
		
			[image: Cover.png]
		

	
		
			Mastering PLC Programming

			The software engineering survival guide to automation programming

			M. T. White

			[image:]

			BIRMINGHAM—MUMBAI

			Mastering PLC Programming

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Mohd Riyan Khan

			Publishing Product Manager: Suwarna Patil

			Senior Editor: Tanya D’cruz

			Technical Editor: Arjun Varma

			Copy Editor: Safis Editing

			Project Coordinator: Prajakta Naik

			Proofreader: Safis Editing

			Indexer: Pratik Shirodkar

			Production Designer: Shyam Sundar Korumilli

			Senior Marketing Coordinator: Nimisha Dua

			Marketing Coordinator: Agnes D'souza

			First published: March 2023

			Production reference: 2280225

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-80461-288-0

			www.packtpub.com

			

For Jennie. I like to think you helped me write this and how cool it would have been to have two writers in the family.

			Jennie Branch Bolton

			1981-2020

			

Contributors

			About the author

			M. T. White has been programming since the age of 12. His fascination with robotics flourished when he was a child programming microcontrollers such as Arduinos. M.T. currently holds an undergraduate degree in mathematics, a master’s degree in software engineering, and is currently working on an MBA in IT project management. M.T. is currently working as a software developer for a major US defense contractor and is an adjunct CIS instructor at ECPI University. His background mostly stems from the automation industry where he programmed PLCs and HMIs for many different types of applications. M.T. has programmed many different brands of PLCs over the years and has developed HMIs using many different tools.

			

About the reviewers

			Oleg Osovitskiy is a senior firmware engineer with more than 23 years of experience in industrial automation. He is a certified IEC-61508 functional safety engineer (#11605/15), and a certified IEC-62443 CySec specialist (#658/22). He worked as a control engineer for the gas industry, implementing technological and emergency algorithms for various factories and plants. He has extensive hands-on experience with PLCs, I/O drivers, and communication drivers for various industrial protocols, including Modbus, HART, CANopen, EtherNet/IP, EtherCAT, and others. He currently lives and works in Canada, Quebec, and is responsible for developing firmware for several mission-critical, safety PLCs.

			I’d like to thank my wife and two lovely daughters, who support me and understand the time and commitment it takes to learn new skills and obtain new knowledge in our constantly changing and demanding environment. They are the purpose and joy of my life.

			Keith Lyding is an electrical engineer for a manufacturing company in Columbus, OH. He has over 15 years of experience in the electrical field, as well as more than 9 years of experience in automation. He graduated from Thomas Edison State University in 2019. He served in the US Navy for six years, and has worked for Nucor Steel, and currently, for Sonoco Products Company where he works primarily with Allen Bradley PLCs, Inductive Automation’s Ignition platform, EXOR and Panelview HMIs, and many other platforms. He enjoys troubleshooting, as well as automating complex operations. In his spare time, he loves to serve in his church, coach his son’s baseball team, and spend time with his family.

			I am thankful for Paul Cassidy and Brian Babin, who discipled me as a young Christian. I would also like to thank Kyle Ahrendt and Will Carleton, former coworkers and experts in their fields. My competitive nature drove me to relentlessly follow your example. Finally, I’d like to thank my wife Katie, my amazing wife of 12 years. She is so gracious with me, especially when I forget to tell her I’m working late.

			Tony LeRoy has worked in the automation field since 2013, starting as a machine operator, transitioning to industrial maintenance, and then to controls engineering and design. Specializing in PLC programming, HMI design, and SCADA development, Tony has developed a passion for making the physical world and the digital world come together. Tony holds three associate degrees in mechatronics, industrial electronics, and general engineering technology, all from Tri-County Technical College. Currently working for a system integrator, focusing on the research and development of control solutions for emerging technologies, he also does consulting and freelance work, hoping to own a business one day.

			I would like to thank my family and my friends for their understanding about the time, dedication, and passion that I devote to my work, and for still sticking by my side. I also would like to thank my professors at Tri-County Tech for giving me a love of learning and paving the way for my success today. Thank you for your hard work and for giving students brighter futures!

		

	
		
			Table of Contents

			Preface

			Part 1 – An Introduction to Advanced PLC Programming

			1

			Software Engineering for PLCs

			Technical requirements

			Software engineering for PLCs

			Understanding the IEC 61131-3 standard

			What does the IEC 61131-3 standardize?

			Programming a PLC – The five IEC languages

			Introducing CODESYS

			Testing CODESYS

			Creating the program

			Summary

			Questions

			2

			Advanced Structured Text — Programming a PLC in Easy-to-Read English

			Technical requirements

			Understanding error handling

			Variables

			The main program

			The division by 0 error

			Checking for 0 code

			TRY-CATCH blocks

			FINALLY statements

			Identifying and handling errors

			Understanding pointers

			Representing PLC memory

			General syntax for pointers

			The ADR operator

			Dereferencing pointers

			Handling invalid pointers

			Understanding references

			Declaring a reference variable

			Example program

			Checking for invalid references

			Understanding documentation

			Self-documenting code

			Code to variables

			Code commenting

			Understanding state machines

			Variables for the state machine

			Exploring state machine logic

			Summary

			Questions

			Further reading

			3

			Debugging — Making Your Code Work

			Technical requirements

			What is debugging?

			Types of bugs

			Testing versus debugging

			Breaking down the debugging process

			Understanding debugging tools and techniques

			Print debugging

			The CODESYS debugger tool

			Forcing variables

			Troubleshooting – a practical example

			Case 4 – a while loop

			Summary

			Questions

			Further reading

			4

			Complex Variable Declaration — Using Variables to Their Fullest

			Technical requirements

			Auto declaring variables

			Understanding constants

			Investigating arrays

			Initialized arrays

			Multidimensional arrays

			Exploring global variable lists

			Creating a GVL

			Understanding structs

			Declaring a struct

			Getting to know enums

			Exploring persistent variables

			Persistent variable list

			Final project – motor control program

			Summary

			Questions

			Further reading

			Part 2 – Modularity and Objects

			5

			Functions — Making Code Modular and Maintainable

			Technical requirements

			What is modular code?

			Why use modular code?

			Exploring functions

			What goes into a function?

			Creating a function

			The PLC_PRG file

			Examining return types

			The RETURN statement

			Understanding arguments

			Named parameters

			Default arguments

			Final project – temperature unit converter

			Summary

			Questions

			Further reading

			6

			Object-Oriented Programming — Reducing, Reusing, and Recycling Code

			Technical requirements

			What is OOP?

			Why use OOP?

			The four pillars – A preview

			Understanding function blocks

			Getting to know objects

			Getting to know methods

			Adding a method

			Getting to know properties

			Adding a property

			Understanding the purpose of a getter and setter

			Getter method

			Setter method

			Understanding recursion and the THIS keyword

			THIS keyword

			Recursion in action

			Final project – creating a unit converter

			Summary

			Questions

			Further reading

			7

			OOP — The Power of Objects

			Technical requirements

			Understanding access specifiers

			Calculation program

			Exploring the pillars of OOP

			Encapsulation versus abstraction

			Inheritance

			Polymorphism

			Inheritance versus composition

			When to use composition

			Composition in practice

			Examining interfaces

			Getting to know design patterns

			Final project – creating a simulated assembly line

			Summary

			Questions

			Further reading

			Part 3 – Software Engineering for PLCs

			8

			Libraries — Write Once, Use Anywhere

			Technical requirements

			Investigating libraries

			Why do we need libraries?

			Libraries versus frameworks

			Distribution

			Third-party libraries

			Installing a library

			Guiding principles for library development

			Rule 1 – Keep it simple, stupid (KISS)

			Rule 2 – Abstraction and encapsulation

			Rule 3 – Patterns make for perfection

			Rule 4 – Documentation

			Building custom libraries

			Requirements

			Implementation

			Final project – part computation library

			Requirements

			Implementation

			Summary

			Questions

			Further reading

			9

			The SDLC — Navigating the SDLC to Create Great Code

			Technical requirements

			Understanding the SDLC

			Why care about the SDLC?

			How is the SDLC implemented?

			Investigating the general steps of the SDLC

			Requirements/planning

			Design

			Build

			Test

			Deployment

			Maintenance

			Final project – creating a simple library

			Gathering requirements for the library

			Designing the library

			Building the library

			Testing the library

			Deploying the library

			Maintaining the library

			Summary

			Questions

			Further reading

			10

			Advanced Coding — Using SOLID to Make Solid Code

			Technical requirements

			Introducing SOLID programming

			Benefits of SOLID programming

			The governing principles of SOLID programming

			The single-responsibility principle

			The open-closed principle

			The Liskov substitution principle

			The interface segregation principle

			The Dependency inversion principle

			Final project – a painting machine

			Summary

			Questions

			Further reading

			Part 4 – HMIs and Alarms

			11

			HMIs — UIs for PLCs

			Technical requirements

			Understanding HMIs

			Why create and use an HMI?

			How are HMIs created?

			Programming languages to develop HMIs

			What should an HMI do?

			HMIs versus SCADA

			How the SDLC applies to HMIs

			Exploring wireframing

			Final project – creating an HMI

			Summary

			Questions

			Further reading

			12

			Industrial Controls — User Inputs and Outputs

			Technical requirements

			Exploring common HMI controls

			Flip switches

			Push switches

			Buttons

			LEDs

			Potentiometers

			Sliders

			Spinners

			Measurement controls

			Histogram

			Text field

			Control properties

			Final project – creating a simple HMI

			Requirements for the HMI

			Design of the HMI

			Building the HMI

			Summary

			Questions

			Further reading

			13

			Layouts — Making HMIs User-Friendly

			Technical requirements

			The importance of colors

			Backgrounds

			Red, yellow, and green

			Control colors

			Labeling colors

			Understanding grouping/position

			Best practices for blinking

			Blinking a component

			Animation

			Organizing the screen into multiple layouts

			Creating visualizations screens

			Changing the default screen

			Navigating between screens

			Final project – creating a user-friendly HMI

			Summary

			Questions

			Further reading

			14

			Alarms — Avoiding Catastrophic Issues with Alarms

			Technical requirements

			What are alarms?

			When should you use an alarm?

			What should an alarm say?

			Alarm configuration – I, Warning, and Error setup

			Alarm groups

			Alarm HMI components

			Setting up an alarm banner

			Setting up an alarm table

			PLC alarm logic

			Alarm acknowledgment

			Final project – motor alarm system

			Requirements

			Design/implementation of the HMI

			Summary

			Questions

			Further reading

			Part 5 – Final Project and Thoughts

			15

			Putting It All Together — The Final Project

			Technical requirements

			Project overview

			Getting the requirements

			HMI design

			HMI implementation

			LED variables

			Acknowledgment variable

			Spinner variables/setup

			Gauge variable/setup

			Alarm table variables/configuration

			PLC code design

			Implementing the PLC code

			PLC_PRG file

			Alarms function block

			Door function block

			Oven function block

			Testing the application

			Testing the door lock

			Testing the gauge

			Summary

			Questions

			16

			Distributed Control Systems, PLCs, and Networking

			Technical requirements

			What are computer networks?

			Network topology

			Common IT protocols

			TCP/IP

			UDP

			PLC/automation device communication

			Modbus

			Profibus

			Profinet

			EtherCAT

			DeviceNet

			Protocol conversion

			Other communication topics to explore

			Understanding distributed control systems

			The differences between DCSs and PLCs

			Summary

			Questions

			Further reading

			Assessments

			Chapter 1: Software Engineering for PLCs

			Chapter 2: Advanced Structured Text — Programming a PLC in Easy-to-Read English

			Chapter 3: Debugging — Making Your Code Work

			Chapter 4: Complex Variable Declaration — Using Variables to Their Fullest

			Chapter 5: Functions — Making Code Modular and Maintainable

			Chapter 6: OOP — Reducing, Reusing, and Recycling Code

			Chapter 7: OOP — The Power of Objects

			Chapter 8: Libraries — Write Once, Use Anywhere

			Chapter 9: The SDLC — Navigating the SDLC to Create Great Code

			Chapter 10: Advanced Coding — Using SOLID to Make Solid Code

			Chapter 11: HMIs — UIs for PLCs

			Chapter 12: Industrial Controls — User Inputs and Outputs

			Chapter 13: Layouts — Making HMIs User Friendly

			Chapter 14: Alarms — Avoiding Catastrophic Issues with Alarms

			Chapter 15: Putting It All Together — The Final Project

			Chapter 16: Distributed Control Systems, PLCs, and Networking

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			Object-oriented programming and the principles that govern the concept rule the modern IT world and automation programming is no different. Though modern technology is progressing rapidly in the automation realm, software development practices are not. As such, this book is meant to be a bridge between automation programmers and modern software engineer practices.

			Who this book is for

			This book is for automaton programmers with a background in software engineering topics such as object-oriented programming and general software engineering knowledge. Automation engineers, software engineers, electrical engineers, PLC technicians, hobbyists, and upper-level university students with an interest in automation or robotics will also find this book useful and interesting.

			To get the most out of this book, you should have a basic knowledge of PLCs, PLC programming, and modern structured text. Though not totally necessary, a rough idea about object-oriented programming would also be beneficial.

			What this book covers

			Chapter 1, Software Engineering for PLCs, establishes the basics of software engineering and why it is important for PLC programmers. The chapter also walks you through installing CODESYS and creating a sample project to ensure the setup is working.

			Chapter 2, Advanced Structured Text — Programming a PLC in Easy-to-Read English, explores some of the lesser-used concepts of structured text, such as error handling and pointers. This chapter also covers the basics of state machines and proper code documentation.

			Chapter 3, Debugging — Making Your Code Work, introduces troubleshooting PLC code. The chapter covers concepts such as print debugging, using built-in debugging tools, and more.

			Chapter 4, Complex Variable Declaration — Using Variables to Their Fullest, is about complex variables. Topics covered include variable lists, auto-declaring variables, structs, and much more.

			Chapter 5, Functions — Making Code Modular and Maintainable, introduces code modularity. To do this, the concept of functions is covered, along with arguments, return types, and more.

			Chapter 6, OOP — Reducing, Reusing, and Recycling Code, introduces the power of objects and how they can be used. The chapter explores basic object-oriented programming (OOP) principles such as function blocks, methods, and getter and setter methods.

			Chapter 7, OOP — The Power of Objects, is a continuation of Chapter 6 and covers more complex object-oriented principles such as the pillars of OOP, composition, access specifiers, interfaces, and more.

			Chapter 8, Libraries — Write Once, Use Anywhere, explores the whole process of creating a library from scratch to consuming the library. This chapter essentially is applied OOP.

			Chapter 9, The SDLC — Navigating the SDLC to Create Great Code, introduces the full software development life cycle (SDLC). The goal of this chapter is to teach you how to navigate the full SDLC process to properly build and implement PLC code.

			Chapter 10, Advanced Coding — Using SOLID to Make Solid Code, shows you how to create SOLID PLC code. The goal of this chapter is to teach you how to create well-engineered code that can be adapted and will age well. In short, this chapter explains how to properly implement OOP.

			Chapter 11, HMIs — UIs for PLCs, introduces the concept of Human Machine Interface (HMIs). The goal of this chapter is to introduce the core idea behind HMIs, wireframing, setting up a basic HMI project, and why HMIs are used.

			Chapter 12, Industrial Controls — User Inputs and Outputs, covers some of the commonly used CODESYS HMI widgets. The goal of the chapter is to introduce the widgets, what they do, and how they work.

			Chapter 13, Layouts — Making HMIs User-Friendly, explores how to make functional HMIs. In other words, the goal of this chapter is to lay down principles that can be used to create high-functioning and user-friendly HMIs in CODESYS.

			Chapter 14, Alarms — Avoiding Catastrophic Issues with Alarms, covers one of the most important aspects of automation programming – alarms. This chapter introduces the concept of alarms and how to set up an alarm, its layout, and even how to trigger them.

			Chapter 15, Putting It All Together — The Final Project, is the last hands-on chapter. This chapter cherry-picks concepts from the whole book and incorporates them into a final project.

			Chapter 16, Distributed Control System, PLCs, and Networking, is theoretical in nature, unlike all the previous chapters. This chapter covers the basics of networking, as well as introducing the basics of common networking protocols for automation.

			To get the most out of this book

			This book covers some advanced PLC programming topics. As such, it is recommended that you read the book from cover to cover. It is also recommended that you have some knowledge of PLC programming and at least a basic grasp of structured text.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							CODESYS

						
							
							Windows

						
					

				
			

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Mastering-PLC-programming. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://packt.link/bqJiM.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “As can be seen in the code, the keyword EXTENDS Felion is added to the function block code.”

			A block of code is set as follows:

			
//turn on motor
IF turnOnMotor = FALSE THEN
	turnOnMotor := TRUE;
END_IF
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
//turn on motor
IF turnOnMotor = FALSE THEN
	turnOnMotor := TRUE;
END_IF
			Any command-line input or output is written as follows:

			
$ mkdir css
$ cd css
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Select System info from the Administration panel.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Mastering PLC Programming, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below[image:]

			

			https://packt.link/free-ebook/9781804612880

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			Part 1 – An Introduction to Advanced PLC Programming

			This section of the book is designed to give you an in-depth look at advanced Structured Text programming and general software development principles. The goal of this section is to teach you how to write PLC programs using advanced programming techniques. The section explores advanced elements of Structured Text, complex variables such as variable lists and arrays, and finally, debugging so you can learn how to properly debug PLC code. In short, this section will lay the framework for the more advanced concepts that are explored throughout this book.

			This part includes the following chapters:

			
					Chapter 1, Software Engineering for PLCs

					Chapter 2, Advanced Structured Text — Programming a PLC in Easy-to-Read English

					Chapter 3, Debugging — Making Your Code Work

					Chapter 4, Complex Variable Declaration — Using Variables to Their Fullest

			

		

		
			
			

		

	

		
			1

			Software Engineering for PLCs

			Software engineering is a pivotal, yet often overlooked aspect of Programmable Logic Controller (PLC) programming. There is a core problem with automation engineering that stems from most PLC projects usually being viewed as hardware first. Many books, workshops, and so on are focused on PLC projects as hardware-first systems. Usually, programming is secondary to the overall hardware design of the system. In other words, the software is there to operate the hardware.

			Many PLC programmers are not formally trained software developers and have backgrounds ranging from electricians to electrical and mechanical engineers. Though there is nothing wrong with a PLC developer not being a formally trained programmer, there are techniques that are usually taught in programming classes that are often lost when a non-formally trained programmer tries to program a PLC. This book aims to teach and apply software engineering practices to PLC programming. By learning these techniques, PLC developers can utilize the full gamut of the IEC 61131-3 standard and create advanced software faster and cleaner.

			The hot topic in today’s fast-paced industrial world is Artificial Intelligence (AI) and automation. In short, machines are getting smart, and a major component of that is the software that controls the systems. The first PLC was introduced around the late 1960s and early 1970s; as such, PLCs (and by extension, automation) are nothing new. However, what has changed is the complexity of the systems that PLCs control. With the lower costs and rising computing power of PLCs, the applications that PLCs control are now becoming more complex seemingly by the day. The days of PLC programmers getting through the day with basic programming techniques and ladder logic are quickly becoming a thing of the past. To survive and be competitive in today’s market, a new way of thinking about PLC code is needed. Today’s world now needs PLC programmers that can function as software engineers.

			In this chapter, we’re going to cover the following topics:

			
					Software engineering for PLCs

					The IEC 61131-3 standard

					Ways of programming a PLC

					CODESYS

					A ladder logic Hello, World! program to test the installation of CODESYS

			

			Technical requirements

			This book is designed to have a very low bar to get started. The only items that are needed to get started on your journey to mastering advanced PLC programming are a Windows computer and a free program called CODESYS. CODESYS is an all-in-one PLC development environment that contains a built-in simulator that can run PLC code without the need for physical hardware. CODESYS can be downloaded for free here: https://www.codesys.com/download.htmlhttps://us.store.codesys.com/.

			To get CODESYS up and running, it is recommended to have the following specs:

			
					Windows 8 or later (32/64 bit)

					12 GB free hard drive space

					8 GB of RAM

			

			Installation of CODESYS is quite simple. All you have to do is follow the link, create an account, and follow the installation wizard. We’ll explore CODESYS a bit more later, but for now, all you need to worry about is downloading and installing the software.

			All code examples for this book will be housed on GitHub. Although you don’t need a GitHub account to get the code down, it is recommended that you do create an account and download the GitHub desktop tool. As you’re working on examples throughout this book, you will be encouraged to put your spin on them. As such, GitHub will allow you to commit the code without fear of losing past iterations of it. The source code for this project can be found here: https://github.com/PacktPublishing/Mastering-PLC-programming/tree/master/Chapter%201.

			Software engineering for PLCs

			Software engineering is more than just writing programs. Software engineering is the art of effectively solving problems. A major problem with the current industrial programming mindset is that software is often treated almost as a second-class citizen to the hardware. In other words, PLC software is treated as a complement to hardware. More often than not, the software is treated as a throwaway component. It is not uncommon for software practices to be thrown to the wind in automation programming. As such, code\bases that can be easily modified and last for years will often have to be discarded long before they should. Many books and training courses treat PLC software in this way, which, in turn, continues a cycle of treating PLC software as a complement to PLC hardware. Overall, this is a flawed philosophy. Software is every bit as important as (and to certain extents, more important than) hardware. In all, when properly written programs are implemented, machines will be more easily modifiable and correctable. Software can then be transferred to other machines, which will minimize coding defects and yield successful manufacturing operations.

			For many non-traditional software developers, a very bad philosophy has taken root. Many of these developers feel that a working solution is a good solution. However, imagine that you’re a car mechanic. Would it be wise to weld the hood shut so that every time you needed an oil change, the hood would have to be cut off with a plasma cutter? Technically, the hood would function the same way as it would on your vehicle now. It would still protect the elements of your engine but at the cost of needing to cut it open for routine maintenance. Though welding your hood onto your vehicle would work, it would not be a wise engineering choice. Software development should be approached in the same way. Just because a solution works does not make it a good solution.

			How should a software engineer approach a problem? The answer to that question is the same way any other type of engineer would approach a problem: by first understanding the issue and then developing an effective solution for it. When software engineers approach a problem, they need to try to implement a solution that solves the problem in a way that is simple, efficient, and as easy to maintain as possible. In much the same way as an electrical or mechanical engineer would design their product, a software developer will need to do the same. A software engineer will have to learn to develop solutions that fulfill the requirements of the original problem as well as concoct a solution that can be easily modified in the future. A software engineer must have the following in mind when developing software:

			
					Does the solution solve the problem?

					Is the solution overcomplicated?

					Can the solution be easily modified if changes are needed?

					Can the solution be verified to ensure it works (can it be easily tested)?

			

			Often, this mentality is lost on PLC programmers. Many PLC programmers do not see themselves as software engineers; however, it must be understood that the moment a keyboard or mouse is touched with the intent of programming something to solve a problem, the programmer becomes a software engineer. When code is developed with this mentality, the same mentality that electrical engineers would use to implement their design, a codebase is created that is clean, easy to maintain, and easy to upgrade, and it will pass the test of time and allow for adaptation for the future.

			A key feature of modern software and a key feature of a quality software developer is reusability. Quality code can be used for many different projects without rewriting it. In the automation realm, this can be a bit challenging, as every PLC producer has their own take on PLC development software. However, many PLCs follow what is known as the IEC 61131-3 standard, which provides some uniformity across PLC platforms.

			Understanding the IEC 61131-3 standard

			PLCs generally are not cross-compatible. Most PLC programming environments are vendor-specific, meaning that a program written for one device, and even from the same manufacturer, will not compile and run on a device produced by another manufacturer. This means that without standardization, this could lead to utter chaos in the field. Each PLC could easily have not only its unique programming environment but also its own set of rules that govern that environment. A developer migrating from one PLC brand to another may have to take extra time to learn the new programming system. However, the purpose of the 61131-3 is to provide a standard so a developer can easily switch from a PLC of one brand to a PLC of another without having to learn a whole new programming system. In short, the IEC 61131-3 standard makes migrating from one compliant PLC to another as simple as writing the code in a new environment.

			This is where the IEC 61131-3 standard comes into play. The IEC 61131-3 is a vendor-neutral and hardware-independent PLC programming standard. The goal of the IEC 61131-3 is designed to provide uniformity across all compliant PLCs that follow the standard. The IEC 61131-3 standard is to PLCs what ECMAScript is to JavaScript. In other words, the best way to think of the standard is as a set of rules that govern the programming interfaces for PLCs from different vendors. As such, by learning the rules on one device, a developer can easily port their knowledge over to another compliant device with relative ease. As such, the overall cost and time it takes to develop a PLC program will drastically decrease, as the developer will not have to learn a new programming syntax.

			It is important to understand that just because a PLC follows the IEC 61131-3 standard does not mean that the code is cross-compatible. As stated before, PLC code is generally not cross-compatible. A program written for an RSLogix device will not run on a Beckhoff device. This is mainly due to the hardware architecture, the compilation process, and so on. However, considering that the device is compliant, the code can be ported over by creating a new project, copying the code into the new file, and tweaking the code to meet the requirements of the new device.

			The IEC 61131-3 standard is not a language, as inexperienced PLC developers sometimes confuse it with. The IEC 61131-3 is simply a set of rules that compliant PLCs use for developing software. Not every PLC is 61131-3 compliant nor does every 61131-3 compliant PLC utilize every feature of the standard. Common IEC 61131-3 compliant PLCs are as follows:

			
					Beckhoff

					Wago

					Allen-Bradley

					Omron

					Siemens

			

			This list is by no means an exhaustive list and the available features will vary from brand to brand. There are many more PLCs that are compliant. For the most part, all the major PLC manufacturers are 61131-3 compliant, especially for their newer devices. However, if you need to ensure that the device is compliant, all you have to do is simply check with the manufacturer. Usually, compliance is posted on the manufacturer’s website.

			Adopting the standard is not a badge of quality, and non-compliant PLCs should not be viewed as inferior to PLCs that are compliant. There are many PLCs that do not follow the standards that are excellent and reliable devices to work with. Many non-compliant devices also share similarities with the standard at the basic level. However, due to the interoperability of IEC 61131-3 programming practices, using compliant devices will ultimately cut down the overhead cost of education. As such, compliant devices are usually favored for industrial automation projects. However, it should be noted that compliant PLCs will often cost more than non-compliant PLCs.

			What does the IEC 61131-3 standardize?

			Now that a little background on the IEC 61131-3 standard has been established, it is important to look at what is governed. The biggest aspect of PLC programming that IEC 61131-3 standardizes is language syntax, data types, and supported programming interfaces (programming languages). If you’ve ever programmed an RSLogix PLC in ladder logic, Structured Text, or another interface, and then programmed an Omron, Beckhoff, or other compliant PLC, you may have noticed that the general syntax, data types, and so on are very similar. Usually, the only programming components that vary are things like function blocks, as many function blocks are just canned functions that were built and included in the programming environment by the manufacturer. In other words, the gross similarities are the standard at work.

			Recently, the IEC 61131-3 standard introduced what is known as object-oriented programming. It can be argued that the introduction of this concept is quite revolutionary as it means that the advanced techniques that are used to develop traditional programs can now be applied to the realm of automation. If you are familiar with a language such as C++, Java, C#, Python, or any of the modern traditional programming languages, you are most likely familiar with object-oriented programming. As such, understanding object-oriented programming for PLCs will be as easy as learning the syntax since the same rules apply to PLC programming. However, if your background does not include object-oriented programming, the principles that govern the paradigm will be explored in detail later, starting in Chapter 6.

			Programming a PLC – The five IEC languages

			The IEC 61131-3 standard includes several different types of language interfaces to program a PLC. In short, you can choose from multiple interfaces to program a PLC. These interfaces are akin to different languages, and each of the interfaces has its strengths. Some of the interfaces are graphically similar to what you would find in a system such as LabView, while others are text-based and akin to what you would find in a programming system such as C++ or BASIC. In the way the 61131-3 standard is set up, all the systems are compatible with each other, meaning that whatever can be done in one interface can also be done in another, and modules such as functions written in one interface can be used in another. The five IEC languages are described in the following sections. Let's take a look.

			Ladder logic

			If you are reading this book, chances are you know ladder logic and you know it well. Ladder logic is the unspoken standard for programming PLCs. Ladder logic was the programming interface that was developed to allow programmers to program in complex relay logic circuits without the need for bulky hardware or miles of wire. Of all the ways to program a PLC, ladder logic is probably the most common. To be a PLC programmer, a basic understanding of ladder logic is required.

			Ladder logic is an excellent and very important PLC programming interface. However, ladder logic does have some drawbacks. Those of you that have had to program complex systems, such as systems for motion control, complex state machines, or the like, know that Ladder diagrams can easily become an unmaintainable nightmare. Ladder logic is an excellent tool for relatively simple applications or for beginners who are just starting their journey. However, as software becomes more complex and new features such as machine learning become more integrated into everyday automated systems, ladder logic is going to become an increasingly difficult tool to work with.

			Sequential Flow Charts

			Similar to ladder logic Sequential Flow Charts (SFCs) are another graphical tool for programming PLCs. However, instead of SFCs simulating relay logic, they allow programmers to essentially program a PLC using flow charts. SFC is best used to program processes that can be broken down into steps. SFC allows complex programs to be broken down into smaller modules and govern the flow between the modules. The big advantage of an SFC is that it graphically shows the flow of a program. This is a great advantage for developers who are working on process-driven projects.

			Note

			Sequential Flow Chart is actually a jargon slang term for the Sequential Function Chart language in IEC 61131-3. The jargon term will be used for this book to help distinguish between the many function terms that will be explored. On top of that, SFC can still be used for both!

			Function Block Diagrams

			The Function Block Diagrams (FBDs) interface is the final form of graphical programming language supported by the IEC 61131-3 standard. Much like SFCs and ladder logic programs, FBDs are a widely used language for programming PLCs. The core benefit of FBDs is that they can be used to simplify the programming of closed-feedback loops as they mostly work off of inputs and outputs and can provide feedback to themselves. For most IEC systems, the blocks are interconnected with lines that represent the flow of data from one block to another.

			The FBD language is an excellent language choice for developers who are working on high-level projects. For example, suppose you’re working on a PLC program for a water treatment plant. You may have a process called water intake, water purifier, and collection process. As the developer, you may already have the functionality for these processes and as such, it is your job to string them together. For applications like these, it is very easy to employ FBDs to diagram out the process as a means of programming the PLC.

			Instruction List

			Instruction List, or as it is more commonly known, IL, is a text-based language that is governed by the IEC 61131-3 standard. IL is an offbeat language that is not used much in PLC programming. Users have to turn this on as a feature in CODESYS. The language itself is similar to the old Assembly language.

			IL is arguably the most unpopular language in the IEC 61131-3 standard. It is complex to use and requires acute attention to detail. It is very easy to create an infinite loop, computational errors, and so on. It is also extremely difficult to debug. However, programs written in the IL language are generally considered quicker and require less memory. The language has all but fallen out of favor and should only be used if necessary.

			Structured Text

			Structured Text is arguably the second most popular programming language in the IEC standard. Structured Text is the closest to a traditional, text-based programming language that can be used to program a PLC. The syntax draws heavily from languages such as PASCAL and Ada. Many of the PLC programmers that I have encountered in the past have always seen Structured Text with a bit of fear. However, Structured Text is nothing to be afraid of. In fact, Structured Text can actually make things easier. Anyone that has ever had to sift through hundreds of rungs of ladder logic code will know that it is often difficult to figure out which rung does what and get a grasp on the overall flow of the program, especially when the code is poorly documented and there are many jumps used in the program.

			In short, Structured Text will be the way of the future. As PLC technology progresses and applications become more advanced, Structured Text will gradually become the new standard in PLC programming. In other words, the days of simply turning machinery on and off at certain intervals are quickly coming to an end. The modern world is edging into complex machine learning and motion control, which means that it will be difficult, if not impossible, to fully implement these new, complex systems solely in ladder logic. Though it is possible to implement new concepts, such as object-oriented programming, in ladder logic, SFC, FDB, and so on, it can be awkward. Overall, due to the rising complexity of new automation systems, it is well worth the time to learn Structured Text and the advanced functionality that it provides.

			Structured Text is the language that is going to be the focus of this book. To get the most out of this book, you should have a basic understanding of Structured Text. However, Structured Text is pretty easy to follow, as it is a simple, human-readable format. The examples in this book will be advanced Structured Text concepts but they will be easy enough to follow. If you feel that you do not have a great grasp of Structured Text, I recommend reviewing some basics such as loops, if statements, switch statements, and basic data types to get rolling. You will only need to have a loose grasp of these concepts to begin with.

			As can be seen, there are many different ways to program a PLC. Now that a background in the different PLC programming languages has been established, we can begin experimenting with some basic code. To do this we will need a development environment. The development environment that we will use is called CODESYS.

			Introducing CODESYS

			The most common tool for learning the full gamut of the IEC 61131-3 standard is CODESYS. CODESYS is a free-to-download and free-to-use PLC programming environment that is developed by the German company CODESYS. The programming system has a built-in editor, syntax-checking tools, and a built-in simulator that will allow you to compile and run your code virtually. Not only that, but CODESYS also has a built-in HMI development tool that we’ll use in later sections of this book that can be used to develop fully working HMIs. As such, you can learn the full breadth of the IEC 61131-3 standard without having to spend a dime on expensive hardware or software and still be able to develop and watch your code in action.

			CODESYS is much more than just a virtual development tool. Currently, it is set up to program a wide variety of PLCs and is the basis for other development environments. CODESYS can best be thought of as a true Integrated Development Environment (IDE) for PLCs. CODESYS comes with many advanced tools such as debuggers, library management tools, and so on that are used to speed up the development process. Those of you who are familiar with IDEs such as Visual Studio will already be somewhat familiar with the overall gist of CODESYS. Above all else, CODESYS supports the full spectrum of the IEC 61131-3 protocol, including object-oriented programming.

			Systems such as Beckhoff’s TwinCat and Wago’s e!COCKPIT are all built on top of CODESYS. In short, CODESYS is a prime tool for learning PLC software development as well as creating production code for supported PLCs. So, upon completion of this book, you should not only have a pretty decent grasp of the IEC 61131-3 standard but should also have a good idea of how to use multiple other PLC development environments.

			If you have not already installed CODESYS, it is important to install it now. The remainder of the book will require the software to be installed. The link for installation can be found in the Technical requirements section of this chapter. Installation is pretty straightforward. All you have to do is follow the provided link and follow the wizard. Since CODESYS is a German company, the download website will be in German. I suggest using Chrome to translate the text. At the time of writing this book, you will need to provide some information such as your email to create an account so that you can download the software. Outside of that, CODESYS is a pretty heavy software package, so downloading it may take a little while.

			Testing CODESYS

			Usually, the first program a person writes in a new language is called Hello, World!. It is a simple program that will display the words Hello and World on the screen. The PLC equivalent of this is turning a coil off and on. To get familiar with and test our CODESYS installation, we’re going to create that simple ladder logic program:

			
					Once CODESYS is installed, launch the program, and you should see a page on which you can create a new project. This page is called the Start page and it will have a New Project link.

					Click New Project and you should see a New Project window. Here, click Standard project, name the project Chapter1, and then click OK.

					Now, you should see a standard project box. This step is the step where you select the programming interface for the project. By default, it will be set to FBD. This will need to be changed to Ladder Logic Diagram. To do this, click the PLC_PRG drop-down box, select Ladder Logic Diagram (LD), and press OK.

					After the project is created, a file tree will appear in the device tab to the left of the screen. Double-click on PLC_PRG and you will see a ladder logic development screen.

			

			Creating the program

			The aforementioned steps will create a ladder logic project. The project that’s generated will have all the necessary files and dependencies you need to implement your code. As such, all you will need to focus on is implementing the program’s logic. The file that we are going to implement our logic in is labeled PLC_PRG.

			The PLC_PRG file

			This is the PLC_PRG file that serves as the main entry point for the PLC program:

			
				
					[image: Figure 1.1 – PLC_PRG ﻿ladder logic development]
				

			

			Figure 1.1 – PLC_PRG ladder logic development

			This is the first file that will be called when a PLC program is run. This is the file in which we will develop our Hello, World! ladder logic program.

			To break this area down, the bottom of Figure 1.1 is a rung. This is where the actual Ladder commands will go. Above that, in the text area, is where variables are declared. The ladder logic tools can be found to the right of the screen, as shown in Figure 1.2.

			ToolBox

			ToolBox is where all the ladder logic commands can be found for use in the rungs:

			
				
					[image: Fig﻿ure 1.2 – Ladder ﻿logic ToolBox]
				

			

			Figure 1.2 – Ladder logic ToolBox

			As can be seen in Figure 1.2, there are many drop-down menus. The menus contain many different ladder logic instructions. For our purposes, click Ladder Elements. Once you expand that menu, drag over both a contact to the Start here box and a coil to the Add output or jump here box and insert the instructions in the rung area. Also, add two Boolean variables to the variable area (see the following format).

			Variable code

			This is the full code that is needed to declare all the variables needed for the program:

			
PROGRAM PLC_PRG
VAR
 input : BOOL;
 output: BOOL:
END_VAR
			This code creates two Boolean variables called input and output. Assign the input variable to the contact and the output variable to the coil by clicking on ???, then click on the three dots and select the appropriate variable. The name of the variable can also be typed in directly in place of ???. The input variable will be used to change the state of the output variable. In short, the purpose of our Hello, World! program will be for the output variable to mirror the state of the input variable.

			Completed Hello, World! project

			When you are finished setting up your project, it should reflect what is in Figure 1.3:

			
				
					[image: Figure 1.3 – Completed PLC Hello, World! program]
				

			

			Figure 1.3 – Completed PLC Hello, World! program

			Figure 1.3 is the code needed to run a Hello, World! program. Essentially, this code will turn the output variable on when the input variable is on, and off when the input variable is off.

			To test the simulator to see the program work, click Online on the ribbon at the top of the screen and select Simulation. This will tell CODESYS that there is no physical hardware, and that you want to run the program virtually. Click the button that is shown in Figure 1.4.

			Login button

			This button is the Login button that will log you into the virtual hardware. When the button has been pressed, the icon next to it will enable:

			
				
					[image: Figure 1.4 – The login button]
				

			

			Figure 1.4 – The login button

			Login will activate the program; however, it may not always run the program. To run the program, you must press the Play button next to the grayed-out icon in Figure 1.4.

			You should now have a development screen that resembles Figure 1.5.

			A running ladder logic program

			Figure 1.5 is the running PLC program with all of the variables in a FALSE or off state:

			
				
					[image: Figure 1.5 – Hello, World!]
				

			

			Figure 1.5 – Hello, World!

			To turn the output variable on, you will need to change the false variable of the input variable to a true value. To do this, double-click the Prepared value field in the input row until it says TRUE. Once you have a blue box that says TRUE in the cell, right-click the cell and press Write All Values Of ‘Device. Application’. Once you do this, your program should resemble Figure 1.6.

			Toggling input to true

			This is the output when the input variable is set to TRUE:

			
				
					[image: Figure 1.6 – Hello, World! with a TRUE input]
				

			

			Figure 1.6 – Hello, World! with a TRUE input

			When the input variable is set to TRUE, the whole line turns blue and the inner square in the output contact is also turned blue. This means that the rung is activated and is on. Essentially, when you see blue, that means that the rung is active and is doing whatever logic you have programmed in.

			The input can also be toggled back to FALSE. The steps are the same for toggling the input variable to a FALSE state with the only exception being that you will set the prepared value to FALSE instead of TRUE.

			Toggling input to false

			This is the output when the input variable is set to FALSE:

			
				
					[image: Figure 1.7 – Hello, World! with a FALSE input]
				

			

			
			
			
			
			
			
			
			
		

	

		
		Contents

			
					Contributors
					
							About the author

							About the reviewers

					

				

					Preface
					
							Who this book is for

							What this book covers

							To get the most out of this book

							Download the example code files

							Download the color images

							Conventions used

							Get in touch

							Share Your Thoughts

							Download a free PDF copy of this book

					

				

					Part 1 – An Introduction to Advanced PLC Programming

					Chapter 1: Software Engineering for PLCs
					
							Technical requirements

							Software engineering for PLCs

							Understanding the IEC 61131-3 standard
							
									What does the IEC 61131-3 standardize?

									Programming a PLC – The five IEC languages

							

						

							Introducing CODESYS

							Testing CODESYS
							
									Creating the program

							

						

							Summary

							Questions

					

				

					Chapter 2: Advanced Structured Text — Programming a PLC in Easy-to-Read English
					
							Technical requirements

							Understanding error handling
							
									Variables

									The main program

									The division by 0 error

									Checking for 0 code

									TRY-CATCH blocks

									FINALLY statements

									Identifying and handling errors

							

						

							Understanding pointers
							
									Representing PLC memory

									General syntax for pointers

									The ADR operator

									Dereferencing pointers

									Handling invalid pointers

							

						

							Understanding references
							
									Declaring a reference variable

									Example program

									Checking for invalid references

							

						

							Understanding documentation
							
									Self-documenting code

									Code to variables

									Code commenting

							

						

							Understanding state machines
							
									Variables for the state machine

									Exploring state machine logic

							

						

							Summary

							Questions

							Further reading

					

				

					Chapter 3: Debugging — Making Your Code Work
					
							Technical requirements

							What is debugging?
							
									Types of bugs

									Testing versus debugging

									Breaking down the debugging process

							

						

							Understanding debugging tools and techniques
							
									Print debugging

									The CODESYS debugger tool

									Forcing variables

							

						

							Troubleshooting – a practical example
							
									Case 4 – a while loop

							

						

							Summary

							Questions

							Further reading

					

				

					Chapter 4: Complex Variable Declaration — Using Variables to Their Fullest
					
							Technical requirements

							Auto declaring variables

							Understanding constants

							Investigating arrays
							
									Initialized arrays

									Multidimensional arrays

							

						

							Exploring global variable lists
							
									Creating a GVL

							

						

							Understanding structs
							
									Declaring a struct

							

						

							Getting to know enums

							Exploring persistent variables
							
									Persistent variable list

							

						

							Final project – motor control program

							Summary

							Questions

							Further reading

					

				

					Part 2 – Modularity and Objects

					Chapter 5: Functions — Making Code Modular and Maintainable
					
							Technical requirements

							What is modular code?

							Why use modular code?

							Exploring functions
							
									What goes into a function?

									Creating a function

									The PLC_PRG file

							

						

							Examining return types
							
									The RETURN statement

							

						

							Understanding arguments
							
									Named parameters

									Default arguments

							

						

							Final project – temperature unit converter

							Summary

							Questions

							Further reading

					

				

					Chapter 6: Object-Oriented Programming — Reducing, Reusing, and Recycling Code
					
							Technical requirements

							What is OOP?

							Why use OOP?
							
									The four pillars – A preview

							

						

							Understanding function blocks

							Getting to know objects

							Getting to know methods
							
									Adding a method

							

						

							Getting to know properties
							
									Adding a property

							

						

							Understanding the purpose of a getter and setter
							
									Getter method

									Setter method

							

						

							Understanding recursion and the THIS keyword
							
									THIS keyword

									Recursion in action

							

						

							Final project – creating a unit converter

							Summary

							Questions

							Further reading

					

				

					Chapter 7: OOP — The Power of Objects
					
							Technical requirements

							Understanding access specifiers
							
									Calculation program

							

						

							Exploring the pillars of OOP
							
									Encapsulation versus abstraction

									Inheritance

									Polymorphism

							

						

							Inheritance versus composition
							
									When to use composition

									Composition in practice

							

						

							Examining interfaces

							Getting to know design patterns

							Final project – creating a simulated assembly line

							Summary

							Questions

							Further reading

					

				

					Part 3 – Software Engineering for PLCs

					Chapter 8: Libraries — Write Once, Use Anywhere
					
							Technical requirements

							Investigating libraries
							
									Why do we need libraries?

									Libraries versus frameworks

									Distribution

									Third-party libraries

									Installing a library

							

						

							Guiding principles for library development
							
									Rule 1 – Keep it simple, stupid (KISS)

									Rule 2 – Abstraction and encapsulation

									Rule 3 – Patterns make for perfection

									Rule 4 – Documentation

							

						

							Building custom libraries
							
									Requirements

									Implementation

							

						

							Final project – part computation library
							
									Requirements

									Implementation

							

						

							Summary

							Questions

							Further reading

					

				

					Chapter 9: The SDLC — Navigating the SDLC to Create Great Code
					
							Technical requirements

							Understanding the SDLC
							
									Why care about the SDLC?

									How is the SDLC implemented?

							

						

							Investigating the general steps of the SDLC
							
									Requirements/planning

									Design

									Build

									Test

									Deployment

									Maintenance

							

						

							Final project – creating a simple library
							
									Gathering requirements for the library

									Designing the library

									Building the library

									Testing the library

									Deploying the library

									Maintaining the library

							

						

							Summary

							Questions

							Further reading

					

				

					Chapter 10: Advanced Coding — Using SOLID to Make Solid Code
					
							Technical requirements

							Introducing SOLID programming

							Benefits of SOLID programming

							The governing principles of SOLID programming
							
									The single-responsibility principle

									The open-closed principle

									The Liskov substitution principle

									The interface segregation principle

									The Dependency inversion principle

							

						

							Final project – a painting machine

							Summary

							Questions

							Further reading

					

				

					Part 4 – HMIs and Alarms

					Chapter 11: HMIs — UIs for PLCs
					
							Technical requirements

							Understanding HMIs
							
									Why create and use an HMI?

									How are HMIs created?

									Programming languages to develop HMIs

									What should an HMI do?

							

						

							HMIs versus SCADA

							How the SDLC applies to HMIs

							Exploring wireframing

							Final project – creating an HMI

							Summary

							Questions

							Further reading

					

				

					Chapter 12: Industrial Controls — User Inputs and Outputs
					
							Technical requirements

							Exploring common HMI controls
							
									Flip switches

									Push switches

									Buttons

									LEDs

									Potentiometers

									Sliders

									Spinners

									Measurement controls

									Histogram

									Text field

									Control properties

							

						

							Final project – creating a simple HMI
							
									Requirements for the HMI

									Design of the HMI

									Building the HMI

							

						

							Summary

							Questions

							Further reading

					

				

					Chapter 13: Layouts — Making HMIs User-Friendly
					
							Technical requirements

							The importance of colors
							
									Backgrounds

									Red, yellow, and green

									Control colors

									Labeling colors

							

						

							Understanding grouping/position

							Best practices for blinking
							
									Blinking a component

									Animation

							

						

							Organizing the screen into multiple layouts
							
									Creating visualizations screens

									Changing the default screen

									Navigating between screens

							

						

							Final project – creating a user-friendly HMI

							Summary

							Questions

							Further reading

					

				

					Chapter 14: Alarms — Avoiding Catastrophic Issues with Alarms
					
							Technical requirements

							What are alarms?
							
									When should you use an alarm?

									What should an alarm say?

							

						

							Alarm configuration – I, Warning, and Error setup
							
									Alarm groups

							

						

							Alarm HMI components
							
									Setting up an alarm banner

									Setting up an alarm table

							

						

							PLC alarm logic

							Alarm acknowledgment

							Final project – motor alarm system
							
									Requirements

									Design/implementation of the HMI

							

						

							Summary

							Questions

							Further reading

					

				

					Part 5 – Final Project and Thoughts

					Chapter 15: Putting It All Together — The Final Project
					
							Technical requirements

							Project overview

							Getting the requirements

							HMI design

							HMI implementation
							
									LED variables

									Acknowledgment variable

									Spinner variables/setup

									Gauge variable/setup

									Alarm table variables/configuration

							

						

							PLC code design

							Implementing the PLC code
							
									PLC_PRG file

									Alarms function block

									Door function block

									Oven function block

							

						

							Testing the application
							
									Testing the door lock

									Testing the gauge

							

						

							Summary

							Questions

					

				

					Chapter 16: Distributed Control Systems, PLCs, and Networking
					
							Technical requirements

							What are computer networks?
							
									Network topology

							

						

							Common IT protocols
							
									TCP/IP

									UDP

							

						

							PLC/automation device communication
							
									Modbus

									Profibus

									Profinet

									EtherCAT

									DeviceNet

									Protocol conversion

									Other communication topics to explore

							

						

							Understanding distributed control systems

							The differences between DCSs and PLCs

							Summary

							Questions

							Further reading

					

				

					Assessments
					
							Chapter 1: Software Engineering for PLCs

							Chapter 2: Advanced Structured Text — Programming a PLC in Easy-to-Read English

							Chapter 3: Debugging — Making Your Code Work

							Chapter 4: Complex Variable Declaration — Using Variables to Their Fullest

							Chapter 5: Functions — Making Code Modular and Maintainable

							Chapter 6: OOP — Reducing, Reusing, and Recycling Code

							Chapter 7: OOP — The Power of Objects

							Chapter 8: Libraries — Write Once, Use Anywhere

							Chapter 9: The SDLC — Navigating the SDLC to Create Great Code

							Chapter 10: Advanced Coding — Using SOLID to Make Solid Code

							Chapter 11: HMIs — UIs for PLCs

							Chapter 12: Industrial Controls — User Inputs and Outputs

							Chapter 13: Layouts — Making HMIs User Friendly

							Chapter 14: Alarms — Avoiding Catastrophic Issues with Alarms

							Chapter 15: Putting It All Together — The Final Project

							Chapter 16: Distributed Control Systems, PLCs, and Networking

					

				

					Index
					
							Why subscribe?

					

				

					Other Books You May Enjoy
					
							Packt is searching for authors like you

							Share Your Thoughts

							Download a free PDF copy of this book

					

				

			

		
		
		Landmarks

			
					Cover

					Table of Contents

					Index

			

		

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/image/B18873_01_05.jpg
Prepared value

Address

Comment

<

O

RET|

input

output

OEBPS/image/B18873_QR_Free_PDF.jpg
e
muk“.u.ﬂwn 5
g 3 Al w.nﬂm._

i

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/B18873_01_06.jpg
RET|

Device Application.PLC_PRG
Expression

input

& output

input

BRy

Prepared value

Address

Comment

output

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/B18873_01_02.jpg
‘ToolBox v B X
+ General
+ Boolean Operators
+ Math Operators
'+ Other Operators
+ Function Blocks
Ladder Elements
[Network
4¥ Contact
4 Negated contact
¥ Parallel contact
ludl Parallel negated contact
< Coil
< Set coil
o Reset coil
1/ TON
&/ ToF
U
& D
& Move
-+ Jump
4w Return
T Branch
“4~ Branch Start/End

32 ToolBox [Properties | @] Visualization Toobox

OEBPS/Fonts/MyriadPro-LightIt.otf

OEBPS/image/B18873_01_07.jpg
[if] PLC_PRG X -

Device Application.PLC_PRG

Expression Tpe Velue Prepared value Address Comment =]
input B00L |
output BOOL
5 —

input output
I

RET|

OEBPS/image/Packt_Logo_New.png
paAckn

OEBPS/image/B18873_01_01.jpg

OEBPS/image/B18873_01_03.jpg
) PLC_PRG x| =
1| PROGRAM PLC_PRG E]
5 2 we 0
3 input : BOOL; -
4 output : BOOL;
s| END_vAR
100% | &
1
input output
It 2l

OEBPS/Fonts/CourierStd.otf

OEBPS/image/Cover.png
Mastering
PLC Programming

The software engineering survival guide
to automation programming

<> -

OEBPS/image/B18873_01_04.jpg
% » aWNIG

Application [Device: PLC Logic]

