
		
			[image: cover.png]
		

	
		
			Ghidra Software Reverse-Engineering for Beginners

			Master the art of debugging, from understanding code to mitigating threats

			David Álvarez Pérez

			Ravikant Tiwari

			[image:]

			Ghidra Software Reverse-Engineering for Beginners

			Copyright © 2025 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			The authors acknowledge the use of cutting-edge AI, such as ChatGPT and Microsoft Copilot, with the sole aim of enhancing the language and clarity within the book, thereby ensuring a smooth reading experience for the readers. It’s important to note that the content itself has been crafted by the authors and edited by a professional publishing team.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Dhruv Jagdish Kataria

			Publishing Product Manager: Prachi Sawant

			Book Project Manager: Ashwini Gowda

			Lead Editor: Runcil Rebello

			Technical Editor: Arjun Varma

			Copy Editor: Safis Editing

			Proofreader: Runcil Rebello

			Indexer: Pratik Shirodkar

			Production Designer: Aparna Bhagat

			Senior DevRel Marketing Executive: Marylou De Mello

			First published: January 2021

			Second edition: January 2025

			Production reference: 1201224

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB, UK.

			ISBN 978-1-83588-982-4

			www.packtpub.com

			

This book is dedicated to my father, Lakshman Tiwary, whose unwavering support, and determination have been my foundation, and in loving memory of my mother, Urmila Tiwary, whose enduring love and sacrifices are forever cherished.

			– Ravikant Tiwari

			

Contributors

			About the authors

			David Álvarez Pérez is a senior malware analyst and reverse engineer. He has more than 12 years of experience in IT, having worked on his own antivirus product, and later as a malware analyst. He started working for a company that mostly reverse-engineered banking malware, and he helped to automate the process. After that, he joined the critical malware department of an antivirus company and then moved to a Galician research center, while doing his malware-related PhD at the University of Vigo. He has also hunted vulnerabilities in software products like Microsoft's Windows 10 and the National Security Agency's Ghidra project. David is currently working as a senior malware analyst at Gen Digital Inc.

			Ravikant Tiwari is a senior security researcher at Microsoft, with over a decade of expertise in malware analysis and reverse-engineering. His professional background includes tenures at prominent cybersecurity firms such as McAfee, FireEye, and Acronis, where he specialized in safeguarding users and systems from malicious threats and developing innovative protection mechanisms against advanced malware. He has authored numerous blogs and articles on threat research and holds a patent for designing novel detection mechanisms for malicious crypto miners.

			I want to thank the people who have been close to me and supported me, especially my parents.

			

About the reviewers

			Todd Cullum has 8 years of professional experience in the software security field in an engineering or research capacity. Currently, Todd is a penetration tester who has worked on all types of software, from native code projects in C/C++ to web applications in C#, Go, Python, JavaScript, Android and iOS mobile applications, cloud and container orchestration software, single sign-on, and device firmware. Todd is currently on the Red Hat Product Security Research team and has previously worked as an analyst in Product Security Incident Response, was in a CVE working group, and has worked at GoPro as the Product Application Security Technical Lead. Prior to that, he has been a malware researcher at anti-malware companies. He loves reversing.

			I would like to thank my close friends, family, and the open source software community for their continued support, facilitating quality work and enjoyment.

			Shawn Kwak is a seasoned cybersecurity professional with over a decade of expertise in threat intelligence, malware analysis, and reverse-engineering. Currently serving as a Staff Security Engineer at Coupang, Shawn specializes in threat hunting: proactively identifying and neutralizing threats. He has previously led security teams at NCSOFT and NSHC, contributing to groundbreaking work in mobile game security, APT analysis, and cyber-defense strategies. Shawn is an award-winning expert with accolades, such as finalist positions at global CTF events. He has also served as an instructor and speaker at numerous cybersecurity conferences, including Secuinside and the NCSOFT Development Conference.

			I want to express my deepest gratitude to my beloved wife, who has always been my silent yet steadfast supporter. Her unwavering encouragement and presence have been my most significant source of strength. I thank her for standing by me through every challenge and triumph and being my constant companion in this life journey.

		

	
		
			Table of Contents

			Preface

			Part 1: Introduction to Ghidra

			1

			Getting Started with Ghidra

			Technical requi rements

			WikiLeaks Vault 7

			NSA release

			Ghidra versus IDA and many other competitors

			Ghidra overview

			Installing Ghidra

			Running Ghidra

			Overview of Ghidra’s features

			Summary

			Questions

			2

			Automating RE Tasks with Ghidra Scripts

			Technical requirements

			Using and adapting existing scripts

			The script class

			Script development

			Summary

			Questions

			3

			Ghidra Debug Mode

			Technical requirements

			Setting up the Ghidra development environment

			Overview of the software requirements

			Installing the JDK

			Installing the Eclipse IDE

			Installing PyDev

			Installing GhidraDev

			Debugging the Ghidra code and Ghidra scripts

			Debugging Ghidra scripts from Eclipse

			Debugging any Ghidra component from Eclipse

			Ghidra RCE vulnerability

			Explaining the Ghidra RCE vulnerability

			Exploiting the Ghidra RCE vulnerability

			Fixing the Ghidra RCE vulnerability

			Looking for vulnerable computers

			Summary

			Questions

			Further reading

			4

			Using Ghidra Extensions

			Technical requirements

			Installing existing Ghidra extensions

			Analyzing the source code of the Sample Table Provider plugin

			Understanding the Ghidra extension skeleton

			Analyzers

			Filesystems

			Plugins

			Exporters

			Loaders

			Developing a Ghidra extension

			Summary

			Questions

			Further reading

			Part 2: Reverse-Engineering

			5

			Reversing Malware Using Ghidra

			Technical requirements

			Setting up the environment

			Looking for malware indicators

			Looking for strings

			Intelligence information and external sources

			Checking import functions

			Dissecting interesting malware sample parts

			The entry point function

			Analyzing the 0x00453340 function

			Analyzing the 0x00453C10 function

			Analyzing the 0x0046EA60 function

			Analyzing the 0x0046BEB0 function

			Analyzing the 0x0046E3A0 function

			Analyzing the 0x004559B0 function

			Analyzing the 0x004554E0 function

			Analyzing the 0x0046C860 function

			Analyzing the 0x0046A100 function

			Summary

			Questions

			Further reading

			6

			Scripting Malware Analysis

			Technical requirements

			Using the Ghidra scripting API

			Writing scripts using the Java programming language

			Writing scripts using the Python programming language

			Deobfuscating malware samples using scripts

			The delta offset

			Translating API hashes into addresses

			Deobfuscating the hash table using Ghidra scripting

			Improving the scripting results

			Summary

			Questions

			Further reading

			7

			Using Ghidra’s Headless Analyzer

			Technical requirements

			Why use headless mode?

			Creating and populating projects

			Analyzing imported or existing binaries

			Running non-GUI scripts in a project

			Summary

			Questions

			Further reading

			Part 3: Binary Analysis

			8

			Binary Diffing

			Technical requirements

			Using Ghidra BSim

			Getting BSim up and running

			Finding similar functions

			Querying the BSim database

			Finding patched code – function comparison

			Binary diffing usage in vulnerability research

			Summary

			Questions

			Further reading

			9

			Auditing Program Binaries

			Technical requirements

			Understanding memory corruption vulnerabilities

			Understanding the stack

			Stack-based buffer overflow

			Understanding the heap

			Heap-based buffer overflow

			Format strings

			Finding vulnerabilities using Ghidra

			Exploiting a simple stack-based buffer overflow

			Summary

			Questions

			Further reading

			10

			Scripting Binary Audits

			Technical requirements

			Looking for vulnerable functions

			Retrieving unsafe C/C++ functions from the symbols table

			Decompiling the program using scripting

			Looking for sscanf callers

			Enumerating caller functions

			Analyzing the caller function using P-Code

			P-Code versus assembly language

			Retrieving P-Code and analyzing it

			Using the same P-Code-based script in multiple architectures

			Summary

			Questions

			Further reading

			Part 4: Extending Ghidra for Advanced Reverse-Engineering

			11

			Developing Ghidra Plugins

			Technical requirements

			Overview of existing plugins

			Plugins included with the Ghidra distribution

			Third-party plugins

			The Ghidra plugin skeleton

			The plugin documentation

			Writing the plugin code

			The provider for a plugin

			Developing a Ghidra plugin

			Documenting the plugin

			Implementing the plugin class

			Implementing the provider

			Summary

			Questions

			Further reading

			12

			Incorporating New Binary Formats

			Technical requirements

			Understanding the difference between raw binaries and formatted binaries

			Understanding raw binaries

			Understanding formatted binaries

			Developing a Ghidra loader

			The old-style DOS executable (MZ) parser

			The old-style DOS executable (MZ) loader

			Understanding filesystem loaders

			FileSystem Resource Locator

			Summary

			Questions

			Further reading

			13

			Analyzing Processor Modules

			Technical requirements

			Understanding the existing Ghidra processor modules

			Overviewing the Ghidra processor module skeleton

			Setting up the processor module development environment

			Creating a processor module skeleton

			Developing Ghidra processors

			Documenting processors

			Identifying functions and code using patterns

			Specifying the language and its variants

			Summary

			Questions

			Further reading

			14

			Contributing to the Ghidra Community

			Technical requirements

			Overviewing the Ghidra project

			The Ghidra community

			Exploring contributions

			Understanding legal aspects

			Submitting a bug report

			Suggesting new features

			Submitting questions

			Submitting a pull request to the Ghidra project

			Summary

			Questions

			Further reading

			15

			Extending Ghidra for Advanced Reverse-Engineering

			Technical requirements

			Learning the basics of advanced reverse-engineering

			Learning about symbolic execution

			Learning about SMT solvers

			Learning about concolic execution

			Using Ghidra for Advanced reverse-engineering

			Adding symbolic execution capabilities to Ghidra with AngryGhidra

			Converting from PCode into LLVM with pcode-to-llvm

			Summary

			Questions

			Further reading

			Part 5: Debugging and Applied Malware Analysis

			16

			Debugging

			Technical requirements

			Ghidra debugger overview

			Starting the Ghidra debugger

			Debugger windows and toolbar

			Debugger specific toolbar

			Execution flow control

			Stepping

			Breakpoint

			Debugging the simple_encoder.exe application

			Remote debugging

			Debugging a Windows kernel

			Summary

			Further reading

			17

			Unpacking in-the-Wild Malware

			Technical requirements

			Malware overview

			Unpacking malware

			Summary

			Further reading

			18

			Reverse-Engineering Ransomware

			Technical requirements

			General working principles of ransomware

			Initial infection vector

			Installation and execution

			Encryption

			C2 communication and exfiltration of data

			Ransom demand notification

			Identifying encryption algorithms

			Initial exploration

			Identifying imported libraries and functions

			Tracing calls to cryptographic functions

			Identifying custom or embedded encryption algorithms

			Using plugins to find known crypto signatures and constants

			Summary

			Further reading

			Appendix A: Answer Key

			Chapter 1

			Chapter 2

			Chapter 3

			Chapter 4

			Chapter 5

			Chapter 6

			Chapter 7

			Chapter 8

			Chapter 9

			Chapter 10

			Chapter 11

			Chapter 12

			Chapter 13

			Chapter 14

			Chapter 15

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			In the realm of cybersecurity, the ability to dissect and understand software, especially malware and vulnerable applications, is of paramount importance. Ghidra, the powerful open source reverse-engineering tool developed by the National Security Agency (NSA), has rapidly become an essential resource for professionals aiming to analyze code to find vulnerabilities, examine malicious software, and develop robust security solutions. This second edition builds upon the foundational knowledge of reverse-engineering, providing deeper insights into advanced techniques such as binary diffing, debugging, and real-world malware analysis, including ransomware.

			This book is a comprehensive guide that not only introduces you to the core functionalities of Ghidra but also empowers you to extend its capabilities through scripting and plugin development. Whether you’re aiming to uncover vulnerabilities in software, analyze malicious code, or contribute to the Ghidra community, this book will equip you with the skills and knowledge needed to excel in the field of software reverse-engineering.

			Who this book is for

			This book is intended for security researchers, malware analysts, bug hunters, software engineers, and cybersecurity professionals or students who are involved in software development, testing, and security analysis. It is also suitable for individuals aspiring to enter the security industry as malware or vulnerability researchers. In fact, any person who wants to learn Ghidra by minimizing the learning curve and starting to write their own tools will certainly enjoy this book and accomplish their goal. Readers should have prior knowledge of programming in Java or Python and experience with software development or application programming to fully benefit from the concepts and practical examples presented here.

			What this book covers

			Chapter 1, Getting Started with Ghidra, introduces you to the Ghidra platform and its history, covering installation procedures and a basic overview of the program from the user perspective.

			Chapter 2, Automating RE Tasks with Ghidra Scripts, explores how to use Ghidra’s scripting capabilities to automate reverse-engineering tasks, and introduces script development.

			Chapter 3, Ghidra Debug Mode, delves into how to set up a Ghidra development environment, the methods for debugging Ghidra, and details regarding the Ghidra debug mode vulnerability.

			Chapter 4, Using Ghidra Extensions, provides you with background for developing Ghidra extensions, as well as showing you how to install and use them.

			Chapter 5, Reversing Malware Using Ghidra, demonstrates how to use Ghidra for malware analysis by reversing a real-world malware sample.

			Chapter 6, Scripting Malware Analysis, teaches you how to automate malware analysis with Java and Python scripts. It builds on the previous chapter by providing scripts for analyzing shellcode in malware samples.

			Chapter 7, Using Ghidra’s Headless Analyzer, explains how to run Ghidra in headless mode for automated batch processing and analyzing malware samples using a script developed during the chapter.

			Chapter 8, Binary Diffing, explains the Ghidra BSim feature, detailing how to set it up and use it for analysis. It covers techniques for comparing binaries to identify changes, analyze patches, and discover vulnerabilities.

			Chapter 9, Auditing Program Binaries, introduces the topic of finding memory corruption vulnerabilities using Ghidra and how to exploit them.

			Chapter 10, Scripting Binary Audits, continues the previous chapter, teaching how to automate the bug-hunting process via scripting, taking advantage of the powerful PCode intermediate representation.

			Chapter 11, Developing Ghidra Plugins, provides insights into creating custom plugins to extend Ghidra’s functionality and tailor it to specific reverse-engineering needs.

			Chapter 12, Incorporating New Binary Formats, shows you how to add support for new and custom binary formats within Ghidra using a real-world example, broadening the scope of your analyses.

			Chapter 13, Analyzing Processor Modules, discusses how to write Ghidra processor modules using the SLEIGH processor specification language.

			Chapter 14, Contributing to the Ghidra Community, explains how to interact with the community using social networks, chats, and how to contribute with your own development, feedback, bug reports, comments, and so on.

			Chapter 15, Extending Ghidra for Advanced Reverse-Engineering, introduces advanced reverse-engineering topics and tools such as SMT solvers, Microsoft Z3, static and dynamic symbex, LLVM, and Angr, and explains how to incorporate them with Ghidra.

			Chapter 16, Debugging, covers the Ghidra debugging tool and outlines various debugging strategies. It also describes different debugging modes, including remote and kernel debugging, for analyzing complex code execution scenarios.

			Chapter 17, Unpacking in-the-Wild Malware, teaches you how to unpack and analyze real-world malware samples, revealing the techniques used by threat actors.

			Chapter 18, Reverse-Engineering Ransomware, delves into a detailed analysis of ransomware to comprehend its internal mechanisms. The chapter also offers an overview of the encryption techniques utilized by ransomware and methods for identifying encryption algorithms using Ghidra.

			Appendix A, Answer Key, provides answers to the questions posed in the various chapters of the book.

			To get the most out of this book

			To maximize the benefits from this book, you should have a sufficient understanding of the Assembly, C, Python, and Java languages to be able to read the code in the book. Access to a computer where you can install Ghidra and other necessary tools is essential, as the book includes hands-on exercises and practical examples that require active participation.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							OS requirement

						
					

					
							
							Ghidra 11.0.1 and Ghidra 11.2

						
							
							Windows OS and Linux

						
					

					
							
							Git

						
							
							Windows OS and Linux

						
					

					
							
							Java JDK 17 and 21

						
							
							Windows OS and Linux

						
					

					
							
							Eclipse IDE for Java developers

						
							
							Windows OS and Linux

						
					

					
							
							Gradle

						
							
							Windows OS and Linux

						
					

					
							
							MinGW32 and MinGW64

						
							
							Windows OS

						
					

					
							
							X64Dbg or Olly debugger

						
							
							Windows OS

						
					

					
							
							Elasticsearch

						
							
							Windows OS

						
					

				
			

			The required software is listed in the Technical requirements section of the applicable chapter.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Ghidra-Software-Reverse-Engineering-for-Beginners---Second-Edition. If there’s an update to the code, it will be updated on the existing GitHub repository.

			We also have other code bundles from our rich catalogue of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “To fix the vulnerability, the DEBUG_ADDRESS variable is set to 127.0.0.1:18001, which restricts the incoming debugging connections to localhost.”

			A block of code is set as follows:

			
if "%DEBUG%"=="y" (
 if "%DEBUG_ADDRESS%"=="" (
 set DEBUG_ADDRESS=127.0.0.1:18001
)
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
if "%DEBUG%"=="y" (
 if "%DEBUG_ADDRESS%"=="" (
 set DEBUG_ADDRESS=127.0.0.1:18001
)
			Any command-line input or output is written as follows:

			
bm kernel32!VirtualAlloc
bm kernel32!VirtualProtect
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Launch the executable from the menu bar using Debugger | dbgeng.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Reviews

			Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

			For more information about Packt, please visit packtpub.com

			Share Your Thoughts

			Once you’ve read Ghidra Software Reverse Engineering for Beginners, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781835889824

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			Part 1: Introduction to Ghidra

			This part aims to introduce you to Ghidra and its history, the project structure, scripting capabilities, and extension development. Additionally, it covers the essential process of debugging the Ghidra tool itself.

			This part contains the following chapters:

			
					Chapter 1, Getting Started with Ghidra

					Chapter 2, Automating RE Tasks with Ghidra Scripts

					Chapter 3, Ghidra Debug Mode

					Chapter 4, Using Ghidra Extensions

			

		

		
			
			

		

	

		
			1

			Getting Started with Ghidra

			In this introductory chapter, we will provide an overview of Ghidra in some respects. Before starting, it would be convenient to know how to acquire and install the program. This is obviously something simple and trivial if you want to install a release version of the program. However, you probably want to know this program in depth. In that case, I can tell you in advance that it is possible to compile the program by yourself from the source code.

			Since the source code of Ghidra is available and ready to be modified and extended, you will probably also be interested in knowing how it is structured, what kinds of pieces of code exist, and so on. This is a great opportunity to discover the enormous possibilities that Ghidra offers us.

			It is also interesting to review the main functionalities of Ghidra from the point of view of a reverse engineer. This will spark your interest in this tool since it has its own peculiarities, and this is precisely the most interesting thing about Ghidra.

			In this chapter, we’re going to cover the following main topics:

			
					WikiLeaks Vault 7

					Ghidra versus IDA and many other competitors

					Ghidra overview

			

			Technical requirements

			
					The GitHub repository containing all the necessary code for this chapter can be found at https://github.com/PacktPublishing/Ghidra-Software-Reverse-Engineering-for-Beginners---Second-Edition/tree/main/Chapter01

					Go to https://www.msys2.org/ and follow the instructions to install MSYS2 and mingw-w64 GCC (pacman -S mingw-w64-ucrt-x86_64-gcc)

			

			WikiLeaks Vault 7

			On March 7, 2017, WikiLeaks started to leak Vault 7, which became the biggest leak of confidential documents on the US Central Intelligence Agency (CIA). This leak included secret cyber-weapons and spying techniques divided into 24 parts, named Year Zero, Dark Matter, Marble, Grasshopper, HIVE, Weeping Angel, Scribbles, Archimedes, AfterMidnight and Assassin, Athena, Pandemic, Cherry Blossom, Brutal Kangaroo, Elsa, OutlawCountry, BothanSpy, Highrise, UCL/Raytheon, Imperial, Dumbo, CouchPotato, ExpressLane, Angelfire, and Protego.

			It is believed that NSA intelligence officials leaked the confidential CIA documents, but this was never officially confirmed or denied by CIA Director Michael Vincent Hayden, who served between 2006 and 2009.

			The existence of Ghidra was leaked in the first part of Vault 7: Year Zero. This first part consists of a huge leak of documents and files stolen from the CIA’s Center for Cyber Intelligence in Langley, Virginia. The leak’s content is about the CIA’s malware arsenal and zero-day weaponized exploits, as well as how Apple’s iPhone, Google’s Android, Microsoft’s Windows devices, and even Samsung TVs are turned into covert microphones.

			Ghidra was referenced three times in this leak (https://wikileaks.org/ciav7p1/cms/index.html), showing how to install it, a step-by-step tutorial (with screenshots) of how to perform a manual analysis of a 64-bit kernel cache by using Ghidra, and the latest Ghidra version available at the time, which was Ghidra 7.0.2.

			NSA release

			As announced during RSA Conference 2019 in San Francisco, Rob Joyce, senior advisor for cybersecurity at NSA, explained the unique capabilities and features of Ghidra during a session called Get your free NSA reverse engineering tool, and Ghidra program binaries were also published.

			During this session, some features were explained:

			
					Team collaboration on a single project feature

					The capabilities to extend and scale Ghidra

					The generic processor model, also known as SLEIGH

					The two working modes: interactive and non-GUI

					The powerful analysis features of Ghidra

			

			Finally, on April 4, 2019, the NSA released the source code of Ghidra on GitHub (https://github.com/NationalSecurityAgency/ghidra), as well as on the Ghidra website, where you can download Ghidra release versions that are ready to use (https://ghidra-sre.org). The first version of Ghidra that was available on this website was Ghidra 9.0. Ghidra’s website may or may not be available to visitors outside the US, depending on your country; if this is the case, you can access it by using a VPN or an online proxy such as HideMyAss (https://www.hidemyass.com/).

			Unfortunately for the NSA, a few hours later, the first Ghidra vulnerability was published by Matthew Hickey, also known as @hackerfantastic, at 1:20 AM, March 6, 2019. He said the following via X (formerly Twitter):

			Ghidra opens up JDWP in debug mode listening on port 18001, you can use it to execute code remotely (Man facepalming). to fix change line 150 of support/launch.sh from * to 127.0.0.1 https://github.com/hackerhouse-opensource/exploits/blob/master/jdwp-exploit.txt.

			Then, a lot of suspicions about the NSA and Ghidra arose. However, taking into account the cyber-espionage capabilities of the NSA, do you think the NSA needs to include a backdoor in its own software in order to hack its users?

			Obviously, no. They don’t need to do this because they already have cyberweapons for that.

			You can feel comfortable when using Ghidra; probably, the NSA only wanted to do something honorable to improve its own image. Since Ghidra’s existence was leaked by WikiLeaks, what better way to do that than to publish it at RSA Conference and release it as open source?

			Ghidra versus IDA and many other competitors

			Even if you have already mastered a powerful reverse-engineering framework, such as Interactive Disassembler (IDA), Binary Ninja, or Radare2, there are good reasons to start learning Ghidra.

			No single reverse-engineering framework is the ultimate one. Each reverse-engineering framework has its own strengths and weaknesses. Some of them are even incomparable to each other because they were conceived with different philosophies (for instance, GUI-based frameworks versus command line-based frameworks).

			On the other hand, you will see how those products are competing with and learning from each other all the time. For instance, IDA Pro 7.3 incorporated the undo feature, which was previously made available by its competitor, Ghidra.

			In the following screenshot, you can see the epic and full-of-humor @GHIDRA_RE official X (formerly Twitter) account’s response to IDA Pro’s undo feature:

			
				
					[image: Figure 1.1 – IDA Pro 7.3 added an undo feature to compete with Ghidra]
				

			

			Figure 1.1 – IDA Pro 7.3 added an undo feature to compete with Ghidra

			Differences between frameworks are susceptible to change due to the competition, but we can mention some current strengths of Ghidra:

			
					It is open source and free (including its decompiler).

					It supports a lot of architectures (which the framework you are using may not support yet).

					It can load multiple binaries at the same time in a project. This feature allows you to easily apply operations over many related binaries (for example, an executable binary and its libraries).

					It allows collaborative reverse-engineering by design.

					It supports big firmware images (1 GB+) without problems.

					It has awesome documentation that includes examples and courses.

					It allows version tracking of binaries, allowing you to match functions and data and their markup between different versions of the binary.

			

			In conclusion, it is recommended to learn as many frameworks as possible to know and take advantage of each one. In this sense, Ghidra is a powerful framework that you must know.

			Ghidra overview

			In a similar way to what happened at RSA Conference, we will provide a Ghidra overview to present the tool and its capabilities. You will soon realize how powerful Ghidra is and why this tool is not simply yet another open source reverse-engineering framework.

			At the time of writing this book, the latest available version of Ghidra is 11.0.1, which can be downloaded from the official website mentioned in the previous section of this chapter.

			Note

			It is recommended that readers download the same version of Ghidra and other software while going through the exercises in this book.

			Installing Ghidra

			It is recommended to download the latest version of Ghidra (https://ghidra-sre.org/) by clicking on the red Download from GitHub button, which will take you to the Ghidra release page on GitHub where you will find all the released versions of Ghidra, including the older ones:

			
				
					[image: Figure 1.2 – Downloading Ghidra from the official website]
				

			

			Figure 1.2 – Downloading Ghidra from the official website

			Clicking on the download button will take you to the GitHub release page, as shown in the following figure. Under the Assets section, you will have a link to download the Ghidra ZIP file:

			
				
					[image: Figure 1.3 – GitHub release page for Ghidra]
				

			

			Figure 1.3 – GitHub release page for Ghidra

			After downloading the Ghidra archive file (ghidra_11.0.1_PUBLIC_20240130.zip) and decompressing it, you will see the following file structure:

			
				
					[image: Figure 1.4 – The Ghidra 11.0.1 structure after it is decompressed]
				

			

			Figure 1.4 – The Ghidra 11.0.1 structure after it is decompressed

			The content can be described as follows (https://ghidra-sre.org/InstallationGuide.html):

			
					docs: Ghidra documentation and some extremely useful resources, such as learning Ghidra courses for all levels, cheatsheets, and a step-by-step installation guide

					Extensions: Optional Ghidra extensions, allowing you to improve its functionality and integrate it with other tools

					Ghidra: The Ghidra program itself

					GPL: Standalone GPL support programs

					licenses: Contains licenses used by Ghidra

					server: Contains files related to Ghidra Server installation and administration

					support: Allows you to run Ghidra in advanced modes and control how it launches, including launching it to be debugged

					ghidraRun: The script used to launch Ghidra on Linux and iOS

					ghidraRun.bat: Batch script allowing you to launch Ghidra on Windows

					LICENSE: Ghidra license file

					bom.json: This is the Software Bill of Materials (SBOM) file that lists all the components or libraries that make up the Ghidra software in CycloneDX JSON format; it helps in understanding the dependencies of the project

			

			In addition to downloading a release version of Ghidra (which is precompiled), you can compile the program on your own, as will be explained in the next section.

			Compiling Ghidra on your own

			To build Ghidra by yourself, you need to follow the instructions in the Build section of the Ghidra’s GitHub page (https://github.com/NationalSecurityAgency/ghidra?tab=readme-ov-file#build).

			The first step is to install the following build tools:

			
					JDK 17 64-bit (install from https://adoptium.net/en-GB/temurin/releases/?os=windows&arch=x64&package=jdk&version=17)

					Gradle 7.3+ (to install Gradle follow the instructions at https://gradle.org/install)

					make, gcc, and g++ (Linux/macOS only)

					Microsoft Visual Studio 2017+ or Microsoft C++ Build Tools with the following components installed (Windows only):	MSVC
	Windows SDK
	C++ ATL

			

			Once the build tools are installed properly, download and extract the source code from https://github.com/NationalSecurityAgency/ghidra/archive/refs/heads/master.zip or use the following Git command to clone the repository:

			
> git clone https://github.com/NationalSecurityAgency/ghidra.git
			Then navigate to the extracted or cloned directory and use Gradle to build Ghidra. Here is the list of commands to be executed:

			
> gradle -I gradle/support/fetchDependencies.gradle init
> gradle buildGhidra
			Once the build completes, you will see a BUILD SUCCESSFUL message as shown in the following figure:

			
				
					[image: Figure 1.5 – Build successful message]
				

			

			Figure 1.5 – Build successful message

			This will produce a compressed file containing the compiled version of Ghidra:

			
/ghidra/build/dist/ghidra_*.zip
			Running Ghidra

			Before starting Ghidra, make sure your computer meets the following requirements:

			
					Hardware:	4 GB RAM
	1 GB storage (for installing Ghidra binaries)
	Dual monitors (strongly recommended)

					Software:	Java 17 64-bit Runtime and Development Kit

			

			Since Ghidra is written in Java, if it is executed before installing the Java 17 64-bit runtime and development kit, some of the following error messages could be displayed:

			
					When Java is not installed, you will see the following:
"Java runtime not found..."

					When the Java Development Kit (JDK) is missing, you will see the following:

			

			
				
					[image: Figure 1.6 – Missing JDK ﻿error]
				

			

			Figure 1.6 – Missing JDK error

			Therefore, if you get any of those messages, please download the JDK from https://adoptium.net/en-GB/temurin/releases/?os=windows&arch=x64&package=jdk&version=17.

			How to solve installation issues

			Ghidra’s step-by-step installation guide, including known issues, can be found in Ghidra’s documentation directory at docs\InstallationGuide.html.

			It is also available online at https://htmlpreview.github.io/?https://github.com/NationalSecurityAgency/ghidra/blob/master/GhidraDocs/InstallationGuide.html.

			Note that you can report new issues you find in Ghidra at https://github.com/NationalSecurityAgency/ghidra/issues.

			After installing Ghidra, you will be able to launch it using ghidraRun on Linux and macOS and ghidraRun.bat on Windows.

			Overview of Ghidra’s features

			In this section, we will look at an overview of some fundamental Ghidra features in order to understand the overall functionality of the program. It is also a good starting point to get familiar with it.

			Creating a new Ghidra project

			As you will notice, unlike other reverse-engineering tools, Ghidra doesn’t work with files directly. Instead, Ghidra works with projects. Let’s create a new project by clicking on File | New Project…. You can also do this faster by pressing the Ctrl + N hotkey (the complete list of Ghidra hotkeys is available at https://ghidra-sre.org/CheatSheet.html and also in Ghidra’s documentation directory):

			
				
					[image: Figure 1.7 – Creating a new Ghidra project]
				

			

			Figure 1.7 – Creating a new Ghidra project

			Furthermore, projects can be non-shared or shared. Since we want to analyze a hello world program without collaboration with other reverse engineers, we will choose Non-Shared Project, and then click on the Next>> button. Then, the program asks us to choose a project name (hello world) and where to store it:

			
				
					[image: Figure 1.8 – Choosing a project name and directory]
				

			

			Figure 1.8 – Choosing a project name and directory

			The project is composed of a hello world.gpr file and a hello world.rep folder:

			
				
					[image: Figure 1.9 – Ghidr﻿a project structure]
				

			

			Figure 1.9 – Ghidra project structure

			A Ghidra project (the *.gpr file) can only be opened by a single user. Therefore, if you try to open the same project twice at the same time, the concurrency lock implemented using the hello world.lock and hello world.lock~ files will prevent you from doing so, as shown in the following screenshot:

			
				
					[image: Figure 1.10 – Ghidra’s project locked]
				

			

			Figure 1.10 – Ghidra’s project locked

			In the next section, we will cover how to add binary files to our project.

			Importing files to a Ghidra project

			We can start to add files to our hello world project. In order to analyze an extremely simple application with Ghidra, we will compile the following hello world program (hello_world.c) written in the C programming language:

			
#include <stdio.h>
int main(){
 printf("Hello world.");
}
			We use the following command to compile it:

			
C:\Users\virusito\Desktop\hello_world> gcc.exe hello_world.c
			Let’s analyze the resulting Microsoft Windows Portable Executable file: hello_world.exe.

			Let’s import our hello world.exe file to the project; to do that, we have to go to File | Import file. Alternatively, we can press the I key:

			
				
					[image: Figure 1.11 – Importing a file to the Ghidra project]
				

			

			Figure 1.11 – Importing a file to the Ghidra project

			Ghidra automatically identified the hello_world.exe program as an x86 Portable Executable binary for 32-bit architectures. As it was successfully recognized, we can click OK to continue. After importing it, you will see a summary of the file:

			
				
					[image: Figure 1.12 – Ghidra project file import resul﻿t summary]
				

			

			Figure 1.12 – Ghidra project file import result summary

			By double-clicking the hello_world.exe file or clicking on the green Ghidra icon of Tool Chest, the file will be opened and loaded by Ghidra:

			
				
					[image: Figure 1.13 – A Ghidra project containing a Portable Executable file]
				

			

			Figure 1.13 – A Ghidra project containing a Portable Executable file

			After importing files into your project, you can start to reverse-engineer them. This is a cool feature of Ghidra, allowing you to import more than one file into a single project because you can apply some operation (for example, search) over multiple files (for example, an executable binary and its dependencies). In the next section, we will see how to analyze those files using Ghidra.

			Configuring and performing Ghidra analysis

			You will be asked whether to analyze the file, and you probably want to answer Yes to this because the analysis operation recognizes functions, parameters, strings, and more. Usually, you will want to let Ghidra get this information for you. A lot of analysis configuration options do exist. You can see a description of every option by clicking on it; the description is displayed in the upper-right Description section:

			
				
					[image: Figure 1.14 – File analysis options]
				

			

			Figure 1.14 – File analysis options

			Let’s click on Analyze to perform the analysis of the file. Then, you will see the Ghidra CodeBrowser window. Don’t worry if you forget to analyze something; you can reanalyze the program later (go to the Analysis tab and then Auto Analyze ‘hello_world.exe’…).

			Exploring Ghidra CodeBrowser

			Ghidra CodeBrowser has, by default, a pretty well-chosen distribution of dock windows, as shown in the following screenshot:

			
				
					[image: Figure 1.15 – Ghidra’s CodeBrowser window]
				

			

			Figure 1.15 – Ghidra’s CodeBrowser window

			Let’s see how CodeBrowser is distributed by default:

			
					As usual, by default in reverse-engineering frameworks, in the center of the screen, Ghidra shows a disassembly view of the file.

					As the disassembly level is sometimes a too low-level perspective, Ghidra incorporates its own decompiler, which is located to the right of the disassembly window. The main function of the program was recognized by a Ghidra signature, and then parameters were automatically generated. Ghidra also allows you to manipulate decompiled code in a lot of aspects. Of course, a hexadecimal view of the file is also available in the corresponding tab. These three windows (disassembly, decompiler, and the hexadecimal window) are synchronized, offering different perspectives of the same thing.

					Ghidra also allows you to easily navigate the program. For instance, to go to another program section, you can refer to the Program Trees window located in the upper-left margin of CodeBrowser.

					If you prefer to navigate to a symbol (for example, a program function), then go just below that, to where the Symbols Tree pane is located.

					If you want to work with data types, then go just below that again, to Data Type Manager.

					As Ghidra allows scripting reverse-engineering tasks, script results are shown in the corresponding window at the bottom. Of course, the Bookmarks tab is available in the same position, allowing you to create pretty well-documented and organized bookmarks of any memory location for quick access.

					Ghidra also has a quick access bar at the top.

					At the bottom right, the first field indicates the current address.

					Following the current address, the current function is shown.

					In addition to the current address and the current function, the current disassembly line is shown to complete the contextual information.

					Finally, the main bar is located at the topmost part of CodeBrowser.

			

			Now that you know the default perspective of Ghidra, it’s a good time to learn how to customize it. Let’s address this in the following section.

			Customizing Ghidra

			This is the default perspective of Ghidra, but you can also modify it. For instance, you can add more windows to Ghidra by clicking on the Window menu and choosing one that you desire:

			
				
					[image: Figure 1.16 – Some items in the Ghidra Window submenu]
				

			

			Figure 1.16 – Some items in the Ghidra Window submenu

			Ghidra has a lot of awesome functionalities. For instance, the bar located on the upper-right bar of the disassembly window allows you to customize the disassembly view by moving fields, adding new fields, extending the size of a field in the disassembly listing, and more:

			
				
					[image: Figure 1.17 – Disassembly listing configuration]
				

			

			Figure 1.17 – Disassembly listing configuration

			It also allows you to enable a very interesting feature of Ghidra, which is its intermediate representation or intermediate language, called PCode. It allows you to develop assembly language-agnostic tools and to develop automated analysis tools in a more comfortable language:

			
				
					[image: Figure 1.18 – Enabling the PCode field in the disassembly listing]
				

			

			Figure 1.18 – Enabling the PCode field in the disassembly listing

			If it is enabled, then PCode will be shown in the listing. As you will soon realize, PCode is less human-readable, but it is sometimes better for scripting reverse-engineering tasks:

			
				
					[image: Figure 1.19 – Disassembly listing with PCode enabled]
				

			

			Figure 1.19 – Disassembly listing with PCode enabled

			Discovering more Ghidra functionalities

			Some powerful features available in other reverse-engineering frameworks are also included in Ghidra. For instance, as in other reverse-engineering frameworks, you also have a graph view:

			
				
					[image: Figure 1.20 – Graph view of a hello world program’s main function]
				

			

			Figure 1.20 – Graph view of a hello world program’s main function

			As you will notice, Ghidra has a lot of features and windows; we will not cover all of them in this chapter, nor modify and/or extend them all. In fact, we haven’t mentioned all of them yet. Instead, we will learn about them through practice in the following chapters.

			Summary

			In this chapter, we addressed the exciting and quirky origins of Ghidra. Then, we covered how to download, install, and compile it on our own from the source code. You also learned how to solve issues and how to report new ones to the Ghidra open source project.

			Finally, you learned about the structure of Ghidra and its main functionalities (some of them have not been covered yet). Now, you are in a position to investigate and experiment a little bit with Ghidra on your own.

			This chapter helped you understand the bigger picture of Ghidra, which will be useful in the following chapters generally, as those are more focused on specifics.

			In the next chapter, we will cover how to automate reverse-engineering tasks by using, modifying, and creating Ghidra scripts.

			Questions

			
					Is there one reverse-engineering framework that is absolutely better than the others? What problems does Ghidra solve better than most frameworks? Cite some strengths and weaknesses.

					How can you configure the disassembly view to enable PCode?

					What is the difference between the disassembly view and the decompiler view?

			

		

	
		
			2

			Automating RE Tasks with Ghidra Scripts

			In this chapter, we will cover Reverse-Engineering (RE) automation by scripting Ghidra. We will start by reviewing the impressive and well-organized arsenal of available Ghidra scripts built into the tool. These few hundreds of scripts are usually more than enough to cover the main automation needs.

			Once you know the arsenal, you will probably also want to know how it works. Then, we will have an overview of the Ghidra script class in order to understand its internals and explore its background, which will be very useful for the final part of this chapter.

			Finally, you will learn how to develop your own Ghidra scripts. To do so, it will be necessary to have an overview of the Ghidra API. Fortunately, you will be able to program in Java or Python according to your preferences since the Ghidra API is the same in both cases.

			In this chapter, we’re going to cover the following main topics:

			
					Exploring the Ghidra scripts arsenal

					Analyzing the Ghidra script class and the API

					Writing your own Ghidra scripts

			

			Technical requirements

			The GitHub repository containing all the necessary code for this chapter can be found at https://github.com/PacktPublishing/Ghidra-Software-Reverse-Engineering-for-Beginners---Second-Edition/tree/main/Chapter02.

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
						
			
						
			
			
			
			
			
			
			
			
			
			
						
			
			
			
						
			
			
			
						
			
			
			
						
						
			
			
			
			
			
			
			
			
			
			
						
						
						
			
			
			
			
			
			
		

	

		
		Contents

			
					Ghidra Software Reverse-Engineering for Beginners

					Contributors

					About the authors

					About the reviewers

					Preface
					
							Who this book is for

							What this book covers

							To get the most out of this book

							Download the example code files

							Conventions used

							Get in touch

							Reviews

							Share Your Thoughts

							Download a free PDF copy of this book

					

				

					Part 1: Introduction to Ghidra

					Chapter 1: Getting Started with Ghidra
					
							Technical requirements

							WikiLeaks Vault 7
							
									NSA release

							

						

							Ghidra versus IDA and many other competitors

							Ghidra overview
							
									Installing Ghidra

									Running Ghidra

									Overview of Ghidra’s features

							

						

							Summary

							Questions

					

				

					Chapter 2: Automating RE Tasks with Ghidra Scripts
					
							Technical requirements

							Using and adapting existing scripts

							The script class

							Script development

							Summary

							Questions

					

				

					Chapter 3: Ghidra Debug Mode
					
							Technical requirements

							Setting up the Ghidra development environment
							
									Overview of the software requirements

									Installing the JDK

									Installing the Eclipse IDE

									Installing PyDev

									Installing GhidraDev

							

						

							Debugging the Ghidra code and Ghidra scripts
							
									Debugging Ghidra scripts from Eclipse

									Debugging any Ghidra component from Eclipse

							

						

							Ghidra RCE vulnerability
							
									Explaining the Ghidra RCE vulnerability

									Exploiting the Ghidra RCE vulnerability

									Fixing the Ghidra RCE vulnerability

									Looking for vulnerable computers

							

						

							Summary

							Questions

							Further reading

					

				

					Chapter 4: Using Ghidra Extensions
					
							Technical requirements

							Installing existing Ghidra extensions
							
									Analyzing the source code of the Sample Table Provider plugin

							

						

							Understanding the Ghidra extension skeleton
							
									Analyzers

									Filesystems

									Plugins

									Exporters

									Loaders

							

						

							Developing a Ghidra extension

							Summary

							Questions

							Further reading

					

				

					Part 2: Reverse-Engineering

					Chapter 5: Reversing Malware Using Ghidra
					
							Technical requirements

							Setting up the environment

							Looking for malware indicators
							
									Looking for strings

									Intelligence information and external sources

									Checking import functions

							

						

							Dissecting interesting malware sample parts
							
									The entry point function

									Analyzing the 0x00453340 function

									Analyzing the 0x00453C10 function

									Analyzing the 0x0046EA60 function

									Analyzing the 0x0046BEB0 function

									Analyzing the 0x0046E3A0 function

									Analyzing the 0x004559B0 function

									Analyzing the 0x004554E0 function

									Analyzing the 0x0046C860 function

									Analyzing the 0x0046A100 function

							

						

							Summary

							Questions

							Further reading

					

				

					Chapter 6: Scripting Malware Analysis
					
							Technical requirements

							Using the Ghidra scripting API

							Writing scripts using the Java programming language

							Writing scripts using the Python programming language

							Deobfuscating malware samples using scripts
							
									The delta offset

									Translating API hashes into addresses

									Deobfuscating the hash table using Ghidra scripting

									Improving the scripting results

							

						

							Summary

							Questions

							Further reading

					

				

					Chapter 7: Using Ghidra’s Headless Analyzer
					
							Technical requirements

							Why use headless mode?

							Creating and populating projects

							Analyzing imported or existing binaries

							Running non-GUI scripts in a project

							Summary

							Questions

							Further reading

					

				

					Part 3: Binary Analysis

					Chapter 8: Binary Diffing
					
							Technical requirements

							Using Ghidra BSim
							
									Getting BSim up and running

							

						

							Finding similar functions
							
									Querying the BSim database

							

						

							Finding patched code – function comparison

							Binary diffing usage in vulnerability research

							Summary

							Questions

							Further reading

					

				

					Chapter 9: Auditing Program Binaries
					
							Technical requirements

							Understanding memory corruption vulnerabilities
							
									Understanding the stack

									Stack-based buffer overflow

									Understanding the heap

									Heap-based buffer overflow

									Format strings

							

						

							Finding vulnerabilities using Ghidra

							Exploiting a simple stack-based buffer overflow

							Summary

							Questions

							Further reading

					

				

					Chapter 10: Scripting Binary Audits
					
							Technical requirements

							Looking for vulnerable functions
							
									Retrieving unsafe C/C++ functions from the symbols table

									Decompiling the program using scripting

							

						

							Looking for sscanf callers
							
									Enumerating caller functions

							

						

							Analyzing the caller function using P-Code
							
									P-Code versus assembly language

									Retrieving P-Code and analyzing it

									Using the same P-Code-based script in multiple architectures

							

						

							Summary

							Questions

							Further reading

					

				

					Part 4: Extending Ghidra for Advanced Reverse-Engineering

					Chapter 11: Developing Ghidra Plugins
					
							Technical requirements

							Overview of existing plugins
							
									Plugins included with the Ghidra distribution

									Third-party plugins

							

						

							The Ghidra plugin skeleton
							
									The plugin documentation

									Writing the plugin code

									The provider for a plugin

							

						

							Developing a Ghidra plugin
							
									Documenting the plugin

									Implementing the plugin class

									Implementing the provider

							

						

							Summary

							Questions

							Further reading

					

				

					Chapter 12: Incorporating New Binary Formats
					
							Technical requirements

							Understanding the difference between raw binaries and formatted binaries
							
									Understanding raw binaries

									Understanding formatted binaries

							

						

							Developing a Ghidra loader
							
									The old-style DOS executable (MZ) parser

									The old-style DOS executable (MZ) loader

							

						

							Understanding filesystem loaders
							
									FileSystem Resource Locator

							

						

							Summary

							Questions

							Further reading

					

				

					Chapter 13: Analyzing Processor Modules
					
							Technical requirements

							Understanding the existing Ghidra processor modules

							Overviewing the Ghidra processor module skeleton
							
									Setting up the processor module development environment

									Creating a processor module skeleton

							

						

							Developing Ghidra processors
							
									Documenting processors

									Identifying functions and code using patterns

									Specifying the language and its variants

							

						

							Summary

							Questions

							Further reading

					

				

					Chapter 14: Contributing to the Ghidra Community
					
							Technical requirements

							Overviewing the Ghidra project
							
									The Ghidra community

							

						

							Exploring contributions
							
									Understanding legal aspects

									Submitting a bug report

									Suggesting new features

									Submitting questions

									Submitting a pull request to the Ghidra project

							

						

							Summary

							Questions

							Further reading

					

				

					Chapter 15: Extending Ghidra for Advanced Reverse-Engineering
					
							Technical requirements

							Learning the basics of advanced reverse-engineering
							
									Learning about symbolic execution

									Learning about SMT solvers

									Learning about concolic execution

							

						

							Using Ghidra for Advanced reverse-engineering
							
									Adding symbolic execution capabilities to Ghidra with AngryGhidra

									Converting from PCode into LLVM with pcode-to-llvm

							

						

							Summary

							Questions

							Further reading

					

				

					Part 5: Debugging and Applied Malware Analysis

					Chapter 16: Debugging
					
							Technical requirements

							Ghidra debugger overview

							Starting the Ghidra debugger

							Debugger windows and toolbar
							
									Debugger specific toolbar

							

						

							Execution flow control
							
									Stepping

									Breakpoint

							

						

							Debugging the simple_encoder.exe application

							Remote debugging

							Debugging a Windows kernel

							Summary

							Further reading

					

				

					Chapter 17: Unpacking in-the-Wild Malware
					
							Technical requirements

							Malware overview

							Unpacking malware

							Summary

							Further reading

					

				

					Chapter 18: Reverse-Engineering Ransomware
					
							Technical requirements

							General working principles of ransomware
							
									Initial infection vector

									Installation and execution

									Encryption

									C2 communication and exfiltration of data

									Ransom demand notification

							

						

							Identifying encryption algorithms
							
									Initial exploration

									Identifying imported libraries and functions

									Tracing calls to cryptographic functions

									Identifying custom or embedded encryption algorithms

									Using plugins to find known crypto signatures and constants

							

						

							Summary

							Further reading

					

				

					Appendix A: Answer Key
					
							Chapter 1

							Chapter 2

							Chapter 3

							Chapter 4

							Chapter 5

							Chapter 6

							Chapter 7

							Chapter 8

							Chapter 9

							Chapter 10

							Chapter 11

							Chapter 12

							Chapter 13

							Chapter 14

							Chapter 15

					

				

					Index
					
							Why subscribe?

					

				

					Other Books You May Enjoy
					
							Packt is searching for authors like you

							Share Your Thoughts

							Download a free PDF copy of this book

					

				

			

		
		
		Landmarks

			
					Cover

					Table of Contents

					Index

			

		

OEBPS/image/B22350_01_17.jpg
L NI SN TIE RES

L

R ~

OEBPS/image/B22350_01_9.jpg
¥

hello hello hello hello
worldgpr worldlock worldlock~ world.rep

OEBPS/image/B22350_01_12.jpg
@ Import Results Summary

i

Project File Name: hello_world.exe

fLast Modified: Sun Feb 23 11:35:41 CET 2020
Readonly: false

Program Name: hello_world.exe

<

Additional Information-

Loading /C:/Users/virusito/Desktop/hello_world/hello_world.cxe -
Scarching for referenced library: KERNEL32.DLL
WINDOWS\SysWOW64\KERNEL32 . DLL
Found and imported external library: C:\WINDOWS\SysWOWG4\KERNEL32.DLL

Loading

Scarching for referenced library: MSVCRT.DIL ...

Loading C:\WINDOWS\SysWOW64\MSVCRT.DLL —

Found and imported external library: C:\WINDOWS\SysWOWG4\MSVCRT.DLL

Finished importing referenced libraries for: hello_world.exe
[KERNEL32.DLL] —> not found

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/image/B22350_01_4.jpg
Name

v [ghidra_11.0.1_PUBLIC

> B docs

> [Extensions

> 07 Ghidra

> BF GPL

> [licenses

> [server

> [support
@ ghidraRun
.| LICENSE
| bom.json

= ghidraRun.bat

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/image/B22350_01_20.jpg
|32IDULFVE- 4o - vVEIa@ijOBO I+

88 Function Graph [CodeBrowser: hello world-/.exe]
File Edit Navigation Search Select Help

Ble-=-

PRPRPRPB (JQIDULFV 9 -a-

"E[$-Q- [BX

e
@0 m

lint __cdecl main(int _Argc, char * * _Rrgv, char * * _Env)
int <RETURN>

82
RBE, RSP

kse, ox20

_main

RAX, [s_Hello_world._140004...
_Argem>s_Hello_vorld._1400...
prinet

ERX, 0x0

RSP, 0x20

r8p

RIFEREEREE]

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/image/B22350_01_13.jpg
@ Ghidra: hello world
File Edit Project Tools Help

EEEE LIRS

BV

Fmve Project: hello world—————————

hello world

OEBPS/image/B22350_01_11.jpg
Active Project: hello worl

@ Import /C:/Users/virusito/Desktop/hello_world/hello_world.exe

Format: [ortable Executble (PE)

Language: [x86:LE:32:defauit windows

Destination Folder: | helo world:/

Program Name: | hello_worl.exe

Coc]

@

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/B22350_01_18.jpg
140001450
140001451
140001454
140001458

140001454

140001464
140001467

14000146¢

140001471

140001475
140001476

89 e5
83 ec 20
d3 00
00

2d 05

2b 00 00
89 cl

£ 10
00

00 00

00

83 c4 20

amp

A%

RBP

RBR,RSP

RSP, 0x20
main

RAX, [s_Hello_world._140004000)

_Arge=>s_Hello_world._140004000,RAX

printf

ERX, 0x0

RSP, 0x20
RER

OEBPS/image/B22350_01_3.jpg
Tags Q Find a release

last week Ghidra 11.0.1

Shows latest r d version
ghidral
© Ghidra_11.0.1_...
o 9afec7d * Uetiataibion
« Change History
Compare ~

* Installation Guide
* SHA-256: a@bc9450aa3a231096b13a823c66311b9F84ch9cect624393221cFeds0ef6924

v Assets 3 X o i
/\ Click the ZIP file link to download the latest Ghidra

@ghidra_11.0.1_PUBLIC_20240130.zip | 393 MB last week

[PSource code (zip) last week

(DSource code (tar.gz) last week

OEBPS/image/B22350_01_7.jpg
@ Ghidra: NO ACTIVE PROJECT
File Edit Project Tools Help

Open Project... Cti+0

Close Project CtilsW

Save Project Crl+S

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/B22350_01_14.jpg
&P Analysis Options

Analyzers

Apply Data Archives

ASCII Strings

Call Convention Identification
Call-Fixwp Installer

Condense Filler Bytes (Prototype)
Create Address Tables

Data Reference

Decompiler Parameter 1D
Decompiler Switch Analysis

Demangler
Disassemble Entry Points v
selectall || DeselectAl || Restore Defauts |

Description

Finds valid code in undefined bytes that
have not been disassembled.
WARNING: This should not be run unless good

v

Option:

Create Analysis Book...

cancel

OEBPS/image/cover.png
Ghidra Software
Reverse-Engineering
for Beginners

Master the art of debugging, from understanding
code to mitigating threats

< DAVID ALVAREZ PEREZ
> RAVIKANT TINARI

OEBPS/image/B22350_01_10.jpg
@ Project Locked

Projectis locked. You have another instance of Ghidra
already running with this project open (locally or remotely).

Project: C:\Users\virusito\hello world

OEBPS/Fonts/MyriadPro-LightIt.otf

OEBPS/image/B22350_01_2.jpg
GHIDRA

A software reverse engineering (SRE) suite of tools developed by
NSA's Research Directorate in support of the Cybersecurity mission

OEBPS/image/B22350_01_19.jpg
140001450

140001451

140001454

140001458

140001454

140001464

140001467

55

48 89 5

48 83 ec 20

eg a3 00
00 00

48 8d 05
9c 2b 00 00

48 89 cl

€8 £4 10
00 00

MoV

SUB

XREF([2]:

$U£000:8 = COPY RBP
RSP = INT_SUB RSP, 8:8
STORE ram(RSP), $U£000:8

RBE, RSP
RBP = COPY RSP

R, 0x20
CF = INT_LESS RSP, 32:8
OF = INT_SBORROW RSP, 32:8
RSP = INT_SUB RSP, 32
SF = INT_SLESS RSP, 0

$U13480:8 = INT_AND RSP, OXff:!

$U13580:1 = INT_AND $U13500:1, 1:1
PF = INT_EQUAL $U13580:1, 0:1

RSP = INT_SUB RSP, 8:8
STORE ram(RSP), 0x14000145d:8
CALL *[ram]0x140001530:8

RAX, [s_Hello_world._140004000]

RAX = COPY 0x140004000:8
_Arge=>s_Hiello_world._140004000, RAX
RCX = COPY RAX

printf

RSP = INT_SUB RSP, 8:8
STORE ram(RSP), 0x14000146c:8
CALL *[ram]0x140002560:8

__tmainCRTStartup:1400012e9 (c)
14000506¢ (*)

OEBPS/image/B22350_01_1.jpg
Iifak Guilfanov @ilfak - 4 jun. 2019
To undo or not to undo? Don't worty, redo will be available too!

@ newsoft @newsoft - 3 jun. 2019
IDA Pro 7.3 will have "undo” @

O 12 1 m2 Q ass &

Ghidra
@GHIDRA RE

En respuesta a @ilfak

Cool feature!

OEBPS/image/B22350_01_6.jpg
Enter path to JDK home directory (ENTER for dialog): .

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/image/B22350_01_15.jpg
11

File_Edit_Analysis _Navigation _Search _Select _Tools_Window _Helj —
| 4= - =) - IDULFRVYRB- O o [E1)
[FERTET - LY IERES ° X
= &P hello_world.exe ~
Headers r void
00401mef 00 aon
ot
ot . o
stan int ivarl;
bss : St : int ivar2;
B undefined _stdcall in(void) '
RT 3 Sied —etien Rasatreid) 8| if (initialized =0) (
v undefined : <RETURN> .
Program Tree x undefineds Stack[-0xlc]:41ocal_lc -
main XREF[2]: _mainCRTStartup:004 i
s - X _main:00401509 (c) 2
T G Imoors jbos01e70 a1 58 S0 Hov 2%, [_initialized] [,
40001 ha } while ((¢__CTOR LIST_)[ivar2 + 1]
00401675 85 <0 TesT EAX, EAX 2| aSitivaanen
& B Labels | dosaiaiziday = O T L (+(code *) (&__CTOR 118T_) [ivar2]) 0
@ B3 chsses | 00401679 £3 c3 RreT 5 iy v
B3 Nemespaces] 00401e7b 50 2 s0n s
i 2
i 0spIcTovas ae e 15 | _atexit(s__do_global dtors);
I 00401678 74 7 2o return;
i 00401e7e 26 260 & ol [’
) | 0040167 00 oon o] s
i 3
- ! XREF[1]: 00401677 (3) La
2 ¥ 00401e80 c7 05 58 dword ptr [_initialized],Oxl
CRE RN s0 40 00
01 00 00 00 < >
53 02tz Types i K 5 Gy vecompiie: __main x| [B] Bytes: hello_warld.exe %
@ BuitinTypes
@ I Ohelo_worid.exe o &%
@@ windows w1232
Fiter: 2
ovso1e70 main MOV EAX,[0x00405058]

@

OEBPS/image/B22350_QR_Free_PDF.jpg

OEBPS/Fonts/CourierStd.otf

OEBPS/image/B22350_01_8.jpg
@ New Project

X

[Eg Select Project Location

Project Directory: | C:\Users\virusito

project Name: [hello world

[<<Ba | [T [Emsh | [Gl |

OEBPS/image/B22350_01_16.jpg
Window Help

v

[]

Bookmarks Ci+B
Bytes: hello_world.exe
Checksum Generator
Comments

Console

Data Type Manager

Data Type Preview
Decompiler Ci+E

OEBPS/image/B22350_01_5.jpg
> Task :assembleAll
updateSlaFilesTimestamp: Updated timestamps to 125 .sla files.

Deprecated Gradle features were used in this build, making it incompatible with Gradle 8.0.

You can use '--warning-mode all' to show the individual deprecation warnings and determine if they com
e from your own scripts or plugins.

See https://docs.gradle.org/7.6.4/userguide/command_line_interface.html#sec:command_line_warnings

BUILD SUCCESSFUL in 14m 35s
644 actionable tasks: 644 executed

