
		
			[image: Cover.jpg]
		

	
		
			LaTeX Graphics with TikZ

			A practitioner's guide to drawing 2D and 3D images, 
diagrams, charts, and plots

			Stefan Kottwitz

			[image: ]

			BIRMINGHAM—MUMBAI

			LaTeX Graphics with TikZ

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Alok Dhuri

			Publishing Product Manager: Akshay Dani

			Senior Editor: Kinnari Chohan

			Technical Editor: Jubit Pincy

			Copy Editor: Safis Editing

			Project Coordinator: Manisha Singh

			Proofreader: Safis Editing

			Indexer: Subalakshmi Govindhan

			Production Designer: Joshua Misquitta

			Developer Relations Marketing Executive: Deepak Kumar and Mayank Singh

			Business Development Executive: Puneet Kaur

			First published: June 2023

			Production reference: 1260523

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-80461-823-3

			www.packtpub.com

			To Till Tantau, the inventor of TikZ, and to Christian Feuersänger, the inventor of pgfplots. With thanks to Henri Menke, the current maintainer of TikZ, and Mark Wibrow for his contributions.

			Further thanks go to Kjell Magne Fauske for creating TeXample.net, Izaak Neutelings for working on TikZ.net, and Denis Bitouzé, Patrick Bideault, and Alain Matthes for supporting TikZ.fr.

			– Stefan Kottwitz

			Contributors

			About the author

			Stefan Kottwitz studied mathematics in Jena and Hamburg. He works as a network and IT security engineer for Lufthansa Industry Solutions.

			He has been offering LaTeX support on internet forums for many years. He maintains the web forums LaTeX.org and goLaTeX.de and the question and answer (Q&A) sites TeXwelt.de and TeXnique.fr. He runs the TeX graphics gallery sites TeXample.net, TikZ.net, and PGFplots.net, the TeXlive.net online compiler, the TeXdoc.org service, and the CTAN.net software mirror.

			A moderator of the TeX Stack Exchange site and matheplanet.com, he publishes ideas and news from the TeX world on his blogs LaTeX.net and TeX.co.

			He has also authored the LaTeX Beginner’s Guide in 2011, the second edition in 2021, and the LaTeX Cookbook in 2015, all by Packt.

			About the reviewers

			Izaak Neutelings got his master’s and PhD degrees at the University of Zurich (UZH). Now he works at the CMS experiment at CERN, where he does fundamental research in the field of experimental particle physics, hunting for new particles in proton collisions. He has written lecture notes for introductory physics courses at UZH, fully illustrated with TikZ figures.

			Joseph Wright is the author of several widely used LaTeX packages and is a member of the LaTeX Project team and the author. Joseph is a chemist by training, and in his day job is a university lecturer in inorganic chemistry.

		

	
		
			Table of Contents

			Preface

			1

			Getting Started with TikZ

			Technical requirements

			What is TikZ?

			Alternative graphics packages

			The LaTeX picture environment

			MetaPost

			Asymptote

			PSTricks

			Benefits of TikZ

			Installing TikZ

			With a vanilla TeX distribution

			With an operating system TeX installation

			Installing from sources

			Working with the TikZ documentation

			Creating our first TikZ figure

			Summary

			Further reading

			2

			Creating the First TikZ Images

			Technical requirements

			Using the tikzpicture environment

			Working with coordinates

			Cartesian coordinates

			Polar coordinates

			Three-dimensional coordinates

			Using relative coordinates

			Using units

			Drawing geometric shapes

			Using colors

			Summary

			Further reading

			3

			Drawing and Positioning Nodes

			Technical requirements

			Understanding nodes

			Using shapes and anchors

			A rectangle shape

			The circle and ellipse shapes

			The coordinate shape

			More shapes

			Spacing within and around nodes

			Positioning and aligning nodes

			Using anchors and relative positioning

			Placing nodes along a line

			Aligning nodes at the text baseline

			Aligning whole pictures at a node text baseline

			Adding labels and pins

			Putting images into nodes

			Summary

			Further reading

			4

			Drawing Edges and Arrows

			Technical requirements

			Connecting nodes by edges

			Adding text to edges

			Diving deeper into edge options

			Path options

			Connection options

			Drawing arrows

			Mathematical arrow tips

			Barbed arrow tips

			Geometric arrow tips

			Customizing arrow tips

			Using the to operation

			Summary

			Further reading

			5

			Using Styles and Pics

			Technical requirements

			Understanding styles

			Defining and using styles

			Inheriting styles

			Using styles globally and locally

			Giving arguments to styles

			Creating and using pics

			Summary

			Further reading

			6

			Drawing Trees and Graphs

			Technical requirements

			Drawing trees

			Creating mind maps

			Producing graphs

			Positioning in a matrix

			Summary

			Further reading

			7

			Filling, Clipping, and Shading

			Technical requirements

			Filling an area

			Understanding the path interior

			The nonzero rule

			The even odd rule

			Comparing the nonzero rule and the even odd rule

			Clipping a drawing

			Reverse clipping

			Shading an area

			Axis shading

			Radial shading

			Ball shading

			Bilinear interpolation

			Color wheel

			Summary

			Further reading

			8

			Decorating Paths

			Technical requirements

			Pre- and post-actions for using a path multiple times

			Understanding decorations

			Exploring the available decoration types

			Morphing paths

			Replacing paths with ticks

			Decorating paths with text

			Adding markings

			Adjusting decorations

			Summary

			Further reading

			9

			Using Layers, Overlays, and Transparency

			Technical requirements

			Using transparency

			Drawing on background and foreground layers

			Overlaying LaTeX content with 
TikZ drawings

			Positioning pictures on the background of a page

			Summary

			Further reading

			10

			Calculating with Coordinates and Paths

			Technical requirements

			Repeating in loops

			Calculating with coordinates

			Adding and subtracting coordinates

			Computing points between coordinates

			Projecting on a line

			Adding angles

			Evaluating loop variables

			Counting loop repetitions

			Evaluating the loop variable

			Remembering the loop variable

			Calculating intersections of paths

			Summary

			Further reading

			11

			Transforming Coordinates and Canvas

			Technical requirements

			Shifting nodes and coordinates

			Rotating, scaling, and slanting

			Transforming the canvas

			Summary

			Further reading

			12

			Drawing Smooth Curves

			Technical requirements

			Manually creating a smooth curve through chosen points

			Using a smooth plot to connect points

			Specifying cubic Bézier curves

			Using Bézier splines to connect given points

			Using the Hobby algorithm for smoothly connecting points

			Summary

			Further reading

			13

			Plotting in 2D and 3D

			Technical requirements

			Introducing plotting

			Creating and customizing Cartesian axes, ticks, and labels

			Understanding axis environments

			Customizing ticks and labels

			Using plotting commands and options

			Filling the area between plots

			Calculating plot intersections

			Adding a legend

			Using the polar coordinate system

			Parametric plotting

			Plotting in three dimensions

			Summary

			Further reading

			14

			Drawing Diagrams

			Technical requirements

			Creating flowcharts

			Linear flow diagrams

			Circular flow diagrams

			Building relationship diagrams

			Writing descriptive diagrams

			Producing quantitative diagrams

			Line charts

			Bar charts

			Pie charts

			Wheel charts

			Summary

			Further reading

			15

			Having Fun with TikZ

			Technical requirements

			Drawing cute creatures

			Playing with rubber ducks

			Meeting the TikZlings

			Building snowmen

			Playing with penguins

			Picturing people

			Playing and crafting

			Creating jigsaw puzzles

			Building with bricks

			Drawing world flags

			Index

			Other Books You May Enjoy

		

	


		
			Preface

			LaTeX Graphics with TikZ is a practical introduction to producing graphics in LaTeX. It features TikZ, a powerful modern computer graphics package. This book will help you write mathematical, scientific, or technical papers with graphics. The book guides you through the initial challenges and provides a rapid learning process. Even though using an external graphics editor may seem like a more accessible option at first sight, it will turn out that learning TikZ is more than worth the effort.

			This book starts with essential topics such as installing TikZ and learning the fundamental syntax. It offers step-by-step examples that begin with understanding coordinate systems, drawing geometric shapes, and working with nodes, anchors, edges, and arrows. You will also learn to utilize styles to produce consistent graphics easily while saving typing work.

			Furthermore, this book covers clipping, filling, shading, and adding decorations. You will learn about calculations with coordinates and transformations of coordinates and canvas.

			This book will help you create professional-looking diagrams and plots in two and three dimensions for visualizing your ideas and data.

			With LaTeX Graphics with TikZ to hand, you can quickly start with TikZ and enjoy its many benefits.

			Who this book is for

			If you’re a LaTeX user in school, academia, or industry, and you are looking to add figures such as diagrams, plots, and graphics in general to your thesis, articles, or any document, this book offers a practical and fast-paced introduction to producing such figures. Whether you’re a student, teacher, or engineer, this book is highly beneficial. Once you have experience in LaTeX or have read any LaTeX beginner’s book or tutorial, you can successfully work with this book.

			What this book covers

			Chapter 1, Getting Started with TikZ, introduces TikZ. It discusses alternative graphics packages and emphasizes TikZ’s benefits. You’ll thoroughly understand what TikZ is all about and its unique philosophy. You’ll receive guidance on installing TikZ, and you will walk through creating a small drawing. Additionally, you will get helpful tips for accessing TikZ’s and other packages’ documentation.

			Chapter 2, Creating the First TikZ Images, walks you through creating a LaTeX document with a drawing from scratch. You will gain a solid understanding of the TikZ syntax and learn about cartesian and polar coordinates in two and three dimensions. Additionally, you’ll learn how to create basic geometric shapes and incorporate color into your designs.

			Chapter 3, Drawing and Positioning Nodes, introduces the fundamental concept of nodes. You’ll learn how to draw nodes in various shapes, position and align them, and add text, images, and labels.

			Chapter 4, Drawing Edges and Arrows, shows how to connect nodes by edges, straight and curvy lines, and arrows. You’ll see how to add text labels on the edges and adjust alignment, position, and orientation. You’ll learn to use line styles and customized arrow tips in one or both directions.

			Chapter 5, Using Styles and Pics, teaches you how to define and apply global and local styles for TikZ elements. You will learn how to use styles on nodes and edges and apply them to entire pictures or selected parts of a picture using scopes. Additionally, you will learn about using mini TikZ pictures as building blocks.

			Chapter 6, Drawing Trees and Graphs, guides you through creating tree structures to depict parent-child relationships hierarchically. It shows how to draw mind maps to visualize ideas and introduces a concise syntax for generating graphs. Additionally, this chapter offers a practical technique for arranging objects in a matrix format similar to LaTeX’s tabular environment.

			Chapter 7, Filling, Clipping, and Shading, starts with more advanced techniques. You’ll learn how to fill complex paths, clip pictures to specific areas, and add shading that transitions smoothly from one color to another.

			Chapter 8, Decorating Paths, introduces techniques for adding creative effects to lines and curves, such as making them wavy, zigzag, or bumpy. You’ll also learn how to print text along a curved path and apply multiple actions on a single path.

			Chapter 9, Using Layers, Overlays, and Transparency, demonstrates how to create drawings on different layers, allowing you to place objects behind text or images. You will learn how to use transparency to improve this effect. Additionally, you will discover how to superimpose TikZ annotations on top of regular LaTeX text and add background images to document pages, similar to watermarks.

			Chapter 10, Calculating with Coordinates and Paths, shows the efficient way of letting TikZ calculate coordinate values. This chapter covers coordinate calculation, distance and projection calculation, and calculating intersections of paths. You’ll also discover how to save time and streamline your code by using loops to repeat commands.

			Chapter 11, Transforming Coordinates and Canvas, focuses on shifting, rotating, and scaling nodes and coordinates using transformations. You’ll learn skills that enable you to make precise adjustments and repositioning, whether you need to make minor tweaks or complex changes to your drawings.

			Chapter 12, Drawing Smooth Curves, explores different methods to draw easy curves smoothly with gentle slopes, smooth transitions, and without sharp corners or spikes, similar to freehand-like drawings.

			Chapter 13, Plotting in 2D and 3D, deals with visualizing data in a coordinate system. It covers customizing Cartesian and polar axes and adding legends, plotting explicit and parametric functions in 2D and 3D, calculating plot intersections, and filling between plots.

			Chapter 14, Drawing Diagrams, shows how to create flowcharts, relationship diagrams, descriptive diagrams, and quantitative diagrams. The emphasis is on using packages to generate whole diagrams in a more automated way.

			Chapter 15, Having Fun with TikZ, showcases examples of how skilled TikZ users enjoyed programming add-on packages and sharing them with the TikZ community. You’ll see how to draw cute animals, human shapes, nation flags, and game pieces.

			To get the most out of this book

			For using TikZ, a TeX installation, such as TeX Live, MiKTeX, or MacTeX, is required on your computer. TikZ and LaTeX are compatible with most operating systems, including Windows, Linux, macOS, and other Unix operating systems. All code examples in this book have been tested with TeX Live 2023 on Debian Linux and with MacTeX 2023 on macOS Ventura. For those who do not wish to install LaTeX, code examples are available on https://tikz.org, which includes an online compiler that makes the code accessible also for smartphone and tablet users. Alternatively, you can register on https://overleaf.com to compile the examples obtained from GitHub or TikZ.org.

			TikZ version 3.1.9.a has been used to develop and test the code examples in this book. All references to sections in the manual refer to that version. A future version may have a different section numbering.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			Throughout the book, concise code snippets are used to explain concepts without repetitive LaTeX document body and preambles. The entire code is available online for reference and further exploration.

			All examples use the standalone class. You can use the example codes and TikZ in general in any LaTeX document class.

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/LaTeX-graphics-with-TikZ. If there’s an update to the code, it will be updated in the GitHub repository.

			You can open the entire code bundle as a single project on Overleaf using the following link: https://www.overleaf.com/docs?snip_uri=https://tikz.org/code.zip.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://packt.link/7hkX1

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Write \draw [blue] circle (1cm); to get a blue circle.”

			A block of code is set as follows:

			
\begin{tikzpicture}
  \draw (-0.5,0) to ["text"] (0.5,0);
\end{tikzpicture}

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
\begin{axis}[axis lines=center]
  \addplot {x^3/5 - x};
\end{axis}

			Any command-line input or output is written as follows:

			
$ texdoc tikz

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “On the right-hand side, we see the so-called Transpose of the matrix.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			TikZ and LaTeX questions: If you have any questions about TikZ, LaTeX, or this book, you can post them at the author’s forum at https://latex.org

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share your thoughts

			Once you’ve read LATEX Graphics with TikZ, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application. 

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			 

			
				
					[image: ]
				

			

			https://packt.link/free-ebook/9781804618233

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	


		
			1

			Getting Started with TikZ

			First, congratulations on using LaTeX! You have already chosen an excellent tool for writing, and now you are ready to add high-quality figures to your documents.

			To work with this book, you should have a good understanding of LaTeX and know how to work with a LaTeX editor and compiler. If you are still learning about LaTeX, here are two recommended books:

			
					The LaTeX Beginner’s Guide, Second Edition by Packt Publishing gives you a fast start; you can find more information about it at https://latexguide.org

					The LaTeX Cookbook by Packt Publishing offers many ready-to-use examples for various document types. Look at the book’s website at https://latex-cookbook.net

			

			This chapter shall be a quickstart. We will cover the following topics:

			
					What is TikZ?

					Alternative graphics packages

					Benefits of TikZ

					Installing TikZ

					Working with TikZ documentation

					Creating our first TikZ figure

			

			We will briefly look at the technical requirements in each chapter, so let’s do that now.

			Technical requirements

			You need to have a LaTeX distribution installed on your computer, for example, TeX Live (https://tug.org/texlive), MacTeX (https://tug.org/mactex), or MiKTeX (https://miktex.org). A full installation is recommended. It may take up to 8 GB of space on your hard disk, but you don’t need to worry about missing packages.

			Alternatively, you can use Overleaf (https://overleaf.com). It’s an excellent online LaTeX editor and compiler; that’s why it requires a permanent internet connection to be able to use it.

			All code examples of this chapter are available on GitHub at https://github.com/PacktPublishing/LaTeX-graphics-with-TikZ/tree/main/01-Getting-Started-with-TikZ.

			At https://tikz.org, you can also find all code examples from this book. You can edit and compile to PDF directly on that website, so you can even use a smartphone or tablet to work with this book’s code.

			What is TikZ?

			The inventor of TikZ, Till Tantau, created the name as a recursive acronym in German. TikZ stands for TikZ ist kein Zeichenprogramm, which translates to TikZ is not a drawing program. It’s Tantau’s jokey way of emphasizing that you cannot expect to draw with it like with a pen or just mouse clicks, such as with Microsoft Paint on Windows, Paintbrush on a Mac, Adobe Illustrator Draw, or the free Inkscape vector graphics editor.

			Simply said, TikZ is a set of TeX commands for drawing graphics. Just like LaTeX is code that describes a document, TikZ is code that describes graphics and looks like LaTeX code. With TikZ, you write \draw [blue] circle (1cm); to get a blue circle with a 1 cm radius in your PDF document.

			The origin of TikZ is called PGF, which stands for Portable Graphics Format and is a set of graphics macros that can be used with pdfLaTeX and the classic DVI/PostScript-based LaTeX. Today, we consider TikZ as the frontend and PGF as the backend. So, to install TikZ, we need to look for pgf in the TeX package manager. From time to time, we will see a command with pgf in the name, but as authors and not developers, we will write in TikZ syntax almost exclusively.

			Alternative graphics packages

			Before we start, let’s quickly look at where we come from and what else is out there.

			The LaTeX picture environment

			LaTeX itself defines some basic graphics commands. We can use a picture environment for this.

			To get an idea of how it works, let’s have a quick look at a minimal example:

			
\setlength{\unitlength}{1cm}
\begin{picture}(1,1)
  \put(0,0){\circle{1}}
  \put(-0.5,0){\line(1,0){1}}
  \put(-0.3,0.06){text}
\end{picture}

			The output is the following:

			
				
					[image: Figure 1.1 – A classic LaTeX picture drawing]
				

			

			Figure 1.1 – A classic LaTeX picture drawing

			Here, we did the following:

			
					We set a base length. All numbers in drawing commands are seen as multiples of this base unit length.

					We used \put(x,y){…} to put something at the Cartesian coordinate position x, y.

					We wrote \circle{x} to get a circle with a diameter of x times the unit length.

					We used \line(x,y){z} to get a line in vector direction (x,y) with a length of z times the unit length.

			

			There are a few more commands, such as for drawing arrows and ovals, but that’s pretty much it. Now comes the fun part: lines, circles, and ovals are taken from unique fonts, so a drawing is put together from symbols. Consequently, lines can just have some predefined slope values, and circles are available with just some diameter values up to about 14 mm. The drawing is approximated and doesn’t look perfect. That was the time LaTeX was invented.Today, there’s the pict2e package, which extends the classic picture environment a bit and mainly removes some restrictions but plays in the same league. If you are further interested in the basic picture mode, look at https://texdoc.org/pkg/pict2e.

			MetaPost

			MetaPost is a drawing language of its own, powerful and mature. It produces PostScript code that can be converted to PDF. MetaPost is an external program or library. It was an early graphics companion for TeX users and is still in use. Its syntax differs from LaTeX so we won’t cover it further in the book. Visit https://metapost.eu for more information.

			Asymptote

			Asymptote is a vector graphics language inspired by MetaPost. It is very mathematically oriented, with actual 3D capabilities. It can use LaTeX for typesetting labels in its drawings, so the images are consistent with the LaTeX document. However, note that it is external software, which is why we won’t be discussing it anymore in this LaTeX book, but you may visit https://asymp.net for more details.

			PSTricks

			PSTricks is an extensive TeX macro collection for producing PostScript code that can be converted to PDF. LaTeX editors can do that conversion automatically with the help of support packages. The PSTricks package is large in size and extremely powerful, and many additional packages make use of it. If we did not have TikZ, PSTricks would be the way to go with LaTeX. Still, there are the restrictions of having to use PostScript, difficult syntax, and less user base support compared to TikZ. So, over time, TikZ became more popular. Visit https://pstricks.org for more information.

			Now that we have had a quick look at other graphics packages, let’s see what TikZ offers compared to the alternative packages in this section and classic GUI software.

			Benefits of TikZ

			Compared to classic drawing programs where you click with the mouse on shapes and toolbars and drag and drop graphic elements, TikZ is very different. With TikZ, you program graphics with code.

			That means your graphics will be the following:

			
					Precise: You get the exact placement of graphic and text elements using anchors, baselines, alignment, relative positioning, and implicit coordinate calculations.

					Consistent: TikZ blends in perfectly with LaTeX. You can use LaTeX fonts, symbols, formulas, colors, and macros within your drawing, and your drawing details will precisely match your LaTeX document design. That would be different if you imported some externally made images.

					High-quality: TikZ generates scalable PDF images that look fine when you zoom in or out. There are no blurry or pixelated images.

					Efficient: Similar figures mean similar code and similar styles; it’s all reusable, and when you adjust global styles, you change the appearance of all corresponding figures in your document. This means there’s less need to repeat things.

					Cross-platform: Your drawing will work with every major operating system and online compiler that runs LaTeX. Even more, you can use all common (La)TeX engines, such as pdfLaTeX, XeLaTeX, LuaLaTeX, and even classic plain TeX and ConTeXt, a big macro package and interesting alternative to LaTeX.

			

			With TikZ, you inherit the benefits of LaTeX regarding scientific typesetting, quality, separation of styles and content, and version control, such as GitHub.

			Many developers have created packages on top of TikZ for the easier creation of diagrams and charts, plots, trees, and other types of images with a more accessible interface. And there is a large user base that has put thousands of TikZ drawings with complete code on the internet into browsable galleries, such as https://tikz.net and https://texample.net.

			It’s good practice for beginners to browse a TikZ gallery, choose an example that roughly matches their desired result, and use that code as a starting point. By reading this book, you will be able to understand such code and modify it. The excellent – but 1,300 page-long – TikZ manual can then be your reference for looking up specific styles.

			Now that we’ve teed up, let’s get into the details of installing TikZ.

			Installing TikZ

			As you already have LaTeX installed, you just need to ensure that the pgf and xcolor packages are installed. You can install them in three main ways, which are discussed in the following sub-sections.

			With a vanilla TeX distribution

			If you installed LaTeX from DVD or via the internet from an original TeX distribution, use its package manager to install the pgf and xcolor packages. These are the three principal TeX distributions, along with installation details:

			
					TeX Live: Start TeX Live Manager (tlmgr or tlshell), then search and install the pgf and xcolor packages

					MiKTeX: Use the MiKTeX package manager (mpm) to install pgf and xcolor

					MacTeX: Use TeX Live Utility to install pgf and xcolor

			

			When you want to update TikZ later on, run your regular TeX distribution updates, and pgf will be updated as well.

			With an operating system TeX installation

			If your LaTeX installation comes from your operating system repositories, which is usually the case with Linux, you should use your operating system tools. For example, to install via the command line in a terminal session, perform the following, depending on your operating system:

			
					Debian: Depending on your OS version, run the following:
aptitude install pgf


			

			Or, the following:

			
apt-get update

			And then run this:

			
apt-get install latex-xcolor
apt-get install pgf

			Or, run this:

			
apt-get install texlive-pictures

			The latter contains some more graphics-related LaTeX packages.

			
					Ubuntu: This is like Debian, but you should use the prefix sudo before commands.

					Redhat, CentOS, Fedora: For these, you can use yum:
sudo yum makecache

sudo yum -y install texlive-pgf


			

			Or, use dnf:

			
sudo dnf makecache
sudo dnf -y install texlive-pgf

			TikZ (PGF) will also be updated when you update your Linux version.

			Installing from sources

			This is rare and usually not needed, but experts may feel adventurous, so let’s quickly mention two ways:

			
					You can download a TeX Directory Structure (TDS)-compliant TikZ zip file (pgf.tds.zip) from https://ctan.org/pkg/pgf. The TikZ manual describes the installation in the Installation in a texmf Tree section.

					You can visit the TikZ GitHub project site at https://github.com/pgf-tikz/pgf to download and install it as described there.

			

			But seriously, let’s stick with the TikZ package with either your TeX distribution or your operating system for consistency and compatibility.

			Working with the TikZ documentation

			The LaTeX and TikZ installations contain documentation. You can access it in the following two ways:

			
					Windows: Run the cmd app via the Start menu

					Apple macOS or Linux: Open a terminal window

			

			Then, type this command:

			
texdoc tikz

			Your PDF viewing app will open and display the TikZ manual in all its 1,300-page size and glory. But don’t feel intimidated, for the following reasons:

			
					It’s good to have so many features so well documented in a huge reference with an extensive index, hyperlinks, full-text search, and of course, a lot of examples.

					Hundreds of pages are about the PGF backend, the basic layer, and the system layer on the driver level. You don’t need that as a user.

					It describes all additional libraries and utilities.

					It contains five tutorials.

			

			I hope that in the future, this manual will be split into a TikZ manual, a PGF backend reference for developers, and tutorials.

			If you don’t have texdoc or the documentation on your computer, such as when you use the Overleaf online compiler, you can open the manual at https://texdoc.org/pkg/tikz and download it to your computer.

			An exciting alternative is at https://tikz.dev: that’s the TikZ manual in HTML format produced using the lwarp package. Especially on smartphones, such a reflowing document is much more readable than a PDF document with a fixed paper size.

			With all the setup done and all the important points discussed, let us move on and create our first TikZ figure.

			Creating our first TikZ figure

			Our first goal is to create a TikZ drawing that is the same as Figure 1.1, which we made in the classic LaTeX picture mode, to get a feeling of the TikZ basics.

			To be able to use TikZ, you need to perform the following three steps:

			
					Load the tikz package in your document preamble:
\usepackage{tikz}


					TikZ provides additional features with separate libraries. Here, we load the quotes library for adding annotations with an easy quoting syntax that we will use in the drawing:
\usetikzlibrary{quotes}


					Use a tikzpicture environment for the drawing. The first code snippet we saw in this chapter, for the picture environment, will look like this with TikZ:
\begin{tikzpicture}

  \draw circle (0.5);

  \draw (-0.5,0) to ["text"] (0.5,0);

\end{tikzpicture}


			

			This results in the following output:

			
				
					[image: Figure 1.2 – Our first TikZ drawing]
				

			

			Figure 1.2 – Our first TikZ drawing

			We draw a circle with a radius of 0.5 cm at the default origin, that is (0,0). Then we draw a line from (-0.5,0) to (0.5,0) in Cartesian coordinates, with the label text.

			Well done, that’s your first drawing! Now you know the basic steps for drawing with TikZ.

			Summary

			In this chapter, we learned what TikZ is, how to install it, and how to access the documentation. We had a first glimpse at the syntax and created our first TikZ figure of the book. Rest assured, there are many more to come!

			In the coming chapters, we will learn more about TikZ commands, objects, and styles, to create more fancy drawings. In the next chapter, we’ll learn about the essential toolbox, with coordinates, paths, colors, lines, circles, and other curves and shapes.

			Further reading

			The TikZ manual is an excellent and comprehensive reference book. We will refer to it many times. You can find the manual at https://texdoc.org/pkg/tikz in PDF format and at https://tikz.dev in handy reflowable HTML sections, which makes it easier to read on a smartphone or tablet.

			The LaTeX Graphics Companion by Michel Goossens, Frank Mittelbach, et al. is a comprehensive book about creating LaTeX graphics. With the first edition published in 1997 and the second and latest edition published in 2007, it doesn’t cover the newest developments, even though there’s a reprint of the second edition from 2022. When I bought the reprint and noticed that TikZ is completely missing in that book, I decided to write the book you hold in your hand now.

			PSTricks: Graphics and PostScript for TeX and LaTeX by Herbert Voss is a great reference book specifically about PSTricks with many examples.

			MetaPost: Grafik für TeX und LaTeX by Walter Entenmann is a very recommendable book about Metapost. Unfortunately, it is only available in the German language.

		

	
		
			2

			Creating the First TikZ Images

			This chapter will work with the most basic but essential concepts.

			Specifically, our topics are as follows:

			
					Using the tikzpicture environment

					Working with coordinates

					Drawing geometric shapes

					Using colors

			

			This gives us the foundation to move on to more complex drawings in the upcoming chapters.

			It’s good if you already know the basics of geometry and coordinates, but we will have a quick look at the parts we need.

			By the end of this chapter, you’ll learn how to create colored drawings with lines, rectangles, circles, ellipses, and arcs and how to position them in a coordinate system.

			Technical requirements

			You need to have LaTeX on your computer, or you can use Overleaf to compile the code examples of this chapter online. Alternatively, you can go with the book’s website, where you can open, edit, and compile all examples. You can find the code for this chapter at https://tikz.org/chapter-02.

			The code is also available on GitHub at https://github.com/PacktPublishing/LaTeX-graphics-with-TikZ/tree/main/02-First-steps-creating-TikZ-images.

			Using the tikzpicture environment

			In the previous chapter, we saw that we basically load TikZ and then use a tikzpicture environment that contains our drawing commands. Let’s go step by step to create a document that will be the base of all our drawings in this chapter. Our goal is to draw a rectangular grid with dotted lines. Such a grid is really beneficial in positioning objects in our pictures later on. I usually start with such a helper grid, make my drawing, and take the grid out in the final version of the drawing.

			As it’s one of our first TikZ examples, we will do it step by step and then discuss how it works:

			
					Open your LaTeX editor. Start with the standalone document class. In the class options, use the tikz option and define a border of 10 pt:
\documentclass[tikz,border=10pt]{standalone}


					Begin the document environment:
\begin{document}


					Next, begin a tikzpicture environment:
\begin{tikzpicture}


					Draw a thin, dotted grid from the coordinate (-3,-3) to the coordinate (3,3):
\draw[thin,dotted] (-3,-3) grid (3,3);


					To better see where the horizontal and vertical axis is, let’s draw them with an arrow tip:
\draw[->] (-3,0) -- (3,0);

\draw[->] (0,-3) -- (0,3);


					End the tikzpicture environment:
\end{tikzpicture}


					End the document:
\end{document}


			

			Compile the document and look at the output:

			
				
					[image: Figure 2.1 – A rectangular grid]
				

			

			Figure 2.1 – A rectangular grid

			In step 1, we used the standalone document class. That class allows us to create documents that consist only of a single drawing and cuts the PDF document to the actual content. Therefore, we don’t have an A4 or letter page with just a tiny drawing, plus a lot of white space and margins.

			To get a small margin of 10 pt around the picture, we wrote border=10pt because, with a small margin, it looks nicer in a PDF viewer. Since the standalone class is designed for drawings, it provides a tikz option. As we set that option, the class loads TikZ automatically, so we don’t have to add \usepackage{tikz} anymore.

			After we started the document in step 1, we opened a tikzpicture environment in step 3. Every drawing command will happen in this environment until we end it. As it’s a LaTeX environment, it can be used with optional arguments. For example, we could write \begin{tikzpicture}[color=red] to get everything we draw in red unless we specify otherwise. We will talk about valuable options later in this book.

			Step 4 was our main task of drawing a grid. We used the \draw command that we will see exceptionally often throughout this book. We specified the following:

			
					How: We added thin and dotted options in square brackets because that’s the LaTeX syntax for optional arguments. So, everything the \draw command does will now be in thin and dotted lines.

					Where: We set (-3,-3) as the start coordinate and (3,3) as the end coordinate. We will look thoroughly at the coordinates in the next section.

					What: The grid element is like a rectangle where one corner is the start coordinate, to the left of it, and the other corner is the end coordinate, to the right of it. It fills this rectangle with a grid of lines. They are, as we required before, thin and dotted.

			

			\draw produces a path with coordinates and picture elements in between until we end with a semicolon. We can sketch it like the following:

			
\draw[<style>] <coordinate> <picture element> <coordinate> ... ;

			Every path must end with a semicolon. Paths with coordinates, elements, and options can be pretty complex and flexible – the rule to end paths with a semicolon allows TikZ to parse and understand where such paths end and other commands follow.

			The lines in a grid have a distance of 1 by default. The optional step argument can change that. For example, you could write grid[step=0.5] or do that right at the beginning as the \draw option, such as the following:

			
\draw[thin,dotted,step=0.5] <coordinate>
  <picture element> <coordinate> ... ;

			In step 5, we have drawn two lines. The picture element here is a straight line between the coordinates given. We use the convenient -- shortcut that stands for a line. The -> style determines that we shall have an arrow tip at the end. In the next section, we will draw many lines.

			Finally, we just ended the tikzpicture and document environments.

			TikZ, document classes, and figures

			In this book, we will focus on TikZ picture creation. Remember that we can use TikZ with any LaTeX class, such as article, book, or report. Furthermore, TikZ pictures can be used in a figure environment with label and caption, just like \includegraphics.

			While this section showed a manageable number of commands, we should have a closer look at the concept of coordinates, which is now the topic of our next section.

			Working with coordinates

			When we want TikZ to place a line, a circle, or any other element on the drawing, we need to tell it where to put it. For this, we use coordinates.

			Now, you may remember elementary geometry from school or have looked at a good geometry book. In our case, we will use our knowledge of geometry mainly to position elements in our drawings.

			Let’s start with classic geometry and how to use it with TikZ.

			Cartesian coordinates

			You may remember the Cartesian coordinate system you learned in school. Let’s quickly recap it. In the two dimensions of our drawing, we consider an x axis in the horizontal direction going from left to right and a y axis in the vertical order going from bottom to top. Then, we define a point by its distance to each axis. Let’s look at it in a diagram:

			
				
					[image: Figure 2.2 – Cartesian coordinate system]
				

			

			Figure 2.2 – Cartesian coordinate system

			In Figure 2.2, we see a point (0,0) that we call the origin. It has a distance of zero to each axis. Then there’s the point, (1,2), that has a distance to the origin in a positive x direction of 1 and a positive y direction of 2. Similarly, for the (-2,1) point, we have an x value of -2, since it goes in the negative direction, and a y value of -1 for the same reason.

			Labels at the x axis and y axis and a grid help us to see the dimensions. We will reuse the grid from Figure 2.1 when we next draw lines.

			Remember, we draw elements between coordinates, and -- is the code for a line. So, the following command draws a line between the (2,-2) and (2,2) coordinates:

			
\draw (2,-2) -- (2,2);

			We can add more coordinates and lines to this command – let’s make it a square. And to better see it over the grid, let’s make it have very thick blue lines:

			
\draw[very thick, blue] (-2,-2) -- (-2,2)
  -- (2,2) -- (2,-2) -- cycle;

			 Here, cycle closes the path, so the last line returns to the first coordinate.

			The full context – that is, the complete LaTeX document with the cycle command – is highlighted in the code for Figure 2.1:

			
\documentclass[tikz,border=10pt]{standalone}
\begin{document}
\begin{tikzpicture}
  \draw[thin,dotted] (-3,-3) grid (3,3);
  \draw[->] (-3,0) -- (3,0);
  \draw[->] (0,-3) -- (0,3);
  \draw[very thick, blue] (-2,-2) -- (-2,2)
    -- (2,2) -- (2,-2) -- cycle;
\end{tikzpicture}
\end{document}

			When you compile this document, you get this picture:

			
				
					[image: Figure 2.3 – A square in Cartesian coordinates]
				

			

			Figure 2.3 – A square in Cartesian coordinates

			We used the \draw command to put lines at and between coordinates. How about something else? In TikZ, we can draw a circle with a certain radius as an element, with that radius as an argument in parentheses, such as circle (1) with a radius of 1. Let’s replace the -- lines with that and remove the now unnecessary cycle, and the command now looks like this:

			
\draw[very thick, blue] (-2,-2) circle (1) (-2,2)
  circle (1) (2,2) circle (1) (2,-2) circle (1);

			Compile, and you get this in the PDF document:

			
				
					[image: Figure 2.4 – Circles in Cartesian coordinates]
				

			

			Figure 2.4 – Circles in Cartesian coordinates

			This example emphasizes how we use the \draw command – as a sequence of coordinates with picture elements at those coordinates. As you saw, we can draw several elements in a single \draw command.

			With Cartesian coordinates, it was easy to draw a square. But how about a pentagon? Or a hexagon? Calculating corner coordinates looks challenging. Here, angle- and distance-based coordinates can be more suitable; let’s look at this next.

			Polar coordinates

			Let’s consider the same plane as we had in the last section. Just now, we define a point by its distance to the origin and the angle to the x axis. Again, it’s easier to see it in a diagram:

			
				
					[image: Figure 2.5 – Polar coordinate system]
				

			

			Figure 2.5 – Polar coordinate system

			We have a point with the polar coordinates (60:2), which means a distance of 2 from the origin with an angle of 60 degrees to the x axis. TikZ uses a colon to distinguish it from Cartesian coordinates in polar coordinate syntax. The syntax is (angle:distance). So, (20:2) also has a distance of 2 to the origin, (0:0), and an angle of 20 degrees to the x axis, and (180:3) has a distance of 3 and an angle of 180 degrees.

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		




















































	

OEBPS/Fonts/MinionPro-Bold.otf


OEBPS/Fonts/MyriadPro-Semibold.otf


OEBPS/toc.xhtml


		

		Contents



			

						LaTeX Graphics with TikZ



						Contributors



						About the author



						About the reviewers



						Preface

					

								Who this book is for



								What this book covers



								To get the most out of this book



								Download the example code files



								Download the color images



								Conventions used



								Get in touch



								Share your thoughts



								Download a free PDF copy of this book



					



				



						Chapter 1: Getting Started with TikZ

					

								Technical requirements



								What is TikZ?



								Alternative graphics packages

							

										The LaTeX picture environment



										MetaPost



										Asymptote



										PSTricks



							



						



								Benefits of TikZ



								Installing TikZ

							

										With a vanilla TeX distribution



										With an operating system TeX installation



										Installing from sources



							



						



								Working with the TikZ documentation



								Creating our first TikZ figure



								Summary



								Further reading



					



				



						Chapter 2: Creating the First TikZ Images

					

								Technical requirements



								Using the tikzpicture environment



								Working with coordinates

							

										Cartesian coordinates



										Polar coordinates



										Three-dimensional coordinates



										Using relative coordinates



										Using units



							



						



								Drawing geometric shapes



								Using colors



								Summary



								Further reading



					



				



						Chapter 3: Drawing and Positioning Nodes

					

								Technical requirements



								Understanding nodes



								Using shapes and anchors

							

										A rectangle shape



										The circle and ellipse shapes



										The coordinate shape



										More shapes



							



						



								Spacing within and around nodes



								Positioning and aligning nodes

							

										Using anchors and relative positioning



										Placing nodes along a line



										Aligning nodes at the text baseline



										Aligning whole pictures at a node text baseline



							



						



								Adding labels and pins



								Putting images into nodes



								Summary



								Further reading



					



				



						Chapter 4: Drawing Edges and Arrows

					

								Technical requirements



								Connecting nodes by edges



								Adding text to edges



								Diving deeper into edge options

							

										Path options



										Connection options



							



						



								Drawing arrows

							

										Mathematical arrow tips



										Barbed arrow tips



										Geometric arrow tips



										Customizing arrow tips



							



						



								Using the to operation



								Summary



								Further reading



					



				



						Chapter 5: Using Styles and Pics

					

								Technical requirements



								Understanding styles



								Defining and using styles



								Inheriting styles



								Using styles globally and locally



								Giving arguments to styles



								Creating and using pics



								Summary



								Further reading



					



				



						Chapter 6: Drawing Trees and Graphs

					

								Technical requirements



								Drawing trees



								Creating mind maps



								Producing graphs



								Positioning in a matrix



								Summary



								Further reading



					



				



						Chapter 7: Filling, Clipping, and Shading

					

								Technical requirements



								Filling an area



								Understanding the path interior

							

										The nonzero rule



										The even odd rule



										Comparing the nonzero rule and the even odd rule



							



						



								Clipping a drawing



								Reverse clipping



								Shading an area

							

										Axis shading



										Radial shading



										Ball shading



										Bilinear interpolation



										Color wheel



							



						



								Summary



								Further reading



					



				



						Chapter 8: Decorating Paths

					

								Technical requirements



								Pre- and post-actions for using a path multiple times



								Understanding decorations



								Exploring the available decoration types

							

										Morphing paths



										Replacing paths with ticks



										Decorating paths with text



										Adding markings



							



						



								Adjusting decorations



								Summary



								Further reading



					



				



						Chapter 9: Using Layers, Overlays, and Transparency

					

								Technical requirements



								Using transparency



								Drawing on background and foreground layers



								Overlaying LaTeX content with TikZ drawings



								Positioning pictures on the background of a page



								Summary



								Further reading



					



				



						Chapter 10: Calculating with Coordinates and Paths

					

								Technical requirements



								Repeating in loops



								Calculating with coordinates

							

										Adding and subtracting coordinates



										Computing points between coordinates



										Projecting on a line



										Adding angles



							



						



								Evaluating loop variables

							

										Counting loop repetitions



										Evaluating the loop variable



										Remembering the loop variable



							



						



								Calculating intersections of paths



								Summary



								Further reading



					



				



						Chapter 11: Transforming Coordinates and Canvas

					

								Technical requirements



								Shifting nodes and coordinates



								Rotating, scaling, and slanting



								Transforming the canvas



								Summary



								Further reading



					



				



						Chapter 12: Drawing Smooth Curves

					

								Technical requirements



								Manually creating a smooth curve through chosen points



								Using a smooth plot to connect points



								Specifying cubic Bézier curves



								Using Bézier splines to connect given points



								Using the Hobby algorithm for smoothly connecting points



								Summary



								Further reading



					



				



						Chapter 13: Plotting in 2D and 3D

					

								Technical requirements



								Introducing plotting



								Creating and customizing Cartesian axes, ticks, and labels

							

										Understanding axis environments



										Customizing ticks and labels



							



						



								Using plotting commands and options



								Filling the area between plots



								Calculating plot intersections



								Adding a legend



								Using the polar coordinate system



								Parametric plotting



								Plotting in three dimensions



								Summary



								Further reading



					



				



						Chapter 14: Drawing Diagrams

					

								Technical requirements



								Creating flowcharts

							

										Linear flow diagrams



										Circular flow diagrams



							



						



								Building relationship diagrams



								Writing descriptive diagrams



								Producing quantitative diagrams

							

										Line charts



										Bar charts



										Pie charts



										Wheel charts



							



						



								Summary



								Further reading



					



				



						Chapter 15: Having Fun with TikZ

					

								Technical requirements



								Drawing cute creatures

							

										Playing with rubber ducks



										Meeting the TikZlings



										Building snowmen



										Playing with penguins



										Picturing people



							



						



								Playing and crafting

							

										Creating jigsaw puzzles



										Building with bricks



							



						



								Drawing world flags



					



				



						Index

					

								Why subscribe?



					



				



						Other Books You May Enjoy

					

								Packt is searching for authors like you



								Share your thoughts



								Download a free PDF copy of this book



					



				



			



		

		

		Landmarks



			

						Cover



						Table of Contents



						Index



			



		

	





OEBPS/Fonts/MinionPro-Regular.otf


OEBPS/image/figure-2-04.jpg
(Y





OEBPS/Fonts/MinionPro-BoldIt.otf


OEBPS/Fonts/CourierStd-Bold.otf


OEBPS/Fonts/MinionPro-It.otf


OEBPS/Fonts/MyriadPro-Light.otf


OEBPS/Fonts/MyriadPro-Regular.otf


OEBPS/image/B18920_QR_Free_PDF.jpg





OEBPS/image/figure-1-1.jpg





OEBPS/Fonts/MyriadPro-SemiboldIt.otf


OEBPS/image/figure-2-03.jpg





OEBPS/image/Packt_Logo-01.png
<PACKD





OEBPS/image/Cover.jpg
<packh>

¥
I}?\‘l

LATEX

Graphics with TikZ

diagrams, charts, and plots

<> STEFAN KOTTWITZ





OEBPS/image/figure-2-02.jpg





OEBPS/Fonts/CourierStd.otf


OEBPS/image/figure-2-01.jpg





OEBPS/image/figure-1-2.jpg





OEBPS/image/figure-2-05.jpg
v
/1(60:2)
1ho
// !
(180:3) (0:0) &s& 20:2)
o
2 1 1 2
1






