverse-engineering framework.

			At the time of writing this book, the latest available version of Ghidra is 11.0.1, which can be downloaded from the official website mentioned in the previous section of this chapter.

			Note

			It is recommended that readers download the same version of Ghidra and other software while going through the exercises in this book.

			Installing Ghidra

			It is recommended to download the latest version of Ghidra (https://ghidra-sre.org/) by clicking on the red Download from GitHub button, which will take you to the Ghidra release page on GitHub where you will find all the released versions of Ghidra, including the older ones:

			
				
					[image: Figure 1.2 – Downloading Ghidra from the official website]
				

			

			Figure 1.2 – Downloading Ghidra from the official website

			Clicking on the download button will take you to the GitHub release page, as shown in the following figure. Under the Assets section, you will have a link to download the Ghidra ZIP file:

			
				
					[image: Figure 1.3 – GitHub release page for Ghidra]
				

			

			Figure 1.3 – GitHub release page for Ghidra

			After downloading the Ghidra archive file (ghidra_11.0.1_PUBLIC_20240130.zip) and decompressing it, you will see the following file structure:

			
				
					[image: Figure 1.4 – The Ghidra 11.0.1 structure after it is decompressed]
				

			

			Figure 1.4 – The Ghidra 11.0.1 structure after it is decompressed

			The content can be described as follows (https://ghidra-sre.org/InstallationGuide.html):

			
					docs: Ghidra documentation and some extremely useful resources, such as learning Ghidra courses for all levels, cheatsheets, and a step-by-step installation guide

					Extensions: Optional Ghidra extensions, allowing you to improve its functionality and integrate it with other tools

					Ghidra: The Ghidra program itself

					GPL: Standalone GPL support programs

					licenses: Contains licenses used by Ghidra

					server: Contains files related to Ghidra Server installation and administration

					support: Allows you to run Ghidra in advanced modes and control how it launches, including launching it to be debugged

					ghidraRun: The script used to launch Ghidra on Linux and iOS

					ghidraRun.bat: Batch script allowing you to launch Ghidra on Windows

					LICENSE: Ghidra license file

					bom.json: This is the Software Bill of Materials (SBOM) file that lists all the components or libraries that make up the Ghidra software in CycloneDX JSON format; it helps in understanding the dependencies of the project

			

			In addition to downloading a release version of Ghidra (which is precompiled), you can compile the program on your own, as will be explained in the next section.

			Compiling Ghidra on your own

			To build Ghidra by yourself, you need to follow the instructions in the Build section of the Ghidra’s GitHub page (https://github.com/NationalSecurityAgency/ghidra?tab=readme-ov-file#build).

			The first step is to install the following build tools:

			
					JDK 17 64-bit (install from https://adoptium.net/en-GB/temurin/releases/?os=windows&arch=x64&package=jdk&version=17)

					Gradle 7.3+ (to install Gradle follow the instructions at https://gradle.org/install)

					make, gcc, and g++ (Linux/macOS only)

					Microsoft Visual Studio 2017+ or Microsoft C++ Build Tools with the following components installed (Windows only):	MSVC
	Windows SDK
	C++ ATL



			

			Once the build tools are installed properly, download and extract the source code from https://github.com/NationalSecurityAgency/ghidra/archive/refs/heads/master.zip or use the following Git command to clone the repository:

			
> git clone https://github.com/NationalSecurityAgency/ghidra.git
			Then navigate to the extracted or cloned directory and use Gradle to build Ghidra. Here is the list of commands to be executed:

			
> gradle -I gradle/support/fetchDependencies.gradle init
> gradle buildGhidra
			Once the build completes, you will see a BUILD SUCCESSFUL message as shown in the following figure:

			
				
					[image: Figure 1.5 – Build successful message]
				

			

			Figure 1.5 – Build successful message

			This will produce a compressed file containing the compiled version of Ghidra:

			
/ghidra/build/dist/ghidra_*.zip
			Running Ghidra

			Before starting Ghidra, make sure your computer meets the following requirements:

			
					Hardware:	4 GB RAM
	1 GB storage (for installing Ghidra binaries)
	Dual monitors (strongly recommended)



					Software:	Java 17 64-bit Runtime and Development Kit



			

			Since Ghidra is written in Java, if it is executed before installing the Java 17 64-bit runtime and development kit, some of the following error messages could be displayed:

			
					When Java is not installed, you will see the following:
"Java runtime not found..."

					When the Java Development Kit (JDK) is missing, you will see the following:

			

			
				
					[image: Figure 1.6 – Missing JDK ﻿error]
				

			

			Figure 1.6 – Missing JDK error

			Therefore, if you get any of those messages, please download the JDK from https://adoptium.net/en-GB/temurin/releases/?os=windows&arch=x64&package=jdk&version=17.

			How to solve installation issues

			Ghidra’s step-by-step installation guide, including known issues, can be found in Ghidra’s documentation directory at docs\InstallationGuide.html.

			It is also available online at https://htmlpreview.github.io/?https://github.com/NationalSecurityAgency/ghidra/blob/master/GhidraDocs/InstallationGuide.html.

			Note that you can report new issues you find in Ghidra at https://github.com/NationalSecurityAgency/ghidra/issues.

			After installing Ghidra, you will be able to launch it using ghidraRun on Linux and macOS and ghidraRun.bat on Windows.

			Overview of Ghidra’s features

			In this section, we will look at an overview of some fundamental Ghidra features in order to understand the overall functionality of the program. It is also a good starting point to get familiar with it.

			Creating a new Ghidra project

			As you will notice, unlike other reverse-engineering tools, Ghidra doesn’t work with files directly. Instead, Ghidra works with projects. Let’s create a new project by clicking on File | New Project…. You can also do this faster by pressing the Ctrl + N hotkey (the complete list of Ghidra hotkeys is available at https://ghidra-sre.org/CheatSheet.html and also in Ghidra’s documentation directory):

			
				
					[image: Figure 1.7 – Creating a new Ghidra project]
				

			

			Figure 1.7 – Creating a new Ghidra project

			Furthermore, projects can be non-shared or shared. Since we want to analyze a hello world program without collaboration with other reverse engineers, we will choose Non-Shared Project, and then click on the Next>> button. Then, the program asks us to choose a project name (hello world) and where to store it:

			
				
					[image: Figure 1.8 – Choosing a project name and directory]
				

			

			Figure 1.8 – Choosing a project name and directory

			The project is composed of a hello world.gpr file and a hello world.rep folder:

			
				
					[image: Figure 1.9 – Ghidr﻿a project structure]
				

			

			Figure 1.9 – Ghidra project structure

			A Ghidra project (the *.gpr file) can only be opened by a single user. Therefore, if you try to open the same project twice at the same time, the concurrency lock implemented using the hello world.lock and hello world.lock~ files will prevent you from doing so, as shown in the following screenshot:

			
				
					[image: Figure 1.10 – Ghidra’s project locked]
				

			

			Figure 1.10 – Ghidra’s project locked

			In the next section, we will cover how to add binary files to our project.

			Importing files to a Ghidra project

			We can start to add files to our hello world project. In order to analyze an extremely simple application with Ghidra, we will compile the following hello world program (hello_world.c) written in the C programming language:

			
#include <stdio.h>
int main(){
    printf("Hello world.");
}
			We use the following command to compile it:

			
C:\Users\virusito\Desktop\hello_world> gcc.exe hello_world.c
			Let’s analyze the resulting Microsoft Windows Portable Executable file: hello_world.exe.

			Let’s import our hello world.exe file to the project; to do that, we have to go to File | Import file. Alternatively, we can press the I key:

			
				
					[image: Figure 1.11 – Importing a file to the Ghidra project]
				

			

			Figure 1.11 – Importing a file to the Ghidra project

			Ghidra automatically identified the hello_world.exe program as an x86 Portable Executable binary for 32-bit architectures. As it was successfully recognized, we can click OK to continue. After importing it, you will see a summary of the file:

			
				
					[image: Figure 1.12 – Ghidra project file import resul﻿t summary]
				

			

			Figure 1.12 – Ghidra project file import result summary

			By double-clicking the hello_world.exe file or clicking on the green Ghidra icon of Tool Chest, the file will be opened and loaded by Ghidra:

			
				
					[image: Figure 1.13 – A Ghidra project containing a Portable Executable file]
				

			

			Figure 1.13 – A Ghidra project containing a Portable Executable file

			After importing files into your project, you can start to reverse-engineer them. This is a cool feature of Ghidra, allowing you to import more than one file into a single project because you can apply some operation (for example, search) over multiple files (for example, an executable binary and its dependencies). In the next section, we will see how to analyze those files using Ghidra.

			Configuring and performing Ghidra analysis

			You will be asked whether to analyze the file, and you probably want to answer Yes to this because the analysis operation recognizes functions, parameters, strings, and more. Usually, you will want to let Ghidra get this information for you. A lot of analysis configuration options do exist. You can see a description of every option by clicking on it; the description is displayed in the upper-right Description section:

			
				
					[image: Figure 1.14 – File analysis options]
				

			

			Figure 1.14 – File analysis options

			Let’s click on Analyze to perform the analysis of the file. Then, you will see the Ghidra CodeBrowser window. Don’t worry if you forget to analyze something; you can reanalyze the program later (go to the Analysis tab and then Auto Analyze ‘hello_world.exe’…).

			Exploring Ghidra CodeBrowser

			Ghidra CodeBrowser has, by default, a pretty well-chosen distribution of dock windows, as shown in the following screenshot:

			
				
					[image: Figure 1.15 – Ghidra’s CodeBrowser window]
				

			

			Figure 1.15 – Ghidra’s CodeBrowser window

			Let’s see how CodeBrowser is distributed by default:

			
					As usual, by default in reverse-engineering frameworks, in the center of the screen, Ghidra shows a disassembly view of the file.

					As the disassembly level is sometimes a too low-level perspective, Ghidra incorporates its own decompiler, which is located to the right of the disassembly window. The main function of the program was recognized by a Ghidra signature, and then parameters were automatically generated. Ghidra also allows you to manipulate decompiled code in a lot of aspects. Of course, a hexadecimal view of the file is also available in the corresponding tab. These three windows (disassembly, decompiler, and the hexadecimal window) are synchronized, offering different perspectives of the same thing.

					Ghidra also allows you to easily navigate the program. For instance, to go to another program section, you can refer to the Program Trees window located in the upper-left margin of CodeBrowser.

					If you prefer to navigate to a symbol (for example, a program function), then go just below that, to where the Symbols Tree pane is located.

					If you want to work with data types, then go just below that again, to Data Type Manager.

					As Ghidra allows scripting reverse-engineering tasks, script results are shown in the corresponding window at the bottom. Of course, the Bookmarks tab is available in the same position, allowing you to create pretty well-documented and organized bookmarks of any memory location for quick access.

					Ghidra also has a quick access bar at the top.

					At the bottom right, the first field indicates the current address.

					Following the current address, the current function is shown.

					In addition to the current address and the current function, the current disassembly line is shown to complete the contextual information.

					Finally, the main bar is located at the topmost part of CodeBrowser.

			

			Now that you know the default perspective of Ghidra, it’s a good time to learn how to customize it. Let’s address this in the following section.

			Customizing Ghidra

			This is the default perspective of Ghidra, but you can also modify it. For instance, you can add more windows to Ghidra by clicking on the Window menu and choosing one that you desire:

			
				
					[image: Figure 1.16 – Some items in the Ghidra Window submenu]
				

			

			Figure 1.16 – Some items in the Ghidra Window submenu

			Ghidra has a lot of awesome functionalities. For instance, the bar located on the upper-right bar of the disassembly window allows you to customize the disassembly view by moving fields, adding new fields, extending the size of a field in the disassembly listing, and more:

			
				
					[image: Figure 1.17 – Disassembly listing configuration]
				

			

			Figure 1.17 – Disassembly listing configuration

			It also allows you to enable a very interesting feature of Ghidra, which is its intermediate representation or intermediate language, called PCode. It allows you to develop assembly language-agnostic tools and to develop automated analysis tools in a more comfortable language:

			
				
					[image: Figure 1.18 – Enabling the PCode field in the disassembly listing]
				

			

			Figure 1.18 – Enabling the PCode field in the disassembly listing

			If it is enabled, then PCode will be shown in the listing. As you will soon realize, PCode is less human-readable, but it is sometimes better for scripting reverse-engineering tasks:

			
				
					[image: Figure 1.19 – Disassembly listing with PCode enabled]
				

			

			Figure 1.19 – Disassembly listing with PCode enabled

			Discovering more Ghidra functionalities

			Some powerful features available in other reverse-engineering frameworks are also included in Ghidra. For instance, as in other reverse-engineering frameworks, you also have a graph view:

			
				
					[image: Figure 1.20 – Graph view of a hello world program’s main function]
				

			

			Figure 1.20 – Graph view of a hello world program’s main function

			As you will notice, Ghidra has a lot of features and windows; we will not cover all of them in this chapter, nor modify and/or extend them all. In fact, we haven’t mentioned all of them yet. Instead, we will learn about them through practice in the following chapters.

			Summary

			In this chapter, we addressed the exciting and quirky origins of Ghidra. Then, we covered how to download, install, and compile it on our own from the source code. You also learned how to solve issues and how to report new ones to the Ghidra open source project.

			Finally, you learned about the structure of Ghidra and its main functionalities (some of them have not been covered yet). Now, you are in a position to investigate and experiment a little bit with Ghidra on your own.

			This chapter helped you understand the bigger picture of Ghidra, which will be useful in the following chapters generally, as those are more focused on specifics.

			In the next chapter, we will cover how to automate reverse-engineering tasks by using, modifying, and creating Ghidra scripts.

			Questions

			
					Is there one reverse-engineering framework that is absolutely better than the others? What problems does Ghidra solve better than most frameworks? Cite some strengths and weaknesses.

					How can you configure the disassembly view to enable PCode?

					What is the difference between the disassembly view and the decompiler view?

			

		

	
		
			2

			Automating RE Tasks with Ghidra Scripts

			In this chapter, we will cover Reverse-Engineering (RE) automation by scripting Ghidra. We will start by reviewing the impressive and well-organized arsenal of available Ghidra scripts built into the tool. These few hundreds of scripts are usually more than enough to cover the main automation needs.

			Once you know the arsenal, you will probably also want to know how it works. Then, we will have an overview of the Ghidra script class in order to understand its internals and explore its background, which will be very useful for the final part of this chapter.

			Finally, you will learn how to develop your own Ghidra scripts. To do so, it will be necessary to have an overview of the Ghidra API. Fortunately, you will be able to program in Java or Python according to your preferences since the Ghidra API is the same in both cases.

			In this chapter, we’re going to cover the following main topics:

			
					Exploring the Ghidra scripts arsenal

					Analyzing the Ghidra script class and the API

					Writing your own Ghidra scripts

			

			Technical requirements

			The GitHub repository containing all the necessary code for this chapter can be found at https://github.com/PacktPublishing/Ghidra-Software-Reverse-Engineering-for-Beginners---Second-Edition/tree/main/Chapter02.
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@ Project Locked

Projectis locked. You have another instance of Ghidra
already running with this project open (locally or remotely).

Project: C:\Users\virusito\hello world
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GHIDRA

A software reverse engineering (SRE) suite of tools developed by
NSA's Research Directorate in support of the Cybersecurity mission
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SUB

XREF([2]:

$U£000:8 = COPY RBP
RSP = INT_SUB RSP, 8:8
STORE ram(RSP), $U£000:8

RBE, RSP
RBP = COPY RSP

R, 0x20
CF = INT_LESS RSP, 32:8
OF = INT_SBORROW RSP, 32:8
RSP = INT_SUB RSP, 32
SF = INT_SLESS RSP, 0

$U13480:8 = INT_AND RSP, OXff:!

$U13580:1 = INT_AND $U13500:1, 1:1
PF = INT_EQUAL $U13580:1, 0:1

RSP = INT_SUB RSP, 8:8
STORE ram(RSP), 0x14000145d:8
CALL *[ram]0x140001530:8

RAX, [s_Hello_world._140004000]

RAX = COPY 0x140004000:8
_Arge=>s_Hiello_world._140004000, RAX
RCX = COPY RAX

printf

RSP = INT_SUB RSP, 8:8
STORE ram(RSP), 0x14000146c:8
CALL *[ram]0x140002560:8

__tmainCRTStartup:1400012e9 (c)
14000506¢ (*)
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Iifak Guilfanov @ilfak - 4 jun. 2019
To undo or not to undo? Don't worty, redo will be available too!

@ newsoft @newsoft - 3 jun. 2019
IDA Pro 7.3 will have "undo” @

O 12 1 m2 Q ass &

Ghidra
@GHIDRA RE

En respuesta a @ilfak

Cool feature!
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Enter path to JDK home directory (ENTER for dialog): .
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@ New Project

X

[Eg Select Project Location

Project Directory: | C:\Users\virusito

project Name: [hello world

[ <<Ba | [T [ Emsh | [ Gl |
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> Task :assembleAll
updateSlaFilesTimestamp: Updated timestamps to 125 .sla files.

Deprecated Gradle features were used in this build, making it incompatible with Gradle 8.0.

You can use '--warning-mode all' to show the individual deprecation warnings and determine if they com
e from your own scripts or plugins.

See https://docs.gradle.org/7.6.4/userguide/command_line_interface.html#sec:command_line_warnings

BUILD SUCCESSFUL in 14m 35s
644 actionable tasks: 644 executed





