

[image: Cover Image]

Excel® 2021/Microsoft® 365

Programming by Example

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants permission to use the contents contained herein but does not give you the right of ownership to any of the textual content in the book or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to ensure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The companion files on the disc are also available for download by writing to the publisher at info@merclearning.com.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” vary from state to state, and might not apply to the purchaser of this product.

Excel® 2021/Microsoft® 365

Programming by Example

Julitta Korol

[image: Image]

Copyright ©2023 by Mercury Learning and Information. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

Mercury Learning and Information

22841 Quicksilver Drive

Dulles, VA 20166

info@merclearning.com

www.merclearning.com

(800) 232-0223

Julitta Korol. Excel® 2021/Microsoft® 365 Programming by Example.

ISBN: 978-1-68392-886-7

222324321 This book is printed on acid-free paper in the United States of America.

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2022947022

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional information, please contact the Customer Service Dept. at (800) 232-0223.

Companion disc files for this title are available by contacting info@merclearning.com. The sole obligation of Mercury Learning and Information to the purchaser is to replace the disc, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.

To my niece, Jowita

Contents

Acknowledgments

Introduction

PART I EXCEL VBA PRIMER

Chapter 1 Excel Macros: A Quick Start in Excel VBA Programming

Macros and VBA

Excel Macro-Enabled File Formats

Macro Security Settings

Enabling the Developer Tab in Excel

Using the Built-In Macro Recorder

Planning a Macro

Recording a Macro

Editing Recorded Macros

Macro Comments

Cleaning Up the Macro Code

Running a Macro

Testing and Debugging a Macro

Saving and Renaming a Macro

Printing Macro Code

Improving Your Recorded Macros

Creating a Master Macro

Various Methods of Running Macros

Running the Macro Using a Keyboard Shortcut

Running the Macro from the Quick Access Toolbar

Running the Macro from a Worksheet Button

Summary

Chapter 2 Excel Programming Environment: A Quick Overview of its Tools and Features (VBE)

Understanding the Project Explorer Window

Understanding the Properties Window

Understanding the Code Window

Setting the VBE Options

Syntax and Programming Assistance

List Properties/Methods

List Constants

Parameter Info

Quick Info

Complete Word

Indent/Outdent

Comment Block/Uncomment Block

Using the Object Browser

Locating Procedures with the Object Browser

Using the VBA Object Library

Using the Immediate Window

Obtaining Information in the Immediate Window

Working with Worksheet Cells and Ranges

Using the Range Property

Using the Cells Property

Using the Offset Property

Using the Resize Property

Using the End Property

Moving, Copying, and Deleting Cells

Working with Rows and Columns

Obtaining Information about the Worksheet

Entering Data and Formatting Cells

Returning Information Entered in a Worksheet

Finding Out about Cell Formatting

Working with Workbooks and Worksheets

Working with Windows

Working with the Excel Application

Summary

Chapter 3 Excel VBA Fundamentals: A Quick Reference to Writing VBA Code

Excel Objects, Properties, and Methods

Microsoft Excel Object Model

Writing Simple and Complex VBA Statements

Breaking Up Long VBA Statements

Saving Results of VBA Statements

Introducing Data Types

Using Variables

How to Create Variables

How to Declare Variables

Specifying the Data Type of a Variable

Assigning Values to Variables

Forcing Declaration of Variables

Understanding the Scope of Variables

Procedure-Level (Local) Variables

Module-Level Variables

Project-Level Variables

Lifetime of Variables

Finding a Variable Definition

Determining a Data Type of a Variable

Using Constants

Built-In Constants

Converting between Data Types

Using Static Variables in VBA Procedures

Using Object Variables in VBA Procedures

Using Specific Object Variables

Summary

Chapter 4 Excel VBA Procedures: A Quick Guide to Writing Function Procedures

Understanding Function Procedures

Creating a Function Procedure

Various Methods of Running Function Procedures

Running a Function Procedure from a Worksheet

Running a Function Procedure from Another VBA Procedure

Ensuring Availability of Your Custom Functions

Passing Arguments to Function Procedures

Specifying Argument Types

Passing Arguments by Reference and by Value

Using Optional Arguments

Testing a Function Procedure

Locating Built-In Functions

Getting to Know the MsgBox Function

Returning Values from the MsgBox Function

Getting to Know the InputBox Function

Determining and Converting Data Types

Using the InputBox Method

Summary

Chapter 5 Adding Decisions to Excel VBA Programs: A Quick Introduction to Conditional Statements

Relational and Logical Operators

Using If...Then Statement

Using If...Then...Else Statement

Using If...Then...ElseIf Statement

Nested If...Then Statements

Using the Select Case Statement

Using Is with the Case Clause

Specifying a Range of Values in a Case Clause

Specifying Multiple Expressions in a Case Clause

Writing a VBA Procedure with Multiple Conditions

Using Conditional Logic in Function Procedures

Summary

Chapter 6 Adding Repeating Actions to Excel VBA Programs: A Quick Introduction to Looping Statements

Introducing Looping Statements

Understanding Do...While and Do...Until Loops

Avoiding Infinite Loops

Executing a Procedure Line by Line

Understanding While...Wend Loop

Understanding For...Next Loop

Understanding For...Each...Next Loop

Exiting Loops Early

Using a Do...While Statement

Using Loops and Conditionals

Summary

Chapter 7 Storing Multiple Values in Excel VBA Programs: A Quick Introduction to Working with Arrays

Understanding Arrays

Declaring Arrays

Array Upper and Lower Bounds

Initializing and Filling an Array

Filling an Array Using Individual Assignment Statements

Filling an Array Using the Array Function

Filling an Array Using For...Next Loop

Using a One-Dimensional Array

Using a Two-Dimensional Array

Using a Dynamic Array

Using Array Functions

The Array Function

The IsArray Function

The Erase Function

The LBound and UBound Functions

Troubleshooting Errors in Arrays

Using the ParamArray Keyword

Data Entry with an Array

Sorting an Array with Excel

Summary

Chapter 8 Keeping Track of Multiple Values in Excel VBA Programs: A Quick Introduction to Creating and Using Collections

Working with Built-in Collections

Creating Your Own Collection

Adding Objects to a Custom Collection

Determining the Number of Items in your Collection

Accessing Items in a Collection

Removing Items from a Collection

Updating Items in a Collection

Returning a Collection from a Function

Using Custom and Built-in Collections Together

Collections versus Arrays

Watching the Execution of Your VBA Procedures

Summary

Chapter 9 Excel Tools for Testing and Debugging: A Quick Introduction to Testing VBA Programs

Testing VBA Procedures

Stopping a Procedure

Using Breakpoints

When to Use a Breakpoint

Using the Immediate Window in Break Mode

Using the Stop and Assert Statements

Using the Watch Window

Removing Watch Expressions

Using Quick Watch

Using the Locals Windows and the Call Stack Dialog Box

Navigating with Bookmarks

Trapping Errors

Using the Err Object

Setting Error Trapping Options in a VBA Project

Stepping through the VBA Code

Stepping Over a Procedure and Running to Cursor

Setting the Next Statement

Showing the Next Statement

Stopping and Resetting VBA Procedures

Terminating a Procedure Based on a Condition

Summary

PART II MANIPULATING FILES AND FOLDERS WITH VBA

Chapter 10 File and Folder Manipulation with VBA

Manipulating Files and Folders

Finding Out the Name of the Active Folder

Changing the Name of a File or Folder

Checking the Existence of a File or Folder

Finding Out the Date and Time the File Was Modified

Finding Out the Size of a File (the FileLen Function)

Returning and Setting File Attributes (the GetAttr and SetAttr Functions)

Changing the Default Folder or Drive (the ChDir and ChDrive Statements)

Creating and Deleting Folders (the MkDir and RmDir Statements)

Copying Files (the FileCopy Statement)

Deleting Files (the Kill Statement)

Summary

Chapter 11 File and Folder Manipulation with Windows Script Host (WSH)

Referencing the Microsoft Scripting Runtime

Finding Information about Files with WSH

Methods and Properties of FileSystemObject

Properties of the File Object

Properties of the Folder Object

Properties of the Drive Object

Creating a Text File Using WSH

Performing Other Operations with WSH

Running Other Applications

Obtaining Information about Windows

Retrieving Information about the User, Domain, or Computer

Creating Shortcuts

Listing Shortcut Files

Summary

Chapter 12 Using Low-Level File Access

File Access Types

Working with Sequential Files

Reading Data Stored in Sequential Files

Reading a File Line by Line

Reading Characters from Sequential Files

Reading Delimited Text Files

Writing Data to Sequential Files

Using Write # and Print # Statements

Working with Random-Access Files

Working with Binary Files

Summary

PART III CONTROLLING OTHER APPLICATIONS WITH VBA

Chapter 13 Using Excel VBA to Interact with Other Applications

Launching Applications Using the Shell Function

Moving between Applications

Controlling Another Application with the SendKeys Statement

Using VBA to Work with Microsoft PowerShell

Other Methods of Controlling Applications

Understanding Automation

Understanding Linking and Embedding

COM and Automation

Understanding Binding

Late Binding

Early Binding

Establishing a Reference to a Type Library

Creating Automation Objects

Using the CreateObject Function

Using the GetObject Function

Opening an Existing Word Document

Using the New Keyword

Using Automation to Access Microsoft Outlook

Summary

Chapter 14 Using Excel with Microsoft Access

Object Libraries

Setting Up References to Object Libraries

Connecting to Access

Opening an Access Database

Using Automation to Connect to an Access Database

Using DAO to Connect to an Access Database

Using ADO to Connect to an Access Database

Performing Access Tasks from Excel

Creating a New Access Database with DAO

Opening an Access Form

Opening an Access Report

Creating a New Access Database with ADO

Running a Select Query

Running a Parameter Query

Calling an Access Function

Retrieving Access Data into an Excel Worksheet

Retrieving Data with the GetRows Method

Retrieving Data with the CopyFromRecordset Method

Retrieving Data with the TransferSpreadsheet Method

Using the OpenDatabase Method

Creating a Text File from Access Data

Creating a Query Table from Access Data

Creating an Embedded Chart from Access Data

Transferring the Excel Worksheet to an Access Database

Linking an Excel Worksheet to an Access Database

Importing an Excel Worksheet to an Access Database

Placing Excel Data in an Access Table

Summary

PART IV ENHANCING THE USER EXPERIENCE

Chapter 15 Event-Driven Programming

Introduction to Event Procedures

Writing Your First Event Procedure

Enabling and Disabling Events

Event Sequences

Worksheet Events

Worksheet_Activate()

Worksheet_Deactivate()

Worksheet_SelectionChange(ByVal Target As Range)

Worksheet_Change(ByVal Target As Range)

Worksheet_Calculate()

Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As Boolean)

Worksheet_BeforeRightClick(ByVal Target As Range, Cancel As Boolean)

Workbook Events

Workbook_Activate()

Workbook_Deactivate()

Workbook_Open()

Workbook_BeforeSave(ByVal SaveAsUI As Boolean, Cancel As Boolean)

Workbook_BeforePrint(Cancel As Boolean)

Workbook_BeforeClose(Cancel As Boolean)

Workbook_NewSheet(ByVal Sh As Object)

Workbook_WindowActivate(ByVal Wn As Window)

Workbook_WindowDeactivate(ByVal Wn As Window)

Workbook_WindowResize(ByVal Wn As Window)

PivotTable Events

Chart Events

Writing Event Procedures for a Chart Located on a Chart Sheet

Chart_Activate()

Chart_Deactivate()

Chart_Select(ByVal ElementID As Long, ByVal Arg1 As Long, ByVal Arg2 As Long)

Chart_Calculate()

Chart_BeforeRightClick()

Chart_MouseDown(ByVal Button As Long, ByVal Shift As Long, ByVal x As Long, ByVal y As Long)

Writing Event Procedures for Embedded Charts

Events Recognized by the Application Object

Query Table Events

Other Excel Events

OnTime Method

OnKey Method

Summary

Chapter 16 Using Dialog Boxes

Excel Dialog Boxes

File Open and File Save As Dialog Boxes

Filtering Files

Selecting Files

GetOpenFilename and GetSaveAsFilename Methods

Using the GetOpenFilename Method

Using the GetSaveAsFilename Method

Summary

Chapter 17 Creating Custom Forms

Creating Forms

Tools for Creating User Forms

Default Toolbox Controls

Placing Controls on a Form

Setting Grid Options

Sample Application: Info Survey

Setting Up the Custom Form

Inserting a New Form and Setting Up the Initial Properties

Changing the Size of the Form

Adding Buttons, Checkboxes, and Other Controls to a Form

Changing Control Names and Properties

Setting the Tab Order

Preparing a Worksheet to Store Custom Form Data

Displaying a Custom Form

Understanding Form and Control Events

Writing VBA Procedures to Respond to Form and Control Events

Writing a Procedure to Initialize the Form

Writing a Procedure to Populate the Listbox Control

Writing a Procedure to Control Option Buttons

Writing Procedures to Synchronize the Text Box with the Spin Button

Writing a Procedure that Closes the User Form

Transferring Form Data to the Worksheet

Using the Info Survey Application

UserForm: Modal versus Modeless

Summary

Chapter 18 Formatting Worksheets with VBA

Performing Basic Formatting Tasks with VBA

Formatting Numbers

Formatting Text

Formatting Dates

Formatting Columns and Rows

Formatting Headers and Footers

Formatting Cell Appearance

Removing Formatting from Cells and Ranges

Performing Advanced Formatting Tasks with VBA

Conditional Formatting Using VBA

Conditional Formatting Rule Precedence

Deleting Rules with VBA

Using Data Bars

Using Color Scales

Using Icon Sets

Formatting with Themes

Formatting with Shapes

Formatting with Sparklines

Understanding Sparkline Groups

Programming Sparklines with VBA

Formatting with Styles

Summary

Chapter 19 Context Menu Programming and Ribbon Customizations

Working with Context Menus

Modifying a Built-In Context Menu

Removing a Custom Item from a Context Menu

Disabling and Hiding Items on a Context Menu

Adding a Context Menu to a Command Button

Finding a FaceID Value of an Image

A Quick Overview of the Ribbon Interface

Ribbon Programming with VBA and XML

Creating the Ribbon Customization XML Markup

Loading Ribbon Customizations

Errors on Loading Ribbon Customizations

Using Images in Ribbon Customizations

About Tabs, Groups, and Controls

Using Various Controls in Ribbon Customizations

Creating Toggle Buttons

Creating Split Buttons, Menus, and Submenus

Creating Checkboxes

Creating Edit Boxes

Creating Combo Boxes and Drop-Downs

Creating a Gallery Control

Creating a Dialog Box Launcher

Disabling a Control

Repurposing a Built-In Control

Refreshing the Ribbon

The CommandBar Object and the Ribbon

Tab Activation and Group Auto-Scaling

Customizing the Backstage View

Customizing the Quick Access Toolbar (QAT)

Modifying Context Menus Using Ribbon Customizations

Summary

Chapter 20 Printing and Sending Email from Excel

Controlling the Page Setup

Controlling the Settings on the Page Layout Tab

Controlling the Settings on the Margins Tab

Controlling the Settings on the Header/Footer Tab

Controlling the Settings on the Sheet Tab

Retrieving Current Values from the Page Setup Dialog Box

Previewing a Worksheet

Changing the Active Printer

Printing a Worksheet with VBA

Disabling Printing and Print Previewing

Using Printing Events

Sending Email from Excel

Sending Email Using the SendMail Method

Sending Email Using the MsoEnvelope Object

Sending Bulk Email from Excel via Outlook

Summary

PART V EXCEL TOOLS FOR DATA ANALYSIS

Chapter 21 Using and Programming Excel Tables

Understanding Excel Tables

Creating a Table Using Built-in Commands

Creating a Table Using VBA

Understanding Column Headings in the Table

Multiple Tables in a Worksheet

Working with the Excel ListObject

Filtering Data in Excel Tables Using AutoFilter

Filtering Data in Excel Tables Using Slicers

Deleting Worksheet Tables

Summary

Chapter 22 Programming PivotTables and PivotCharts

Creating a PivotTable Report

Removing PivotTable Detail Worksheets with VBA

Creating a PivotTable Report with VBA

Creating a PivotTable Report from an Access Database

Using the CreatePivotTable Method of the PivotCache Object

Formatting, Grouping, and Sorting a PivotTable Report

Hiding Items in a PivotTable

Adding Calculated Fields and Items to a PivotTable

Creating a PivotChart Report Using VBA

Understanding and Using Slicers

Creating Slicers Manually

Working with Slicers Using VBA

Data Model Functionality and PivotTables

Programmatic Access to the Data Model

Summary

Chapter 23 Getting and Transforming Data in Excel

Using the Get Data Button

Understanding Power Queries

Step 1: Get Data from an Excel Workbook

Step 2: Adding, Renaming, and Moving a New Column

Step 3: Loading Data from a Text File

Step 4: Combining Data using Append Query

Step 5: Data Cleanup

Step 6: Shaping Data into Final Output

Using the Advanced Editor

Power Query vs Excel Formula Language and Excel VBA

Learning about various M Language Functions

Creating a Query from a Table

The Get Data and VBA Support

Additional Learning Resources for Using the Get Data Feature

Summary

PART VI TAKING CHARGE OF PROGRAMMING ENVIRONMENT

Chapter 24 Programming the Visual Basic Editor (VBE)

The Visual Basic Editor Object Model

Understanding the VBE Objects

Accessing the VBA Project

Finding Information about a VBA Project

VBA Project Protection

Working with Modules

Listing All Modules in a Workbook

Adding a Module to a Workbook

Removing a Module

Deleting All Code from a Module

Deleting Empty Modules

Copying (Exporting/Importing) a Module

Copying (Exporting/Importing) All Modules

Working with Procedures

Listing All Procedures in All Modules

Adding a Procedure

Deleting a Procedure

Creating an Event Procedure

Working with UserForms

Creating and Manipulating UserForms

Copying UserForms Programmatically

Working with References

Understanding Early Binding and Late Binding

Creating a List of References

Adding a Reference

Removing a Reference

Checking for Broken References

Working with Windows

Working with VBE Menus and Toolbars

Generating a Listing of VBE CommandBars and Controls

Adding a CommandBar Button to the VBE

Removing a CommandBar Button from the VBE

Summary

Chapter 25 Calling Windows API Functions from VBA

Understanding the Windows API Library Files

How to Declare a Windows API Function

Passing Arguments to the API Functions

Understanding the API Data Types and Constants

Integer

Long

String

Structure

Any

Using Constants with Windows API Functions

Excel 64-Bit and Windows API

Accessing Windows API Documentation

Using Windows API Functions in Excel

Summary

PART VII ADVANCED CONCEPTS IN EXCEL VBA

Chapter 26 Creating Classes in VBA

Important Terminology

Creating and Using Custom Objects

Member Variables in a Class Module

Defining the Properties for the Class

Writing Property Procedures

Writing Class Methods

Creating an Instance of a Class

Creating a Custom Application

Event Procedures in the Class Module

Creating a Form for Data Collection

Creating a Worksheet for Data Output

Writing Code behind the UserForm

Working with the Custom CEmployee Class

Watching the Execution of Your Custom Application

Summary

PART VIII WORKING TOGETHER: VBA, HTML, XML, AND THE REST API

Chapter 27 HTML Programming and Web Queries

Creating Hyperlinks Using VBA

Creating and Publishing HTML Files Using VBA

Web Queries

Creating and Running Web Queries with VBA

Dynamic Web Queries

Refreshing Data

Summary

Chapter 28 Using XML in Excel 2021

What Is XML?

Well-Formed XML Documents

Validating XML Documents

Editing and Viewing an XML Document

Opening an XML Document in Excel

Working with XML Maps

Working with XML Tables

Exporting an XML Table

XML Export Precautions

Validating XML Data

Programming XML Maps

Adding an XML Map to a Workbook

Deleting Existing XML Maps

Exporting and Importing Data via an XML Map

Binding an XML Map to an XML Data Source

Refreshing XML Tables from an XML Data Source

Viewing the XML Schema

Creating XML Schema Files

Using XML Events

The XML Document Object Model

Working with XML Document Nodes

Retrieving Information from Element Nodes

XML via ADO

Saving an ADO Recordset to Disk as XML

Loading an ADO Recordset

Saving an ADO Recordset into the DOMDocument60 Object

Understanding Namespaces

Understanding Open XML Files

Manipulating Open XML Files with VBA

Summary

Chapter 29 Excel and Rest API

Introduction to a VBA Dictionary Object

Accessing the VBA Dictionary

Adding a Reference to the Microsoft Scripting Runtime Library

Working with the Dictionary Object’s Properties and Methods

Dictionary versus Collection

Introduction to Regular Expressions

Character Matching in RegExp Patterns

Quantifiers in RegExp Patterns

Using the RegExp Object in VBA

The RegExp Object Declaration

The RegExp Object’s Properties

The RegExp Object’s Methods

Writing VBA procedures using the RegExp Object

Introduction to the REST API

Accessing REST APIs with VBA

Methods and Properties of the XMLHTTPRequest Object

Making a Basic GET Request

The Overview of JSON

Loading JSON Data into Excel

Parsing JSON with Third-Party Libraries

Summary

Index

Acknowledgments

First, I’d like to express my gratitude to everyone at Mercury Learning and Information. A sincere thank-you to my publisher, David Pallai, for offering me the opportunity to update this book to the new 2021 version and tirelessly keeping things on track during this long project.

A whole bunch of thanks go to the editorial team for working so hard to bring this book to print. In particular, I would like to thank the copyeditor for the thorough review of my writing, Jennifer Blaney, for her production expertise and keeping track of all the edits and file processing issues, and the compositor, for all the composition efforts that gave this book its pleasant look and feel.

Finally, I’d like to acknowledge readers like you who cared enough to post reviews of the previous edition of this book online. Your invaluable feedback has helped me improve the quality of this work by including the material that matters to you most. Please continue to inspire me with your ideas and suggestions.

Introduction

If you ever wanted to open a new worksheet without using built-in commands or create a custom, fully automated form to gather data and store the results in a worksheet, you’ve picked up the right book. This book shows you what’s doable with Microsoft® Excel® 2021 beyond the standard user interface. This book’s purpose is to teach you how to delegate many time-consuming and repetitive tasks to Excel by using its built-in language, VBA (Visual Basic for Applications). By executing special commands and statements and using several Excel’s built-in programming tools, you can work smarter than you ever thought possible. I will show you how.

When I first started programming in Excel (circa 1990), I was working in a sales department, and it was my job to calculate sales commissions and send the monthly and quarterly statements to our sales representatives spread all over the United States. As this was a very time-consuming and repetitive task, I became immensely interested in automating the whole process. In those days, it wasn’t easy to get started in programming on your own. There weren’t as many books written on the subject; all I had was the built-in documentation that was hard to read. Nevertheless, I succeeded; my first macro worked like magic. It automatically calculated our salespeople’s commissions and printed out nicely formatted statements. While the computer was busy performing the same tasks repeatedly, I was free to deal with other more interesting projects.

Many years have passed since that day, and Excel is still working like magic for me and a great number of other people who took time to familiarize themselves with its programming interface. If you’d like to join these people and have Excel do magical things for you as well, this book provides an easy step-by-step introduction to VBA and other technologies that work nicely with Microsoft Excel. Besides this book, there is no extra cost to you; all the tools you need are built into Excel. If you have not yet discovered them, Excel 2021 / Microsoft 365 Programming by Example will lead you through the process of creating your first macros, VBA procedures, web queries and power queries, and XML documents, from start to finish. Along the way, there are detailed, practical “how-to” examples and plenty of illustrations. The book’s approach is to learn by doing. There’s no better way than step by step. Simply turn on the computer, open this book, launch Microsoft Excel, and do all the guided Hands-On exercises. But before you get started, allow me to give you a short overview of the things you’ll be learning as you progress through this book.

Excel 2021 / Microsoft 365 Programming by Example is divided into 8 parts (29 chapters) that progressively introduce you to programming Microsoft Excel 2021 as well as controlling other applications with Excel.

Part I introduces you to Visual Basic for Applications (VBA), the programming language for Microsoft Excel. In this part of the book, you acquire the fundamentals of VBA that you will use over and over again in building real-life spreadsheet applications. Part I chapters are also the subject of a standalone book “Microsoft Excel 2021 Programming Pocket Primer,” available from Mercury Learning and Information (ISBN: 978-1-68392-892-8). If you already worked through the pocket primer book, you could skip chapters 1-9 and begin from Chapter 10.

PART I CONSISTS OF THE FOLLOWING NINE CHAPTERS:

Chapter 1—Excel Macros: A Quick Start in Excel VBA Programming

In this chapter, you learn how you can introduce automation into your Excel worksheets by simply using the built-in macro recorder. You learn about different phases of macro design and execution. You also learn about macro security.

Chapter 2—Excel Programming Environment: A Quick Overview of Its Tools and Features

In this chapter, you learn almost everything you need to know about working with the Visual Basic Editor window, commonly referred to as VBE. Some of the programming tools that are not covered here are discussed and used in Chapter 9.

Chapter 3—Excel VBA Fundamentals: A Quick Reference to Writing VBA Code

In this chapter, you are introduced to the basic VBA concepts, such as Microsoft Excel object model and its objects, properties, and methods. You also learn concepts that allow you to store various pieces of information for later use.

Chapter 4—Excel VBA Procedures: A Quick Guide to Writing Function Procedures

In this chapter, you learn how to write and execute function procedures. You also learn how to provide additional information to your procedures before they are run. You are introduced to working with some useful built-in functions and methods that allow you to interact with your VBA procedure users.

Chapter 5—Adding Decisions to Excel VBA Programs: A Quick Introduction to Conditional Statements

In this chapter, you learn how to control your program flow with several different decision-making statements.

Chapter 6—Adding Repeating Actions to Excel VBA Programs: A Quick Introduction to Looping Statements

In this chapter, you learn how you can repeat certain groups of statements using procedure loops.

Chapter 7—Storing Multiple Values in Excel VBA Programs: A Quick Introduction to Working with Arrays

In this chapter, you learn the concept of static and dynamic arrays, which you can use for holding various values. You also learn about built-in array functions.

Chapter 8—Keeping Track of Multiple Values in Excel VBA Programs: A Quick Introduction to Creating and Using Collections

In this chapter, you learn how to use your custom collection object to track and manipulate data in your VBA procedures.

Chapter 9—Excel Tools for Testing and Debugging: A Quick Introduction to Testing VBA Programs

In this chapter, you begin using built-in debugging tools to test your programming code and trap errors.

The above nine chapters will give you the fundamental techniques and concepts you will need to continue your Excel VBA learning path. The skills obtained in Excel VBA Primer are very portable. They can be utilized in programming other Microsoft 365 applications that also use VBA as their native programming language such as Access, Word, PowerPoint, Outlook, and others.

While VBA offers numerous built-in functions and statements for working with the file system, you can also perform file and folder manipulation tasks via objects and methods included in the Windows Script Host installed by default on computers running the Windows operating system. Additionally, you can open and manipulate files directly via the low-level file I/O (input/output) functions. In Part II of this book, you discover various methods of working with files and folders, and learn how to programmatically open, read, and write three types of files.

PART II CONSISTS OF THE FOLLOWING THREE CHAPTERS:

Chapter 10—File and Folder Manipulation with VBA

In this chapter, you learn about numerous VBA statements used in working with Windows files and folders.

Chapter 11—File and Folder Manipulation with Windows Script Host (WSH)

In this chapter, you learn how the Windows Script Host works together with VBA and allows you to get information about files and folders.

Chapter 12—Using Low-Level File Access

In this chapter, you learn how to get in direct contact with your data by using the process known as low-level file I/O. You also learn about various types of file access.

The VBA programming language goes beyond Excel. It can be used to program any application that supports this language. In Part III of the book, you learn how other applications expose their objects to VBA.

PART III CONSISTS OF THE FOLLOWING TWO CHAPTERS:

Chapter 13—Using Excel VBA to Interact with Other Applications

In this chapter, you learn how you can launch and control other applications from within VBA procedures written in Excel. You also learn how to establish a reference to a Type library and use and create Automation objects.

Chapter 14—Using Excel with Microsoft Access

In this chapter, you learn about accessing Microsoft Access data and running Access queries and functions from VBA procedures. If you are interested in learning more about Access programming with VBA using the same step-by-step approach as presented in this book, I recommend another book of mine titled Access 2021/Microsoft 365 Programming by Example (Mercury Information and Learning, 2022).

In Part IV of this book, you learn how to create desired interface elements for your users via Ribbon customizations and the creation of dialog boxes and custom forms. You will also learn how to format worksheets with VBA, handle printing and email tasks, and control Excel with event-driven programming.

PART IV CONSISTS OF THE FOLLOWING SIX CHAPTERS:

Chapter 15—Event-Driven Programming

In this chapter, you learn about the types of events that can occur when you are running VBA procedures in Excel. You gain a working knowledge of writing event procedures and handling various types of events.

Chapter 16—Using Dialog Boxes

In this chapter, you learn about working with Excel built-in dialog boxes programmatically.

Chapter 17—Creating Custom Forms

In this chapter, you learn how to use various controls for designing user-friendly forms. This chapter has a hands-on application you build from scratch.

Chapter 18—Formatting Worksheets with VBA

In this chapter, you learn how to perform worksheet formatting tasks with VBA by applying visual features such as data bars, color scales, and icon sets. You also learn how to produce consistent-looking worksheets by using document themes and styles.

Chapter 19—Context Menu Programming and Ribbon Customizations

In this chapter, you learn how to add custom options to Excel built-in context (shortcut) menus and how to work programmatically with the Ribbon interface and Backstage View.

Chapter 20—Printing and Sending Email from Excel

In this chapter, you learn how to control printing and emailing your workbooks via VBA code.

Some Excel 2021 features are used more frequently than others; some are only used by Excel power users and developers. In Part V of the book, you work with Excel tools for data analysis. You gain experience in programming advanced Excel features such as Excel tables, PivotTables, PivotCharts, and get introduced to the Power Query feature that allows you to create powerful queries that simplify data import and transformation.

PART V CONSISTS OF THE FOLLOWING THREE CHAPTERS:

Chapter 21—Using and Programming Excel Tables

In this chapter, you learn how to work with Excel tables. You will learn how to retrieve information from an Access database, convert it into a table, and enjoy database-like functionality in the spreadsheet. You will also learn how tables are exposed through Excel’s object model and manipulated via VBA.

Chapter 22—Programming PivotTables and PivotCharts

In this chapter, you learn how to work with two powerful Microsoft Excel objects that are used for data analysis: PivotTable and PivotChart. You will learn how to use VBA to manipulate these two objects to quickly produce reports that allow you or your users to easily examine large amounts of data pulled from an Excel worksheet range or from an external data source such as an Access database.

Chapter 23—Getting and Transforming Data in Excel 2021

In this chapter, you are introduced to data import, transformation and shaping features available in the Get & Transform section of the Excel’s 2021 Data tab. You work with Query Editor and Advanced Editor and learn formulas and functions written in the M expression language while bringing together data from various sources.

While VBA provides a very comprehensive Object Model for automating worksheet tasks, some of the processes and operations that you may need to program are an integral part of the Windows operating system and cannot be controlled via VBA. In Part VI of the book, you start by learning how to programmatically work with VBA projects, modules, and procedures. Next, you are introduced to the Windows API library of functions that will come to your rescue when you need to overcome the limitations of the native VBA library.

PART VI CONSISTS OF THE FOLLOWING TWO CHAPTERS:

Chapter 24—Programming the Visual Basic Editor (VBE)

In this chapter, you learn how to use numerous objects, properties, and methods from the Microsoft Visual Basic for Applications Extensibility Object Library to control the Visual Basic Editor to gain full control over Excel.

Chapter 25—Calling Windows API functions from Excel VBA

In this chapter, you are introduced to the Windows API library. After learning basic Windows API concepts, you are shown how to declare and utilize API functions from VBA.

As your Excel VBA procedures become more complex, you may find that your code is scattered all over the place and is difficult to maintain. Copying code from place to place and modifying procedures to include more arguments and enhancements because of the changing requirements sooner or later will result in creating a coding mess that is difficult to handle. Before you go this route, you should know that Excel has a special feature known as a class module that allows you to create code that is self-contained and reusable.

PART VII CONSISTS OF THE FOLLOWING CHAPTER:

Chapter 26—Creating Classes in VBA

In this chapter, you will learn how coding in a standalone class module can help you organize your code into more manageable objects that can easily be reused and adjusted when necessary. Here you learn about creating and using custom objects, declaring class members, defining class properties, and writing property procedures and class methods. You also learn how to use event procedures in a class module. These advanced topics are covered in custom application that you will build from scratch.

Thanks to the Internet and intranets, your worksheet data can be easily accessed and shared with others 24/7. Excel is capable of both capturing data from the Web and publishing it to the Web.

In Part VIII of the book, you are introduced to using Excel VBA with HTML (the Hypertext Markup Language), XML (the Extensible Markup Language), and calling a new type of a Web service, known as the REST API.

PART VIII CONSISTS OF THE FOLLOWING THREE CHAPTERS:

Chapter 27—HTML Programming and Web Queries

In this chapter, you learn how to create hyperlinks and publish HTML files using VBA. You also learn how to activate and work with one of Excel legacy features known as a Web query.

Chapter 28—Using XML in Excel 2021

In this chapter, you learn how to use Extensible Markup Language with Excel. You learn about enhanced XML support in Excel 2021 and many objects and technologies that are used to process XML documents.

Chapter 29—Excel and REST API

In this chapter, you explore several external libraries that will help you build more advanced VBA applications. You learn about a Dictionary object and how it compares to the native VBA Collection object. You learn about regular expressions and how to use them to extract data. Finally, you are introduced to the JSON format and learn the basics of making HTTP GET requests to pull data from a RESTful web service.

INTENDED AUDIENCE

This book is designed for Excel users who want to expand their knowledge and learn what can be accomplished with Excel beyond the provided user interface.

Consider this book as a sort of private course that you can attend in the comfort of your office or home. Some courses have prerequisites, and this is no exception. Excel 2021 / Microsoft 365 Programming by Example does not explain how to select options from the Ribbon or use shortcut keys. The book assumes that you can easily locate in Excel the options that are required to perform any of the tasks already preprogrammed by the Microsoft team. With the basics already mastered, this book will take you to the next learning level where your custom requirements and logic are rendered into the language that Excel can understand. Let your worksheets perform magical things for you and let the fun begin.

THE COMPANION FILES

The example files for all the hands-on activities in this book are available in the companion files. These companion files may also be downloaded by contacting the publisher at info@merclearning.com. Digital versions of this title are available at academiccourseware.com and numerous other digital vendors.

Part I

Excel VBA Primer

The Excel VBA Primer is divided into nine chapters that progressively introduce you to programming Microsoft Excel using the 2021 version of the product. These chapters present the fundamental techniques and concepts that you need to master before you can take further steps in Excel programming.

	
	

	Chapter 1
	Excel Macros

—A Quick Start in Excel VBA Programming

	Chapter 2
	Excel Programming Environment

—A Quick Overview of its Tools and Features

	Chapter 3
	Excel VBA Fundamentals

—A Quick Reference to Writing VBA Code

	Chapter 4
	Excel VBA Procedures

—A Quick Guide to Writing Function Procedures

	Chapter 5
	Adding Decisions to Excel VBA Programs

—A Quick Introduction to Conditional Statements

	Chapter 6
	Adding Repeating Actions to Excel VBA Programs

—A Quick Introduction to Looping Statements

	Chapter 7
	Storing Multiple Values in Excel VBA Statements

—A Quick Introduction to Working with Arrays

	Chapter 8
	Keeping Track of Multiple Values in Excel VBA Programs

—A Quick Introduction to Creating and Using Collections

	Chapter 9
	Excel Tools for Testing in Debugging

—A Quick Introduction to Testing VBA Programs

Chapter 1

Excel Macros

A Quick Start in Excel VBA Programming

Visual Basic for Applications (VBA) is the programming language built into all Microsoft® Office® applications, including Microsoft Excel®. By learning some basic VBA commands, you can start automating many of the mundane routine tasks that you perform in Excel. In this chapter, you acquire the fundamentals of VBA by recording macros and using the Visual Basic Editor to examine and edit the VBA code behind the recorded macro.

MACROS AND VBA

Macros are programs that store a series of commands. When you create a macro, you simply combine a sequence of keystrokes into a single command that you can later “play back.” Because macros can reduce the number of steps required to complete tasks, using macros can significantly decrease the time you spend creating, formatting, modifying, and printing your Excel worksheets. You can create macros by using Microsoft Excel’s built-in recording tool (Macro Recorder), or you can write them from scratch using Visual Basic Editor, a special development environment built into Excel. You can combine recorded macros with your own programming code to create unique VBA applications that meet your everyday needs. Whether you write or record your programming code in Excel, you’ll be utilizing the powerful programming language—Visual Basic for Applications—commonly known as VBA.

Microsoft Excel comes with dozens of built-in, time-saving features that allow you to work faster and smarter. Before you decide to automate a worksheet task with a recorded macro or programming code written from scratch, make sure there is not already a built-in feature that you can use to perform that task. Consider writing your own VBA code or recording a macro when you find yourself performing the same series of actions multiple times or when Excel does not provide a built-in tool to do the job.

Just by learning how to handle Excel’s macro recorder and use basic VBA statements and constructs to enhance your macros, you’ll be able to automate any part of your worksheet. For example, you can automate data entry by recording a macro that enters headings in a worksheet or replaces column titles with new labels. Adding a little bit of conditional logic to your VBA code will allow you to automatically check for duplicate entries in a specified range of your worksheet. With a macro, you can quickly apply formatting to several worksheets, as well as combine different formats, such as fonts, colors, borders, and shading. Macros will save you keystrokes when it comes to setting print areas, margins, headers, and footers, and selecting special options for printouts.

Excel Macro-Enabled File Formats

When a workbook contains programming code, it should be saved in one of the following macro-enabled file formats:

	Excel Macro-Enabled Workbook (.xlsm)

	Excel Binary Workbook (.xlsb)

	Excel Macro-Enabled Template (.xltm)

If you attempt to save the workbook in a file format that is incompatible with the type of content it includes, Excel will warn you with a message as shown in Figure 1.1.

[image: Image]

FIGURE 1.1 When a workbook contains programming code, you must save it in a macro-enabled file type instead of a regular .XLSX workbook file.

Macro Security Settings

Because macros can contain malicious code designed to put a virus on a user’s computer, it is important to understand different security settings that are available in Excel. It is also critical that you run up-to-date antivirus software on your computer. Antivirus software installed on your computer will scan the workbook file you are attempting to open if the file contains macros. The default macro security setting is to disable all macros with notification, as shown in Figure 1.2.

[image: Image]

FIGURE 1.2 The Macro Settings options in the Trust Center allow you to control how Excel should deal with macros when they are present in an open workbook. To open Trust Center’s Macro Settings, choose File | Options | Trust Center | Trust Center Settings and click the Macro Settings link.

NOTE

VBA macros are the macros you create using the Excel builtin language – VBA. You will be working with these macros throughout this book. Excel 4.0 macros are legacy Excel macros. Introduced in 1992, they are commonly referred to as XLM 4.0 macros. They are still in Excel for backward compatibility reasons. Using these macros is discouraged as they can hide malicious code in Excel formulas.

If VBA macros are present in a workbook you are trying to open, you will receive a security warning message just under the Ribbon, as shown in Figure 1.3.

[image: Image]

FIGURE 1.3 Upon opening a workbook with VBA macros, Excel brings up a security warning message.

To use the disabled components, you should click the Enable Content button on the message bar. This will add the workbook to the Trusted Documents list in your registry. The next time you open this workbook you will not be alerted to macros. If you need more information before enabling content, you can click the message text displayed in the security message bar to activate the Backstage View, where you will find an explanation of the active content that has been disabled, as shown in Figure 1.4. Clicking the Enable Content button in the Backstage View presents two options:

	Enable All Content

This option provides the same functionality as the Enable Content button in the security message bar. This will enable all the content and make it a trusted document.

	Advanced Options

This option brings up the Microsoft Office Security Options dialog shown in Figure 1.5. This dialog provides options for enabling content for the current session only.

[image: Image]

FIGURE 1.4 The Backstage View in Excel.

[image: Image]

FIGURE 1.5 Disabled macros can be enabled for the current session in the Microsoft Office Security Options dialog.

ENABLING THE DEVELOPER TAB IN EXCEL

To make it easy to work with macro-enabled workbooks while working with this book’s exercises, you will permanently trust your workbooks with recorded macros or VBA code by placing them in a folder on your local drive that you mark as trusted. Notice the Open the Trust Center hyperlink shown in Figure 1.5. This hyperlink will open the Trust Center dialog where you can set up a trusted folder. You can also activate the Trust Center by selecting File | Options.

Let’s take a few minutes now to set up your Excel application so you can run VBA macros on your computer without security prompts.

NOTE

Please note files for the “Hands-On” project may be found in the companion files.

[image: Image]Hands-On 1.1 Setting Up Excel for Macro Development

	Create a folder on your hard drive named C:\VBAPrimerExcel2021_ByExample.

	Launch Excel and open a blank workbook.

	Choose File | Options.

	In the Excel Options dialog, click Customize Ribbon. In the Main Tabs listing on the right-hand side, select Developer as illustrated in Figure 1.6 and click OK. The Developer tab should now be visible in the Ribbon.

	In the Code group of the Developer tab on the Ribbon, click the Macro Security button, as shown in Figure 1.7. The Trust Center dialog appears as depicted in Figure 1.2.

	In the left pane of the Trust Center dialog, click Trusted Locations.

The Trusted Locations dialog already shows several predefined trusted locations that were created when you installed Excel. For this book, we will add a custom location to this list.

	Click the Add new location button.

	In the Path text box, type the name of the folder you created in Step 1 of this Hands-On as shown in Figure 1.8.

	Click OK to close the Microsoft Office Trusted Location dialog.

	Notice that the Trusted Locations list in the Trust Center now includes the C:\VBAPrimerExcel2021_ByExample folder as a trusted location. Files placed in a trusted location can be opened without being checked by the Trust Center security feature.

	Click OK to close the Trust Center dialog box.

Your Excel application is now set up for easy macro development as well as opening files containing macros. You should save all the files created in the book’s Hands-On exercises into your trusted C:\VBAPrimerExcel2021_ByExample folder.

[image: Image]

FIGURE 1.6 To enable the Developer tab on the Ribbon, use the Excel Options dialog and select Customize Ribbon.

[image: Image]

FIGURE 1.7 Use the Macro Security button in the Code group on the Developer tab to customize the macro security settings.

[image: Image]

FIGURE 1.8 Designating a Trusted Location folder for this book’s programming examples.

USING THE BUILT-IN MACRO RECORDER

In this section, we will go through the process of recording several short macros that perform data entry and formatting tasks in an Excel worksheet. You will learn how to plan your macros, record your keystrokes, edit, and improve your recorded macro code, run your macros, and learn basic troubleshooting techniques that will get you back on track in case you encounter errors while running your macros. You will also learn how to save your macros, rename them, combine them, and print them.

Planning a Macro

Before you create a macro, take a few minutes to consider what you want to do. The easiest way to plan your macro is to manually perform all the actions that the macro needs to do. As you enter the keystrokes, write them down on a piece of paper exactly as they occur. Don’t leave anything out. Like a voice recorder, Excel’s macro recorder records every action you perform. If you do not plan your macro prior to recording, you may end up with unnecessary actions that will not only slow it down but also require more editing later to make it work as intended. Although it’s easier to edit a macro than it is to erase unwanted passages from a voice recording, performing only the actions you want recorded will save you editing time and trouble later.

Suppose you are asked to programmatically create the worksheet depicted in Figure 1.9. No worries. Getting started is very easy with the macro recorder. Let’s begin by identifying the tasks required to complete this worksheet.

	
	

	Task 1
	Insert a new sheet into a workbook and name it Employee Wages.

	Task 2
	Enter column headings into first row of the worksheet and apply required formatting (column size, font styles).

	Task 3
	Enter employee data (Full Name, Hourly Rate, Hours Worked).

	Tasks 4 and 5
	Enter formulas to fill in the employee First and Last Name columns.

	Task 6
	Enter formulas to calculate employee total wages.

	Task 7
	Apply formatting to the completed worksheet.

Instead of recording one macro to complete your assignment, you will create a separate macro for each task. This approach will give you a chance to learn how to combine code from several simpler macros and how to create a master macro. Let’s get started.

[image: Image]

FIGURE 1.9 A sample worksheet to be created and formatted with the help of the Excel built-in macro recorder.

[image: Image]Hands-On 1.2 Getting Things Ready for Macro Recording

	Open a new workbook and save it as Chap01_ExcelPrimer.xlsm in your trusted VBAPrimerExcel2021_ByExample folder. You must save the file in the macro-enabled file format (.xlsm) to allow for storing macros. Keep this file open as you will use it to record all the macros in this chapter.

Recording a Macro

Before you record a macro, you need to decide whether you want to record the positioning of the active cell. If you want the macro to always start in a specific location on the worksheet, turn on the macro recorder first and then select the cell you want to start in. If the location of the active cell does not matter, select a single cell first and then turn on the macro recorder.

[image: Image]Hands-On 1.3 Inserting and Naming a Worksheet (Macro Task 1)

	Choose Developer | Record Macro.

	In the Record Macro dialog box, enter the name Insert_NewSheet for the macro, as shown in Figure 1.10. Do not dismiss this dialog box until you are instructed to do so.

[image: Image] Macro Names

If you forget to enter a name for the macro, Excel assigns a default name, such as Macro1, Macro2, and so on. Macro names can contain letters, numbers, and the underscore character, but the first character must be a letter. For example, Report1 is a correct macro name, while 1Report is not. Spaces are not allowed. If you want a space between the words, use the underscore.

	Select This Workbook in the Store macro in list box.

[image: Image] Storing Macros

Excel allows you to store macros in three locations:

	Personal Macro Workbook—Macros stored in this location will be available each time you work with Excel. You can find the Personal Macro Workbook in the XLStart folder. If this workbook doesn’t already exist, Excel creates it the first time you select this option.

	New Workbook—Excel will place the macro in a new workbook.

	This Workbook—The macro will be stored in the workbook you are currently using.

[image: Image]

FIGURE 1.10 When you record a new macro, you must name it. In the Record Macro dialog box, you can also supply a shortcut key, a storage location, and a description for your macro.

	In the Description box, enter the following text: Insert and rename a worksheet.

	Choose OK to close the Record Macro dialog box.

The Stop Recording button shown in Figure 1.11 appears in the status bar. Do not click this button until you are instructed to do so. When this button appears in the status bar, the workbook is in the recording mode.

[image: Image]

FIGURE 1.11 The Stop Recording button in the status bar indicates that the macro recording mode is active.

The Stop Recording button remains in the status bar while you record your macro. Only the actions finalized by pressing Enter or clicking OK are recorded. If you press the Esc key or click Cancel before completing the entry, the macro recorder does not record that action.

	Add a new sheet to the current workbook. You can do this by either right clicking the Sheet1 tab and choosing Insert | Worksheet | OK, or simply clicking the plus button to the right of the Sheet1 tab.

	Rename the new sheet Employee Wages.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording. When you stop the macro recorder, the status bar displays a button that allows you to record another macro (see Figure 1.12).

[image: Image]

FIGURE 1.12 Excel status bar with the macro recording button turned off.

You have now recorded your first macro. Excel has written all the necessary statements to execute the actions you performed. Let’s continue recording all the remaining actions to complete the tasks that we defined earlier. After that you will have a chance to review the recorded macro code and try out your macros.

[image: Image]Hands-On 1.4 Inserting Column Headings and Applying Formatting (Macro Task 2)

	Choose View | Macros | Record Macro (or you may click the Begin recording button located in the status bar).

	Enter Insert_Headings as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Select cell A1 and enter the first heading: Employee Name.

	Move to cell B1 and enter: First Name.

	Enter the remaining headings in cells C1: F1 (Last Name, Hourly Rate, Hours Worked, Total Wages).

	Select A1:F1 and apply the bold formatting to the selection by pressing the B button in the Font group of the Ribbon’s Home tab.

	With the range A1:F1 still selected, choose Home | Cells | Format | Autofit Column Width.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.

	You have just recorded your second macro. The Employee Wages worksheet should now have the required headings in Row 1.

[image: Image] Using Relative or Absolute References in Macros

The Excel macro recorder can record your actions using absolute or relative cell references (see Figure 1.13).

	To have your macro execute the recorded action in a specific cell, no matter what cell is selected during the execution of the macro, use absolute cell addressing. Absolute cell references have the following form: A1, C5, etc. By default, the Excel macro recorder uses absolute references. Before you begin to record a new macro, make sure the Use Relative References option is not selected when you click the Macros button as shown in Figure 1.13.

	To have your macro perform the action in any cell, be sure to select the Use Relative References option before you choose the Record Macro option. Relative cell references have the following form: A1, C5, etc. The Excel macro recorder will continue to use relative cell references until you exit Microsoft Excel or click the Use Relative References option again.

	During the process of recording your macro, you may use both methods of cell addressing. For example, you may select a specific cell (e.g., A4), perform an action, and then choose another cell relative to the selected cell (e.g., C9, which is located five rows down and two columns to the right of the currently active cell A4). Relative references automatically adjust when you copy them, and absolute references don’t.

[image: Image]

FIGURE 1.13 Excel macro recorder can record your actions using absolute or relative cell references. To make your selection, use the Macros drop-down on the Ribbon’s View tab.

[image: Image]Hands-On 1.5 Entering Employee Data (Macro Task 3)

	Choose View | Macros | Record Macro (or you may click the Begin recording button located in the status bar).

	Enter Insert_EmployeeData as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Enter employee data in columns A, D, and E as shown in Figure 1.9.

Leave the First Name, Last Name, and Total Wages columns blank as they will be filled in later.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.

You have just recorded the third macro. The static data entry has been completed. We will now proceed to record macros that use formulas to fill the remaining columns of the worksheet.

[image: Image]Hands-On 1.6 Entering Formulas to Fill in Employee First Name (Macro Task 4)

	Choose View | Macros | Record Macro (or you may click the Begin recording button, located in the status bar).

	Enter Get_FirstName as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Enter the following formula in cell B2:

=LEFT(A2,FIND(" ", A2)-1)

	Copy the formula down to cells B3:B7 by dragging the selection handle in the bottom right corner of cell B2.

Excel fills in the first names of all employees.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.

You have just recorded a macro that makes use of a formula to retrieve employee first names from their full name. The next macro will populate the last name column using another formula.

[image: Image]Hands-On 1.7 Entering Formulas to Fill in Employee Last Name (Macro Task 5)

	Choose View | Macros | Record Macro (or you may click the Begin recording button located in the status bar).

	Enter Get_LastName as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Enter the following formula in cell C2:

=RIGHT(A2,LEN(A2)-FIND(" ", A2))

	Copy the formula down to cells C3:C7 by dragging the selection handle in the bottom right corner of cell C2.

Excel fills in the last names of all employees.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.

You have just recorded a macro that makes use of a formula to retrieve employee last names from their full name. We have one more column to fill in before we can apply the final formatting to this worksheet.

[image: Image]Hands-On 1.8 Entering Formulas to Calculate Employee Total Wages (Macro Task 6)

	Choose View | Macros | Record Macro (or you may click the Begin recording button located in the status bar).

	Enter CalculateWages as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Select cells F2:F7 and type the formula shown here. Press Ctrl+Enter to ensure that formula is entered into the selected range F2:F7.

=D2*E2

	Apply Currency format to cells F2:F7.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.

In the next macro you will complete the worksheet by applying desired formatting.

[image: Image]Hands-On 1.9 Applying Table Format (Macro Task 7)

	Choose View | Macros | Record Macro (or you may click the Begin recording button located in the status bar).

	Enter FormatTable as the name for your macro.

	Ensure that This Workbook is selected in the Store macro in list box.

	Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are being recorded.

	Select all data in the Employee Wages worksheet and choose Home | Styles | Format as a Table. Select any of the predefined table styles from the dropdown.

	Select cell A1.

	Click the Stop Recording button in the status bar as shown in Figure 1.11 or choose View | Macros | Stop Recording.

You have now completed recording a set of macros that create and format a worksheet. Now that Excel has given us some code to work with, let’s locate and examine it.

Editing Recorded Macros

Before you can modify your macro, you must find the location where the macro recorder placed its code. As you recall, when you turned on the macro recorder, you selected ThisWorkbook for the location. To find the location of your macros, you will use the Macro dialog box as instructed in Hands-On 1.10.

[image: Image]Hands-On 1.10 Examining the Macro Code

	Choose View | Macros | View Macros.

You should see all seven macros you recorded earlier (see Figure 1.14).

[image: Image]

FIGURE 1.14 In the Macro dialog box, you can select a macro to run, debug (Step Into), edit, or delete. You can also set macro options.

	Select the Insert_NewSheet macro name and click the Edit button.

Excel opens a special window called Visual Basic Editor (also known as VBE), as shown in Figure 1.15. This window is your VBA programming environment. Using the keyboard shortcut Alt+F11, you can quickly switch between the Microsoft Excel application window and the Visual Basic Editor window. Now take a moment and try switching between both windows. When you are done, ensure that you are back in the VBE window.

	Close the Visual Basic Editor window by using the key combination Alt+Q or choosing File | Close and Return to Microsoft Excel.

Don’t worry if the Visual Basic Editor window seems a bit confusing right now. As you work with the recorded macros and start writing your own VBA procedures from scratch, you will become familiar with all the elements of this screen.

	In the Microsoft Excel application window, choose Developer | Visual Basic to switch again to the programming environment.

[image: Image]

FIGURE 1.15 The Visual Basic Editor window is used for editing macros as well as writing new procedures in the Visual Basic for Applications language.

Notice the menu bar and toolbar in the Visual Basic Editor window look different than those in the Microsoft Excel window. As you can see, there is no Ribbon interface. The Visual Basic Editor uses the old Excel style menu bar and toolbar, which provide tools required for programming and testing your recorded macros as well as VBA procedures that you can write from scratch. As you work through the individual chapters of this book, you will feel very comfortable in using these tools.

The main part of the Visual Basic Editor window is a docking surface for various windows that you will find extremely useful while creating and testing your VBA procedures.

In Figure 1.15, you can see three windows that are docked in the Visual Basic Editor window: the Project Explorer window, the Properties window, and the Code window.

The Project Explorer window that appears in the left panel, shows an open Modules folder. Excel records your macro actions in special worksheets called Module1, Module2, and so on. These modules are stored in the Modules folder. Later in this book, you will also use modules to write the code of your own VBA procedures from scratch. A module resembles a blank document in Microsoft Word.

The Properties window displays the properties of the object that is currently selected in the Project Explorer window. In Figure 1.15, the Module1 object is selected in the Project VBAProject window, and therefore the Properties Module1 window displays the properties of Module1. Notice that the only available property for the module is the Name property. You can use this property to change the name of Module1 to a more meaningful name.

[image: Image] Macro or Procedure?

A macro is a series of commands or functions recorded with the help of a builtin macro recorder or entered manually in a Visual Basic module. The term “macro” is often replaced with the broader term “procedure.” Although the words can be used interchangeably, many programmers prefer “procedure.” While macros allow you to mimic keyboard actions, true procedures can also execute actions that cannot be performed using the mouse, keyboard, or menu options. In other words, procedures are more complex macros that incorporate language structures found in the traditional programming languages. You will learn about these structures later in this book.

The Module1 (Code) window displays the code of all macros you recorded earlier. Note that the following code may not exactly match the code in your Code window. Excel records all actions while the recorder is on, so you may see more, or fewer statements recorded.

Sub Insert_NewSheet()

'

' Insert_NewSheet Macro

' Insert and rename a worksheet

'

'

 Sheets.Add After:=ActiveSheet

 Sheets("Sheet2").Select

 Sheets("Sheet2").Name = "Employee Wages"

End Sub

Sub Insert_Headings()

'

' Insert_Headings Macro

'

'

 Range("A1").Select

 ActiveCell.FormulaR1C1 = "Employee Name"

 Range("B1").Select

 ActiveCell.FormulaR1C1 = "First Name"

 Range("C1").Select

 ActiveCell.FormulaR1C1 = "Last Name"

 Range("D1").Select

 ActiveCell.FormulaR1C1 = "Hourly Rate"

 Range("E1").Select

 ActiveCell.FormulaR1C1 = "Hours Worked"

 Range("F1").Select

 ActiveCell.FormulaR1C1 = "Total Wages"

 Range("A1:F1").Select

 Selection.Font.Bold = True

 Selection.Columns.AutoFit

End Sub

Sub Insert_EmployeeData()

'

' Insert_EmployeeData Macro

'

'

 Range("A2").Select

 ActiveCell.FormulaR1C1 = "James Rogers"

 Range("D2").Select

 ActiveCell.FormulaR1C1 = "15"

 Range("E2").Select

 ActiveCell.FormulaR1C1 = "7"

 Range("A3").Select

 ActiveCell.FormulaR1C1 = "Martha Lambert"

 Range("D3").Select

 ActiveCell.FormulaR1C1 = "13.4"

 Range("E3").Select

 ActiveCell.FormulaR1C1 = "6"

 Range("A4").Select

 ActiveCell.FormulaR1C1 = "Eugene Zelnik"

 Range("D4").Select

 ActiveCell.FormulaR1C1 = "21.42"

 Range("E4").Select

 ActiveCell.FormulaR1C1 = "10"

 Range("A5").Select

 ActiveCell.FormulaR1C1 = "Enrique Martinez"

 Range("D5").Select

 ActiveCell.FormulaR1C1 = "16.5"

 Range("E5").Select

 ActiveCell.FormulaR1C1 = "11"

 Range("A6").Select

 ActiveCell.FormulaR1C1 = "Wanda Pasterniak"

 Range("D6").Select

 ActiveCell.FormulaR1C1 = "35"

 Range("E6").Select

 ActiveCell.FormulaR1C1 = "21"

 Range("A7").Select

 ActiveCell.FormulaR1C1 = "Bruce Smith"

 Range("D7").Select

 ActiveCell.FormulaR1C1 = "28.33"

 Range("E7").Select

 ActiveCell.FormulaR1C1 = "14"

 Range("A8").Select

End Sub

Sub Get_FirstName()

'

' Get_FirstName Macro

'

'

 Range("B2").Select

 ActiveCell.FormulaR1C1 = "=LEFT(RC[-1],FIND("" "", RC[-1])-1)"

 Range("B2").Select

 Selection.Copy

 Range("B3:B7").Select

 ActiveSheet.Paste

 Application.CutCopyMode = False

End Sub

Sub Get_LastName()

'

' Get_LastName Macro

'

'

 Range("C2").Select

 ActiveCell.FormulaR1C1 = "=RIGHT(RC[-2], LEN(RC[-2])-FIND("" "", RC[-2]))"

 Range("C2").Select

 Selection.Copy

 Range("C3:C7").Select

 ActiveSheet.Paste

 Application.CutCopyMode = False

End Sub

Sub CalculateWages()

'

' CalculateWages Macro

'

'

 Range("F2").Select

 Application.CutCopyMode = False

 ActiveCell.FormulaR1C1 = "=RC[-2]*RC[-1]"

 Range("F2").Select

 Selection.AutoFill Destination:=Range("F2:F7"),

 Type:=xlFillDefault

 Range("F2:F7").Select

 Selection.NumberFormat = "$#,##0.00"

End Sub

Sub FormatTable()

'

' FormatTable Macro

'

'

 Range("A1:F7").Select

 Application.CutCopyMode = False

 ActiveSheet.ListObjects.Add(xlSrcRange,

 Range("A1:F7"), , xlYes).Name = _

 "Table1"

 Range("Table1[#All]").Select

 ActiveSheet.ListObjects("Table1").

 TableStyle = "TableStyleLight14"

 Range("Table1[[#Headers],[Employee Name]]").Select

End Sub

For now, let’s focus on finding answers to two questions:

	How do you read the macro code?

	How can you edit macros?

Notice that each macro code you recorded is located between the Sub and End Sub. These words are known as keywords. You read the code line by line from top to bottom. You can edit the recorded macros by deleting or modifying existing code or typing new instructions in the Code window.

Macro Comments

Look at the recorded macro code. The lines that begin with a single quote denote comments. By default, comments appear in green. When the macro code is executed, Visual Basic ignores the comment lines. Comments are often placed within the macro code to document the meaning of certain lines that aren’t obvious. Comments can also be used to temporarily disable certain blocks of code that you don’t want to execute. This is often done while testing and troubleshooting your macros.

Let’s add some comments to the CalculateWages macro to make the code easier to understand.

[image: Image]Hands-On 1.11 Adding Comments to the Macro Code

	Make sure that the Visual Basic Editor screen shows the Code window with the CalculateWages macro.

	Click after the Range("F2:F7").Select and press Enter.

	In the empty line you just created, type the following comment. Be sure to start with a single quote.

' Apply Currency Format

	Press Ctrl+S to save the changes in Chap01_ExcelPrimer.xlsm or choose File | Save Chap01_ExcelPrimer.xlsm.

All macro procedures begin with the keyword Sub and end with the keywords End Sub. The Sub keyword is followed by the macro name and a set of parentheses. Between the keywords Sub and End Sub are statements that Visual Basic executes each time you run your macro. Visual Basic reads the lines from top to bottom, ignoring the statements preceded with a single quote (see the information about comments) and stops when it reaches the keywords End Sub. Notice that the recorded macro contains many periods. The periods appear in almost every line of code and are used to join various elements of the Visual Basic for Applications language. How do you read the instructions written in this language? They are read from the right side of the last period to the left. Here are a few statements from the Insert_Headings macro and a description of what they mean:

	
	

	Code Segment
	Description

	Range("A1:F1").Select
	Select cells A1 to F1.

	Selection.Columns.AutoFit
	Extend the column width so that all entries fit.

	ActiveCell.FormulaR1C1 = "Hourly Rate"
	Let the formula of the active cell be “Hourly Rate.”

	Selection.Font.Bold = True
	Applies bold format to all selected cells.

Cleaning Up the Macro Code

As you review and analyze your macro code line by line, you may notice that Excel recorded a lot of information that you didn’t intend to include. For example, if you used the Font dialog box to apply bold formatting to the heading cells in your Insert_Headings macro, in addition to setting the font style to bold, Excel also recorded the current state of other options on the Font tab—strikethrough, superscript, subscript, outline font, shadow, underline, theme color, tint and shade, and theme font as shown below:

With Selection.Font

 .Name = "Calibri Light"

 .FontStyle = "Bold"

 .Size = 9

 .Strikethrough = False

 .Superscript = False

 .Subscript = False

 .OutlineFont = False

 .Shadow = False

 .Underline = xlUnderlineStyleNone

 .ThemeColor = xlThemeColorLight1

 .TintAndShade = 0

 .ThemeFont = xlThemeFontMajor

End With

When you use dialog boxes, Excel always records all the settings. These additional instructions make your macro code longer and more difficult to understand. Therefore, when you finish recording your macro, it is a good idea to go over the recorded statements and delete the unnecessary lines of code. In the above code snippet, different font settings are applied to the selection of cells. This is done with the special block of code that begins with the keyword With and ends with the keyword End With. Assume you just wanted to change the font name, style, and size of the selected cells. In this case you can simply delete all the other settings that were recorded, and you are left with the following code:

With Selection.Font

 .Name = "Calibri Light"

 .FontStyle = "Bold"

 .Size = 9

End With

This makes your macro code easier to understand as only the settings you selected are shown.

Notice that each setting in the With...End With block begins with a period. If you wanted to list each setting separately you would write them as:

Selection.Font.Name = "Calibri Light"

Selection.Font.FontStyle = "Bold"

Selection.Font.Size = 9

Using the With...End With block, you simply write the repeating code once. Simply move the repeating code Selection.Font to the right of the With keyword and end the entire block with End With.

As you work more with Excel macro recorder and learn more about VBA statements you will be able to make your recorded macros much cleaner.

Running a Macro

You can run your macros from either the Microsoft Excel window or the Visual Basic Editor window. When you execute a macro from the VBE screen, Visual Basic executes the macro behind the scenes. You can’t see when Visual Basic performed a specific action. To watch Visual Basic at work, you must run your macro from the Macro dialog box or arrange your screen in such a way that the Microsoft Excel and Visual Basic windows can be viewed at the same time. Two monitors attached to your computer will help you greatly in the development work when you need to observe actions performed by your code.

After you create a macro, you should run it at least once to make sure it works correctly. Later in this chapter you will learn other ways to run macros, but for now, let’s use the Macro dialog box.

[image: Image]Hands-On 1.12 Running a Macro Using the Macro Dialog Box

	Make sure that the Chap01_ExcelPrimer.xlsm workbook is open.

	Delete the Employee Wages worksheet so we Your Excel application is now set up for easy macrocan start from scratch.

	Choose View | Macros | View Macros.

	In the Macro dialog box, click the Insert_NewSheet macro name.

	Click Run to execute the macro.

The Insert_NewSheet macro inserts a blank worksheet and renames it Employee Wages.

Now, let’s proceed to run the remaining macros. All macros should be run in the order they were recorded.

	Choose View | Macros | View Macros.

	In the Macro dialog box, click the Insert_Headings macro name.

	Click Run to execute the macro.

	Run the remaining macros: Insert_EmployeeData, Get_FirstName, Get_LastName, CalculateWages, and FormatTable.

After running all macros, you should see the completed and formatted Employee Wages worksheet.

Quite often, you will notice that your macro does not perform as expected the first time you run it. Perhaps during the macro recording you selected the wrong font or forgot to change the cell color or maybe you just realized it would be better to include an additional step. Don’t panic. Excel makes it possible to modify the macro without forcing you to go through the tedious process of recording your keystrokes again.

Testing and Debugging a Macro

When you modify a recorded macro, it is quite possible that you will introduce some errors. For example, you may delete an important line of code, or you may inadvertently remove or omit a necessary period. To make sure that your macro continues to work correctly after your modifications, you need to run it again.

[image: Image]Hands-On 1.13 Running a Macro from the VBE Screen

	In the Excel window, with the Employee Wages worksheet active, choose Developer | Visual Basic.

	In the Visual Basic Editor Code window, place the pointer in any line of the Insert_NewSheet macro code (except for a comment line), and choose Run | Run Sub/UserForm.

You should see the Microosft Visual Basic error message dialog: “Run-time error ‘9’ Subscript out of range” (see Figure 1.16). Visual Basic cannot find Sheet2 that the macro references, so it displays an error.
Before you run macros, you must make sure that your macro can run in the worksheet that is currently selected. Click the End button in the error dialog box, and make sure that you select the correct worksheet before you try to run the macro again. In this case, you should either delete the Employee Wages worksheet, or insert a new workbook and rerun the macro.

	When running a macro from a VBE screen, to see the result of your macro, you must switch to the Microsoft Excel window. To do this, press Alt+F11.

Various errors can popup during your macro execution. For example, if your macro code had a With...End With block and you happened to omit the period in With Selection.Font, Visual Basic will generate the “Run time error ‘424’ — Object required” message when running this line of code. Instead of pressing the End button to end your macro, you can use the Debug button in the message box, so you can correct your macro code right away. When you press Debug, you will be placed in the Code window. At this time, Visual Basic will activate break mode and will use the yellow highlighter to indicate the line it had trouble executing. As soon as you correct your error, Visual Basic may announce, “This action will reset your project, proceed anyway?” Click OK to this message. Although you can edit code in break mode, some edits prevent continuing execution. After correcting the error, run the macro again, as there may be more errors to be fixed before the macro can run smoothly.

	Switch back to the Visual Basic Editor screen by pressing Alt+F11.

[image: Image]

FIGURE 1.16 The Visual Basic Editor displays an error message when it encounters an error while executing a macro. The error may be caused by an incorrect statement or incorrect setup of worksheet environment prior to running a macro.

Saving and Renaming a Macro

The macros you recorded in this chapter are in a Microsoft Excel workbook. All macros are automatically saved when you save the workbook.

[image: Image]Hands-On 1.14 Saving Macros and Running Macros from Another Workbook

	Close the Chap01_ExcelPrimer.xlsm workbook.

	Open a brand-new workbook and press Alt+F8 to open the Macro dialog box.

Notice that there is no trace of your macros in the Macro dialog box. If you’d like to run the macros you recorded earlier in this chapter in another workbook, you need to open the file that stores these macros.

	Close the Macro dialog box and save the open workbook file as Chap01_ExcelPrimer2.xlsx in your trusted C:\VBAPrimerExcel2021_ByExample folder. You will not have any macros in this workbook, so saving it in Excel’s default file format will work just fine.

	Open the C:\VBAPrimerExcel2021_ByExample\Chap01_ExcelPrimer.xlsm workbook file.

	Activate Sheet1 in the Chap01_ExcelPrimer2.xlsx workbook.

	Press Alt+F8 to activate the Macro dialog box. Notice that Excel displays macros in all open workbooks.

	Run each of the macros listed in this dialog box in the order you have recorded them.

Your macros go to work again. You should end up with the Employee Wages worksheet formatted to your liking.

	Close the Chap01_ExcelPrimer2.xlsx workbook file. Do not save the changes.

Do not close the Chap01_ExcelPrimer.xlsm workbook file. We will work with it in the next section.

When you add additional actions to your macro, you may want to change the macro name to better indicate its purpose. The name of the macro should communicate its function as clearly as possible. To change the macro name, you don’t need to press a specific key. In the Code window, simply delete the old macro name and enter the new name following the Sub keyword.

Printing Macro Code

If you want to document your macro or perhaps study the macro code when you are away from the computer, you can print your macros. You can print the entire module sheet where your macro is stored or indicate a selection of lines to print. Let’s print the entire module sheet that contains your macros.

[image: Image]Hands-On 1.15 Printing Macro Code

	Switch to the Visual Basic Editor window and double-click Module1 in the Project Explorer window to activate the module containing your macros.

	Choose File | Print.

	In the Print VBAProject dialog box, the Current Module option button should be selected.

	Click OK to print the entire module sheet.

If you’d like to print only a certain block of programming code, perform the following steps:

	In the module sheet, highlight the code you want to print.

	Choose File | Print.

	In the Print VBAProject dialog box, the Selection option button should be selected.

	Click OK to print the highlighted code.

IMPROVING YOUR RECORDED MACROS

After you record your macro, you may realize that you’d like the macro to perform additional tasks. Adding new instructions to the macro code is not very difficult if you are already familiar with the Visual Basic language. In most situations, however, you can do this more efficiently when you delegate the extra tasks to the macro recorder. You may argue that Excel records more instructions than are necessary. However, one thing is for sure—the macro recorder does not make mistakes. If you want to add additional instructions to your macro using the macro recorder, you must record a new macro, copy the sections you want, and paste them into the correct location in your original macro. Note that Microsoft Excel places the newly recorded macro in a new module sheet.

At times you may need to modify your macro code by removing some statements. Before you start deleting unnecessary lines of code, think of how you can use the comment feature that you’ve recently learned. You can comment out the unwanted lines and run the macro with the commented code. If the Visual Basic Editor does not generate errors, you can safely delete the commented lines. By following this path, you will never find yourself recording the same keystrokes more than once. And, if the macro does not perform correctly, you can remove the comments from the lines that may be needed after all.

When you create macros with the macro recorder, you can quickly learn the VBA equivalents for the Excel commands and dialog box settings. Then you can look up the meaning and the usage of these Visual Basic commands in the online help. It’s obvious that the more instructions Visual Basic needs to read, the slower your macro will execute. Eliminating extraneous commands will speed up your macro. Learning the right word or expression in any language takes time. You’ll learn about Visual Basic objects, properties, and methods in Chapter 3, “Excel VBA Fundamentals.”

[image: Image] Including Additional Instructions

To include additional instructions in the existing macro, add empty lines in the required places of the macro code by pressing Enter, and type in the necessary Visual Basic statements. If the additional instructions are keyboard actions or menu commands, you may use the macro recorder to generate the necessary code and then copy and paste these code lines into the original macro.

Want to add more improvements to your macro? How about a message to notify you when Visual Basic has finished executing the last macro line? This sort of action cannot be recorded, as Excel does not have a corresponding Ribbon command or shortcut menu option. However, using the Visual Basic for Applications language, you can add new instructions to your macro by hand. Let’s see how this is done.

[image: Image]Hands-On 1.16 Adding Visual Basic Statements to the Recorded Macro Code

	In the Code window containing the code of the FormatTable macro, click in front of the End Sub keywords and press Enter.

	Place your cursor on the empty line and type the following statement:

MsgBox "Your worksheet is ready."

	Press Ctrl+S to save the changes made in your macro code.

When you run this macro next time around, you should see a message box with your programmed message text. You must click the OK button in the message box to discard this message. MsgBox is one of the most frequently used built-in VBA functions. You will learn more about its usage in Chapter 4, “Excel VBA Procedures.”

CREATING A MASTER MACRO

In this chapter, you recorded several macros that required that you execute them in the order they were recorded. Instead of running your macros one by one, it is more convenient to have one master macro that will perform all the required tasks in the correct order. Let’s see how this is done in the next Hands-On.

[image: Image]Hands-On 1.17 Creating a Master Macro Procedure

	Switch to the Microsoft Visual Basic for Application window and select VBAProject (Chap01_ExcelPrimer.xlsm) in the Project Explorer window.

	Choose Insert | Module to add a new module to the selected VBA project.

	In the Properties window select Module2 next to the (Name) property and rename it MasterProcedure.

	In the Code window on your right, enter the following procedure:

Sub CreateEmployeeWorksheet()

 Insert_NewSheet

 Insert_Headings

 Insert_EmployeeData

 Get_FirstName

 Get_LastName

 CalculateWages

 FormatTable

End Sub

	Press Ctrl+S to save the changes.

	Choose File | Close and Return to Microsoft Excel.

	In the Microsoft Excel window, choose File | New | Blank workbook.

	Choose View | Macros | View Macros to display the Macro dialog box.

	Select the CreateEmployeeWorksheet macro name and click Run.

Excel runs your code and displays a message box that you added in the previous Hands-On.

	Click OK to dismiss the message box.

	Close the Excel workbook you just created without saving it.

In this Hands-On you learned how easy it is to combine stand-alone macros into a master macro. All you need to do is list the macro names on separate lines between the Sub and End Sub keywords and name your macro. You could also copy all the code of the recorded macros into a new macro; however, this will make the macro code more difficult to troubleshoot. It is much easier to understand and work with shorter macros. When referencing macro names in other macros any misspelling of a macro name will cause a compile error “Sub or Function not defined” when you attempt to run your macro.

In Chapter 9 of this book, you will learn about different types of errors and techniques that will allow you to test your macros using Excel built-in tools.

VARIOUS METHODS OF RUNNING MACROS

So far in this chapter, you have learned a couple of methods of running macros. You already know that you can run a macro from the VBE screen or a Macro dialog box in the Microsoft Excel application window.

In the VBE screen you can run your macro / Visual Basic code in one of the following ways:

	Press F5 on the keyboard

	Choose Run | Run Sub/UserForm

	Choose Tools | Macros

	Click the Run Sub/UserForm (F5) button on the Standard toolbar as shown in Figure 1.17.

In this section, you will learn three cool methods of macro execution that will allow you to run your macros using a keyboard shortcut, toolbar button, or worksheet button. Let’s get started.

[image: Image]

FIGURE 1.17 The Visual Basic code can also be run from the toolbar button.

Running the Macro Using a Keyboard Shortcut

A popular method to run a macro is by using an assigned keyboard shortcut. It is much faster to press Ctrl+Shift+I than it is to activate the macro from the Macro dialog box. Before you can use the keyboard shortcut, you must assign it to your macro. Let’s learn how this is done.

[image: Image]Hands-On 1.18 Assigning a Macro to a Keyboard Shortcut

	In the Excel application window, press Alt+F8 to open the Macro dialog box.

	In the list of macros, click the CreateEmployeeWorksheet macro, and then choose the Options button.

	When the Macro Options dialog box appears, the cursor is in the Shortcut key text box.

	Hold down the Shift key and press the letter I on the keyboard. Excel records the keyboard combination as Ctrl+Shift+I. The result is shown in Figure 1.18.

[image: Image]

FIGURE 1.18 Using the Macro Options dialog box, you can assign a keyboard shortcut for running a macro.

	Click OK to close the Macro Options dialog box.

	Click Cancel to close the Macro dialog box and return to the worksheet.

	To run your macro using the newly assigned keyboard shortcut, open a new workbook and press Ctrl+Shift+I.

Your macro goes to work, and your worksheet is ready to use.

	Close the workbook with the employee worksheet you just created without saving it.

[image: Image] Avoid Shortcut Conflicts

If you assign to your macro a keyboard shortcut that conflicts with a Microsoft Excel built-in shortcut, Excel will run your macro if the workbook containing the macro code is currently open.

Running the Macro from the Quick Access Toolbar

You can add your own buttons to the built-in Quick Access toolbar. Let’s see how it is done to run a macro from Excel.

[image: Image]Hands-On 1.19 Running a Macro from the Quick Access Toolbar

	In the Microsoft Excel window, click the Customize Quick Access Toolbar button (the downward-pointing arrow in the title bar) and choose More Commands as shown in Figure 1.19.

[image: Image]

FIGURE 1.19 Adding a new button to the Quick Access toolbar (Step 1).

The Excel Options dialog box appears with the page titled Customize the Quick Access Toolbar.

	In the Choose commands from drop-down list box, select Macros.

	Select CreateEmployeeWorksheet in the list box on the left-hand side.

	Click the Add button to move the CreateEmployeeWorksheet macro to the list box on the right-hand side.

The current selections are shown in Figure 1.20.

	To change the button image for your macro, click the Modify button.

	In the button gallery, select any button you like and click OK.

[image: Image]

FIGURE 1.20 Adding a new button to the Quick Access toolbar (Step 2).

	After closing the gallery window, make sure that the image to the left of the macro name has changed.

	Click OK to close the Excel Options dialog.

You should now see a new button on the Quick Access toolbar as shown in Figure 1.21. This button will be available for any open workbook.

[image: Image]

FIGURE 1.21 A custom button placed on the Quick Access toolbar will run the specified macro (Step 3).

	Click the macro button you’ve just added to run the macro assigned to it.

Again, your macro goes to work; however, this time it runs into a problem. Recall that previously before you ran it you opened a new blank workbook. To run this macro from any workbook, you need to modify it.

	Click the End button in the error dialog box.

	Switch to the Visual Basic Editor screen and modify the Insert_NewSheet macro as shown in Figure 1.22.

[image: Image]

FIGURE 1.22 The recorded Insert_NewSheet macro was modified to correct issues encountered during its execution.

To allow the user to name the sheet during the macro execution you can use the Excel InputBox method discussed in detail in Chapter 4.

	Save the workbook and return to the Microsoft Excel window.

	Click the macro button on the Quick Access toolbar (see Figure 1.21).

Excel adds a new worksheet to the active workbook and prompts you for the name of the worksheet.

	Enter any name for the newly created worksheet and click OK.

NOTE

If you clicked the Cancel button instead of typing in the name for the worksheet, Visual Basic will run into an issue and you will see the Application-defined or object-defined run time error 1004. Click End to close the error message and you will be returned to the Microsoft Excel application window. Manually delete the empty sheet that was added to the workbook and execute the macro again this time entering the name for the sheet when prompted. You will learn how to handle the Cancel button in Chapter 9.

After you supply the worksheet name, the Visual Basic continues to execute the remaining macros in your master procedure. The execution fails again when the program reaches the FormatTable procedure. What’s wrong with this macro code? It worked perfectly well when you recorded it. Oftentimes issues with recorded code arise with the named ranges. A line of the FormatTable procedure assigns the name ‘Table1’ to the table range. Because you are running the master procedure inside the workbook where the ‘Table1’ name already exists, the Visual Basic throws the error – “Select method of range class failed”. Table names within the workbook must be unique. For your code to run correctly you must revise the FormatTable procedure.

	Click the Debug button in the error message dialog and Visual Basic will highlight the line of code it cannot execute.

	Exit the break mode by choosing Run | Reset.

	Modify the FormatTable procedure as shown in Figure 1.23.

[image: Image]

FIGURE 1.23 The recorded macro FormatTable was modified to correct issues encountered during its execution.

The first line of code in the revised procedure declares strTableName variable to hold the name of the table supplied by the InputBox function on the next line. You will learn about variables and their types, declarations, and assignments in Chapter 3. The third line creates a new list object and assigns it a name stored in the strTableName variable. Every time you run the procedure and are prompted for a table name you must enter a unique name.

After adding and assigning a name to the table object, the macro again refers to the strTableName variable to assign a predefined formatting style to the table. The procedure then selects cell A1 in the active worksheet and displays a message to the user.

	After making changes to the FormatTable procedure save your code and return to the Microsoft Excel application window.

	Run the procedure again by clicking the button on the Quick Access toolbar.

The master procedure should now run as expected.

Running the Macro from a Worksheet Button

Sometimes it makes the most sense to place a macro button right on the worksheet, where it cannot be missed. Let’s go over the steps that will attach the WhatsInACell macro to a worksheet button.

[image: Image]Hands-On 1.20 Running a Macro from a Button Placed on a Worksheet

	Copy Chap01_Supplement.xlsm workbook from the companion files to your C:\VBAPrimerExcel2021_ByExample folder.

	Open the copied workbook file in Excel.

	Choose Developer | Insert. The Forms toolbar appears, as shown in Figure 1.24.

[image: Image]

FIGURE 1.24 Adding a button to a worksheet.

	In the Form Controls area, click the first image, which represents a button.

	Click anywhere in the empty area of the worksheet. When the Assign Macro dialog box appears, choose the WhatsInACell macro and click OK.

	Excel creates a button with the default label ‘Button 1’. To change the button’s label, click inside the button, delete the default text and type Format Cells. If the text does not fit, do not worry; you will resize the button in Step 7. When the button is selected, it looks like the one shown in Figure 1.25. If the selection handles are not displayed, right-click Button 1 on the worksheet and choose Edit Text on the shortcut menu. Select the default text and enter the new label.

[image: Image]

FIGURE 1.25 A button with an attached macro.

	When you’re done renaming the button, click outside the button to exit the edit mode.

Because the text you entered is longer than the default button text, let’s resize the button so that the entire text is visible.

	Right-click the button you’ve just renamed to select it, point to one of the tiny circles that appear in the button’s right edge, and drag right to expand the button until you see the complete entry, Format Cells.

NOTE

If you left click the button inadvertently, there is nothing you can do to stop the macro from running. You can resize the button after the macro has run.

	When you’re done resizing the button, click outside the button to exit the selection mode.

	To run your macro, click the button you just created.

Your macro goes to work, and your worksheet is now formatted as shown in Figure 1.26.

[image: Image]

FIGURE 1.26 The worksheet was formatted with a macro attached to the Format Cells button.

Let’s remove the formatting you just applied by running the RemoveFormats macro.

	Press Alt+F8 to open the Macro dialog box. Select the RemoveFormats macro and click the Run button.

	On your own, create another button on this worksheet that will be used for running the RemoveFormats macro.

	Save your workbook with a different file name so that the original workbook can be reused again in case you’d like to revisit the button creation process.

NOTE

The code of WhatsInACell and RemoveFormat macros in this practice workbook was written by the built-in macro recorder while executing a series of commands via Excel menu / Ribbon options.

You can also run macros from a hyperlink, or a button placed in the Ribbon. These techniques are not introduced in this book because they require the understanding of the advanced topic of Ribbon Customizations.

SUMMARY

In this chapter, you have learned how to create macros by recording your selections in the Microsoft Excel application window. You also learned how to view, read, and modify the recorded macros in the Visual Basic Editor window. In addition, you tried various methods of running macros. This chapter has also explained macro security issues that you should be aware of when opening workbooks containing macro code.

The next chapter focuses on using the Visual Basic Editor window.

Chapter 2

Excel Programming Environment

A Quick Overview of its Tools and Features (VBE)

Now that you know how to record, run, and edit macros, let’s spend some time in the Visual Basic Editor window (also known as VBE) and become familiar with its features. With the tools located in the VBE window, you can:

	Write your own VBA procedures.

	Create custom forms.

	View and modify object properties.

	Test VBA procedures and locate errors.

The Visual Basic Editor window can be accessed in the following ways:

	Choose Developer | Code | Visual Basic.

	Choose Developer | Controls | View Code.

	Press Alt+F11.

UNDERSTANDING THE PROJECT EXPLORER WINDOW

The Project Explorer window displays a hierarchical list of currently open projects and their elements. A VBA project can contain the following elements:

	Worksheets

	Charts

	ThisWorkbook—The workbook where the project is stored

	Modules—Special sheets where programming code is stored

	Classes—Special modules that allow you to create your own objects

	Forms

	References to the other projects

With the Project Explorer you can manage your projects and easily move between projects that are loaded into memory. You can activate the Project Explorer window in one of three ways:

	From the View menu by selecting Project Explorer.

	From the keyboard by pressing Ctrl+R.

	From the Standard toolbar by clicking the Project Explorer button as shown in Figure 2.1.

[image: Image]

FIGURE 2.1 Buttons on the Standard toolbar provide a quick way to access many of the Visual Basic Editor features.

The Project Explorer window contains three buttons as shown in Figure 2.2. The first button from the left (View Code) displays the Code window for the selected module. The middle button (View Object) displays either the selected sheet in the Microsoft Excel Object folder or a form located in the Forms folder. The button on the right (Toggle Folders) hides and/or activates the display of folders in the Project Explorer window.

[image: Image]

FIGURE 2.2 The Project Explorer window displays a list of currently open projects.

The Properties window displays the settings for the object currently selected in the Project Explorer.

UNDERSTANDING THE PROPERTIES WINDOW

The Properties window allows you to review and set properties of various objects in your project. The name of the currently selected object is displayed in the Object box located just below the Properties window’s title bar. For example, Figure 2.2 displays the properties of the Sheet1 object. Properties of the object can be viewed alphabetically or by category by clicking the appropriate tab.

	Alphabetic tab—Lists alphabetically all properties for the selected object. You can change the property setting by selecting the property name and typing or selecting the new setting.

	Categorized tab—Lists all properties for the selected object by category. You can collapse the list so that you see the categories, or you can expand a category to see the properties. The plus sign (+) icon to the left of the category name indicates that the category list can be expanded. The minus sign (–) indicates that the category is currently expanded.

The Properties window can be accessed in three ways:

	From the View menu by selecting Properties Window.

	From the keyboard by pressing F4.

	From the toolbar by clicking the Properties Window button.

UNDERSTANDING THE CODE WINDOW

The Code window is used for Visual Basic programming as well as viewing and modifying the code of recorded macros and existing VBA procedures. Each module can be opened in a separate Code window. There are several ways to activate the Code window:

	From the Project Explorer window, choose the appropriate UserForm or module, and click the View Code button.

	From the menu bar, choose View | Code.

	From the keyboard, press F7.

In Figure 2.3, you will notice at the top of the Code window two drop-down list boxes that allow you to move quickly within the Visual Basic code. In the Object box on the left side of the Code window, you can select the object whose code you want to view. The box on the right side of the Code window lets you quickly choose a procedure or event procedure to view. When you open this box, the names of all procedures located in a module are sorted alphabetically. If you select a procedure in the Procedures/Events box, the cursor will jump to the first line of this procedure.

By dragging the split bar shown in Figure 2.3 down to a selected position in the Code window, you can divide the Code window into two panes. You can then view different sections of a long procedure or a different procedure in each pane. This two-pane display in the Code window is often used for copying or cutting and pasting sections of code between procedures of the same module.

[image: Image]

FIGURE 2.3 The Visual Basic Code window has several elements that make it easy to locate procedures and review the VBA code.

To return to the one-window display, simply drag the split bar all the way to the top of the Code window.

At the bottom left of the Code window, there are two icons. The Procedure View icon displays one procedure at a time in the Code window. To select another procedure, use the Procedures/Events box. The Full Module View icon displays all the procedures in the selected module. Use the vertical scrollbar to scroll through the module’s code.

The margin indicator bar is used by Visual Basic Editor to display helpful indicators during editing and debugging. If you’d like to take a quick look at some of these indicators, skim through Chapter 9, “Excel Tools for Testing and Debugging.”

SETTING THE VBE OPTIONS

There are several other windows that are frequently used in the Visual Basic environment.

Figure 2.4 displays the list of windows that can be docked in the Visual Basic Editor window. You will learn how to use some of these windows in Chapter 3 (Object Browser, Immediate window) and Chapter 9 (Locals window, Watch window).

[image: Image]

FIGURE 2.4 The Docking tab in the Tools | Options dialog box allows you to choose which windows you want to be dockable in the Visual Basic Editor screen.

SYNTAX AND PROGRAMMING ASSISTANCE

Figure 2.5 shows the Edit toolbar in the VBE window that contains several buttons that let you enter correctly formatted VBA instructions with speed and ease. If the Edit toolbar isn’t currently docked in the Visual Basic Editor window, you can turn it on by choosing View | Toolbars | Edit.

[image: Image]

FIGURE 2.5 Buttons located on the Edit toolbar make it easy to write and format VBA instructions.

Writing procedures in Visual Basic requires that you use hundreds of built-in instructions and functions. Because most people cannot memorize the correct syntax of all the instructions that are available in VBA, the IntelliSense® technology provides you with syntax and programming assistance on demand when entering instructions. You can have special windows pop up and guide you through the process of creating correct VBA code.

List Properties/Methods

Each object can contain several properties and methods. When you enter the name of the object and a period that separates the name of the object from its property or method in the Code window, a pop-up menu may appear. This menu lists the properties and methods available for the object that precedes the period as shown in Figure 2.6. To turn on this automated feature, choose Tools | Options. In the Options dialog box, click the Editor tab, and make sure the Auto List Members check box is selected.

[image: Image]

FIGURE 2.6 While you are entering the VBA instructions, Visual Basic suggests properties and methods that can be used with the object.

To choose an item from the pop-up menu that appears, start typing the name of the property or method that you want to select. When Excel highlights the correct item name, press Enter to insert the item into your code and start a new line. Or, if you want to continue writing instructions on the same line, press the Tab key instead. You can also double-click the item to insert it in your code. To close the pop-up menu without inserting an item, simply press Esc. When you press Esc to remove the pop-up menu, Visual Basic will not display it again for the same object. To display the Properties/Methods pop-up menu again, you can:

	Press Ctrl+J.

	Use the Backspace key to delete the period and type the period again.

	Right-click in the Code window and select List Properties/Methods from the shortcut menu.

	Choose Edit | List Properties/Methods.

	Click the List Properties/Methods button on the Edit toolbar.

List Constants

A constant is a value that indicates a specific state or result. Excel has many predefined, built-in constants. You will learn about constants, their types, and usage in Chapter 3.

Suppose you want your program to turn on the Page Break Preview of your worksheet. In the Microsoft Excel application window, the View tab lists four types of workbook views:

	The Normal View is the default view for most tasks in Excel.

	Page Layout View allows you to view the document as it will appear on the printed page.

	Page Break Preview allows you to see where pages will break when the document is printed.

	Custom Views allows you to save the set of display and print settings as a custom view.

The first three view options are represented by a built-in constant. Microsoft Excel constant names begin with the characters “xl.” As soon as you enter in the Code window the instruction:

ActiveWindow.View =

a pop-up menu will appear with the names of valid constants for the property, as shown in Figure 2.7.

[image: Image]

FIGURE 2.7 The List Constants pop-up menu displays a list of constants that are valid for the property entered.

To work with the List Constants pop-up menu, use the same techniques as for the List Properties/Methods pop-up menu outlined in the preceding section.

The List Constants pop-up menu can be activated by pressing Ctrl+Shift+J or clicking the List Constants button on the Edit toolbar.

Parameter Info

If you’ve had a chance to work with Excel worksheet functions, you already know that many functions require one or more arguments (or parameters). For example, here’s the syntax for the most common worksheet function:

SUM(number1,number2, ...)

where number1, number2, ... are 1 to 30 arguments that you can add up.

Like functions, VBA methods may require one or more arguments. If a method requires an argument, you can see the names of required and optional arguments in a tooltip box that appears just below the cursor as soon as you type the beginning parenthesis as illustrated in Figure 2.8. In the tooltip, the current argument is displayed in bold. When you supply the first argument and enter the comma, Visual Basic displays the next argument in bold. Optional arguments are surrounded by square brackets [].

You can open the Parameter Info tooltip using the keyboard. To do this, enter the method or function name, follow it with the left parenthesis, and press Ctrl+Shift+I. You can also click the Parameter Info button on the Edit toolbar or choose Edit | Parameter Info.

[image: Image]

FIGURE 2.8 A tooltip displays a list of arguments utilized by a VBA method.

The Parameter Info feature makes it easy for you to supply correct arguments to a VBA method. In addition, it reminds you of two other things that are very important for the method to work correctly: the order of the arguments and the required data type of each argument. You will learn about data types in Chapter 3.

Quick Info

When you select an instruction, function, method, procedure name, or constant in the Code window and then click the Quick Info button on the Edit toolbar (or press Ctrl+I), Visual Basic displays the syntax of the highlighted item, as well as the value of a constant, as depicted in Figure 2.9. The Quick Info feature can be turned on or off using the Options dialog box. To use the feature, click the Editor tab and choose the Auto Quick Info option.

[image: Image]

FIGURE 2.9 The Quick Info feature displays a list of arguments required by a selected method or function, a value of a selected constant, or the type of the selected object or property.

Complete Word

Another way to increase the speed of writing VBA procedures in the Code window is with the Complete Word feature. As you enter the first few letters of a keyword and press Ctrl+Spacebar or click the Complete Word button on the Edit toolbar, Visual Basic will fill in the remaining letters by completing the keyword entry for you. For example, when you enter the first four letters of the keyword Application (Appl) in the Code window and press Ctrl+Spacebar, Visual Basic will complete the rest of the word, and in the place of “Appl,” you will see the entire word “Application.”

Indent/Outdent

If the Auto Indent option is turned on, you can automatically indent the selected lines of code by the number of characters specified in the Tab Width text box. The default entry for Auto Indent is four characters. You can easily change this setting via the Options dialog box (by selecting the Editor tab; see Figure 2.4).

Why would you want to use indentation in your code? When you indent certain lines in your VBA procedures, you make them more readable and easier to understand. Indenting is especially recommended for entering lines of code that make decisions or repeat actions. You will learn how to create these kinds of Visual Basic instructions in Chapters 5 and 6, “Adding Decisions to Excel VBA Programs” and “Adding Repeating Actions to Excel VBA Programs.” Let’s spend a few minutes learning how to apply the indent and outdent features to the lines of code in the WhatsInACell macro that you worked with in Chapter 1.

[image: Image]Hands-On 2.1 Indenting/Outdenting Visual Basic Code

	Open the Chap01_Supplement.xlsm workbook that you worked with in Chapter 1.

	Press Alt+F11 to switch to the VBE window.

	Choose View | Toolbars | Edit to gain access to the Editing toolbar. If the toolbar pops up in the middle of the screen, double-click its title bar to get it docked at the top of the VBE window.

	In the Project Explorer window, select the Chap01_Supplement.xlsm VBA project and activate the Module1 that contains the code of the WhatsInACell macro.

	Select the block of code located between the keyword With and End With.

	Click the Indent button (see Figure 2.5) on the Edit toolbar or press Tab on the keyboard. The selected block of instructions will move four spaces to the right if you are using the default setting in the Tab Width box in the Options dialog box (Editor tab).

	Click the Outdent button on the Edit toolbar or press Shift+Tab to return the selected lines of code to the previous location in the Code window.

	Close the Chap01_Supplement.xlsm workbook.

The Indent and Outdent options are also available from the Edit menu.

Comment Block/Uncomment Block

In Chapter 1, you learned that a single quote placed at the beginning of a line of code denotes a comment. Not only do comments make it easier to understand what the procedure does, but also, they are very useful in testing and troubleshooting VBA code.

For example, when you execute your code, it may not run as expected. Instead of deleting the lines that may be responsible for the problems you encounter, you may want to skip those lines of code for now and return to them later. By placing a single quote at the beginning of the line you want to avoid, you can continue checking the other parts of your procedure.

	To comment a few lines of code, simply select the lines and click the Comment Block button on the Edit toolbar (see Figure 2.5).

	To turn the commented code back into VBA instructions, select the lines and click the Uncomment Block button on the Edit toolbar (see Figure 2.5).

If you don’t select text and click the Comment Block button, the single quote is added only to the line of code where the cursor is currently located.

USING THE OBJECT BROWSER

You can move easily through the myriad of VBA elements and features by examining the capabilities of the Object Browser. To access the Object Browser, use any of the following methods in the VBE window:

	Press F2.

	Choose View | Object Browser.

	Click the Object Browser button on the toolbar.

The Object Browser allows you to browse through the objects that are available to your VBA procedures, as well as view their properties, methods, and events. With the aid of the Object Browser, you can move quickly between procedures in your own VBA projects, as well as search for objects and methods across object type libraries.

The Object Browser window is divided into three sections as illustrated in Figure 2.10. The top of the window displays the Project/Library drop-down list box with the names of all libraries and projects that are available to the currently active VBA project. A library is a special file that contains information about the objects in an application. New libraries can be added via the References dialog box (Tools | References). The entry for <All Libraries> lists the objects of all libraries that are installed on your computer. When you select the library called Excel, you will see only the names of the objects that are exclusive to Microsoft Excel. In contrast to the Excel library, the VBA library lists the names of all the objects in Visual Basic for Applications.

[image: Image]

FIGURE 2.10 The Object Browser window allows you to browse through all the objects, properties, and methods available to the current VBA project.

Below the Project/Library drop-down list box is a Search text box that you’ll use to quickly find information in a library. This field remembers the last four items for which you searched. To find only whole words, you can right-click anywhere in the Object Browser window and choose Find Whole Word Only from the shortcut menu.

The Search Results section of the Object Browser displays the library, class, and member elements that met the criteria entered in the Search text box as shown in Figure 2.11.

When you type the search text and click the Search button (the binoculars icon), Visual Basic expands the Object Browser dialog box to show the Search Results area. You can hide or show the Search Results by clicking the button located to the right of the Search button.

[image: Image]

FIGURE 2.11 Searching for answers in the Object Browser.

The Classes list box displays the available object classes in the selected library. If you select a VBA project, this list shows objects in the project. In Figure 2.11, the Application object class is selected. When you highlight a class, the list on the right-hand side (Members) shows the properties, methods, and events available for that class. By default, members are listed alphabetically. You can, however, organize the members list by group type (properties, methods, or events) using the Group Members command from the Object Browser shortcut menu.

If you select a VBA project in the Project/Library list box, the Members list box will list all the procedures available in this project. To examine the code of a procedure, simply double-click its name. If you select a VBA library, you will see a listing of Visual Basic built-in functions and constants. If you need more information on the selected class or a member, click the question mark button at the top of the Object Browser window.

The bottom of the Object Browser window displays a code template area with the definition of the selected member. If you click the green hyperlink text in the code template, you can quickly jump to the selected member’s class or library in the Object Browser window. Text displayed in the code template area can be copied to the Windows clipboard and then pasted to a Code window. If the Code window is visible while the Object Browser window is open, you can save time by dragging the highlighted code template and dropping it into the Code window.

You can easily adjust the size of the various sections of the Object Browser window by dragging the dividing horizontal and vertical lines.

Now that you’ve discovered the Object Browser, you may wonder how you can put it to use in VBA programming. Let’s assume that you placed a text box in the middle of your worksheet. How can you make Excel move this text box so that it is positioned at the top left-hand corner of the sheet? Hands-On 2.2 should provide the answer to this question.

[image: Image]Hands-On 2.2 Writing a VBA Procedure to Move a Text Box on the Worksheet

	Open a new workbook.

	Choose Insert | Text |Text Box.

	Now draw a box in the middle of the sheet and enter any text as shown in Figure 2.12.

	Select any cell outside the text box area.

	Press Alt+F11 to activate the Visual Basic Editor window.

	Choose Insert | Module to add a new module sheet.

	In the Properties window, enter the new name for this module: Manipulations.

	Choose View | Object Browser or press F2.

	In the Project/Library list box, click the drop-down arrow and select the Excel library.

	Enter textbox as the search text in the Search box as shown in Figure 2.13, and then click the Search button. Make sure you don’t enter a space in the search string.

[image: Image]

FIGURE 2.12 Excel displays the name of the inserted object in the Name box above the worksheet.

[image: Image]

FIGURE 2.13 Using the Object Browser window, you can find the appropriate VBA instructions for writing your own procedures.

Visual Basic searches the Excel library and displays the search results. It appears that the Shapes object shown in Figure 2.13 is in control of our text box operations. Looking at the members list, you can quickly determine that the AddTextbox method is used for adding a new text box to a worksheet. The code template at the bottom of the Object Browser shows the correct syntax for using this method. If you select the AddTextbox method and press F1, you will see the Help window with more details on how to use this method. The Help window tells us that the Left and Top properties determine the position of the text box in a worksheet.

	Close the Object Browser window and the Help window if they are open.

Double-click the Manipulations module and enter the MoveTextBox procedure, as shown here:

Sub MoveTextBox()

 With ActiveSheet.Shapes("TextBox 1")

 .Select

 .Left = 0

 .Top = 0

 End With

End Sub

The MoveTextBox procedure selects TextBox 1 in the collection of Shapes. TextBox 1 is the default name of the first object placed in the worksheet. Each time you add a new object to your worksheet, Excel assigns a new number (index) to it. Instead of using the object name, you can refer to the member of a collection by its index. For example, instead of:

With ActiveSheet.Shapes("TextBox 1")

enter:

With ActiveSheet.Shapes(1)

	Choose Run | Run Sub/UserForm to execute this procedure.

	Press Alt+F11 to switch to the Microsoft Excel application window.

The text box should be positioned at the top left-hand corner of the worksheet.

	Save the workbook file as Chap02_ExcelPrimer.xlsm. Keep this file open as you will continue to work with it in Hands-On 2.3.

Let’s manipulate another object with Visual Basic.

[image: Image]Hands-On 2.3 Writing a VBA Procedure to Move a Circle on the Worksheet

	Place a small circle in the same worksheet where you originally placed the text box in Hands-On 2.2. Use the Oval shape in the Basic Shapes area of the Insert | Illustrations | Shapes tool. Hold down the Shift key while drawing on the worksheet to create a perfect circle.

	Click outside the circle to deselect it.

	Press Alt+F11 to activate the Visual Basic Editor screen.

	In the Manipulations Module’s Code window, write a VBA procedure that will place the circle inside the text box. Keep in mind that Excel numbers objects consecutively. The first object is assigned a number 1, the second object a number 2, and so on. The type of object—whether it is a text box, a circle, or a rectangle—does not matter.

	The MoveCircle procedure shown here demonstrates how to move a circle to the top left-hand corner of the active worksheet:

Sub MoveCircle()

 With ActiveSheet.Shapes(2)

 .Select

 .Left = 0

 .Top = 0

 End With

End Sub

Moving a circle is like moving a text box or any other object placed in a worksheet. Notice that instead of referring to the circle by its name, Oval 2, the procedure uses the object’s index.

	Run the MoveCircle procedure.

	Press Alt+F11 to return to the Microsoft Excel window.

	The circle should now appear on the top of the text box.

Locating Procedures with the Object Browser

In addition to locating objects, properties, and methods, the Object Browser is a handy tool for locating and accessing procedures written in various VBA projects. The Hands-On 2.4 exercise demonstrates how you can find quickly which procedures are stored in the selected project.

[image: Image]Hands-On 2.4 Using Object Browser to Locate VBA Procedures

	In the Object Browser, select VBAProject from the Project/Library dropdown list as shown in Figure 2.14.

The left side of the Object Browser displays the names of objects that are included in the selected project. The Members list box on the right shows the names of all the available procedures.

[image: Image]

FIGURE 2.14 The Object Browser lists all the procedures available in a VBA project.

	In the Members list, double-click the MoveCircle procedure.

	Excel locates the selected procedure in the Code window.

USING THE VBA OBJECT LIBRARY

In the previous examples, you used the properties of objects that are members of the Shapes collection in the Excel object library. While the Excel library contains objects specific to using Microsoft Excel, the VBA object library provides access to many built-in VBA functions that are general in nature. They allow you to manage files, set the date and time, interact with users, convert data types, deal with text strings, or perform mathematical calculations. In the following Hands-On 2.5 exercise, you will use one of the built-in VBA functions to create a new Windows subfolder without leaving Excel.

[image: Image]Hands-On 2.5 Writing a VBA Procedure to Create a Folder in Windows

	Press Alt+F11 to return to the Manipulations module, where you entered the MoveTextBox and MoveCircle procedures.

	On a new line, type the name of the new procedure: Sub NewFolder().

	Press Enter. Visual Basic will enter the ending keywords End Sub.

	Press F2 to activate the Object Browser.

	Click the drop-down arrow in the Project/Library list box and select VBA.

	Enter file as the search text in the Search box and press the Search button.

	Scroll down in the Members list box and highlight the MkDir method as shown in Figure 2.15.

[image: Image]

FIGURE 2.15 When writing procedures from scratch, consult the Object Browser for names of the built-in VBA functions.

	Click the Copy button (the middle button in the top row) in the Object Browser window to copy the selected method name to the Windows clipboard.

	Return to the Manipulations Code window and paste the copied instruction inside the procedure NewFolder.

	Enter a space, followed by “C:\Study”. Be sure to enter the name of the entire path in quotes. The NewFolder procedure should look like this:

Sub NewFolder()

 MkDir "C:\Study"

End Sub

	Position the insertion point within the code of the NewFolder procedure and choose Run | Run Sub/UserForm to execute the NewFolder procedure.

When you run the NewFolder procedure, Visual Basic creates a new folder on drive C. To see the folder, activate Windows Explorer.

After creating a new folder, you may realize that you don’t need it after all. Although you could easily delete the folder while in Windows Explorer, how about getting rid of it programmatically? The Object Browser displays many other methods that are useful for working with folders and files. The RmDir method is just as simple to use as the MkDir method.

	To remove the Study folder from your hard drive, you could replace the MkDir method with the RmDir method, and then rerun the NewFolder procedure. However, let’s write a new procedure called RemoveFolder in the Manipulations Code window, as shown here:

Sub RemoveFolder()

 RmDir "C:\Study"

End Sub

The RmDir method allows you to remove unwanted folders from your hard disk.

	Position the insertion point within the code of the RemoveFolder procedure and choose Run | Run Sub/UserForm to execute the RemoveFolder procedure. Check Windows Explorer to see that the Study folder is gone.

USING THE IMMEDIATE WINDOW

The Immediate window is used for trying out various instructions, functions, and operators present in the Visual Basic language before using them in your own VBA procedures. It is a great tool for experimenting with your new language.

The Immediate window allows you to type VBA statements and test their results immediately without having to write a procedure. The Immediate window is like a scratch pad. Use it to try out your statements. If the statement produces the expected result, you can copy the statement from the Immediate window into your procedure (or you can drag it right onto the Code window if it is visible).

The Immediate window can be moved anywhere on the Visual Basic Editor screen, or it can be docked so that it always appears in the same area of the screen. The docking setting can be turned on and off on the Docking tab in the Options dialog box (Tools | Options).

	To quickly access the Immediate window, simply press Ctrl+G while in the Visual Basic Editor screen.

	To close the Immediate window, click the Close button in the top righthand corner of the window.

Before you start creating full-fledged VBA procedures (this awaits you in the next chapter!), begin with some warm-up exercises to build up your VBA vocabulary. How can you do this quickly and painlessly? How can you try out some of the newly learned VBA statements? Here is a short, interactive language exercise: Enter a simple VBA instruction and Excel will check it out and display the result in the next line. Let’s begin by setting up your exercise screen.

[image: Image]Hands-On 2.6 Entering and Executing VBA Statements in the Immediate Window

	In the Visual Basic Editor window, choose View | Immediate Window.

	Arrange the screen so that both the Microsoft Excel window and the Visual Basic window are placed side by side as presented in Figure 2.16 or use a setup with two monitors displaying Excel windows on separate screens.

[image: Image]

FIGURE 2.16 By positioning the Microsoft Excel and Visual Basic windows side by side you can watch the execution of the instructions entered in the Immediate window.

	In the VBE screen, press Ctrl+G to activate the Immediate window.

	In the Immediate window, type the following instruction and press Enter:

 Worksheets.Add

When you press the Enter key, Visual Basic gets to work. If you entered the foregoing VBA statement correctly, VBA adds a new sheet in the current workbook. The Sheet2 tab at the bottom of the workbook should now be highlighted.

	In the Immediate window, type another VBA statement and be sure to press Enter when you’re done:

Range("A1:A4").Select

As soon as you press Enter, Visual Basic highlights the cells A1, A2, A3, and A4 in the active worksheet.

	Enter the following instruction in the Immediate window:

[A1:A4].Value = 55

When you press Enter, Visual Basic places the number 55 in every cell of the specified range, A1:A4. This statement is an abbreviated way of referring to the Range object. The full syntax is more readable:

Range("A1:A4").Value = 55

	Enter the following instruction in the Immediate window:

Selection.ClearContents

When you press Enter, VBA deletes the results of the previous statement from the selected cells. Cells A1:A4 are now empty.

	Enter the following instruction in the Immediate window:

ActiveCell.Select

When you press Enter, Visual Basic makes cell A1 active.

Figure 2.17 shows all the instructions entered in the Immediate window in this exercise. Every time you pressed the Enter key, Excel executed the statement on the line where the cursor was located. If you want to execute the same instruction again, click anywhere in the line containing the instruction and press Enter.

[image: Image]

FIGURE 2.17 Instructions entered in the Immediate window are executed as soon as you press the Enter key.

For more practice you may want to rerun the statements shown in Figure 2.17. Execute the instructions one by one by clicking in the appropriate line and pressing the Enter key.

Obtaining Information in the Immediate Window

So far you have used the Immediate window to perform actions. These actions could have been performed manually by clicking the mouse in various areas of the worksheet and entering data.

Instead of simply performing actions, the Immediate window also allows you to ask questions. Suppose you want to find out which cells are currently selected, the value of the active cell, the name of the active sheet, or the number of the current window. When working in the Immediate window, you can easily get answers to these and other questions.

In the preceding exercise, you entered several instructions. Let’s return to the Immediate window to ask some questions. Excel remembers the instructions entered in the Immediate window even after you close this window. Note that the contents of the Immediate window are automatically deleted when you exit Microsoft Excel.

[image: Image]Hands-On 2.7 Obtaining Information in the Immediate Window

	Click the mouse in the second line of the Immediate window where you previously entered the instruction Range("A1:A4").Select.

	Press Enter to have Excel reselect cells A1:A4.

	Click in the new line of the Immediate window, enter the following question, and press Enter:

?Selection.Address

When you press Enter, Excel will not select anything in the worksheet. Instead, it will display the result of the instruction on a separate line in the Immediate window. In this case, Excel returns the absolute address of the cells that are currently selected (A1:A4).

The question mark (?) tells Excel to display the result of the instruction in the Immediate window. Instead of the question mark, you can use the Print keyword, as shown in the next step.

	In a new line in the Immediate window, enter the following statement and press Enter:

Print ActiveWorkbook.Name

Excel enters the name of the active workbook on a new line in the Immediate window.

How about finding the name of the application?

	In a new line in the Immediate window, enter the following statement and press Enter:

?Application.Name

Excel will reveal its full name: Microsoft Excel.

The Immediate window can also be used for a quick calculation.

	In a new line in the Immediate window, enter the following statement and press Enter:

?12/3

Excel shows the result of the division on the next line. But what if you want to know right away the result of 3+2 and 12*8?

Instead of entering these instructions on separate lines, you can enter them on one line, as in the following example:

?3+2:?12*8

Notice the colon separating the two blocks of instructions. When you press the Enter key, Excel displays the results 5, 96 on separate lines in the Immediate window.

The following lists all the instructions you entered in the Immediate window, including Excel’s answers to your questions:

Worksheets.Add

Range("A1:A4").Select

[A1:A4].Value = 55

Selection.ClearContents

ActiveCell.Select

?Selection.Address

A1:A4

Print ActiveWorkbook.Name

Book2

?Application.Name

Microsoft Excel

?12/3

 4

?3+2:?12*8

 5

 96

To delete the instructions from the Immediate window, make sure that the selection point is in the Immediate window, press Ctrl+A to highlight all the lines, and then press Delete.

WORKING WITH WORKSHEET CELLS AND RANGES

When you are ready to write your own VBA procedure to automate a spreadsheet task, you will most likely begin searching for instructions that allow you to manipulate worksheet cells. You will need to know how to select cells, how to enter data in cells, how to assign range names, how to format cells, and how to move, copy, and delete cells. Although these tasks can be easily performed with the mouse or keyboard, mastering these techniques in Visual Basic for Applications requires a little practice. You must use the Range object to refer to a single cell, a range of cells, a row, or a column. There are three properties that allow you to access the Range object: the Range property, the Cells property, and the Offset property.

Using the Range Property

The Range property returns a cell or a range of cells. The reference to the range must be in an A1-style and in quotation marks (for example, “A1”). The reference can include the range operator, which is a colon (for example, “A1:B2”), or the union operator, which is a comma (for example, “A5”, “B12”).

[image: Image]Hands-On 2.8 Using the Range Property to Select Worksheet Cells

	
	

	To render this into VBA:
	Enter this in the Immediate window:

	Select a single cell (e.g., A5).
	Range("A5").Select

	Select a range of cells (e.g., A6:A10).
	Range("A6:A10").Select

	Select several nonadjacent cells (e.g., A1, B6, C8).
	Range("A1, B6, C8").Select

	Select several nonadjacent cells and cell ranges (e.g., A11:D11, C12, D3).
	Range("A11:D11, C12, D3").Select

Using the Cells Property

You can use the Cells property to return a single cell. When selecting a single cell, this property requires two arguments. The first argument indicates the row number and the second one is the column number. Arguments are entered in parentheses. When you omit arguments, Excel selects all the cells in the active worksheet. Let’s try out a couple of statements in Hands-On 2.9.

[image: Image]Hands-On 2.9 Using the Cells Property to Select Worksheet Cells (Part I)

	
	

	To render this into VBA:
	Enter this in the Immediate window:

	Select a single cell (e.g., A5).
	Cells(5, 1).Select

	Select a range of cells (e.g., A6:A10).
	Range(Cells(6, 1), Cells(10, 1)).Select

	Select all cells in a worksheet.
	Cells.Select

Notice how you can combine the Range property and the Cells property:

Range(Cells(6, 1), Cells(10, 1)).Select

In this example, the first Cells property returns cell A6, while the second one returns cell A10. The cells returned by the Cells properties are then used as a reference for the Range object. As a result, Excel will select the range of cells where the top cell is specified by the result of the first Cells property and the bottom cell is defined by the result of the second Cells property.

A worksheet is a collection of cells. You can also use the Cells property with a single argument that identifies a cell’s position in the collection of a worksheet’s cells. Excel numbers the cells in the following way: Cell A1 is the first cell in a worksheet, cell B1 is the second one, cell C1 is the third one, and so on. Cell 16384 is the last cell in the first worksheet row. Now let’s write some practice statements in Hands-On 2.10.

[image: Image]Hands-On 2.10 Using the Cells Property to Select Worksheet Cells (Part II)

	
	

	To render this into VBA:
	Enter this in the Immediate window:

	Select cell A1.
	Cells(1).Select

or

Cells.Item(1).Select

	Select cell C1.
	Cells(3).Select

or

Cells.Item(3).Select

	Select cell XFD.
	Cells(16384).Select

or

Cells.Item(16384).Select

Notice that the word Item is a property that returns a single member of a collection. Because Item is the default member for a collection, you can refer to a worksheet cell without explicitly using the Item property.

Now that you’ve discovered two ways to select cells (Range property and Cells property), you may wonder why you should bother using the more complicated Cells property. It’s obvious that the Range property is more readable; after all, you used the Range references in Excel formulas and functions long before you decided to learn about VBA. Using the Cells property is more convenient, however, when it comes to working with cells as a collection. Use this property to access all the cells or a single cell from a collection.

Using the Offset Property

Another very flexible way to refer to a worksheet cell is with the Offset property. Quite often when automating worksheet tasks, you may not know exactly where a specific cell is located. How can you select a cell whose address you don’t know? The answer: Have Excel select a cell based on an existing selection.

The Offset property calculates a new range by shifting the starting selection down or up a specified number of rows. You can also shift the selection to the right or left a specified number of columns. In calculating the position of a new range, the Offset property uses two arguments. The first argument indicates the row offset and the second one is the column offset. Let’s try out some examples in Hands-On 2.11.

[image: Image]Hands-On 2.11 Selecting Cells Using the Offset Property

	
	

	To render this into VBA:
	Enter this in the Immediate window:

	Select a cell located one row down and three columns to the right of cell A1.
	Range("A1").Offset(1, 3).Select

	Select a cell located two rows above and one column to the left of cell D15.
	Range("D15").Offset(–2, –1). Select

	Select a cell located one row above the active cell. If the active cell is in the first row, you will get an error message.
	ActiveCell.Offset(–1, 0).Select

In the first example, Excel selects cell D2. As soon as you enter the second example, Excel chooses cell C13.

If cells A1 and D15 are already selected, you can rewrite the first two statements in the following way:

Selection.Offset(1, 3).Select

Selection.Offset(-2, -1).Select

Notice that the third example in the practice table displays zero (0) in the position of the second argument. Zero entered as a first or second argument of the Offset property indicates a current row or column. The instruction ActiveCell.Offset(–1, 0).Select will cause an error if the active cell is located in the first row.

Using the Resize Property

When working with the Offset property, you may occasionally need to change the size of a selection of cells. Suppose that the starting selection is A5:A10. How about shifting the selection two rows down and two columns to the right and then changing the size of the new selection? Let’s say the new selection should highlight cells C7:C8. The Offset property can take care of only the first part of this task. The second part requires another property. Excel has a special Resize property. You can combine the Offset property with the Resize property to answer the foregoing question. Before you combine these two properties, let’s proceed to Hands-On 2.12 to learn how you can use them separately.

[image: Image]Hands-On 2.12 Writing a VBA Statement to Resize a Selection of Cells

	Arrange the screen so that the Microsoft Excel window and the Visual Basic window are side by side.

	Activate the Immediate window and enter the following instructions:

Range("A5:A10").Select

Selection.Offset(2, 2).Select

Selection.Resize(2, 4).Select

The first instruction selects range A5:A10. Cell A5 is the active cell. The second instruction shifts the current selection to cells C7:C12. Cell C7 is located two rows below the active cell A5 and two columns to the right of A5. Now the active cell is C7.

The last instruction resizes the current selection. Instead of range C7:C12, cells C7:F8 are selected.

Like the Offset property, the Resize property takes two arguments. The first argument is the number of rows you intend to include in the selection, and the second argument specifies the number of columns. Hence, the instruction Selection.Resize(2, 4).Select resizes the current selection to two rows and four columns.

The last two instructions can be combined in the following way:

Selection.Offset(2, 2).Resize(2, 4).Select

In this statement, the Offset property calculates the beginning of a new range, the Resize property determines the new size of the range, and the Select method selects the specified range of cells.

[image: Image] Recording a Selection of Cells

By default, the macro recorder selects cells using the Range property. If you turn on the macro recorder and select cell A2, enter any text, and select cell A5, you will see the following lines of code in the Visual Basic Editor window:

Range("A2").Select

ActiveCell.FormulaR1C1 = "text"

Range("A5").Select

You can have the macro recorder use the Offset property if you tell it to use relative references. To do this, click View | Macros | Use Relative References, and then choose Record Macro. The macro recorder produces the following lines of code:

ActiveCell.Offset(-1, 0).Range("A1").Select

ActiveCell.FormulaR1C1 = "text"

ActiveCell.Offset(3, 0).Range("A1").Select

When you record a procedure using the relative references, the procedure will always select a cell relative to the active cell. The first and third lines in this set of instructions reference cell A1, even though nothing was said about cell A1. As you remember from Chapter 1, the macro recorder has its own way of getting things done. To make things simpler, you can delete the reference to Range("A1"):

ActiveCell.Offset(-1, 0).Select

ActiveCell.FormulaR1C1 = "text"

ActiveCell.Offset(3, 0).Select

After recording a procedure using the relative reference, make sure Use Relative References is not selected if your next macro does not require the use of relative addressing.

Using the End Property

If you often must quickly access certain remote cells in your worksheet, you may already be familiar with the following keyboard shortcuts: End+up arrow, End+down arrow, End+left arrow, and End+right arrow. In VBA, you can use the End property to quickly move to remote cells. Let’s move around the worksheet by writing statements listed in Hands-On 2.13.

[image: Image]Hands-On 2.13 Selecting Cells Using the End Property

	
	

	To render this into VBA:
	Enter this in the Immediate window:

	Select the last cell in any row.
	ActiveCell.End(xlToRight).Select

	Select the last cell in any column.
	ActiveCell.End(xlDown).Select

	Select the first cell in any row.
	ActiveCell.End(xlToLeft).Select

	Select the first cell in any column.
	ActiveCell.End(xlUp).Select

Notice that the End property requires an argument that indicates the direction you want to move. Use the following Excel built-in Direction Enumeration constants to jump in the specified direction: xlToRight, xlToLeft, xlUp, xlDown.

Moving, Copying, and Deleting Cells

In the process of developing a new worksheet model, you often find yourself moving and copying cells and deleting cell contents. Visual Basic allows you to automate these worksheet editing tasks with three simple-to-use methods: Cut, Copy, and Clear. And now let’s do some hands-on exercises to get some practice in the most frequently used worksheet operations.

[image: Image]Hands-On 2.14 Moving, Copying, and Deleting Cells

	
	

	To render this into VBA:
	Enter this in the Immediate window:

	Move the contents of cell A5 to cell A4.
	Range("A5").Cut

Destination:=Range("A4")

	Copy a formula from cell A3 to cells D5:F5.
	Range("A3").Copy

Destination:=Range("D5:F5")

	Delete the contents of cell A4.
	Range("A4").Clear

or

Range("A4").Cut

Notice that the first two methods in the table require a special argument called Destination. This argument specifies the address of a cell or a range of cells where you want to place the cut or copied data. In the last example, the Cut method is used without the Destination argument to remove data from the specified cell.

The Clear method deletes everything from the specified cell or range, including any applied formats and cell comments. If you want to be specific about what you delete, use the following methods:

	ClearContents—Clears only data from a cell or range of cells

	ClearFormats—Clears only applied formats

	ClearComments—Clears all cell comments from the specified range

	ClearNotes—Clears notes and sound notes from all the cells in the specified range

	ClearHyperlinks—Removes all hyperlinks from the specified range

	ClearOutline—Clears the outline for the specified range

WORKING WITH ROWS AND COLUMNS

Excel uses the EntireRow and EntireColumn properties to select the entire row or column. Let’s now write the statements in Hands-On 2.15 to quickly select entire rows and columns.

[image: Image]Hands-On 2.15 Selecting Entire Rows and Columns

	
	

	To render this into VBA:
	Enter this in the Immediate window:

	Select an entire row where the active cell is located.
	Selection.EntireRow.Select

	Select an entire column where the active cell is located.
	Selection.EntireColumn.Select

When you select a range of cells you may want to find out how many rows or columns are included in the selection. Let’s have Excel count rows and columns in Range("A1:D15").

	Type the following VBA statement in the Immediate window and press Enter:

Range("A1:D15").Select

If the Microsoft Excel window is visible, Visual Basic will highlight the range A1:D15 when you press Enter.

	To find out how many rows are in the selected range, enter the following statement:

?Selection.Rows.Count

As soon as you press Enter, Visual Basic displays the answer on the next line. Your selection includes 15 rows.

	To find out the number of columns in the selected range, enter the following statement:

?Selection.Columns.Count

As soon as you press Enter, Visual Basic tells you that the selected Range("A1:D15") occupies the width of four columns.

	In the Immediate window, position the cursor anywhere within the word Rows or Columns and press F1 to find out more information about these useful properties.

Obtaining Information about the Worksheet

How big is an Excel worksheet? How many columns and rows does it contain? If you ever forget the details, use the Count property as shown in Hands-On 2.16.

[image: Image]Hands-On 2.16 Counting Rows and Columns

	
	

	To render this into VBA:
	Enter this in the Immediate window:

	Find out the total number of rows in an Excel worksheet.
	?Rows.Count

	Find out the total number of columns in an Excel worksheet.
	?Columns.Count

A Microsoft Excel worksheet has 1,048,576 rows and 16,384 columns.

ENTERING DATA AND FORMATTING CELLS

The information entered in a worksheet can be text, numbers, or formulas. To enter data in a cell or range of cells, you can use either the Value property or the Formula property of the Range object.

	Using the Value property:

ActiveSheet.Range("A1:C4").Value = "=4 * 25"

	Using the Formula property:

ActiveSheet.Range("A1:C4").Formula = "=4 * 25"

In both examples, cells A1:C4 display 100—the result of the multiplication 4 * 25. Let’s proceed to some practice in Hands-On 2.17.

[image: Image]Hands-On 2.17 Using VBA Statements to Enter Data in a Worksheet

	
	

	To render this into VBA:
	Enter this in the Immediate window:

	Enter in cell A5 the following text: Amount Due
	Range("A5").Formula = "Amount Due"

	Enter the number 123 in cell D21.
	Range("D21").Formula = 123

or

Range("D21").Value = 123

	Enter in cell B4 the following formula: = D21 * 3
	Range("B4").Formula = "=D21 * 3"

Returning Information Entered in a Worksheet

In some Visual Basic procedures, you will undoubtedly need to return the contents of a cell or a range of cells. Although you can use either the Value or Formula property, this time the two Range object’s properties are not interchangeable.

	The Value property displays the result of a formula entered in a specified cell. If, for example, cell A1 contains a formula = 4 * 25, then the instruction

?Range("A1").Value

will return the value of 100.

	If you want to display the formula instead of its result, you must use the Formula property:

?Range("A1").Formula

Excel will display the formula (= 4 * 25) instead of its result (100).

Finding Out about Cell Formatting

A frequent spreadsheet task is applying formatting to a selected cell or a range. Your VBA procedure may need to find out the type of formatting applied to a worksheet cell. To retrieve the cell formatting, use the NumberFormat property:

?Range("A1").NumberFormat

Upon entering the foregoing statement in the Immediate window, Excel displays the word “General,” which indicates that no special formatting was applied to the selected cell. To change the format of a cell to dollars and cents using VBA, enter the following instruction:

Range("A1").NumberFormat = "$#,##0.00"

If you enter 125 in cell A1 after it has been formatted using this code, cell A1 will display $125.00. You can look up the available format codes in the Format Cells dialog box in the Microsoft Excel application window as shown in Figure 2.18.

[image: Image]

FIGURE 2.18 You can apply different formatting to selected cells and ranges using format codes, as displayed in the Custom category in the Format Cells dialog box. To quickly bring up this dialog box, press the Alt, H, F, and M keys one at a time.

WORKING WITH WORKBOOKS AND WORKSHEETS

Now that you’ve got your feet wet working with worksheet cells and ranges, it’s time to move up one level and learn how you can control a single workbook, as well as an entire collection of workbooks. You cannot prepare a new worksheet if you don’t know how to open a new workbook. You cannot remove a workbook from the screen if you don’t know how to close a workbook. You cannot work with an existing workbook if you don’t know how to open it. These important tasks are handled by the following VBA methods: Add, Open, and Close. The next series of drills in Hands-On 2.18 and 2.19 will give you the language skills necessary for dealing with workbooks and worksheets.

[image: Image]Hands-On 2.18 Working with Workbooks

	
	

	To render this into VBA:
	Enter this in the Immediate window:

	Open a new workbook.
	Workbooks.Add

	Find out the name of the first workbook.
	?Workbooks(1).Name

	Find out the number of open workbooks.
	?Workbooks.Count

	Activate the second open workbook.
	Workbooks(2).Activate

	Close the Chap01_ExcelPrimer.xlsm workbook and save the changes.
	Workbooks("Chap01_ExcelPrimer. xlsm").Close SaveChanges:=True

	Open the Chap01_ExcelPrimer.xlsm workbook. Type the correct path to the file location on your computer.
	Workbooks.Open "C:\VBAExcel2021Primer_ByExample\Chap01_ExcelPrimer.xlsm"

	Activate the Chap01_ExcelPrimer.xlsm workbook.
	Workbooks("Chap01_ExcelPrimer. xlsm").Activate

	Save the active workbook as NewChap.xlsm.
	ActiveWorkbook.SaveAs Filename:= "NewChap.xlsm"

	Close the first workbook.
	Workbooks(1).Close

	Close the active workbook without saving recent changes to it.
	ActiveWorkbook.Close

SaveChanges:=False

	Close all open workbooks.
	Workbooks.Close

If you worked through the last example in Hands-On 2.18, all workbooks are now closed. Before you experiment with worksheets, make sure you have opened a new workbook.

When you deal with individual worksheets, you must know how to add a new worksheet to a workbook, select a worksheet or a group of worksheets, name a worksheet, and copy, move, and delete worksheets. In Visual Basic, each of these tasks is handled by a special method or property.

[image: Image]Hands-On 2.19 Working with Worksheets

	
	

	To render this into VBA:
	Enter this in the Immediate window:

	Add a new worksheet.
	Worksheets.Add

	Find out the name of the first worksheet.
	?Worksheets(1).Name

	Select a sheet named Sheet3.
	Worksheets(3).Select

	Select sheets 1, 3, and 4.
	Worksheets(Array(1,3,4)).Select

	Activate a sheet named Sheet1.
	Worksheets("Sheet1").Activate

	Move Sheet2 before Sheet1.
	Worksheets("Sheet2").Move

Before:=Worksheets("Sheet1")

	Rename worksheet Sheet2 to Expenses.
	Worksheets("Sheet2").Name = "Expenses"

	Find out the number of worksheets in the active workbook.
	?Worksheets.Count

	Remove the worksheet named Expenses from the active workbook.
	Worksheets("Expenses").Delete

Notice the difference between the Select and Activate methods:

	The Select and Activate methods can be used interchangeably if only one worksheet is selected.

	If you select a group of worksheets, the Activate method allows you to decide which one of the selected worksheets is active. As you know, only one worksheet can be active at a time.

[image: Image] Sheets Other than Worksheets

In addition to worksheets, the collection of workbooks contains chart sheets. To add a new chart sheet to your workbook, use the Add method:

Charts.Add

To count the chart sheets, use:

?Charts.Count

WORKING WITH WINDOWS

When you work with several Excel workbooks and need to compare or consolidate data or you want to see different parts of the same worksheet, you are bound to use the options available from the Microsoft Excel Window menu: New Window and Arrange.

In Hands-On 2.20 you will learn how to work with Windows using VBA.

[image: Image]Hands-On 2.20 Working with Windows

	
	

	To render this into VBA:
	Enter this in the Immediate window:

	Show the active workbook in a new window.
	ActiveWorkbook.NewWindow

	Display on screen all open workbooks.
	Windows.Arrange

	Activate the second window.
	Windows(2).Activate

	Find out the title of the active window.
	?ActiveWindow.Caption

	Change the active window’s title to My Window.
	ActiveWindow.Caption = "My Window"

When you display windows on screen, you can decide how to arrange them. The Arrange method has many arguments, as shown in Table 2.1. The argument that allows you to control the way the windows are positioned on your screen is called ArrangeStyle. If you omit the ArrangeStyle argument, all windows are tiled.

TABLE 2.1 Arguments of the Arrange method of the Windows object.

	
	
	

	Constant
	Value
	Description

	xlArrangeStyleTiled
	1
	Windows are tiled (the default value).

	xlArrangeStyleCascade
	7
	Windows are cascaded.

	xlArrangeStyleHorizontal
	2
	Windows are arranged horizontally.

	xlArrangeStyleVertical
	3
	Windows are arranged vertically.

Instead of the names of constants, you can use the value equivalents shown in Table 2.1.

To cascade all windows, use the following VBA instruction:

Windows.Arrange ArrangeStyle:=xlArrangeStyleCascade

or simply:

Windows.Arrange ArrangeStyle:=7

WORKING WITH THE EXCEL APPLICATION

The Application object represents the Excel application itself. By controlling the Application object, you can perform many tasks, such as saving the way your screen looks at the end of a day’s work or quitting the application. As you know, Excel allows you to save the screen settings by using the Save Workspace button on the View tab. The task of saving the workspace can be easily performed with VBA:

Application.SaveWorkspace "Project"

This instruction saves the screen settings in the workspace file named Project. The next time you need to work with the same files and arrangement of windows, simply open the Project.xlwx file so Excel will bring up the correct files and restore your screen with those settings. And now let’s write some statements that use the Application object.

[image: Image]Hands-On 2.21 Working with the Excel Application

	
	

	To render this into VBA:
	Enter this in the Immediate window:

	Check the name of the active application.
	?Application.Name

	Change the title of the Excel application to My Application.
	Application.Caption = "My Application"

	Change the title of the Excel application back to Microsoft Excel.
	Application.Caption = "Microsoft Excel"

	Find out what operating system you are using.
	?Application.OperatingSystem

	Find out the name of a person or firm to whom the application is registered.
	?Application.OrganizationName

	Find out the name of the folder where the Excel executable file (Excel.exe) resides.
	?Application.Path

	Quit working with Microsoft Excel.
	Application.Quit

SUMMARY

This chapter has given you an overview of the Visual Basic Editor window. You learned many basic VBA terms and practiced them by executing single statements in the Immediate window.

In the next chapter, you will learn how the data can be stored for later use in variables. You will also explore VBA data types and constants.

Chapter 3

Excel VBA Fundamentals

A Quick Reference to Writing VBA Code

In programming, just as in life, certain things need to be done at once while others can be put off until later. When you postpone a task, you may enter it in your mental or paper “to-do” list and classify it by its type or importance. When you delegate the task or finally get around to doing it yourself, you cross it off the list. This chapter shows you how your VBA procedures can memorize important pieces of information for use in later statements or calculations. You will learn how a procedure can keep a “to-do” entry in a variable, how variables are declared, and how they relate to data types and constants.

EXCEL OBJECTS, PROPERTIES, AND METHODS

You can create procedures that control many features of Microsoft Excel using Visual Basic for Applications. You can also control many other applications. The power of Visual Basic comes from its ability to control and manage various objects. But what is an object?

An object is a thing you can control with VBA. Workbooks, a worksheet, a range in a worksheet, a chart, and a toolbar are just a few examples of the objects you may want to control while working in Excel. Excel contains a multitude of objects that you can manipulate in different ways. All these objects are organized in a hierarchy. Some objects may contain other objects. For example, Microsoft Excel is an Application object. The Application object contains other objects, such as workbooks or command bars. The Workbook object may contain other objects, such as worksheets or charts. In this chapter, you will learn how to control the following Excel objects: Range, Window, Worksheet, Workbook, and Application. You begin by learning about the Range object. You can’t do much work in spreadsheets unless you know how to manipulate ranges of cells.

Certain objects look alike. For example, if you open a new workbook and examine its worksheets, you won’t see any differences. A group of like objects is called a collection. A Worksheets collection includes all worksheets in a workbook. Collections are also objects. In Microsoft Excel, the most frequently used collections are:

	Workbooks collection—represents all currently open workbooks.

	Worksheets collection—represents all the Worksheet objects in the specified or active workbook. Each Worksheet object represents a worksheet.

	Sheets collection—represents all the sheets in the specified or active workbook. The Sheets collection can contain Chart or Worksheet objects.

	Windows collection—represents all the Window objects in Microsoft Excel. The Windows collection for the Application object contains all the windows in the application, whereas the Windows collection for the Workbook object contains only the windows in the specified workbook.

When you work with collections, you can perform the same action on all the objects in the collection.

Each object has some characteristics that allow you to describe the object. In Visual Basic, the object’s characteristics are called properties. For example, a Workbook object has a Name property, and the Range object has such properties as Column, Font, Formula, Name, Row, Style, and Value. The object properties can be set. When you set an object’s property, you control its appearance or its position. Object properties can take on only one specific value at any one time. For example, the active workbook can’t be called two different names at the same time.

The most difficult part of Visual Basic is to understand the fact that some properties can also be objects. Let’s consider the Range object. You can change the appearance of the selected range of cells by setting the Font property. But the font can have a different name (Times New Roman, Arial, ...), different size (10, 12, 14, ...), and different style (bold, italic, underline, ...). These are font properties. If the font has properties, then the font is also an object.

Properties are great. They let you change the look of the object, but how can you control the actions? Before you can make Excel carry out some tasks, you need to know another term. Objects have methods. Each action you want the object to perform is called a method. The most important Visual Basic method is the Add method, which you can use to add a new workbook or worksheet. Objects can use various methods. For example, the Range object has special methods that allow you to clear the cell contents (ClearContents method), clear just formats (ClearFormats method), and clear both contents and formats (Clear method). Other methods allow objects to be selected, copied, or moved.

Methods can have optional parameters that specify how the method is to be carried out. For example, the Workbook object has a method called Close. You can close any open workbook using this method. If there are changes to the workbook, Microsoft Excel will display a message prompting you to save the changes. You can use the Close method with the SaveChanges parameter set to False to close the workbook and discard any changes that have been made to it, as in the following example:

Workbooks("Chap01_Excel.xlsm").Close SaveChanges:=False

MICROSOFT EXCEL OBJECT MODEL

When you learn new things, theory can give you the necessary background, but how do you really know what’s where? All the available Excel objects as well as their properties and methods can be looked up in the online Excel Object Model Reference that you can access by choosing Help | Microsoft Visual Basic for Applications Help in the Visual Basic Editor window. Figure 3.1 illustrates the Excel Object Model Reference in the online help. This page can be accessed via the following link:

https://docs.microsoft.com/en-us/office/vba/api/overview/Excel/object-model

Objects are listed alphabetically for easy perusal, and when you click the object, you will see object subcategories that list the object’s properties, methods, and events. Reading the object model reference is a great way to learn about Excel objects and collections of objects. The time you spend here will pay big dividends later when you need to write complex VBA procedures from scratch. A good way to get started is to always look up objects that you come across in Excel programming texts or example procedures. Now take a few minutes to familiarize yourself with the main Excel object—Application. This object allows you to specify application-level properties and execute application-level methods. You saw several examples of working with the Application object in Chapter 2.

[image: Image]

FIGURE 3.1 In your VBA programming work, always refer to the Excel Object Model Reference that contains documentation for all the objects, properties, methods, and events contained in the Excel object model.

WRITING SIMPLE AND COMPLEX VBA STATEMENTS

Now that you know the basic elements of VBA (objects, properties, and methods), it’s time to start using them. But how do you combine objects, properties, and methods into correct language structures? Every language has grammar rules that people follow to make themselves understood. Whether you communicate in English, Spanish, French, or another language, you apply certain rules to your writing and speech. In programming, we use the term syntax to specify language rules. You can look up the syntax of each object, property, or method in the online help or in the Object Browser window.

To make sure Excel always understands what you mean, just stick to the following rules:

Rule #1: Referring to the property of an object

If the property does not have arguments, the syntax is as follows:

Object.Property

Object is a placeholder. It is where you should place the name of the actual object that you are trying to access. Property is also a placeholder. Here you place the name of the object’s characteristics. For example, to refer to the value entered in cell A4 on your worksheet, you can write the following instruction:

[image: Image]

Notice that there is a period between the name of the object and its property.

When you need to access the property of an object that is contained within several other objects, you must include the names of all objects in turn, separated by the dot operator, as shown here:

ActiveSheet.Shapes(2).Line.Weight

Contents

	Cover Page

	Half-Title Page

	License, Disclaimer

	Title Page

	Copyright Page

	Dedication Page

	Contents

	Acknowledgments

	Introduction

	PART I EXCEL VBA PRIMER

	Chapter 1 Excel Macros: A Quick Start in Excel VBA Programming

	Macros and VBA

	Enabling the Developer Tab in Excel

	Using the Built-In Macro Recorder

	Improving Your Recorded Macros

	Creating a Master Macro

	Various Methods of Running Macros

	Summary

	Chapter 2 Excel Programming Environment: A Quick Overview of its Tools and Features (VBE)

	Understanding the Project Explorer Window

	Understanding the Properties Window

	Understanding the Code Window

	Setting the VBE Options

	Syntax and Programming Assistance

	Using the Object Browser

	Using the VBA Object Library

	Using the Immediate Window

	Working with Worksheet Cells and Ranges

	Working with Rows and Columns

	Entering Data and Formatting Cells

	Working with Workbooks and Worksheets

	Working with Windows

	Working with the Excel Application

	Summary

	Chapter 3 Excel VBA Fundamentals: A Quick Reference to Writing VBA Code

	Excel Objects, Properties, and Methods

	Microsoft Excel Object Model

	Writing Simple and Complex VBA Statements

	Saving Results of VBA Statements

	Introducing Data Types

	Using Variables

	Using Constants

	Converting between Data Types

	Using Static Variables in VBA Procedures

	Using Object Variables in VBA Procedures

	Summary

	Chapter 4 Excel VBA Procedures: A Quick Guide to Writing Function Procedures

	Understanding Function Procedures

	Various Methods of Running Function Procedures

	Ensuring Availability of Your Custom Functions

	Passing Arguments to Function Procedures

	Testing a Function Procedure

	Locating Built-In Functions

	Getting to Know the MsgBox Function

	Getting to Know the InputBox Function

	Using the InputBox Method

	Summary

	Chapter 5 Adding Decisions to Excel VBA Programs: A Quick Introduction to Conditional Statements

	Relational and Logical Operators

	Using If...Then Statement

	Using If...Then...Else Statement

	Using If...Then...ElseIf Statement

	Nested If...Then Statements

	Using the Select Case Statement

	Writing a VBA Procedure with Multiple Conditions

	Using Conditional Logic in Function Procedures

	Summary

	Chapter 6 Adding Repeating Actions to Excel VBA Programs: A Quick Introduction to Looping Statements

	Introducing Looping Statements

	Using Loops and Conditionals

	Summary

	Chapter 7 Storing Multiple Values in Excel VBA Programs: A Quick Introduction to Working with Arrays

	Understanding Arrays

	Using a One-Dimensional Array

	Using a Two-Dimensional Array

	Using a Dynamic Array

	Using Array Functions

	Troubleshooting Errors in Arrays

	Using the ParamArray Keyword

	Data Entry with an Array

	Sorting an Array with Excel

	Summary

	Chapter 8 Keeping Track of Multiple Values in Excel VBA Programs: A Quick Introduction to Creating and Using Collections

	Working with Built-in Collections

	Creating Your Own Collection

	Using Custom and Built-in Collections Together

	Collections versus Arrays

	Watching the Execution of Your VBA Procedures

	Summary

	Chapter 9 Excel Tools for Testing and Debugging: A Quick Introduction to Testing VBA Programs

	Testing VBA Procedures

	Stopping a Procedure

	Using Breakpoints

	Using the Immediate Window in Break Mode

	Using the Stop and Assert Statements

	Using the Watch Window

	Using Quick Watch

	Using the Locals Windows and the Call Stack Dialog Box

	Navigating with Bookmarks

	Trapping Errors

	Stepping through the VBA Code

	Terminating a Procedure Based on a Condition

	Summary

	PART II MANIPULATING FILES AND FOLDERS WITH VBA

	Chapter 10 File and Folder Manipulation with VBA

	Manipulating Files and Folders

	Summary

	Chapter 11 File and Folder Manipulation with Windows Script Host (WSH)

	Referencing the Microsoft Scripting Runtime

	Finding Information about Files with WSH

	Creating a Text File Using WSH

	Performing Other Operations with WSH

	Summary

	Chapter 12 Using Low-Level File Access

	File Access Types

	Working with Sequential Files

	Working with Random-Access Files

	Working with Binary Files

	Summary

	PART III CONTROLLING OTHER APPLICATIONS WITH VBA

	Chapter 13 Using Excel VBA to Interact with Other Applications

	Launching Applications Using the Shell Function

	Moving between Applications

	Controlling Another Application with the SendKeys Statement

	Other Methods of Controlling Applications

	Creating Automation Objects

	Summary

	Chapter 14 Using Excel with Microsoft Access

	Object Libraries

	Connecting to Access

	Opening an Access Database

	Performing Access Tasks from Excel

	Retrieving Access Data into an Excel Worksheet

	Transferring the Excel Worksheet to an Access Database

	Summary

	PART IV ENHANCING THE USER EXPERIENCE

	Chapter 15 Event-Driven Programming

	Introduction to Event Procedures

	Writing Your First Event Procedure

	Enabling and Disabling Events

	Event Sequences

	Worksheet Events

	Workbook Events

	PivotTable Events

	Chart Events

	Events Recognized by the Application Object

	Query Table Events

	Other Excel Events

	Summary

	Chapter 16 Using Dialog Boxes

	Excel Dialog Boxes

	File Open and File Save As Dialog Boxes

	GetOpenFilename and GetSaveAsFilename Methods

	Summary

	Chapter 17 Creating Custom Forms

	Creating Forms

	Sample Application: Info Survey

	Summary

	Chapter 18 Formatting Worksheets with VBA

	Performing Basic Formatting Tasks with VBA

	Performing Advanced Formatting Tasks with VBA

	Summary

	Chapter 19 Context Menu Programming and Ribbon Customizations

	Working with Context Menus

	A Quick Overview of the Ribbon Interface

	Ribbon Programming with VBA and XML

	Customizing the Backstage View

	Customizing the Quick Access Toolbar (QAT)

	Modifying Context Menus Using Ribbon Customizations

	Summary

	Chapter 20 Printing and Sending Email from Excel

	Controlling the Page Setup

	Previewing a Worksheet

	Changing the Active Printer

	Printing a Worksheet with VBA

	Disabling Printing and Print Previewing

	Using Printing Events

	Sending Email from Excel

	Summary

	PART V EXCEL TOOLS FOR DATA ANALYSIS

	Chapter 21 Using and Programming Excel Tables

	Understanding Excel Tables

	Creating a Table Using Built-in Commands

	Creating a Table Using VBA

	Working with the Excel ListObject

	Filtering Data in Excel Tables Using AutoFilter

	Filtering Data in Excel Tables Using Slicers

	Deleting Worksheet Tables

	Summary

	Chapter 22 Programming PivotTables and PivotCharts

	Creating a PivotTable Report

	Removing PivotTable Detail Worksheets with VBA

	Creating a PivotTable Report with VBA

	Creating a PivotTable Report from an Access Database

	Using the CreatePivotTable Method of the PivotCache Object

	Formatting, Grouping, and Sorting a PivotTable Report

	Hiding Items in a PivotTable

	Adding Calculated Fields and Items to a PivotTable

	Creating a PivotChart Report Using VBA

	Understanding and Using Slicers

	Data Model Functionality and PivotTables

	Programmatic Access to the Data Model

	Summary

	Chapter 23 Getting and Transforming Data in Excel

	Using the Get Data Button

	Understanding Power Queries

	Using the Advanced Editor

	Power Query vs Excel Formula Language and Excel VBA

	Learning about various M Language Functions

	Creating a Query from a Table

	The Get Data and VBA Support

	Additional Learning Resources for Using the Get Data Feature

	Summary

	PART VI TAKING CHARGE OF PROGRAMMING ENVIRONMENT

	Chapter 24 Programming the Visual Basic Editor (VBE)

	The Visual Basic Editor Object Model

	Understanding the VBE Objects

	Accessing the VBA Project

	Finding Information about a VBA Project

	VBA Project Protection

	Working with Modules

	Working with Procedures

	Working with UserForms

	Working with References

	Working with Windows

	Working with VBE Menus and Toolbars

	Summary

	Chapter 25 Calling Windows API Functions from VBA

	Understanding the Windows API Library Files

	How to Declare a Windows API Function

	Excel 64-Bit and Windows API

	Accessing Windows API Documentation

	Using Windows API Functions in Excel

	Summary

	PART VII ADVANCED CONCEPTS IN EXCEL VBA

	Chapter 26 Creating Classes in VBA

	Important Terminology

	Creating and Using Custom Objects

	Creating a Custom Application

	Event Procedures in the Class Module

	Creating a Form for Data Collection

	Creating a Worksheet for Data Output

	Writing Code behind the UserForm

	Working with the Custom CEmployee Class

	Watching the Execution of Your Custom Application

	Summary

	PART VIII WORKING TOGETHER: VBA, HTML, XML, AND THE REST API

	Chapter 27 HTML Programming and Web Queries

	Creating Hyperlinks Using VBA

	Creating and Publishing HTML Files Using VBA

	Web Queries

	Refreshing Data

	Summary

	Chapter 28 Using XML in Excel 2021

	What Is XML?

	Well-Formed XML Documents

	Validating XML Documents

	Editing and Viewing an XML Document

	Opening an XML Document in Excel

	Working with XML Maps

	Working with XML Tables

	Validating XML Data

	Programming XML Maps

	Viewing the XML Schema

	Creating XML Schema Files

	Using XML Events

	The XML Document Object Model

	Working with XML Document Nodes

	Retrieving Information from Element Nodes

	XML via ADO

	Understanding Namespaces

	Understanding Open XML Files

	Manipulating Open XML Files with VBA

	Summary

	Chapter 29 Excel and Rest API

	Introduction to a VBA Dictionary Object

	Introduction to Regular Expressions

	Introduction to the REST API

	Summary

	Index

	Cover

	i

	ii

	iii

	iv

	v

	vii

	viii

	ix

	x

	xi

	xii

	xiii

	xiv

	xv

	xvi

	xvii

	xviii

	xix

	xx

	xxi

	xxii

	xxiii

	xxiv

	xxv

	xxvii

	xxviii

	xxix

	xxx

	xxxi

	xxxii

	xxxiii

	xxxiv

	1

	3

	4

	5

	6

	7

	8

	9

	10

	11

	12

	13

	14

	15

	16

	17

	18

	19

	20

	21

	22

	23

	24

	25

	26

	27

	28

	29

	30

	31

	32

	33

	34

	35

	36

	37

	38

	39

	40

	41

	42

	43

	44

	45

	46

	47

	48

	49

	50

	51

	52

	53

	54

	55

	56

	57

	58

	59

	60

	61

	62

	63

	64

	65

	66

	67

	68

	69

	70

	71

	72

	73

	74

	75

	76

	77

	78

	79

	80

	81

	83

	84

	85

	86

	87

	88

	89

	90

	91

	92

	93

	94

	95

	96

	97

	98

	99

	100

	101

	102

	103

	104

	105

	106

	107

	108

	109

	110

	111

	112

	113

	114

	115

	116

	117

	118

	119

	120

	121

	122

	123

	125

	126

	127

	128

	129

	130

	131

	132

	133

	134

	135

	136

	137

	138

	139

	140

	141

	142

	143

	144

	145

	146

	147

	148

	149

	150

	151

	152

	153

	154

	155

	156

	157

	158

	159

	161

	162

	163

	164

	165

	166

	167

	168

	169

	170

	171

	172

	173

	174

	175

	176

	177

	178

	179

	180

	181

	183

	184

	185

	186

	187

	188

	189

	190

	191

	192

	193

	194

	195

	196

	197

	198

	199

	200

	201

	202

	203

	204

	205

	206

	207

	208

	209

	210

	211

	212

	213

	214

	215

	216

	217

	218

	219

	220

	221

	222

	223

	224

	225

	226

	227

	228

	229

	230

	231

	232

	233

	234

	235

	236

	237

	238

	239

	240

	241

	242

	243

	244

	245

	246

	247

	248

	249

	250

	251

	252

	253

	254

	255

	256

	257

	258

	259

	260

	261

	262

	263

	264

	265

	266

	267

	268

	269

	270

	271

	272

	273

	274

	275

	276

	277

	278

	279

	280

	281

	282

	283

	284

	285

	286

	287

	288

	289

	290

	291

	292

	293

	294

	295

	296

	297

	298

	299

	300

	301

	302

	303

	304

	305

	306

	307

	308

	309

	310

	311

	312

	313

	314

	315

	316

	317

	318

	319

	320

	321

	322

	323

	324

	325

	326

	327

	328

	329

	330

	331

	332

	333

	334

	335

	336

	337

	338

	339

	340

	341

	344

	345

	346

	347

	348

	349

	350

	351

	352

	353

	354

	355

	356

	357

	358

	359

	360

	361

	362

	363

	364

	365

	366

	367

	368

	369

	370

	371

	372

	373

	375

	376

	377

	378

	379

	381

	382

	383

	384

	385

	386

	387

	388

	389

	390

	391

	392

	393

	394

	395

	396

	397

	398

	399

	400

	401

	402

	403

	404

	405

	406

	407

	408

	409

	410

	411

	412

	413

	414

	415

	416

	417

	418

	419

	420

	421

	422

	423

	424

	425

	426

	427

	428

	430

	431

	432

	433

	434

	435

	436

	437

	438

	439

	440

	441

	442

	443

	444

	445

	446

	447

	448

	449

	450

	451

	452

	453

	454

	455

	456

	457

	458

	459

	460

	461

	462

	463

	464

	465

	466

	467

	468

	469

	470

	471

	472

	473

	474

	475

	476

	477

	478

	479

	480

	481

	482

	483

	484

	485

	486

	487

	488

	489

	490

	491

	492

	493

	494

	495

	496

	497

	498

	499

	500

	501

	502

	503

	504

	505

	506

	507

	508

	509

	510

	511

	512

	513

	514

	515

	516

	517

	518

	519

	520

	521

	522

	523

	524

	525

	526

	527

	528

	529

	530

	531

	532

	533

	534

	535

	536

	537

	538

	539

	540

	541

	542

	543

	544

	545

	546

	547

	548

	549

	550

	551

	552

	553

	554

	555

	556

	557

	558

	559

	560

	561

	562

	563

	564

	565

	566

	567

	568

	569

	570

	571

	572

	573

	575

	576

	577

	578

	579

	580

	581

	582

	583

	584

	585

	586

	587

	588

	589

	590

	591

	592

	593

	594

	595

	596

	597

	598

	599

	600

	601

	602

	603

	604

	605

	606

	607

	608

	609

	610

	611

	612

	613

	614

	615

	616

	617

	618

	619

	620

	621

	622

	623

	624

	625

	626

	627

	628

	629

	630

	631

	632

	633

	634

	635

	637

	638

	639

	640

	641

	642

	643

	644

	645

	646

	647

	648

	649

	650

	651

	652

	653

	654

	655

	656

	657

	658

	659

	660

	661

	662

	663

	664

	665

	666

	667

	668

	669

	672

	673

	674

	675

	676

	677

	678

	679

	680

	681

	682

	683

	684

	685

	686

	687

	688

	689

	690

	691

	692

	693

	694

	695

	696

	697

	698

	699

	700

	701

	702

	703

	704

	705

	706

	707

	708

	709

	710

	711

	712

	713

	714

	715

	716

	717

	718

	719

	720

	721

	722

	723

	724

	725

	726

	727

	728

	729

	730

	731

	732

	733

	734

	735

	736

	737

	738

	739

	740

	741

	742

	743

	744

	745

	746

	747

	748

	749

	750

	751

	752

	753

	755

	756

	757

	758

	759

	760

	761

	762

	763

	764

	765

	766

	767

	768

	769

	770

	771

	772

	773

	774

	775

	776

	777

	778

	779

	780

	781

	782

	783

	784

	785

	786

	787

	788

	789

	790

	792

	793

	794

	795

	796

	797

	798

	799

	800

	801

	802

	803

	804

	805

	806

	807

	808

	809

	810

	811

	812

	813

	814

	815

	816

	817

	818

	819

	820

	821

	822

	823

	824

	825

	826

	827

	828

	829

	830

	831

	832

	833

	834

	835

	836

	837

	838

	839

	840

	841

	843

	844

	845

	846

	847

	848

	849

	850

	851

	852

	853

	854

	855

	856

	857

	858

	859

	860

	861

	862

	863

	864

	865

	866

	867

	868

	869

	872

	873

	874

	875

	876

	877

	878

	879

	880

	881

	882

	883

	884

	885

	886

	887

	888

	889

	890

	891

	892

	893

	894

	895

	896

	897

	898

	899

	900

	901

	902

	903

	904

	905

	906

	907

	908

	909

	912

	913

	914

	915

	916

	917

	918

	919

	920

	921

	922

	923

	924

	925

	926

	927

	928

	929

	930

	931

	932

	934

	933

	935

	936

	937

	938

	939

	940

	941

	942

	943

	944

	945

	946

	947

	948

	949

	950

	951

	952

	953

	954

	955

	956

	957

	958

	959

	960

	961

	962

	963

	964

	965

	966

	967

	968

	969

	970

	971

	972

	973

	974

	975

	976

	977

	978

	979

	980

	981

	982

	983

	984

	985

	986

	987

	988

	989

	990

	991

	992

	993

	994

	995

	996

	997

	998

	999

	1000

	1001

	1002

	1003

	1004

	1005

	1006

	1007

	1008

	1009

	1010

	1011

	1012

	1013

	1014

	1015

	1016

	1017

	1018

	1019

	1020

	1021

	1022

	1023

	1024

	1025

	1026

	1027

	1028

	1029

	1030

	1031

	1032

	1033

	1034

	1035

	1036

	1037

	1038

	1039

	1040

	1041

	1042

	1043

	1044

	1045

	1046

	1047

	1048

	1049

	1050

	1051

	1052

	1053

	1054

	1055

	1056

	1057

	1058

	1059

	1060

	1061

	1062

	1063

	1064

	1065

	1066

	1067

	1068

	1069

	1070

	1071

OEBPS/images/sidebar.jpg
SIDEBAR

OEBPS/images/Chap03ExcelP21_FigR3-01.jpg
Object

Property

Y

v

Range("A4").Value

OEBPS/images/Chap01_Excel21Primer_Fig04.jpg
TestMacro_Demo
Downloads

‘ @& Upload] 6 Share] @> Copy path | | 7 Open file location

Security Warning
Active content might contain malware and other security hazards. If
you trust the contents of the file, you may enable this active
content:
@ Enable Content + disabled in Trust Center
Enable allowed active content (make this a
Trusted Document)

Advanced Options
Select which active content should be enabled.
This content will be enabled for this session only.

E Frotect VWOrknook
Q Control what types of changes people can make to this workbook.

Protect |
Workbook ¥

OEBPS/images/Chap01_Excel21Primer_Fig05.jpg
Microsoft Office Security Options

O Security Alert - Macros

Macros

Macros have been disabled. Macros might contain malware or other security hazards. Do
not enable this content unless you trust the source of this file.

Warning: It is not possible to determine that this content came from a trustworthy
source. You should leave this content disabled unless the content provides critical
functionality and you trust its source.

More information

File Path: C:\Users\Julitta\Downloads\TestMacro_Demo.xIsm

O Help protect me from unknown content (recommended)

© Enable content for this session

Open the Trust Center Cancel

OEBPS/images/Chap01_Excel21Primer_Fig06.jpg
: Excel Options ? X

Gencel Customize the Ribbon.
Formulas
Choose commands from:® Customize the Rigbon:@
Data
l Popular Commands '] l Main Tabs B
Proofing
Save N’ Add or Remove Filters [4] Main Tabs [4]
Al Chart Types... [Create Chart] @ &4 Background Removal
Language Borders | 4 8 @Home
Accessibility Calculate Now B Undo
Cente_r_ _ R B Clipboard
Advanced gondmonal Formatting B Font
= opy B Alignment
Customize Ribbon Custom Sort... B Number
Quick Access Toolbar Cut . & Styles
Decrease Font Size Cells
Add-ins Delete Cells... ® Editing
Delete Sheet Columns @ Analysis
Trust Center Delete Sheet Rows Add >> B insert 4 EI
Email << Remove | |8 ODraw EI
Fill Color [=
oot - @ Page Layout
Font Color [» Formulas
Font Size ® @Data
Format Ce.IIs & @ Review
Format Painter Bview
Freeze Panes »
Increase Font Size ML
B Insert Cells.. Add-ins
= &

Insert Function...
Insert Picture | New Tab | | New Group | | Rename... |
Insert Sheet Columns
Insert Sheet Rows

i [imgort/Export ~]®
M oo At & Import/Export

Customizations:

OEBPS/images/Chap01_Excel21Primer_Fig07.jpg
File ~ Home

Visual Macros
Basic

BN -

Insert Page Layout Formulas Data Review View Developer Help

£ Search (Alt+Q)

Julitta Korol

[@ Record Macro o] Properties A & Import
T =) .
. Lt . 2 » o~
BB Use Relative References | o0 o0 con insert Dsig [View Code Source: i) Expansion Packs (3}
A\ Macro Security ins Add-ins Add-ins | ¥ Mode [E| Run Dialog 2
Code Add-ins Controls M
Macro Security %
Customize the macro security
settings. | F c Em | K L | M | N @ I P | Gl |

OEBPS/images/Chap02_Excel21_Fig01.jpg
CanitRredo Properties

Save Window
[Selected Workbook] Design 9
(Ctrl+S) Find Mode
Copy (Ctr+F) Break
(Ctr+C) (Ctrl+Break) Toolbox
View
Microsoft
Excel === Bvd & LaNl9c»ua¥FY > Qn1,col
(Alt+F11) I i
Insert User Form cut Project o
(Xtr+X) Run Macro Explorer | Microsoft Visual Basic for Applications
Paste (F5) (Ctr+R) Help (F1)
(Ctr+V) Reset Object Browser
CantUndo (F2)

(Ctri+2)

OEBPS/images/Chap01_Excel21Primer_Fig08.jpg
Microsoft Office Trusted Location ? X 1

Warning: This location will be treated as a trusted source for opening files. If you
change or add a location, make sure that the new location is secure.

Path:
|CAVBAPrimerExcel2021_ByExample\ |

Browse...

D Subfolders of this location are also trusted
Description:

Date and Time Created: 5/13/2022 6:04 PM

o)

OEBPS/images/Chap02_Excel21_Fig02.jpg
View Code

[} Toggle Folders

-84 Personal (PERSONAL.XLSB)
-85 vBAProject (Chap01_ExcelPrimer.xism)
E&Wmoﬁm
| |-H#) Sheet1 (Sheet1)
SM(HWW)
| -4 Thisworkbook
-5 Modules

8% Module1

OEBPS/images/Chap01_Excel21Primer_Fig09.jpg
4

A

B

€

D

E

F

Ll Employee Nameﬂ First Nameﬂ Last Nameﬂ Hourly Rateﬂ Hours Worked- Total Wagesﬂ
2 |James Rogers James Rogers 15 7 $105.00
3 |Martha Lambert Martha Lambert 13.4 6 $80.40
4 |Eugene Zelnik Eugene Zelnik 21.42 10 $214.20
5 |Enrique Martinez Enrique Martinez 16.5 11 $181.50
6 |Wanda Pasterniak Wanda Pasterniak 35 21 $735.00
7 |Bruce Smith Bruce Smith 28.33 14 $396.6.
8

OEBPS/images/Chap02_Excel21_Fig03.jpg
Margin
Indicator
Bar

Procedure
View

(General)

Insert_EmployeeData

Sub Insert_EmployeeData()
'

' Insert_EmployeeData Macro

Range ("A2") .Select
ActiveCell.FormulaR1Cl
Range ("D2") .Select
ActiveCell.FormulaR1Cl
Range ("E2") .Select
ActiveCell.FormulaR1C1l
Range ("A3") .Select
ActiveCell.FormulaR1Cl
Range ("D3") .Select
ActiveCell.FormulaR1Cl
Range ("E3") .Select
ActiveCell.FormulaR1C1l

"James Rogers"
nign

nn

"Martha Lambert"
"13.4"

ngn

Full Module View

Split

OEBPS/images/Chap02_Excel21_Fig04.jpg
Options

Editor Editor Format General Docking

@ Project Explorer
8 Properties Window
() object Browser

Cancel

OEBPS/images/Chap02_Excel21_Fig05.jpg
Quick Info Outdent
Ctri+] en
3) (Shift + Tab) Toggle
Bookmark
Complete
Word Comment

(Ctri+Space) Blgck Toolbar Options

List
Properties/Methods > | i |4 % % % Clear All
(Ctri+J) I l Bookmarks
Parameter Info Toggle | Previous Bookmark
(Ctri+Shift+) Breakpoint
(F9) Bookman(

List Constants

(Ctri+Shift+J) Uncomment

Block
Indent

(Tab)

OEBPS/images/Chap02_Excel21_Fig06.jpg
oub lilnsertiNewoneet|()
Worksheets |

End Sub aQEAdd HPN
= Add2
Application
= Copy
Count
Creator

= Delete

OEBPS/images/Chap02_Excel21_Fig07.jpg
Sub PrintView()
ActiveWindow.View =|

End Sub @ ixINormalView

& xIPageBreakPreview
& xIPagelLayoutView

OEBPS/images/Chap02_Excel21_Fig08.jpg
Sub PrintView()

ActiveWindow.View = x1lPageBreakPreview
ActiveWorkbook.SaveAs

End Sub

SaveAs([Filename], [FileFormaf], lPasswordj, [
=xINoChange], [C

assword], [ReadO

C

[AddToMru), [TextCe

[
, [TextVisualLayouf], [Local])

As

OEBPS/images/Chap02_Excel21_Fig09.jpg
Sub PrintView()
ActiveWindow.View = PaBEeINFa-EVgiasirsi)

ActiveWorkbook. SaveA xIPageBreakPreview = 2 [el_ByExample\CopyChapOZ_ExcelPrimer .x1lsm")

Fnd Sub

OEBPS/images/Chap01_Excel21Primer_Fig01.jpg
Microsoft Excel X

The following features cannot be saved in macro-free workbooks:

0 « VB project
To save a file with these features, click No, and then choose a macro-enabled file type in the File Type list.

To continue saving as a macro-free workbook, click Yes.

Yes No

OEBPS/images/Chap01_Excel21Primer_Fig02.jpg
Trust Center

Trusted Publishers
Trusted Locations
Trusted Documents
Trusted Add-in Catalogs

Add-ins

ActiveX Settings

Protected View
Message Bar
External Content
File Block Settings
Privacy Options

Form-based Sign-in

Macro Settings

O Disable VBA macros without notification

® |Disgble VBA macros with notification

O Disable VBA macros except digitally signed macros

O Enable VBA macros (not rec p i code can run)

(D Enable Excel 4.0 macros when VBA macros are enabled

Developer Macro Settings

() Trust access to the VBA project object model

OEBPS/images/Chap01_Excel21Primer_Fig03.jpg
yel Julitta Korol

K Autosave (@ Off) ‘ 2 = ‘ TestMacro_Demouxlsm ~
Data Review View Developer Help

% fEH Conditional Formatting v = jeo) [3

Fle Home Insert Pagelayout Formulas I Comments = WG

Y . [‘In] X Calibri M =
¢) m~ B I U~ AN Alignment =~ Number [Format as Table ¥ Cells Editing = Analyze
R 2 v v A v v [iZ cell Styles v v ¥ Data
Undo Clipboard & Font & Styles Analysis o
(D SECURITY WARNING Macros have been disabled. | Enable Content X
Al vii|X Vv £ v
y | A B | € | b | BN F_ Il @ W | | | J | IS L VI &
1 | 0
—1 =
24
3_
4 v
Sheet1 [©) >
100%

Ready [® % Accessibility: Good to go

OEBPS/images/Chap01_Excel21Primer_Fig15.jpg
Microsoft Visual Basic for A

- Chap01_ExcelPri - [Module1 (Code)] - o X
4 Eile Edit View Insert Format Debug Run Jools Add-Ins Window Help S) 23
EE-d s 2@M90 >0 ak ¥ * Qnacol
Bowba/e®/d=2(0% %]
R 85 e &

X| | |(General) ~ | Insert_NewSheet -]
o= @ I Option Explicit —
&8 Personal (PERSONAL.XLSB)
£ 85 vBAProject (Chap01_ExcelPrimer.xism) Sub Insert_NewSheet ()

125 Microsoft Excel Objects '
8] Sheet1 (Sheet1) ' Insert_NewSheet Macro
) Sheet3 (Employee Wages) ' Insert and rename a worksheet
Sheets (Sheetd) '
‘ThisWorkbook
-5 Modules '
vt Module1

Module1 Module

) Modulel

Sheets.Add After:=ActiveSheet

Sheets ("Sheet2") .Select

Sheets ("Sheet2") .Name
End Sub

"Employee Wages"

Sub Insert_Headings()

' Inserrt_Headings Macro
'

Range ("Al") .Select
ActiveCell.FormulaR1Cl
Range ("B1") .Select
ActiveCell.FormulaR1Cl
Range ("C1") .Select
ActiveCell.FormulaR1Cl
Range ("D1") .Select
ActiveCell.FormulaR1Cl
Range ("E1") .Select
ActiveCell.FormulaR1Cl
Range ("F1") .Select
ActiveCell.FormulaR1Cl
Range ("Al:F1") .Select
Selection.Font.Bold = True
Selection.Columns.AutoFit
End Sub

"Employee Name"
= "First Name"
= "Last Name"

"Hourly Rate"
"Hours Worked"

"Total Wages"

=5 -

OEBPS/images/Chap01_Excel21Primer_Fig16.jpg
Microsoft Visual Basic

Run-time error '9":
Subscript out of range

Continue End

OEBPS/images/Chap02_Excel21_Fig10.jpg
|<A|| Libraries>

[l
Search Results

Library

| Member

|Classes
A

[#) AboveAverage

#) Action

[#) Actions

) Addin

) Addins

#) Addins2

#) Adjustments

#) AllowEditRange

@ AllowEditRanges

) Application

v

Members of '<globals>"'
=% Abs

ActiveCell
ActiveChart
ActivePrinter
ActiveSheet
ActiveWindow
ActiveWorkbook
Addins

=%y AppActivate
Application

=y AsC

<All Libraries>

OEBPS/images/cover.jpg
EXCEL 2021 / MICROSOFT 365
PROGRAMMING BY EXAMPLE

a JULITTA KoRoL

OEBPS/images/Chap01_Excel21Primer_Fig17.jpg
ﬁ Microsoft Visual Basic for Applications - Chap01_ExcelPrimer.xIsm - [MasterProcedure (Code)]
4 Eile Edit View |Insert Fgrmat Debug Run Jools Add-Ins Window Help

HEE~d s a9~ " a K §FY @ W6 Col7
@ O R @ A[RunSub/Userform FS)| & % %o %

¥ » n 2| & %3 (F % :D;“..

OEBPS/images/Chap02_Excel21_Fig11.jpg
' % [Appiication 1 |« ActivateMicrosoftApp
@ Areas ActiveCell
@) Author ! ActiveChart I

&) AutoCorrect ActiveEncryptionSession
&3 AutoFilter ActivePrinter

&3 AutoRecover ActiveProtectedViewWindow
& Aves ActiveSheet

& Axis ActiveWindow

@ AxisTitle ActiveWorkbook

‘o BackstageGroupStyle & AddCustomList

&) Border Addins

'@ Borders Addins2

& BulletFormat2 # AfterCalculate

2 CalculatedFields AlertBeforeOverwriting

Function InputBox(Prompt As String, [Title], [Defaulf], [Leff}, [Top), [HelpFile], [HelpContextID], [Type]) ‘
Member of Excel Application [
|

OEBPS/images/Chap01_Excel21Primer_Fig18.jpg
4

Macro Options ? X

Macro name:
CreateEmployeeWorksheet

Shortcut key:

Ctrl+Shift+ EI

Description:

OK Cancel

OEBPS/images/Chap02_Excel21_Fig12.jpg
4
uiy
2|
3
|
S
6]
|
8|

9

OEBPS/images/Chap01_Excel21Primer_Fig19.jpg
@ AutoSave

File Home
@ @ I=
Sheet View

A10
Y A

Insert Page Li

B H

Normal Page B

Previ

we

v X
B

| Employee Nameﬂ First Name|

2 |James Rogers James
3 |Martha Lambert Martha
4 |Eugene Zelnik Eugene
5 |Enrique Martinez Enrique
6 |Wanda Pasterniak Wanda
7 |Bruce Smith Bruce
8;

9

10| 1

1]

12|

13|

14

15|

16

Customize Quick Access Toolbar

Automatically Save
New

Open

Save

Email

Quick Print

Print Preview and Print
Spelling

Undo

Redo

Sort Ascending

Sort Descending
Touch/Mouse Mode
More Commands...

Show Below the Ribbon

Hide Quick Access Toolbar

0O Search (Alt+Q)

w View Developer Help

() Formula Bar Q o Eéi

. Zoom 100% Zoom to
&
les (¥) Headings SelEGiEn

Show Zoom

10 $214.20
11 $181.50
21 $735.00
14 $396.62

Customize Quick Access Toolbar

R | Sheet1 | Employee Wages ©)

OEBPS/images/Chap02_Excel21_Fig13.jpg
| <Al Libraries> SN YK
”hnhox v] & 2|
Library Class Member

Excel B Shapes «& AddTextbox
W\ Office &® MsoShapeType & msoTextBox
I\ Excel &P XISmartTagControlType) xiSmartTagControlTextbox
N\ Excel &® Constants XTextBox
Classes | Members of ‘Shapes'
& SensitivityLabelPolicy 1<®& AddChart2
& Series & AddConnector
& SeriesCollection & AddCurve
& SeriesGradientStopColorFormat |+®& AddFormControl
& SeriesLines -® AddLabel
& ServerPolicy & AddLine
& ServerViewableitems 1+®& AddOLEObject
&) Shape & AddPicture2

ShapeNode =& AddPolyline
& ShapeNodes <& AddShape

ShapeRange +® AddSmartArt
483 (Shapes R Addrextoox]
& SharedWorkspace & AddTextEffect
) SharedWorksoaceFile P Apolication

Function Add Textbox(Onentation As Mso TextOrientation, Left As Single, Top As Single, Width As Single,
Height As Single) As Shape

Member of Excel Shapes

OEBPS/images/Chap02_Excel21_Fig14.jpg
| vBAProject

G <globals>

3 Manipulations
Sheet1
& ThisWorkbook

ject VBAProject
C:\VBAPrimerExcel2021_ByExample\Chap02_ExcelPrimer.xism

OEBPS/images/Chap02_Excel21_Fig15.jpg
=& FileAttr
=@ FileCopy

«® FileDateTime
9 FileLen

=« FreeFile
5 HelpFile

o VbAppWinStyle
\&® VbCalendar

Members of 'FileSystem'
=& ChDir

1+® ChDrive

1+ CurDir

1+® CurDir$

1 Dir

=& EOF

1+® FileAttr

1+® FileCopy

1+® FileDateTime

1-® FileLen

1-® FreeFile

1+© GetAttr

1S Kill

1+® Loc

1-& LOF

o [|

1+® Reset

Sub MkDir(Path As String)
Member of VBA File System

OEBPS/images/Chap02_Excel21_Fig16.jpg
Alignment

Home Insert Page Layout Formulas

%

Nomber

Data Review View Developer

EEL]

stes

Help shape Format &

ap[@

cets gaiting y

ﬁsn C)

T T T

@ Display Settings

9 Microsoft Visual Basic for Applications - Chap02_ExcelPrimerism - [Manipulations (Code)
48 file Edit View Inset Fomat Debug Run Tools Add-ins Window Help
aK[¥FY 2@ |]

CERCIEE Y R
BowRme®|o=2on%n]
K[> nalosE RN |
- VBAProject. (X[T] [(Occtarations) <]
EEIE
3 :rsonal (PES Sub MoveTextBox ()
18 VBAProject (Chap01. ExcelPrimer.sm) With ActiveSheet.Shapes ("TextBox 1")
&8 veaProject (Chap02_Excelrimer.xism) .Select
25 Mcrosoft Excel Ot .Left o
B o) Top = 0
Thak Atk End With
63 otues End Sub
42 Mapulatons
Sub MoveCircle()
Hith ActiveShest. Shapes (2)
.Selec
Heres o
.Top = 0
- End With
SR X|| | £nd sub
uaputatons wode]
Sub NewFolder ()
Apratete_Categorzed
s MKDir "C:\Study"
End Sub
Sub RemoveFo]de!H
RmDir "C:\Study"
End Sub
Inmediate
|

OEBPS/images/Chap02_Excel21_Fig17.jpg
Immediate

Worksheets.Add

Range ("Al:A4") .Select
[A1l:A4].Value = 55
Selection.ClearContents
ActiveCell.Select

OEBPS/images/Chap02_Excel21_Fig18.jpg
‘ Format Cells ? X

|
|

Number Alignment Font Border Fill Protection
Category:
General a Sample
Number
Currency
Accounting Type:
Date
Time
Percentage
Fraction 0
Scientific 0.00
Text ##40
Special ###0.00
EEC | |+ or0) 50
###0);[Red](* ##0)
#,#20.00.);(#,##0.00)
###0.00_);[Red](#,##0.00)
$#,#20);(S#,##0)
$# ##0);[Red]($#,##0)
$#,##0.00);($#,##0.00)

Delete

Type the number format code, using one of the existing codes as a starting point.

OK Cancel

OEBPS/images/Chap01_Excel21Primer_Fig10.jpg
Record Macro ? X

Macro name:
| Insert_NewSheet

Shortcut key:
Ctrl+

Store macro in:
IThis Workbook j

Description:

Insert and rename a worksheed

oK Cancel

OEBPS/images/Chap01_Excel21Primer_Fig11.jpg
15

16

« > |Sheet1| @

Ready [] 3% Accessibility: Good to go

A macro is currently recording. Click to stop recording.

OEBPS/images/Chap01_Excel21Primer_Fig12.jpg
15

16

« » | Sheet1 | Employee Wages | (3

Ready % Accessibility: Investigate

No macros are currently recording. Click to begin recording a new macro.

OEBPS/images/Chap01_Excel21Primer_Fig13.jpg
File Home Insert Page Layout Formulas Data

Review View Developer Help 1=}

> 5 Q D &q {INewwindow B D %
Sheet = Workbook =~ Show = Zoom 100% Zoom to B Arrange Al Zape Switch
Viewv | Views v i Selection = ¥H Freeze Panes~ [] = [y = Windows v
o8 Mindow Ep View Macros
Al ™ X~/ fx|| Employee Name @ Record Macro...
4 A [B e | ‘ ‘
Use Relative References FH Use Relative References
1 |Employee Name |First Name |Last Name 'Hourly Rate |Hi)
2 Use relative references so that

= macros are recorded with actions

3 relative to the initial selected cell.

4

5 For instance, if you record a macro

6 in cell A1 which moves the cursor

7‘ to A3 with this option turned on,

— running the resulting macro in cell

8 | J6 would move the cursor to J8.

)
10 | If this option was turned off when
11 the macro was recorded, running it
12| in cell J6 would move the cursor to

— A3.
13
14

OEBPS/images/Chap01_Excel21Primer_Fig14.jpg
Macro ? X

Macro name:

CalculateWages
FormatTable
Get_FirstName
Get_LastName
Inserrt_Headings
Insert_EmployeeData
Insert_NewSheet Create
Delete

Options...

Macros in: | All Open Workbooks

Description

Cancel

OEBPS/images/bho.jpg

OEBPS/images/Chap03_Excel21Primer_Fig01.jpg
Excel object model for Visual B2 X

& C @ o del A B ® Bl @ @ -
5% Microsoft | Docs Documen Leam Q&A CodeSamples Shows vents signin
Office Add-ins Guides v Office applications v Resources v Script Lab.
Docs / Offce VA Reference / Excel / ® s = In this artide
Office VBA Reference = .
See als
e] Object model (Excel) a0
~ Excel Article + 09/13/2021 + 2 minutes to read « 7 contributors. X7
Overview
This section of the Excel VBA Reference contains documentation for all the objects,
>
Concepts properties, methods, and events contained in the Excel object model.
~ Object model
e Use the table of contents in the left navigation to view the topics in this section.
> AboveAverage object
> Action object © Note
> Actions object Interested in developing solutions that extend the Office experience across mulfiple
> Addin object platforms? Check out the new Office Add-ins model.
> Addins object
> Addins2 object
> Adjustments object See also
> AlloweditRange object

* Excel enumerations

Getting started with VBA in Offce: Provides insight into how VBA programming can
help to customize Office solutions.

What's new for VBA in Office 2019: Lists the new VBA language elements for Office
> Author object 2019,

> AllowEditRanges object

> Application object

> Areas object

> AutoCorrect object
> AutoFilter object 2016.

What's new for VBA in Office 2016: Lists the new VBA language elements for Office

> AutoRecover object

> Axes object - Support and feedback

OEBPS/images/Logo.jpg
MERCURY LEARNING AND INFORMATION
Dulles, Virginia
Boston, Massachusetts
New Delhi

OEBPS/images/Chap01_Excel21Primer_Fig26.jpg
1st Qtr.

12 34 22 68
10 35 29 74
22| 69| 51 142

OEBPS/images/Chap01_Excel21Primer_Fig20.jpg
Excel Options

General
Formulas
Data
Proofing
Save
Language
Accessibility
Advanced

Customize Ribbon

Add

Trust Center

l:b' Customize the Quick Access Toolbar.

Choose commands from:®

l Macros

<Separator>
CalculateWages

FormatTable
Get_FirstName
Get_LastName
Insert_EmployeeData
Insert_Headings
Insert_NewSheet

Show Quick Access Toolbar

Toolbar Position | Above Ribbon >

Always show command labels

Customize Quick Access Toolbar®

For all documents (default)

Customizations: -®
Import/Export ¥|®

OEBPS/images/Chap01_Excel21Primer_Fig21.jpg
£ Autosave (@ off) ‘ Q = l Chap01_ExcelPrimerxis... ~ O Search (Alt+Q)

File Home Insert Page CreateEmployeeWorksheet ata Review View Developer Help

@ @ Page Layout v Formula Bar CD\ Eéi

@ @ = Normal Page Break IE , 3 © Gridlines Headings Zoom 100% Zoom to

Preview Selection

Sheet View Workbook Views Show Zoom

OEBPS/images/Chap01_Excel21Primer_Fig22.jpg
Sub Insert_NewSheet ()
'

Insert_NewSheet Macro
Insert and rename a worksheet

'
'
'

Sheets.Add After:=ActiveSheet

ActiveSheet.Name = Application.InputBox("Enter the name for your worksheet:", "Rename This Sheet")
End Sub

OEBPS/images/Chap01_Excel21Primer_Fig23.jpg
Sub FormatTable()

' FormatTable Revised Macro
'

Dim strTableName As String
strTableName = InputBox("Enter the name for your table:", "Name your table range")

ActiveSheet.ListObjects.Add (x1SrcRange, Range ("A1:F7"), , xlYes).Name = strTableName
ActiveSheet.ListObjects (strTableName) .TableStyle = "TableStyleLight14"
Range ("Al") .Select
MsgBox "Your worksheet is ready."”
End Sub

OEBPS/images/Chap01_Excel21Primer_Fig24.jpg
| &

E AutoSave

Chap01_Supplementxism

£ search (Alt+Q)

B &

El

Source @ Expansion Packs
2l
XML
J K L

File Home Insert Page Layout Formulas Data Review View Developer Help
ﬁ@ Record Macro () @}' F E‘—x &’ E] Properties
[Use Relative Ref © 2% i [3] View Cod:
Visual Macros se Relative References Add- Excel COM Insert | Design tew Code
Basic A\ Macro Security ins Add-ins Add-ins < Mode Run Dialog
Code Add-ins Form Controls
c11 v v a E=me
v . [PN
A| A | B \ C ‘ D | E | F | Button (Form Control) |
1 ActiveX Controls |
2 |Category Jan Feb Mar 1stQtr. -
e o g
3 |Pencils 12 34 22 68 BoAEE
4 |pens 10 35 29 74 = .
5 |Total 22 69 51 142
6
—

OEBPS/images/Chap01_Excel21Primer_Fig25.jpg
Button1 viiX VvV &

ACESIB e | D e
Category Jan Feb Mar 1st Qtr.
Pencils 12 34 22 68
Pens 10 35 29 74
Total 22 69 51 142

i

