
[image: cover]

[image: image]

Andreas Heuer
Gunter Saake
Kai-Uwe Sattler

Datenbanken

Implementierungstechniken

Vierte Auflage

[image: image]

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.d-nb.de> abrufbar.

ISBN 978-3-95845-781-2

4. Auflage 2019

www.mitp.de

E-Mail: mitp-verlag@sigloch.de

Telefon: +49 7953 / 7189 - 079

Telefax: +49 7953 / 7189 - 082

© 2019 mitp-Verlags GmbH & Co. KG, Frechen

Dieses Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Lektorat: Lisa Kresse, Sabine Janatschek

Sprachkorrektorat: Astrid Sander, Petra Heubach-Erdmann

Covergestaltung: Christian Kalkert, www.kalkert.de

Bildnachweis Cover: iStock.com/Shawn Hempel | fotolia.com/karpenko_ilia

Satz: Andreas Heuer, Rostock; Gunter Saake, Magdeburg; Kai-Uwe Sattler, Ilmenau

Datenkonvertierung: CPI books GmbH, Leck

Dieses Ebook verwendet das EPUB-Format und ist optimiert für die Nutzung mit dem iBooks-Reader auf dem iPad von Apple. Bei der Verwendung von anderen Readern kann es zu Darstellungsproblemen kommen.

Der Verlag räumt Ihnen mit dem Kauf des E-Books das Recht ein, die Inhalte im Rahmen des geltenden Urheberrechts zu nutzen. Dieses Werk einschließlich seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlags unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Mikroverfilmungen und Einspeicherung und Verarbeitung in elektronischen Systemen.

Der Verlag schützt seine E-Books vor Missbrauch des Urheberrechts durch ein digitales Rechtemanagement. Bei Kauf im Webshop des Verlages werden die E-Books mit einem nicht sichtbaren digitalen Wasserzeichen individuell pro Nutzer signiert. Bei Kauf in anderen Ebook-Webshops erfolgt die Signatur durch die Shopbetreiber. Angaben zu diesem DRM finden Sie auf den Seiten der jeweiligen Anbieter.

Vorwort zur vierten Auflage

Das Gebiet der Datenbanksysteme gehört zu den klassischen Ausbildungsgebieten der Informatikstudiengänge. Datenbanksysteme kommen immer dann zum Einsatz, wenn an die Datenhaltung besondere Anforderungen hinsichtlich der Zuverlässigkeit, des zu speichernden Volumens, der Ausfallsicherheit, des Mehrbenutzerzugriffs, der Komplexität der Datenbeschreibung oder der Datenqualität gestellt werden. Zu Beginn des Informationszeitalters ist es daher nicht verwunderlich, dass der Umgang mit Datenbanksystemen für viele Absolventinnen und Absolventen der Informatikstudiengänge zum Berufsalltag gehört.

Viele Grundkonzepte der Datenbanktechnologie wurden in den 70er- Jahren entwickelt und seitdem beständig weiterentwickelt. Nach einer Stabilisierung in den 80er-Jahren – die damalige relationale Basistechnologie wurde fälschlicherweise als das Universalrüstzeug für alle Arten von Anwendungen angesehen – wird die aktuelle Entwicklung von speziellen Anwendungsanforderungen (Datenanalyse, Maschinelles Lernen, Data Science), speziellen Datentypen und Operationen (Geoinformationssysteme, Multimediaanwendungen) und neuen Architekturen (auch der zugrunde liegenden Hardware) geprägt, die die etablierten Techniken in vielfältiger Weise weiterentwickeln. Als Resultat ist das Gebiet der Implementierungstechniken derart vielgestaltig geworden, dass es in einem üblichen Grundlagenlehrbuch und einer Datenbankgrundvorlesung nur noch knapp angerissen werden kann.

Bereits seit der ersten Auflage des Buches Datenbanken – Konzepte und Sprachen [HS95a], das sich auf Modelle und Benutzersprachen konzentriert, wird daher immer ein spezieller Folgeband zum Thema Implementierungstechniken für Datenbanken bereitgestellt. Diese Aufteilung auf zwei Bände erlaubt es, Implementierungskonzepte ausführlicher vorzustellen. Aufgrund der Covergestaltung hat sich für diese Lehrbücher die Bezeichnung Biberbücher etabliert. Das Biber-1-Buch ist das für Konzepte und Sprachen, das hier vorliegende Buch über Implementierungstechniken ist dann das Biber-2-Buch.

Früher waren nur wenige in Deutschland ausgebildete Informatiker oder Wirtschaftsinformatiker an der Implementierung eines echten Datenbankmanagementsystems beteiligt. Wie üblich bei derartiger Grundsoftware wurde der Markt von wenigen (in der Regel amerikanischen) Firmen dominiert. Mittlerweile gibt es aber diverse Entwicklungsabteilungen von Datenbankmanagementsystemen oder wesentlicher Komponenten davon auch in Deutschland. Als größter Vertreter sei SAP erwähnt, mit einem eigenen Datenbank-Campus in Deutschland.

Aber auch außerhalb der Datenbankhersteller gibt es eine Reihe guter Gründe, sich intensiv mit den in diesem Buch diskutierten Implementierungstechniken zu beschäftigen:

• Ursprünglich für Datenbanksysteme entwickelte Einzelalgorithmen und Datenstrukturen können auch in anderer Software erfolgreich eingesetzt werden.

• Komplexe Anwendungen von Datenbanksoftware, die einen Schwerpunkt in kommerziellen Arbeitsgebieten für Absolventen bilden, erfordern ein tiefes Verständnis der Abläufe in Datenbanksystemen, um diese auch bei sehr großen Datenbeständen und Transaktionslasten effizient zu tunen.

Nicht zuletzt ist die Implementierung von Datenbanksystemen ein Gebiet, das hohe Anforderungen an Datenstrukturen und Algorithmen stellt und daher per se interessant für alle ist, die sich intensiv mit Informatik und Software Engineering beschäftigen.

Die erste und zweite Auflage

[image: image]

Abbildung 1: Die zweite Auflage des Biber-2-Buchs

Das Gebiet der Implementierung von Datenbanksystemen entwickelt sich stetig weiter. Schon die zweite Auflage dieses Buches [SHS05] erreichte eine Dicke von über 850 Seiten. Auf dem Weg zur dritten Auflage hätte im Jahr 2010 ein einfaches Hinzufügen neuerer Entwicklungen zu einem Lehrbuch von über 1000 Seiten geführt – zu viel für das Lehrbuchbudget eines typischen Studenten und zu schwer, um es zum Stöbern in die Tasche zu stecken. Schweren Herzens haben sich die Autoren daher bereits vor der dritten Auflage dazu entschlossen, drastische Einschnitte bei der Themenauswahl vorzunehmen.

Die dritte Auflage

Die dritte Auflage des Biber-2-Buchs [SSH11] behandelt die Basistechnologien zentraler, insbesondere relationaler Datenbankmanagementsysteme: Architektur, Datenorganisation, Anfragebearbeitung, Synchronisation im Mehrbenutzerbetrieb und Recovery. Diese Themen werden detailliert und ergänzt um neuere Entwicklungen dargestellt und behandelt. Dieses Basiswissen soll den Leser insbesondere in die Lage versetzen, die Eigenschaften eines relationalen DBMS zu verstehen und bei auftretenden Problemen kompetent kausale Zusammenhänge zwischen Problemsituationen und Implementierungs- bzw. Parametrisierungsentscheidungen herzustellen.

[image: image]

Abbildung 2: Die dritte Auflage des Biber-2-Buchs

Weggefallen sind bereits in der dritten Auflage einige Techniken, die für spezielle Anwendungsszenarien und andere Datenmodelle relevant sind, so Indexstrukturen für multimediale Daten oder die Realisierung von Objektidentifikatoren in objektorientierten Datenbanken.

Der größte Einschnitt allerdings betrifft den Verzicht auf die Behandlung der Aspekte verteilter Datenhaltung sowie der Parallelisierungspotenziale. Einige wenige Punkte nur erschienen den Autoren so zentral, dass sie weiterhin behandelt werden, so die Fragen der Partitionierung oder der Commit-Protokolle. Dieser Verzicht ist den Autoren besonders schwergefallen, da die aktuellen Entwicklungen im Hardwarebereich und der Softwareinfrastruktur (Stichworte Cloud-Computing, P2P-Datenhaltung, Multi-Core-Prozessoren) gerade hier viel Entwicklungspotenzial zeigen. Aber ohne diesen Einschnitt wäre ein Seitenlimit bei etwa 700 Seiten nicht zu halten gewesen. Hier liegt aber mittlerweile mit [RSS15] ein dediziertes Lehrbuch zu diesen Themenkreisen vor.

Die aktuelle vierte Auflage

In der hier vorliegenden vierten Auflage des Biber-2-Buches konnten wir glücklicherweise ohne drastische Kürzungen einige Techniken ergänzen, die entweder in dem bisherigen Buch weggelassen wurden oder erst im letzten Jahrzehnt eine entscheidende Bedeutung gewonnen haben. Dazu gehören neue Techniken der semantischen Anfrageoptimierung und erweiterte Transaktionsmodelle, hier insbesondere Techniken der Snapshot Isolation, der Prädikatsperren, der Sperren in Indexstrukturen sowie der Varianten von bestimmten Sperrprotokollen. Natürlich wurden alle Angaben zu Größenordnungen von Speichern und zu Prozessoren an die Aktualität angepasst.

Noch wesentlicher ist aber die Neustrukturierung des Buches. Ihren Ursprung hat diese darin, dass wir ein extrem langes (und immer länger werdendes) Kapitel über Anfrageoptimierung nun in drei Kapitel zerlegt haben. Danach haben wir das Buch nun in drei fachlich zusammenhängende Teile gegliedert:

• Teil I behandelt in den Kapiteln 3 bis 6 Speichermodelle und Zugriffspfade.

• Teil II stellt in den Kapiteln 7 bis 10 die Techniken der Anfragebearbeitung und -optimierung vor. Hier befindet sich auch das alte Kapitel 8 der dritten Auflage, das nun in die Kapitel 8 bis 10 zerlegt wurde.

• Teil III schließlich umfasst die Kapitel 11 bis 13 und behandelt die Transaktionsverarbeitung und das Recovery.

Die Kapitel 1 und 2 vor Teil I wiederholen einige Grundbegriffe aus dem Biber-1-Buch und stellen die internen Datenbankarchitekturen im Überblick vor.

Neu ist auch das abschließende Kapitel 14 über moderne Datenbanksystem-Architekturen, das das einzige Kapitel des Teils IV bildet. Diesen letzten, noch kleinen, Teil haben wir mit aktuellen Entwicklungen überschrieben. Während die Teile I, II und III des Buches sich auf klassische Datenbanksysteme für OLTP-Anwendungen (transaktionsverarbeitende Anwendungen) konzentrieren, befasst sich Kapitel 14 mit den neuen Datenbank-Architekturen für OLAP-Anwendungen (analysierende Anwendungen), Data Science und Big Data Analytics. Letztere sind derzeit noch ein Hype in der Datenbank-Forschung. Sobald der Hype abflaut, müssen die dann sich etablierenden Techniken in einem eigenen Lehrbuch zu dieser Art von Datenbanksystemen ergänzt werden.

Das Themenspektrum dieser vierten Auflage deckt aber – zusammen mit dem Lehrbuch über Konzepte und Sprachen von Datenbanken [SSH18] – genau die Aspekte von Datenbanksystemen ab, die nach den Empfehlungen des deutschen Fakultätentags für Informatik in einem Informatik-Bachelor-Studium zwingend erforderlich sind. Natürlich werden innerhalb dieses Themenspektrums die Inhalte in diesem Buch so breit gefächert und vertieft, dass auch spezielle Vorlesungen für Master-Studiengänge aus dem hier dargestellten Stoff abgeleitet werden können. Umgekehrt sind aber keine Themengebiete in dieser vierten Auflage entfallen, die zum Pflichtkanon eines Informatik-Bachelors gehören.

Schreibweisen und Umgebungen

In diesem Buch werden wir folgende Schreibweisen verwenden:

• Wortsymbole aus Programmier- oder Datenbanksprachen werden wie bei select oder where geschrieben.

• Namen von Elementen eines Datenbankschemas, wie Attribut- oder Relationennamen, werden wie bei KUNDE oder Nachname geschrieben.

• Einträge in einer Datenbank oder Attributwerte in Programmen oder Datenbankanfragen werden wie in 4711 oder Meyer notiert.

• Begriffe, die an der betreffenden Stelle im Buch gerade definiert werden, werden wie in Tableau-Optimierung oder Serialisierbarkeit hervorgehoben. Diese Kursivschrift wird teilweise auch für andere Hervorhebungen wie Betonungen oder englische (nicht übersetzte) Fachbegriffe verwendet.

Wir werden viele Konzepte anhand von Beispielen erklären. Die Beispiele beziehen sich zum größten Teil auf eine Datenbank, die im Anhang noch einmal unter „Laufendes Beispiel“ aufgeführt ist. Dieses Beispiel beschreibt eine kleine Anwendung für den Vertrieb von Kaffeespezialitäten. Wenn wir im laufenden Text die allgemeine Erläuterung von Konzepten deutlicher von veranschaulichenden Beispielen abheben wollen, so verwenden wir in einigen Kapiteln des Buches eine eigene Beispielumgebung.

Beispiel 0.1 Diese Beispielumgebung ist dann pro Kapitel durchnummeriert, sodass wir auf Beispiele verweisen können. Das Beispiel endet schließlich mit einem kleinen Kästchen am rechten Spaltenrand.

[image: image]

Durch dieses Kästchen kann man das Ende des Beispiels, in diesem Fall Beispiel 0.1, und damit die Fortsetzung des erklärenden Textes leichter finden.

Danksagungen

Buchprojekte wie dieses haben – zumindest, wenn man die Autorentätigkeit nicht als Vollzeitjob betreibt – die Eigenschaft, dass der zeitliche Aufwand meist völlig unterschätzt wird. So müssen dann immer die Familien gestresste Autoren ertragen, die „nur noch“ ein Kapitel, einen Abschnitt etc. fertigstellen müssen. Natürlich wissen wir, dass dies durch Widmungen oder Danksagungen nicht ausgeglichen werden kann. Dennoch möchten wir uns an dieser Stelle bei unseren Familien für ihr Verständnis, ihre Geduld und ihren Rückhalt bedanken – ohne sie wäre dieses Buch sicher nie fertig geworden.

Ein besonderer Dank gilt David Broneske für die Unterstützung bei Abbildungen und Beispielen und Holger Meyer für Zuarbeiten im Bereich von Snapshot Isolation, Prädikatsperren sowie strikten und rigoros strikten Schedules und Protokollen. Für das Korrekturlesen der dritten Auflage bedanken wir uns bei Hannes Grunert, Holger Meyer, Ilvio Bruder, Tanja Auge, Mark Lukas Möller, Johannes Goltz, Michael Poppe, Henrik Hertel, Enrico Gruner, Frank Röger, Dirk Hamann und der Sprachkorrektorin Petra Heubach-Erdmann. Die Übungsaufgaben entstammen dem in den Jahren entstandenen Fundus der beteiligten Lehrstühle, ein spezieller Dank gilt Andreas Meister. Und schließlich gilt den Lektorinnen des mitp-Verlags, Sabine Janatschek und Lisa Kresse, ein Dank für die unendliche Geduld: Die Fertigstellung des endgültigen Manuskripts hat schließlich über ein halbes Jahr länger gedauert als ursprünglich geplant.

Ergänzende Informationen zum Buch wie Verweise zu begleitenden Vorlesungsmaterialien und gegebenenfalls erforderliche Fehlerkorrekturen sind im Web unter folgender Adresse zu finden:

http://www.biberbuch.de

Rostock, Magdeburg und Ilmenau, im April 2019

Andreas Heuer, Gunter Saake und Kai-Uwe Sattler

Inhaltsverzeichnis

Vorwort zur vierten Auflage Inhaltsverzeichnis

1 Aufgaben und Prinzipien von Datenbanksystemen

1.1 Wiederholung der Datenbank-Grundbegriffe

1.1.1 Architektur eines Datenbanksystems

1.1.2 Neun Funktionen nach Codd

1.1.3 Datenbankmodelle und Datendefinition

1.1.4 Anfrage- und Änderungsoperationen

1.1.5 Sprachen und Sichten

1.2 Wann kommt was?

1.2.1 Optimierer

1.2.2 Dateiorganisation und Zugriffspfade

1.2.3 Transaktionen

1.2.4 Recovery und Datensicherheit

1.3 Vertiefende Literatur

1.4 Übungen

2 Architektur von Datenbanksystemen

2.1 Betrachtete Fragestellungen

2.2 Schichtenmodell eines relationalen DBMS

2.3 Hardware und Betriebssystem

2.4 Pufferverwaltung

2.5 Speichersystem

2.6 Zugriffssystem

2.7 Datensystem

2.8 Katalog und Data Dictionary

2.9 Vertiefende Literatur

2.10 Übungen

I Speichermodelle und Zugriffspfade

3 Speichermodelle und Zugriffspfade

3.1 Speichermedien

3.1.1 Speicherhierarchie

3.1.2 Cache, Hauptspeicher und Sekundärspeicher

3.1.3 Die Magnetplatte

3.1.4 Flash-Laufwerke

3.1.5 Speicherkapazität, Geschwindigkeit und Kosten

3.2 Speicher-Arrays: RAID

3.2.1 Ziele von RAID-Systemen

3.2.2 RAID-Levels

3.3 Sicherungsmedien: Tertiärspeicher

3.3.1 Optische Platten

3.3.2 Bänder

3.3.3 Jukeboxes und Roboter

3.3.4 Langzeitarchivierung

3.4 Modell des Hintergrundspeichers

3.4.1 Betriebssystemdateien

3.4.2 Abbildung der konzeptuellen Ebene auf interne Strukturen

3.4.3 Einpassen von Datensätzen auf Blöcke

3.4.4 Modell des Sekundärspeichers

3.5 Seiten, Sätze und Adressierung

3.5.1 Struktur der Seiten

3.5.2 Satztypen

3.5.3 Adressierung von Datensätzen

3.5.4 Alternative Speichermodelle und Kompression

3.6 Speicherorganisation und physische Datendefinition in SQLSystemen

3.7 Vertiefende Literatur

3.8 Übungen

4 Pufferverwaltung

4.1 Einordnung und Motivation

4.2 Suche von Seiten und Speicherzuteilung

4.2.1 Suchen einer Seite

4.2.2 Speicherzuteilung im Puffer

4.3 Seitenersetzungsstrategien

4.3.1 Merkmale gängiger Strategien

4.3.2 Konkrete Seitenersetzungsstrategien

4.3.3 Fazit

4.4 Vertiefende Literatur

4.5 Übungen

5 Dateiorganisation und Zugriffsstrukturen

5.1 Klassifikation der Speichertechniken

5.1.1 Primärschlüssel vs. Sekundärschlüssel

5.1.2 Primärindex vs. Sekundärindex

5.1.3 Dateiorganisationsform vs. Zugriffspfad

5.1.4 Dünn besetzter vs. dicht besetzter Index

5.1.5 Geclusterter vs. nicht-geclusterter Index

5.1.6 Schlüsselzugriff vs. Schlüsseltransformation

5.1.7 Ein-Attribut- vs. Mehr-Attribut-Index

5.1.8 Eindimensionale vs. mehrdimensionale Zugriffsstruktur

5.1.9 Nachbarschaftserhaltende vs. streuende Zugriffsstruktur

5.1.10 Statische vs. dynamische Zugriffsstruktur

5.1.11 Beispiele für Klassifikationen

5.1.12 Alternative Klassifikationen von Zugriffsverfahren

5.1.13 Anforderungen an Speichertechniken

5.2 Sequenzielle und indexierte Dateien

5.2.1 Heap-Organisation

5.2.2 Sequenzielle Speicherung

5.2.3 Indexsequenzielle Dateiorganisation

5.2.4 Indexiert-nichtsequenzieller Zugriffspfad

5.3 Suchbäume

5.3.1 B-Bäume

5.3.2 B-Bäume und Varianten in Datenbanken

5.3.3 B-Bäume in der Praxis

5.4 Hashverfahren

5.4.1 Grundprinzipien von Hashverfahren

5.4.2 Hashverfahren für Datenbanken

5.5 Cluster-Bildung

5.5.1 Index-organisierte Tabellen

5.5.2 Cluster für Verbundanfragen

5.6 Partitionierung

5.6.1 Fragmentierung und Allokation in verteilten Datenbanken

5.6.2 Formen der horizontalen Partitionierung

5.6.3 Bereichspartitionierung

5.6.4 Hash-Partitionierung

5.7 Vertiefende Literatur

5.8 Übungen

6 Spezielle Indexstrukturen

6.1 Dynamisches Hashing

6.1.1 Hashfunktionen mit erweiterbarem Bildbereich

6.1.2 Lineares Hashen

6.1.3 Erweiterbares Hashen

6.1.4 Spiralhashen

6.1.5 Kombinierte Methoden

6.2 Mehrdimensionale Speichertechniken

6.2.1 Mehrdimensionale Baumverfahren

6.2.2 Mehrdimensionales Hashen

6.2.3 Grid-File

6.2.4 UB-Baum

6.3 Geometrische Zugriffsstrukturen

6.3.1 Probleme und Aufgaben

6.3.2 Eignung klassischer Suchbäume und Indexstrukturen

6.3.3 Prinzipien nachbarschaftserhaltender Suchbäume

6.3.4 R-Bäume und Varianten

6.3.5 Rechteckspeicherung durch Punktdatenstrukturen

6.3.6 Klassifizierung und Vergleich

6.4 Hochdimensionale Daten

6.4.1 Hochdimensionale Feature-Vektoren

6.4.2 Operationen auf Feature-Vektoren

6.4.3 Metriken für Abstände

6.4.4 Nächster-Nachbar-Suche in R-Bäumen

6.4.5 Der X-Baum

6.4.6 Alternativen zu Baumverfahren

6.5 Bitmap-Indexe

6.5.1 Vor- und Nachteile von Bitmap-Indexen

6.5.2 Varianten von Bitmap-Indexen

6.5.3 Implementierung von Bitmap-Indexen

6.6 Indexierung von Texten

6.6.1 Eignung von B-Bäumen: Probleme und Präfix-B-Baum

6.6.2 Digitale Bäume

6.6.3 Invertierte Listen

6.7 Relationenübergreifende Indexe

6.7.1 Verbundindexe

6.7.2 Multi-Join-Indexe

6.7.3 Pfadindexe

6.7.4 Zugriffsunterstützungsrelationen

6.7.5 Zugriffspfade für berechnete Werte

6.8 Vertiefende Literatur

6.9 Übungen

II Anfragebearbeitung

7 Basisalgorithmen für Datenbankoperationen

7.1 Benötigte Grundalgorithmen

7.1.1 Parameter für Kostenbestimmung

7.1.2 Grundannahmen

7.1.3 Hauptspeicheralgorithmen

7.1.4 Zugriffe auf Datensätze

7.1.5 Externe und interne Sortieralgorithmen

7.2 Navigationsoperationen: Scans

7.2.1 Arten von Scans

7.2.2 Operationen auf Scans

7.2.3 Scan-Semantik

7.3 Unäre Operationen: Selektion, Projektion und Gruppierung

7.3.1 Selektion

7.3.2 Projektion

7.3.3 Aggregatfunktionen und Gruppierung

7.4 Binäre Operationen: Mengenoperationen

7.4.1 Techniken für binäre Operatoren

7.4.2 Klassen binärer Operatoren

7.4.3 Vereinigung mit Duplikateliminierung

7.5 Berechnung von Verbunden

7.5.1 Nested-Loops-Verbund

7.5.2 Merge-Techniken

7.5.3 Hashverbund

7.5.4 Vergleich der Techniken

7.6 Operationen für spezielle Anwendungen

7.6.1 Cube-Berechnung

7.6.2 Skyline-Operator

7.7 Vertiefende Literatur

7.8 Übungen

8 Optimierung von Anfragen

8.1 Grundprinzipien der Optimierung

8.2 Motivierende Beispiele

8.3 Phasen der Anfragebearbeitung

8.4 Anfrageübersetzung und -vereinfachung

8.4.1 Parsen und Analysieren der Anfrage

8.4.2 Übersetzung in Relationenalgebra

8.4.3 Auflösung von Sichten

8.4.4 Standardisierung und Vereinfachung von Ausdrücken

8.4.5 Entschachteln von Anfragen

8.5 Weitere Phasen der Optimierung

8.6 Vertiefende Literatur

8.7 Übungen

9 Logische Optimierung

9.1 Algebraische Optimierung

9.1.1 Entfernen redundanter Operationen

9.1.2 Änderung der Reihenfolge von Operationen

9.1.3 Optimierungsregeln

9.1.4 Ein einfacher Optimierungsalgorithmus

9.1.5 Vorgruppierungen

9.1.6 Erkennung gemeinsamer Teilanfragen

9.1.7 Ergebnis der algebraischen Optimierung

9.2 Verbundoptimierung mit Tableaus

9.2.1 Tableaus – Eine informale Einführung

9.2.2 Formale Definition einer Tableau-Anfrage

9.2.3 Konstruktion einer Tableau-Anfrage

9.2.4 Äquivalenz von Tableau-Anfragen

9.2.5 Minimalität

9.2.6 Optimierung von Tableau-Anfragen

9.2.7 Erweiterung der Tableau-Optimierung

9.3 Semantische Optimierung

9.3.1 Darstellungsvarianten für Anfragen

9.3.2 Berücksichtigung von Integritätsbedingungen

9.3.3 Äquivalenz von Anfragen unter Integritätsbedingungen

9.3.4 Tableau-Optimierung mit CHASE

9.4 Vertiefende Literatur

9.5 Übungen

10 Interne Optimierung und kostenbasierte Planauswahl

10.1 Physische oder interne Optimierung

10.1.1 Planoperatoren und Planrepräsentation

10.1.2 Plangenerierung und Suchstrategien

10.2 Kostenmodelle und Kostenabschätzung

10.2.1 Komponenten von Kostenmodellen

10.2.2 Histogramme

10.2.3 Kostenabschätzungen am Beispiel

10.2.4 Statistiken in DBMS

10.3 Strategien zur kostenbasierten Planauswahl

10.3.1 Greedy-Suche

10.3.2 Dynamische Programmierung

10.3.3 Anfragedekomposition

10.3.4 Iterative Improvement und Simulated Annealing

10.3.5 Optimierung mit genetischen Algorithmen

10.4 Beeinflussung von Anfrageoptimierern

10.4.1 Ausgabe von Plänen

10.4.2 Optimizer Hints

10.5 Vertiefende Literatur

10.6 Übungen

III Transaktionsverarbeitung und Recovery

11 Transaktionsmodelle

11.1 Transaktionen im Mehrbenutzerbetrieb

11.2 Transaktionseigenschaften

11.3 Probleme im Mehrbenutzerbetrieb

11.3.1 Inkonsistentes Lesen: Nonrepeatable Read

11.3.2 Lesen inkonsistenter Zustände

11.3.3 Abhängigkeiten von nicht freigegebenen Daten: Dirty Read

11.3.4 Das Phantom-Problem

11.3.5 Verloren gegangene Änderungen: Lost Update

11.3.6 Integritätsverletzung durch Mehrbenutzer-Anomalie

11.3.7 Cursor-Referenzen

11.3.8 Problemklassifikation

11.3.9 Isolation: Serialisierbarkeit oder Snapshot Isolation

11.4 Serialisierbarkeit

11.4.1 Einführung in die Serialisierbarkeitsthematik

11.4.2 Der Begriff des Schedules

11.4.3 Grundlegende Definitionen

11.4.4 Das Konzept der Serialisierbarkeit

11.4.5 Sichtserialisierbarkeit

11.4.6 Konfliktserialisierbarkeit

11.4.7 Graphbasierter Test auf Konfliktserialisierbarkeit

11.4.8 Abgeschlossenheitseigenschaften

11.5 Transaktionsabbruch und Fehlersicherheit

11.5.1 Rücksetzbarkeit

11.5.2 Vermeidung kaskadierender Abbrüche

11.5.3 Striktheit

11.5.4 Rigorose Striktheit oder Strenge

11.5.5 Operationen für den Transaktionsabbruch

11.6 Mehrversionen-Serialisierbarkeit

11.6.1 Idee des MVCC

11.6.2 Ein- und Mehrversionen-Schedules

11.6.3 Serialisierbarkeitsgraph für MV-Schedules

11.6.4 Serielle und serialisierbare MV-Schedules

11.6.5 Mehrversionen-Serialisierbarkeitsgraph

11.6.6 MVCC in DBMS

11.7 Snapshot Isolation

11.7.1 Definition der Snapshot Isolation

11.7.2 Vergleich zur Serialisierbarkeit

11.7.3 Serialisierbare Snapshot Isolation

11.8 Ausnutzung semantischer Informationen

11.8.1 Vertauschbarkeit von Operationen

11.8.2 Kompensierende Aktionen

11.9 Vertiefende Literatur

11.10 Übungen

12 Transaktionsverwaltung

12.1 Der Scheduler

12.2 Sperrmodelle

12.2.1 Sperrdisziplin

12.2.2 Verklemmungen

12.2.3 Livelock-Problem

12.3 Sperrprotokolle

12.3.1 Notwendigkeit von Sperrprotokollen

12.3.2 Zwei-Phasen-Sperrprotokoll

12.3.3 Striktes und strenges Zwei-Phasen-Sperrprotokoll

12.3.4 Aggressive und konservative Protokolle

12.4 Sperrgranulate

12.4.1 Hierarchisches Sperren

12.4.2 Prädikatsperren

12.4.3 Baumprotokolle für Sperren in Indexstrukturen

12.5 Nichtsperrende Verfahren zur Synchronisation

12.5.1 Zeitmarkenverfahren

12.5.2 Serialisierbarkeitsgraphentester

12.5.3 Optimistische Verfahren

12.6 Mehrversionen-Synchronisation

12.6.1 Begrenzung der Anzahl der Versionen

12.6.2 Synchronisation von MV-Schedules

12.7 Commit-Protokolle

12.7.1 Verteiltes Commit

12.7.2 Das Zwei-Phasen-Commit-Protokoll

12.7.3 Lineares 2PC

12.7.4 Verteiltes 2PC

12.7.5 Hierarchisches 2PC

12.7.6 Das Drei-Phasen-Commit-Protokoll

12.8 Transaktionen in SQL-DBMS

12.8.1 Aufweichung von ACID in SQL-92: Isolationsebenen

12.8.2 Explizite Sperren in SQL

12.9 Vertiefende Literatur

12.10 Übungen

13 Wiederherstellung und Datensicherung

13.1 Beteiligte Systemkomponenten

13.2 Fehlerklassifikation und Recovery-Klassen

13.2.1 Fehlerklassifikation

13.2.2 Fehlerkategorien und zugehörige Recovery-Maßnahmen

13.3 Protokollierungsarten

13.3.1 Aufbau des Logbuchs

13.3.2 Physisches vs. logisches Logbuch

13.3.3 Sicherungspunkte

13.4 Recovery-Strategien

13.4.1 Seitenersetzungsstrategien

13.4.2 Propagierungsstrategien

13.4.3 Einbringstrategien

13.4.4 Konkrete Recovery-Strategien

13.4.5 Wiederanlauf nach einem Fehlerfall

13.4.6 Das REDO-Protokoll als konkrete Realisierung

13.4.7 Abbrüche im Recovery-Prozess

13.5 Das ARIES-Verfahren

13.5.1 Vorgehensweise in ARIES

13.5.2 Grundprinzipien und Datenstrukturen

13.5.3 Phasen des Wiederanlaufs

13.6 Schattenspeicherverfahren

13.7 Backup-Strategien und Archivierung

13.7.1 Backups und Archivierung

13.7.2 Spiegelung von Datenbanken

13.8 Vertiefende Literatur

13.9 Übungen

IV Aktuelle Entwicklungen

14 Moderne Datenbanksystem-Architekturen

14.1 Alternative Speichermodelle: DSM und PAX

14.2 Kompression von Daten

14.3 Multicore- und Spezialprozessoren

14.3.1 Hashverbunde für Multicore-Systeme

14.3.2 GPGPU-Beschleunigung von Datenbankoperationen

14.4 Alternative transaktionale Garantien

14.4.1 Von ACID zu BASE

14.4.2 Das CAP-Theorem

14.4.3 Abgeschwächte Konsistenzmodelle

14.5 Vertiefende Literatur

Laufendes Beispiel

Abbildungsverzeichnis

Tabellenverzeichnis

Liste der Codefragmente

Literaturverzeichnis

1

Aufgaben und Prinzipien von Datenbanksystemen

Datenbanksysteme ermöglichen die integrierte Speicherung von großen Datenbeständen, auf die mehrere Anwendungen gleichzeitig zugreifen können. Hierbei garantiert das Prinzip der Datenunabhängigkeit die weitestgehende Unabhängigkeit der Datenrepräsentation von Optimierung und Änderung der Speicherstrukturen. Sie ermöglicht auch eine Reaktion auf Änderungen der Anwendungsanforderungen, ohne die logische Struktur der Daten ändern zu müssen. Diese allgemeinen Anforderungen stellen zusammen genommen hohe Anforderungen an die interne Realisierung von Datenbanksystemen.

Für Datenbanksysteme müssen daher speziell zugeschnittene Algorithmen und Datenstrukturen insbesondere für die folgenden internen Aufgaben entwickelt werden:

• Um eine effiziente Speicherung der Daten und ein schnelles Wiederauffinden zu ermöglichen, werden unterschiedliche, auf große Datenbestände optimierte, interne Zugriffsdatenstrukturen eingesetzt.

• Die Datenunabhängigkeit erzwingt, dass Benutzer und Anwendungsprogrammierer die vom Datenbanksystem bereitgestellten Zugriffsdatenstrukturen nicht direkt ausnutzen können – die Zugriffsoptimierung muss durch das Datenbanksystem erfolgen.

• Das System muss den Mehrbenutzerbetrieb kontrollieren, um unerwünschte Konflikte beim gleichzeitigen Zugriff auf Daten auszuschließen.

• Weitere Aufgaben umfassen Vorkehrungen zur Wiederherstellung der Daten nach Systemausfällen, Kooperation zwischen verteilten Datenhaltungssystemen und Unterstützung der Wartungsphase.

• Als standardkonforme Systemsoftware müssen Datenbanksysteme auf verschiedenen Rechnerarchitekturen effizient arbeiten.

Die Realisierung dieser Aufgaben in der Implementierung von Datenbanksystemen ist Inhalt dieses Buches. Der Schwerpunkt liegt dabei auf Konzepten kommerzieller, meist relationaler Datenbanksysteme, wobei aber auch weitere zukunftsweisende Entwicklungen sowie Spezialentwicklungen betrachtet werden.

In diesem ersten Kapitel werden wir zunächst die notwendigen, grundlegenden Datenbankkonzepte wiederholen. Die Wiederholung orientiert sich an der Darstellung im ersten Band dieser Buchreihe (dem „Biber-Buch“ [SSH18]). Insbesondere werden für die weiteren Kapitel des Buches Grundkenntnisse der theoretischen Grundlagen von Datenbanksystemen, insbesondere der Relationenalgebra, und von Datenbanksprachen vorausgesetzt. Speziell werden Basiskenntnisse von SQL erwartet.

Eine detaillierte Kapitelübersicht des Buches findet sich in Abschnitt 1.2. Ferner werden wir eine weitgehend durchgängig verwendete Beispielanwendung vorstellen.

1.1 Wiederholung der Datenbank-Grundbegriffe

Dieser Abschnitt wiederholt wichtige Grundkenntnisse über Datenbanksysteme, die zum Lesen dieses Buches vorausgesetzt werden. Sollte die Darstellung in diesem Kapitel zu knapp sein oder sollten Verständnisschwierigkeiten bei den hier gegebenen Erläuterungen auftreten, so empfehlen wir zunächst das Studium der einschlägigen Kapitel des Biber-Buches [SSH18].

In diesem Abschnitt werden die Bereiche Architekturen von Datenbanksystemen, Datenmodelle und Datendefinition sowie Anfragen und Änderungsoperationen kurz angesprochen.

1.1.1 Architektur eines Datenbanksystems

Die Abbildung 1.1 zeigt einen Überblick über die prinzipielle Aufteilung eines Datenbankmanagementsystems in Funktionsmodule. Die Darstellung ist angelehnt an eine Aufteilung in drei Abstraktionsebenen. Die externe Ebene beschreibt die Sicht, die eine konkrete Anwendung auf die gespeicherten Daten hat. Da mehrere angepasste externe Sichten auf eine Datenbank existieren können, gibt die konzeptuelle Ebene eine logische und einheitliche Gesamtsicht

auf den Datenbestand. Die interne Ebene beschreibt die tatsächliche interne Realisierung der Datenspeicherung.

[image: image]

Abbildung 1.1: Vereinfachte Architektur eines DBMS

Die in Abbildung 1.1 gezeigten Komponenten können wie folgt kurz charakterisiert werden:

• Die Komponente Dateiorganisation beinhaltet die Definition der Dateiorganisation und Zugriffspfade auf der internen Ebene.

• Die Komponente Datendefinition betrifft die konzeptuelle Datendefinition, das heißt die Definition des konzeptuellen Schemas.

• In der Komponente Sichtdefinition erfolgt die Definition von Benutzersichten, also die Deklaration der Datendarstellung auf der externen Ebene.

• Die Komponente zur Definition von Masken beinhaltet den Entwurf von Menüs und Masken für die Benutzerinteraktion.

• Die Komponente Einbettung von Konstrukten der Datenbanksprache in eine Programmiersprache bildet die Schnittstelle zur Anwendungsprogrammierung (vgl. [SSH18, Kapitel 13]).

• Die Komponenten zur Bearbeitung von Anfragen und Änderungen (Updates) ermöglichen einen interaktiven Zugriff auf den Datenbestand.

• Die Komponente Datenbankoperationen (kurz DB-Operationen) realisiert die Datenbankoperationen für Anfragen und Änderungen, die von Anwendungen genutzt werden.

• Der Komponente Optimierer übernimmt die Optimierung der Datenbankzugriffe.

• Die Komponente des Plattenzugriffs realisiert die Plattenzugriffssteuerung.

• Die Komponente Auswertung betrifft die Auswertung der Ergebnisse von Anfragen und Änderungen.

• P1...Pn sind verschiedene Datenbankanwendungsprogramme.

• Das Data Dictionary (oft auch Katalog oder Datenwörterbuch genannt) bildet den zentralen Katalog aller für die Datenhaltung relevanten Informationen.

Die verschiedenen Komponenten eines Datenbanksystems können dabei zu folgenden Klassen zusammengefasst werden (siehe Abbildung 1.2):

• Die Definitionskomponenten bieten Datenbank-, System- und Anwendungsadministratoren die Möglichkeit zur Datendefinition, Definition der Dateiorganisationsformen und Zugriffspfade sowie zur Sichtdefinition.

• Die Programmierkomponenten beinhalten eine vollständige Entwicklungsumgebung in einer höheren Programmiersprache, einer 4GL oder einer grafischen Sprache, die Datenbankoperationen und in den meisten Fällen auch Werkzeuge zur Definition von Menüs, Masken und andere Primitiven einer grafischen Benutzeroberfläche einbettet.

• Die Benutzerkomponenten umfassen die interaktiven Anfrage- und Änderungswerkzeuge für anspruchsvolle Laien und die vorgefertigten Datenbankanwendungsprogramme für den unbedarften Benutzer („parametric user“).

• Die Transformationskomponenten wandeln Anfrage- und Änderungsoperationen schrittweise über Optimierung und Auswertung in Plattenzugriffsoperationen um. Umgekehrt werden die in Blöcken der Platte organisierten Bytes außerdem in die externe Benutzerdarstellung (im Relationenmodell: Tabellen) transformiert.

• Der zentrale Kern des ganzen Systems ist das Data Dictionary, das die Daten aus den Definitionskomponenten aufnimmt und die Programmier-, Benutzer- und Transformationskomponenten mit diesen Informationen versorgt.

Gerade die Transformationskomponenten sind in der Drei-Ebenen-Architektur noch etwas ungenau beschrieben. Die im nächsten Kapitel beschriebene Fünf-Schichten-Architektur wird die schrittweise Transformation von Operationen und Daten genauer darlegen.

[image: image]

Abbildung 1.2: Klassifikation der Komponenten eines DBMS aus Abbildung 1.1

1.1.2 Neun Funktionen nach Codd

Im Laufe der Jahre hat sich eine Basisfunktionalität herauskristallisiert, die von einem Datenbankmanagementsystem erwartet wird. Codd hat 1982 diese Anforderungen in einer Liste von neun Punkten1 zusammengefasst [Cod82]:

1. Integration
Die Datenintegration erfordert die einheitliche Verwaltung aller von Anwendungen benötigten Daten. Hier verbirgt sich die Möglichkeit der kontrollierten nicht-redundanten Datenhaltung des gesamten relevanten Datenbestands.

2. Operationen
Auf der Datenbank müssen Operationen möglich sein, die Datenspeicherung, Suchen und Änderungen des Datenbestands ermöglichen.

3. Katalog
Der Katalog, auch „Data Dictionary“ genannt, ermöglicht Zugriffe auf die Datenbeschreibungen der Datenbank.

4. Benutzersichten
Für unterschiedliche Anwendungen sind unterschiedliche Sichten auf den Datenbestand notwendig, sei es in der Auswahl relevanter Daten oder in einer angepassten Strukturierung des Datenbestands. Die Abbildung dieser speziellen Sichten auf den Gesamtdatenbestand muss vom System kontrolliert werden.

5. Konsistenzüberwachung
Die Konsistenzüberwachung, auch als Integritätssicherung bekannt, übernimmt die Gewährleistung der Korrektheit von Datenbankinhalten und der korrekten Ausführung von Änderungen, sodass diese die Konsistenz nicht verletzen können.

6. Datenschutz
Aufgabe des Datenschutzes ist der Ausschluss unautorisierter Zugriffe auf die gespeicherten Daten. Dies umfasst datenschutzrechtlich relevante Aspekte personenbezogener Informationen ebenso wie den Schutz firmenspezifischer Datenbestände vor Werksspionage.

7. Transaktionen
Unter einer Transaktion versteht man eine Zusammenfassung von Datenbankoperationen zu Funktionseinheiten, die als Ganzes ausgeführt werden sollen und deren Effekt bei Erfolg permanent in der Datenbank gespeichert werden soll.

8. Synchronisation
Konkurrierende Transaktionen mehrerer Benutzer müssen synchronisiert werden, um gegenseitige Beeinflussungen, etwa versehentliche Schreibkonflikte auf gemeinsam benötigten Datenbeständen, zu vermeiden.

9. Datensicherung
Aufgabe der Datensicherung ist es, die Wiederherstellung von Daten etwa nach Systemfehlern zu ermöglichen.

Die Punkte 1, 2, 5 und 6 werden schwerpunktmäßig in [HS00, SSH18] behandelt, während die anderen Punkte Inhalt dieses Buches sind.

1.1.3 Datenbankmodelle und Datendefinition

Es gibt verschiedene Datenbankmodelle, die für die Datenbeschreibung auf der konzeptuellen Ebene eingesetzt werden. Kommerziell am erfolgreichsten sind dabei zurzeit ohne Zweifel die relationalen Datenbanksysteme bzw. deren Erweiterung um objektrelationale Konzepte. Der Sprachstandard für diese Systeme ist SQL.

Wir werden in diesem Buch daher primär die Implementierung von relationalen Datenbanksystemen als Motivation für die vorgestellten Techniken verwenden. Natürlich können diese Techniken (teils in abgewandelter Form) auch für andere Datenbankmodelle eingesetzt werden. Am Ende des Buches werden wir auch auf Implementierungstechniken für andere Datenbankmodelle eingehen, die etwa den NoSQL-Systemen zugrunde liegen (siehe Kapitel 14).

Konzeptionell ist eine relationale Datenbank eine Ansammlung von Tabellen. Hinter den Tabellen steht mathematisch die Idee einer Relation, ein grundlegender Begriff, der dem Ansatz den Namen gegeben hat.

Die folgenden zwei Tabellen sollen die Produkt- und Lieferantendaten eines Kaffeehändlers repräsentieren.

[image: image]

Wir verwenden in diesem Abschnitt die folgenden begrifflichen Konventionen: Die erste Zeile gibt jeweils die Struktur einer Tabelle an (Anzahl und Benennung der Spalten). Diese Strukturinformation bezeichnen wir als Relationenschema (als Pluralform von Schema verwenden wir Schemata). Die weiteren Einträge in der Tabelle bezeichnen wir als Relation zu diesem Schema. Eine einzelne Zeile der Tabelle bezeichnen wir als Tupel. Spaltenüberschriften werden als Attribut(namen) bezeichnet.

Formalisierung von Relationenschemata und Relationen

Im weiteren Verlauf des Buches, insbesondere im Teil der Anfragebearbeitung, müssen wir die Konzepte des Relationenmodells etwas genauer betrachten. Daher wiederholen wir hier kurz die wichtigsten Aspekte der Formalisierung des relationalen Datenbankmodells, die wir in [SSH18, Kapitel 5] ausführlicher vorgestellt haben. In diesem Absatz geht es dabei zunächst um die Begriffe Attribut, Relationenschema und Relation.

Attribute und Wertebereiche

Die elementaren Bausteine einer relationalen Datenbank sind Attribute. Jedem Attribut wird ein Wertebereich zugeordnet. Mit [image: image] wird das Universum der Attribute bezeichnet, jedes [image: image] heißt Attribut. Jedem Attribut wird mit Di ein Wertebereich oder eine Domäne zugeordnet, dom(Ai) heißt dann der Wertebereich von Ai. Ein [image: image] dom(A) wird Attributwert für A genannt.

Relationenschemata und Relationen

Eine Menge [image: image] heißt Relationenschema. Eine Relation r über R = {A1,...,An} (kurz: r(R)) mit [image: image] ist eine endliche Menge von Abbildungen

[image: image]

die Tupel genannt werden, wobei t(A) [image: image] dom(A) gilt. t(A) ist dabei die Restriktion der Abbildung t auf [image: image]. Die Menge aller Relationen über einem Relationenschema R wird mit REL(R) bezeichnet und folgendermaßen definiert:

REL(R) := {r | r(R)}

REL(R) besteht aus allen Relationen, die ich aus den Attributwerten der den Attributen zugeordneten Wertebereichen bilden kann. Es sind also alle Kombinationen von Attributwerten innerhalb einer Relation erlaubt. Wir werden diese Menge der möglichen Relationen im nächsten Absatz durch Integritätsbedingungen einschränken.

Vorher definieren wir noch die Begriffe Datenbankschema und Datenbank. Eine Menge von Relationenschemata S := {R1, ..., Rp} mit [image: image] heißt Datenbankschema. Eine Datenbank über einem Datenbankschema S ist eine Menge von Relationen

d := {r1,...,rp}

wobei ri(Ri) für alle [image: image] gilt. Eine Datenbank d über S wird mit d(S) bezeichnet, eine Relation [image: image] heißt Basisrelation.

Integritätsbedingungen

Selbst in einem derart einfachen Datenstrukturierungsmodell wie dem relationalen ist es sinnvoll, bestimmte Konsistenzforderungen oder Integritätsbedingungen an gespeicherte Datenbanken zu stellen, die vom System gewährleistet werden müssen.

Betrachten wir die PRODUKT-Tabelle erneut. Die Einträge für Lieferanten in der LName-Spalte, in der folgenden Tabelle kursiv hervorgehoben, sollten sicher nicht beliebig gewählt werden dürfen.

[image: image]

Von jedem LName-Eintrag erwarten wir, dass er tatsächlich auf einen Lieferanteneintrag in der LIEFERANT-Tabelle verweist. Dies ist aber nur möglich, wenn diese Lieferantennamen eindeutig je eine Zeile identifizieren. Wir bezeichnen diese Eigenschaft als Schlüsseleigenschaft.

[image: image]

Derartig einfache Integritätsbedingungen sind im relationalen Datenbankmodell fest integriert. Wir werden darum im Folgenden jeweils Relationenschema plus Integritätsbedingungen betrachten.

Unter lokalen Integritätsbedingungen verstehen wir Bedingungen, die für genau eine Tabelle gewährleistet sein müssen. Etwa ist das Attribut ProdNr Schlüssel für PRODUKT, das heißt, eine ProdNr darf nicht doppelt vergeben werden oder anders ausgedrückt: In der Spalte ProdNr dürfen keine zwei gleichen Werte auftauchen.

Unter globalen Integritätsbedingungen verstehen wir Bedingungen, die über den Bereich einer Tabelle hinausreichen. Wir sagen, dass LName in der Tabelle PRODUKT ein Fremdschlüssel bezüglich LIEFERANT ist. Dies bedeutet, dass LName in einem anderen Relationenschema als Schlüssel auftaucht und die Lieferantennamen in PRODUKT auch in LIEFERANT auftreten müssen. Es sei noch angemerkt, dass es in einer realen Anwendung besser wäre, künstliche Lieferantennummern als Schlüssel zu verwenden, um bei Namensänderungen nicht Referenzierungsprobleme zu riskieren.

Formalisierung von Integritätsbedingungen

Die einfachsten lokalen Integritätsbedingungen sind identifizierende Attributmengen, Schlüssel und Primärschlüssel. Eine identifizierende Attributmenge für ein Relationenschema R ist eine Menge [image: image], sodass für jede Relation r(R) gilt:

[image: image]

Ein Schlüssel ist eine bezüglich [image: image] minimale identifizierende Attributmenge. In einem Relationenschema kann es mehrere Schlüssel geben. Ein Primärschlüssel ist ein ausgezeichneter Schlüssel, pro Relationenschema gibt es nur einen Primärschlüssel.

Die Menge aller Relationen aus REL(R), die noch zusätzlich die lokalen Integritätsbedingungen [image: image] erfüllen, bezeichnen wir mit

[image: image]

SAT ist abgeleitet vom englischen Wort satisfy.

Die einfachsten globalen Integritätsbedingungen sind Fremdschlüssel. Ein Fremdschlüssel (engl. Foreign Key) ist eine Attributliste X in einem Relationenschema R1, wenn in einem Relationenschema R2 eine Attributmenge Y Primärschlüssel ist und die Attributwerte zu X in der Relation r1(R1) auch in den entsprechenden Spalten Y der Relation r2(R2) enthalten sind. Wir bezeichnen einen solchen Fremdschlüssel dann mit X(R1) → Y(R2), die zugehörige Fremdschlüsselbedingung für eine Relation r1(R1) ist ein Ausdruck

[image: image]

mit [image: image] nennt man dann Fremdschlüssel für R1 bezüglich Y in R2. Eine Datenbank d genügt X(R1) → Y(R2) genau dann, wenn eine Relation r2(R2) mit Y Primärschlüssel für r2 in der Datenbank existiert und Folgendes erfüllt ist:

[image: image]

Einfache lokale Integritätsbedingungen wie Schlüssel und Primärschlüssel werden bereits im ersten Teil des Buches eine Rolle spielen, da wir bei Dateiorganisationsformen und Zugriffspfaden (Kapitel 5) zwischen Schlüsseln und anderen Attributmengen (die wir dann Sekundärschlüssel nennen) unterscheiden müssen. Fremdschlüssel sowie Abhängigkeiten zwischen Attributen als Verallgemeinerungen von Schlüsseln und Fremdschlüsseln werden wir im zweiten Teil des Buches bei der Anfragebearbeitung und -optimierung benötigen (Kapitel 9).

Datendefinition in SQL

Zur Umsetzung der entworfenen Relationenschemata mit ihren Integritätsbedingungen in das Data Dictionary eines Datenbanksystems verwenden wir den Teil der Sprache SQL, der die Datendefinition ermöglicht und daher auch als DDL (Data Definition Language) bezeichnet wird.

Die folgende einfache SQL-Deklaration zeigt den prinzipiellen Aufbau von Tabellendeklarationen. Neben einem eindeutigen Tabellennamen werden insbesondere die Attribute mit ihren Wertebereichen aufgeführt.

[image: image]

Bereits in diesem einfachen Beispiel ist mit der Angabe not null eine einfache Integritätsbedingung angegeben, die für das Attribut ProdNr definierte Werte erzwingt. Allgemein unterstützt SQL eine Reihe von Möglichkeiten, Integritätsbedingungen etwa mit der check-Klausel anzugeben.

Für die interne Realisierung, zum Beispiel für die Definition von tabellenübergreifenden Clustern, sind Angaben für die Definition von Primärschlüsseln und Fremdschlüsselbedingungen besonders wichtig. Das folgende erweiterte Beispiel versieht die PRODUKT-Tabelle mit einem Primärschlüssel, dem Attribut ProdNr, und definiert eine Fremdschlüsselbeziehung zur Tabelle LIEFERANT über das Attribut LName.

[image: image]

SQL unterstützt mit der alter-Anweisung auch eine einfache Form der Schemaevolution, auf die wir allerdings nicht weiter eingehen werden.

[image: image]

Abbildung 1.3: DDL-Anweisungen in der Drei-Ebenen-Schemaarchitektur

Abbildung 1.3 ordnet zusammenfassend die wichtigsten DDL-Anweisungen der Drei-Ebenen-Schemaarchitektur zu.

1.1.4 Anfrage- und Änderungsoperationen

Anfrage- und Änderungsoperationen sind die Grundlage für die gesamte Verwaltung von Datenbanken. Formale Grundlagen für die Anfrageoperationen sind

• die Relationenalgebra sowie

• der Tupel- oder Bereichskalkül.

Da wir in diesem Buch vor allem die Relationenalgebra als interne Darstellung von Anfragen benötigen, stellen wir noch einmal kurz deren wichtigste Anfrageoperationen Selektion, Projektion und Verbund vor.

Die Selektion ermöglicht es, Zeilen einer Tabelle auszuwählen. Hierbei kann ein einfaches Prädikat2 über die Tupelwerte der zu selektierenden Zeilen angegeben werden. Die Selektion wird im Folgenden mit dem griechischen Buchstaben σ notiert, wobei die Selektionsbedingung unten rechts am Operatorsymbol notiert wird. Ein Beispiel ist die folgende Anfrage:

[image: image]

Mit der Notation r(PRODUKT) wird die zum Relationenschema PRODUKT gehörende, in der Datenbank gespeicherte Relation bezeichnet. Die Anfrage liefert als Ergebnis die folgende Tabelle:

[image: image]

Während die Selektion Zeilen selektiert, werden mittels der Projektion Spalten ausgewählt. Die Projektion wird analog zur Selektion mit π notiert:

[image: image]

Zur Auswahl von Spalten müssen die Attributnamen angegeben werden. Das Ergebnis dieser Anfrage ist die folgende Tabelle:

[image: image]

Wie man am Ergebnis sieht, werden bei der Projektion doppelte Tupel entfernt. Dies ist die Folge der Interpretation von Tabellen als mathematische Relationen, also als (duplikatfreie) Mengen von Tupeln.

Wir benötigen nun noch eine Operation, um zwei Tabellen miteinander zu verschmelzen. Der Verbund (engl. join) verknüpft Tabellen über gleich benannte Spalten, indem er jeweils zwei Tupel verschmilzt, falls sie dort gleiche Werte aufweisen. Er wird mit dem Symbol [image: image] notiert.

[image: image]

Das Ergebnis einer Verbundoperation ist eine Tabelle, die als Schema die Vereinigung der Spaltennamen der Eingangsrelationen erhält. Die Tupel der Eingangsrelationen werden immer dann zu einem neuen Tupel verschmolzen, wenn sie in den gemeinsamen Attributen in den Werten übereinstimmen. Die obige Anfrage führt zu folgendem Ergebnis:

[image: image]

Auf Tabellen können weitere sinnvolle Operationen definiert werden, etwa Vereinigung [image: image], Differenz –, Durchschnitt [image: image], Umbenennung von Spalten [image: image] etc. Alle Operationen sind beliebig kombinierbar und bilden somit eine „Algebra“ zum „Rechnen mit Tabellen“, die sogenannte relationale Algebra oder auch Relationenalgebra. Eine formale Definition aller Operationen findet sich in [SSH18, Kapitel 5].

Die Änderungskomponente eines Datenbanksystems ermöglicht es,

• Tupel einzugeben,

• Tupel zu löschen und

• Tupel zu ändern.

Lokale und globale Integritätsbedingungen müssen bei Änderungsoperationen automatisch vom System überprüft werden.

1.1.5 Sprachen und Sichten

Als Anfragesprache wird oft eine Sprache zur Verfügung gestellt, die es erlaubt, aus vorhandenen Tabellen neue zu „berechnen“, die eine Antwort auf eine Fragestellung geben. Relationale Datenbanksysteme bieten eine interaktive Möglichkeit an, Datenbankanfragen zu formulieren und zu starten. Heutzutage ist die Sprache in der Regel ein Dialekt der in [SSH18] ausführlich vorgestellten Sprache SQL. SQL umfasst grob gesagt die Ausdrucksfähigkeit der Relationenalgebra und zusätzlich Funktionen (sum, max, min, count ...) zum Aggregieren von Werten einer Tabelle sowie einfache arithmetische Operationen. Die Umsetzung unserer Verbundanfrage in die SQL-Notation ergibt die folgende Anfrage:

[image: image]

Alternativ dazu existieren oft grafisch „verpackte“ Anfragemöglichkeiten für den gelegentlichen Benutzer (QBE). In diesem Buch wird allerdings ausschließlich SQL als Datenbanksprache verwendet.

In SQL wird ein Operator zum Einfügen von Tupeln in Basisrelationen, bezeichnet als insert, sowie Operatoren zum Löschen von Tupeln (delete) zum Ändern von Attributwerten (update) angeboten. Diese Operationen können jeweils als Ein-Tupel-Operationen (etwa die Erfassung eines neuen Kunden) oder als Mehr-Tupel-Operationen (reduziere die Preise aller Produkte um 10%) eingesetzt werden.

Die folgende Attributwertänderung ist ein Beispiel für eine Mehr-Tupel-Operation, da der Preis von mehreren Produkten auf einmal geändert wird:

[image: image]

Ein-Tupel-Operationen sind typisch für Einfügungen, wie das folgende Beispiel zeigt:

[image: image]

Bei Löschungen und Attributänderungen müssen sie durch Selektionen über Schlüsselattribute erzwungen werden. Allerdings existiert auch für Einfügungen eine Mehr-Tupel-Variante, bei der die einzufügenden Tupel aus dem Ergebnis einer Anfrage kommen:

[image: image]

Neben der interaktiven Nutzung wird SQL häufig auch in Verbindung mit Programmiersprachen verwendet, um die Entwicklung von Datenbankanwendungsprogrammen zu ermöglichen. Neben einfachen Call-Schnittstellen wie JDBC oder ODBC sowie der Einbettung in eine Wirtssprache (Embedded SQL) existieren dafür auch spezielle Spracherweiterungen wie zum Beispiel LINQ und Techniken zur Abbildung von Anwendungsobjekten auf Relationen. Eine ausführliche Vorstellung der wichtigsten Techniken ist unter anderem in [SSH18] zu finden.

1.2 Wann kommt was?

Die folgenden Kapitel vertiefen die Darstellung der Transformationskomponenten und der internen Ebene aus den Abbildungen 1.1 und 1.2 im Detail. Das anschließende Kapitel 2 betrachtet die Architektur von Datenbanksystemen näher. Hierzu wird ein Schichtenmodell eines Datenbanksystems eingeführt und die wichtigsten Objekte und Operationen dieser Schichten diskutiert.

Die in diesem Buch noch detaillierter behandelten Komponenten eines Datenbanksystems werden wir nun überblicksartig einführen und dazu erwähnen, in welchem Kapitel des Buches diese Techniken näher erläutert werden. Zu den behandelten Komponenten gehören der Optimierer, die Dateiorganisationen und Zugriffspfade, die Organisation des Sekundärspeichers, die Transaktionsverwaltung und die Recovery-Komponente.

In den folgenden Abschnitten werden wir die Komponenten eines Datenbanksystems top-down erläutern und somit den Weg einer SQL-Anfrage bis zu elementaren Zugriffsoperationen auf Byte-Blöcke eines Sekundärspeichers wie einer Festplatte betrachten. Im weiteren Verlauf des Buches gehen wir dann bottom-up vor:

• Teil I des Buches behandelt die Organisation des Sekundärspeichers und danach die Dateiorganisationen und Zugriffspfade.

• Teil II des Buches behandelt die gesamte Anfragebearbeitung inklusive des Optimierers.

• Teil III des Buches stellt die Transaktionsverwaltung und die Recovery-Komponente vor, die es ermöglichen, viele Prozesse auf der Datenbank parallel und fehlertolerant durchführen zu können.

Wir beginnen nun mit der Kurzvorstellung des Anfrageoptimierers.

1.2.1 Optimierer

Eine wichtige Komponente eines DBMS ist der Optimierer, da Anfragen unabhängig von der internen Detailrealisierung der Datenstrukturen formuliert werden sollen. Das DBMS muss Anfragen selbst optimieren, um eine effiziente Ausführung zu ermöglichen.

Die Basis für die Optimierung von Anfragen ist die Auswertung von einzelnen Anfrageoperationen. Die Optimierung wie auch die Auswertung von Operationen sind die ersten beiden Transformationskomponenten aus Abbildung 1.1.

Auswertung von Anfragen

Um die Auswertung von Anfragen durchzuführen, müssen einige Basisoperationen auf den verwendeten Datenstrukturen implementiert werden. Im Relationenmodell sind die notwendigen Operationen durch die Operatoren der relationalen Algebra vorgegeben, auch wenn die tatsächliche Anfragesprache, etwa SQL, anderen Konzepten folgt. Kritische Operationen sind insbesondere die Selektion, die Projektion und der Verbund.

Die Implementierung muss derart erfolgen, dass die jeweilige Operation auf interner Ebene (interne Datensätze und Zugriffspfade) effizient ausführbar ist und eine interne Optimierung durch Auswahl geeigneter Zugriffspfade für den aktuellen Zugriff erfolgen kann.

Wo kommt das im Buch?

Kapitel 7 behandelt Basisalgorithmen für Datenbankoperationen und deren Komplexität. Von besonderer Wichtigkeit sind hierbei Algorithmen für die Berechnung von Verbunden und deren Aufwandsabschätzung.

Optimierung von Anfragen

Ziel der Optimierung von Anfragen ist normalerweise eine möglichst schnelle Anfragebearbeitung. Dies kann erreicht werden, indem möglichst wenige Seitenzugriffe bei der Anfragebearbeitung benötigt werden und in allen Operationen so wenig Seiten (Tupel) wie möglich zu berücksichtigen sind. Ein offensichtliches Teilziel muss dabei sein, Zwischenergebnisse klein zu halten.

Wie kann man diese Ziele erreichen? Eine anzuwendende Heuristik ist es, Selektionen so früh wie möglich auszuführen, um kleine Zwischenergebnisse zu haben. Auch können etwa Selektion und Projektion im Sinne des Pipelining zusammengefasst werden, um in einem Verarbeitungsschritt ausgeführt werden zu können. Allgemein können redundante Operationen, Idempotenzen sowie Operationen, die leere Relationen erzeugen, entfernt werden. Gleiche Unteranfragen können identifiziert werden, sodass sie nur einmal ausgeführt werden müssen. Diese intuitiv einsichtigen Vorgehensweisen müssen nun in die Implementierung eines Optimierers einfließen.

Allgemein wird der Optimierungsprozess in zwei Phasen aufgeteilt, die logische Optimierung und die interne Optimierung.

• Die logische Optimierung nutzt nur algebraische Eigenschaften der Operationen, also keine Informationen über die realisierten Speicherungsstrukturen und Zugriffspfade. Eine typische Operation ist die Entfernung redundanter Operationen (etwa beim Verbund). Für eingeschränkte Aufgaben kann eine exakte Optimierung vorgenommen werden, etwa die Bestimmung der minimalen Anzahl von Verbunden mittels der Tableau-Technik [Mai83, Ull88, Ull89].
In der Regel werden statt exakter Optimierung heuristische Regeln eingesetzt, etwa beim Verschieben von Operationen derart, dass Selektionen möglichst früh ausgeführt werden. Diese heuristische Optimierung war oben bereits als algebraische Optimierung eingeführt worden. Weitere Regeln werden im Folgenden kurz skizziert.

• Die interne Optimierung nutzt dann Informationen über die vorhandenen Speicherungsstrukturen aus. Etwa kann bei Verbunden die Reihenfolge der Verbunde nach Größe und Unterstützung der Relationen durch Zugriffspfade festgelegt werden. Bei Selektionen kann die Reihenfolge der Anwendung von Bedingungen nach der Selektivität von Attributen und dem Vorhandensein von Zugriffspfaden optimiert werden. Des Weiteren wird in der internen Optimierung die Implementierungsstrategie einzelner Operationen ausgewählt.

Ein realer Optimierer wendet meist eine Kombination dieser beiden Phasen an. Dazu werden mithilfe der konzeptuellen Optimierung alternative Ausführungspläne aufgestellt. Die interne Optimierung erfolgt dann kostenbasiert: Eine Kostenfunktion schätzt den Aufwand jeder einzelnen Operation ab. Die Kosten von Ausführungsplänen müssen dann global minimiert werden.

Wo kommt das im Buch?

Kapitel 8 präsentiert die Grundkonzepte von Optimierern für Datenbankanfragen und beschreibt vorbereitende Optimierungsphasen. Die logische Optimierung wird danach in Kapitel 9 erläutert. Die interne Optimierung inklusive der kostenbasierten Auswahl der bestmöglichen Implementierungsstrategie für die gestellte Anfrage wird dann in Kapitel 10 eingeführt.

1.2.2 Dateiorganisation und Zugriffspfade

Diese Komponente enthält die Mechanismen zur Speicherung von Daten in speziellen Dateiorganisationen und das Wiederfinden von Daten durch geeignete Zugriffspfade. Außerdem wird auf der internen Ebene die Komponente Plattenzugriffssteuerung, also die Umwandlung von Befehlen, die auf Sätzen von Dateien arbeiten, in Plattenzugriffsoperationen der Betriebssystemebene (Zugriff auf Seiten bzw. Blöcke) sowie die Auswertung der Operationen durch elementare Operationen auf Sätzen von Dateien angeordnet.

Einordnung der Dateiorganisation

Die Aufgabe der Dateiorganisation ist insbesondere die Abbildung der Strukturen auf der konzeptionellen Ebene in Strukturen der internen Ebene und umgekehrt. Abbildung 1.4 verdeutlicht diese Abbildungen.

[image: image]

Abbildung 1.4: Abbildungsstufen der Datenorganisation

Die Konstrukte des Datenmodells der konzeptionellen Ebene, also Relationen, müssen auf interne Datenstrukturen abgebildet werden, etwa Felder und Sätze von Dateien. Diese Strukturen wiederum müssen auf Blöcke der Festplatte („Seiten“) abgebildet werden.

Diese Abbildung ist im Allgemeinen nicht bijektiv (also eine 1:1-Zuordnung), da etwa die Tupel einer Relation in verschiedener Reihenfolge abgespeichert werden können, ohne dass dieses auf der konzeptionellen Ebene sichtbar ist. Die Abbildung unterliegt einer Reihe von Einflussfaktoren, genannt seien hier etwa die gewählten Organisationsformen der internen Schemata, Fragen der Speicherung und Adressierung sowie der Codierung der Datentypen etc.

Speicherung und Zugriff auf Datensätze

Betrachten wir speziell das Problem der Speicherung der Tupel einer gegebenen Relation. Natürlich könnten wir die Tupel in willkürlicher Reihenfolge in einer Liste anordnen, aber dies würde uns keinerlei Vorteil bei Anfrageoperationen bringen.

Darum werden die Datensätze oft in Abhängigkeit vom Wert des Primärschlüssels in einer Datei gespeichert, um so einen schnelleren Zugriff zumindest über Primärschlüssel zu ermöglichen. Verbreitet sind zwei Alternativen:

• Die Tupel können geordnet abgelegt werden, etwa in Verbindung mit einem Suchbaum. Das Einfügen und Suchen erfolgt dann mit logarithmischem Aufwand, und Verbundoperationen über den Primärschlüssel werden beschleunigt.

• Eine gestreute Speicherung mittels einer Hash-Funktion führt bei direktem Zugriff über den Primärschlüssel zu konstantem Aufwand, ermöglicht aber keinen Durchlauf in Sortierreihenfolge.

Beide Verfahren erreichen einen schnellen Zugriff über den Primärschlüssel. Die Zugriffsunterstützung für Zugriffe über den Primärschlüssel mit einer eigenen Zugriffsstruktur, die die Datensätze selber organisiert, wird Primärindex genannt.

In der Regel ist auch ein schneller Zugriff über andere Attributmengen wünschenswert, die nicht unbedingt der Schlüsseleigenschaft genügen müssen. Dies wird trotzdem oft als Zugriff über Sekundärschlüssel bezeichnet.

Zugriffsstrukturen, die den Zugriff über Attributwerte unterstützen, werden als Index bezeichnet (als Pluralform von Index wird Indexe benutzt). Gemäß obiger Aufteilung unterscheiden wir zwischen Primär- und Sekundärindexen.

Die Speicherung der Datensätze mittels Primärindexen erfordert einen hohen Aufwand beim Einfügen und Ändern von Datensätzen einer Relation, da zum Beispiel die sequenzielle Ordnung bewahrt bleiben muss. Dies ist insbesondere bei sehr großen Relationen mit einer Reorganisation der Speicherung verbunden. Einige Datenbanksysteme verzichten daher im Normalfall auf Primärindexe, sodass Datensätze einfach „hinten“ an eine Datei anghängt werden können, und bieten als Zugriffsunterstützung nur Sekundärindexe im obigen Sinne an.

Einordnungskriterien für Zugriffsverfahren

Als erstes Kriterium unterscheiden wir den Zugriff über Primärschlüssel von dem über Sekundärschlüssel, da im Fall eines Sekundärschlüssels eine direkte Suche mit einem Parameterwert mehr als ein Tupel als Ergebnis liefern kann. Dies hat sowohl Einfluss auf die verwendeten Datenstrukturen als auch auf den Ergebnistyp einer Suchanfrage.

Als zweites Kriterium können wir beim Zugriff über eine Attributkombination differenzieren, ob die Zugriffsstruktur flexibel bezüglich der Reihenfolge der Attribute ist. Wir bezeichnen die unterschiedlichen Attribute der Kombination als Dimensionen des Suchraums. Folgerichtig unterscheiden wir eindimensionale (Zugriff unterstützt für eine feste Feldkombination) und mehrdimensionale (Zugriff unterstützt für eine variable Feldkombination) Verfahren.

Wo kommt das im Buch?

Kapitel 3 beschäftigt sich mit der Verwaltung des Hintergrundspeichers. Nach der Diskussion der Speicherhierarchie werden insbesondere spezielle Speichermedien wie Disk-Arrays vorgestellt. Des Weiteren wird die Abbildung der logischen Datenbankobjekte auf Seiten und Blöcke des Speichers vorgestellt.

Im folgenden Kapitel 4 wird die Pufferverwaltung eingeführt. Hier geht es um die Bereitstellung der Seiten des Hintergrundspeichers in bestimmten Bereichen des Hauptspeichers. Da Letzterer zwar schnell, aber vom Umfang her sehr beschränkt ist, müssen Strategien entwickelt werden, nur die wichtigsten Seiten länger in diesem Hauptspeicherbereich zu halten.

Das anschließende Kapitel 5 behandelt die Basisverfahren zur Speicherung von Datenbankrelationen. Verschiedene Baumverfahren wie B-Bäume werden ebenso diskutiert wie einfache Hash-Verfahren und Partitionierungsmechanismen.

Aufbauend auf den klassischen Verfahren diskutiert das Kapitel 6 Zugriffsverfahren für spezielle Anwendungen oder Datenbankmodelle. Das Kapitel beginnt mit Varianten von Hashverfahren und stellt mehrdimensionale Speicherverfahren vor. Anschließend werden spezielle Datenstrukturen für neue Anwendungsgebiete behandelt, so für Geoinformationssysteme, Multimediadatenbanken und Data-Warehouse-Anwendungen.

1.2.3 Transaktionen

Wir hatten den Begriff der Transaktion in [SSH18] ausschließlich im Zusammenhang mit dem Problem der Integritätssicherung betrachtet. In diesem Zusammenhang ist eine Transaktion als Einheit der Konsistenzbewahrung bezeichnet worden: Eine Transaktion muss einen (bezüglich den Integritätsbedingungen) konsistenten Zustand in einen ebenfalls konsistenten Zustand überführen.

Allerdings können fehlerhafte Datenbankzustände trotz Garantie semantischer Integrität durch die einzelnen Transaktionen auftreten. Neben Systemfehlern ist hierbei die gegenseitige Beeinflussung von Transaktionen im Mehrbenutzerbetrieb zu berücksichtigen.

Der Mehrbenutzerbetrieb ist oft durch den gleichzeitigen Zugriff mehrerer Benutzer auf dieselben Daten gekennzeichnet (bei Zugriff auf verschiedene Daten tritt in der Regel keine Beeinflussung auf). Anders formuliert: Mehrere Programme laufen simultan und greifen auf dieselbe Datenbank zu. Wir haben es hier also mit nebenläufigen, konkurrierenden Prozessen zu tun.

Die sogenannte Ablaufintegrität der Transaktionen muss durch eine Mehrbenutzersynchronisation abgesichert werden. Diese Absicherung ist als Concurrency Control bekannt.

Wo kommt das im Buch?

Kapitel 11 stellt die Modellbildung für Datenbanktransaktionen und deren theoretische Grundlagen vor. Zentral sind hierbei die Serialisierbarkeitsbegriffe. Neuere Entwicklungen wie geschachtelte Transaktionen und die Ausnutzung semantischer Informationen werden in eigenen Abschnitten ausführlich betrachtet. Das folgende Kapitel 12 diskutiert ausgehend von den vorgestellten Transaktionsmodellen konkrete Algorithmen zur Verwaltung und Synchronisation von Transaktionen im Mehrbenutzerbetrieb.

1.2.4 Recovery und Datensicherheit

Ein wichtiger Aspekt von Datenbanksystemen ist die Wiederherstellung, das sogenannte Recovery, der Datenbestände nach Systemfehlern und ähnlichen Ereignissen, die normalerweise einen Datenverlust zur Folge haben.

Betreffend die Datenspeicherung können wir zwei Arten von Speichern unterscheiden: Der instabile Speicher ist der Hauptspeicher sowie besonders genutzte flüchtige Speichermedien wie Cache und Puffer. Gemeinsam ist diesen Medien, dass der Speicherinhalt bei Stromausfall oder Systemabstürzen verloren geht. Der stabile Speicher umfasst Speichermedien wie Platte, Band oder CD-ROM.

Beim instabilen Speicher geht der Inhalt durch Systemfehler verloren, beim stabilen Speicher kann der Inhalt durch Mediafehler verlorengehen.

Typische Maßnahmen gegen Systemfehler sind das Führen von Logbuch und Änderungsjournal, Wiederherstellungsprotokolle, Einsatz eines Schattenspeichers etc.; Maßnahmen gegen Mediafehler sind Erstellung von Backups, Archivierung der Datenbestände, Führen von Spiegelplatten.

Wo kommt das im Buch?

Kapitel 13 beschäftigt sich mit Verfahren zur Wiederherstellung von Datenbeständen nach Fehlersituationen.

1.3 Vertiefende Literatur

Die meisten Lehrbücher über Grundlagen vertiefen die in diesem Abschnitt vorgestellten Grundkonzepte von Datenbanken. Zu nennen sind hier bei deutschsprachigen Werken insbesondere die Bücher von Saake, Sattler und Heuer [SSH18], Kemper und Eickler [KE09], Vossen [Vos94, Vos08] sowie die Übersetzung des Buchs von Elmasri und Navathe [EN09].

Im englischsprachigen Bereich empfehlen wir insbesondere die Bücher von Elmasri und Navathe [EN10], Silberschatz, Korth und Sudarshan [SKS10], Ramakrishnan [RG03] und Ullman [Ull88, Ull89]. Eine Einführung gibt das Buch von Garcia-Molina, Ullman und Widom [GUW08].

Neben den erwähnten Datenbanklehrbüchern gibt es eine Reihe von Büchern speziell zu SQL. Date und Darwen stellen den SQL-Standard in [DD97] vor. Auch Melton und Simon präsentieren den SQL-Standard [MS02] . Türker gibt in [Tür03] eine umfassende deutschsprachige Einführung zu den aktuellen Standards SQL:1999 und SQL:2003.

Die Grundprinzipien der Anwendungsprogrammierung werden von Neumann in [Neu96] ausführlich diskutiert. Melton behandelt die Erweiterung von SQL um gespeicherte Prozeduren und operationale Sprachmittel [Mel98]. Saake und Sattler beschreiben in [SS03] verschiedene Techniken der Datenbankanwendungsentwicklung mit Java.

1.4 Übungen

Dieser Abschnitt enthält einige einführende Aufgaben, die dazu gedacht sind, das Verständnis der Grundbegriffe zu testen. Sollten bei der Beantwortung dieser Fragen Schwierigkeiten auftreten, empfehlen wir zunächst die Lektüre der entsprechenden Kapitel in den erwähnten Lehrbüchern, bevor mit diesem Buch fortgefahren wird.

Übung 1-1 Ein Teil der Beispieltabellen beschreibt eine Bibliotheksdatenbank. Geben Sie für jeden der neun Punkte von Codd ein Beispiel für ein konkretes Problem an, das entstehen könnte, wenn die Datenbank diese Punkte nicht erfüllen würde.

Übung 1-2 Geben Sie für eine einfache SQL-Anfrage (Kombination eines Joins mit Selektionen) je einen unoptimierten (direkt der SQL-Notation folgenden) und einen „geschickteren“ Anfrageplan an. Wie unterscheiden diese sich im Aufwand? Welche Indexe könnten sinnvoll als Anfrageunterstützung eingesetzt werden?

Übung 1-3 Diskutieren Sie die Eignung zweier Ihnen aus dem Informatikgrundwissen bekannter Datenstrukturen (etwa lineare Listen oder Binärbäume) als Speicherstruktur für Relationen. Beachten Sie dabei, dass die Transporteinheit zwischen Hauptspeicher und Platte jeweils ein ganzer Block ist.

Übung 1-4 Geben Sie ein Beispiel für zwei verschränkt ablaufende Banküberweisungen (jeweils erst Kontostand lesen, und danach neuen Kontostand zurückschreiben) an, bei dem aufgrund fehlender Synchronisation ein Geldbetrag verloren geht.

Ergänzen Sie den Ablauf einer Überweisung um explizite Sperr- und Entsperroperationen, die diesen Effekt verhindern.

2

Architektur von Datenbanksystemen

Systemarchitekturen beschreiben die Komponenten eines Datenbanksystems. Es gibt zwei wichtige Architekturvorschläge:

• Die ANSI-SPARC-Architektur als detaillierte Version unserer etwas groben Drei-Ebenen-Architektur.

• Die Fünf-Schichten-Architektur als detaillierte Version der Transformationskomponenten der Drei-Ebenen-Architektur.

Im ANSI-SPARC1-Normvorschlag wurde neben der Drei-Ebenen-Schemaarchitektur auch eine Drei-Ebenen-Systemarchitektur vorgestellt. Im Wesentlichen entspricht die Architektur unserer vereinfachten Architektur aus dem letzten Kapitel, die wir in Abbildung 2.1 noch einmal aufführen.

Der endgültige Vorschlag stammt aus dem Jahre 1978 und verfeinert die Grob-Architektur um

• eine detailliertere interne Ebene, insbesondere mit Berücksichtigung der diversen Betriebssystemkomponenten,

• weitere interaktive und Programmierkomponenten auf der externen Ebene wie etwa Berichtsgeneratoren und

• eine genaue Bezeichnung und Normierung der Schnittstellen zwischen den einzelnen Komponenten.

[image: image]

Abbildung 2.1: Vereinfachte Architektur eines DBMS

Eine genauere Darstellung entnehme man der Originalliteratur [TK78, BFJ+86] oder [LD87] .

Nachdem wir im nächsten Abschnitt die in diesem Buch zu behandelnden Fragestellungen in die Drei-Ebenen-Architektur eingeordnet haben, werden wir im übernächsten Abschnitt auf die Fünf-Schichten-Architektur näher eingehen. Das Schichtenmodell ist im Rahmen dieses Buches besser geeignet, die Implementierungskonzepte einzuordnen und das Zusammenspiel der verschiedenen Komponenten zu beschreiben.

2.1 Betrachtete Fragestellungen

Bezogen auf das Architekturbild in Abbildung 2.2 der Drei-Ebenen-Architektur werden wir uns in diesem Buch insbesondere mit den folgenden Fragestellungen beschäftigen:

• Definition der Dateiorganisation

In den Kapiteln 5 und 6 werden die verschiedenen Dateiorganisationen und Zugriffspfade vorgestellt, die mittels einer sogenannten SSL (Storage Structure Language) dem Datenbanksystem bekannt gemacht werden kann. In relationalen Datenbanksystemen ist die SSL natürlich meist ein

[image: image]

Abbildung 2.2: Einordnung der behandelten Komponenten in die Drei-Ebenen-Architektur

Teil der Datenbanksprache SQL. Die SSL-Definition ergibt ein internes Schema, das im Data Dictionary abgelegt wird.

Der Entwurf des internen Schemas, etwa eine der Datenbankanwendung optimal angepasste Wahl der Zugriffspfade, ist Aufgabe des Systemadministrators. Weitergehende Möglichkeiten und Fragen des Tunings dieses physischen Datenbankentwurfs werden unter anderem in [SB03] behandelt.

• Plattenzugriffssteuerung

Hier werden die Befehle, die auf Sätzen von Dateien arbeiten, in Plattenzugriffsoperationen (die Betriebssystemebene) umgesetzt. Der Zugriff erfolgt dabei auf Seiten bzw. Blöcke, die jeweils einen unstrukturierten Speicherbereich einer festen Größe beschreiben. Falls die Seiten in den Hauptspeicher geladen werden, müssen sie aus Effizienzgründen für eventuelle weitere Zugriffe „gepuffert“ werden. Die Komponenten der Plattenzugriffssteuerung und die wichtigsten Aspekte der Betriebssystemebene werden wir in Kapitel 3 beschreiben.

• Optimierung und Auswertung

Die Operationen der Anfragesprache und Datenmanipulationssprache werden in diesen Komponenten optimiert und danach in elementare Operationen auf Sätzen von Dateien aufgelöst. Die Optimierung und den Prozess der Umwandlung von Einzeloperationen in effizienten Code (Auswertung) werden wir in den Kapiteln 7 bis 10 beschreiben.

Leider werden in dieser Architektur nur Anfragen und Änderungsoperationen betrachtet und weitere Funktionalitäten eines Datenbanksystems nicht berücksichtigt. Dass beispielsweise Transaktionen parallel ablaufen können und diese Nebenläufigkeit vom System synchronisiert werden muss, wird aus dieser Architektur noch nicht klar. Außerdem gehen wir bei den Beschreibungen der Komponenten nur von ihren Funktionen, nicht aber von den dort jeweils behandelten Objekten und den Schnittstellen zwischen den Komponenten aus. In der folgenden Fünf-Schichten-Architektur werden wir dieses Manko beheben. Die Fünf-Schichten-Architektur wird somit zum Leitfaden durch die Inhalte dieses Buches werden.

2.2 Schichtenmodell eines relationalen DBMS

Nach Ideen von Senko [SAAF73] wurde als Weiterentwicklung von Härder [Här87] im Rahmen des IBM-Prototyps System R die folgende Systemarchitektur eingeführt:

[image: image]

Abbildung 2.3: Funktionsorientierte Sicht auf die Fünf-Schichten-Architektur

Die Fünf-Schichten-Architektur basiert auf einer genaueren Beschreibung der in einem Datenbankmanagementsystem enthaltenen Transformationskomponenten, die eine schrittweise Transformation von Anfragen und Änderungen von der abstrakteren Datenbankmodellebene bis hinunter zu Zugriffen auf den Speichermedien realisieren. Abbildung 2.3 zeigt die einzelnen Transformationskomponenten mit den zugehörigen Aufgaben sowie die zwischen den Komponenten geltenden Schnittstellen. Die Aufgaben der höheren Komponenten sind dort jeweils unterteilt in Aufgaben der Anfragetransformation (links) sowie der Datensicherung (rechts).

Die mengenorientierte Schnittstelle MOS realisiert eine deklarative Datenmanipulationssprache auf Tabellen, Sichten und Zeilen einer Tabelle. Eine typische Sprache für diese Abstraktionsebene ist SQL mit mengenorientiertem Zugriff auf Relationen.

Die Anweisungen der MOS werden durch das Datensystem auf die satzorientierte Schnittstelle SOS umgesetzt. Die SOS realisiert einen navigierenden Zugriff auf einer internen Darstellung der Relationen. Manipulierte Objekte der SOS sind typisierte Datensätze und interne Relationen (geordnete Listen von Datensätzen mit Duplikaten) sowie logische Zugriffspfade, die sogenannten Indexe, und temporäre Zugriffsstrukturen, die Scans. Aufgaben des Datensystems sind die Übersetzung und Optimierung etwa von SQL-Anfragen auf die SOS unter Ausnutzung der Zugriffspfade sowie die Realisierung der Zugriffsund Integritätskontrolle.

Das Zugriffssystem übernimmt die Transformation auf die interne Satzschnittstelle ISS. Hier werden interne Tupel einheitlich verwaltet, also ohne Typisierung aufgrund unterschiedlicher Relationstypen wie in der SOS. Auf der ISS werden die Speicherstrukturen der Zugriffspfade implementiert, etwa konkrete Operationen auf B+-Bäumen und Hashtabellen. Neben der Umsetzung der SOS auf diese implementierungsnähere Darstellung realisiert das Zugriffssystem Operationen wie die Sortierung und den Mehrbenutzerbetrieb mit Transaktionen.

Das Speichersystem hat die Aufgabe, die Datenstrukturen und Operationen der ISS auf internen Seiten eines virtuellen linearen Adressraums zu realisieren. Dieser interne Adressraum wird durch die Operationen der Systempufferschnittstelle manipuliert. Typische Objekte sind interne Seiten und Seitenadressen, zugehörige Operationen sind etwa Freigeben und Bereitstellen von Seiten. Weiterhin realisiert das Speichersystem die Sperrverwaltung für den Mehrbenutzerbetrieb sowie das Schreiben des Logbuchs für das Recovery.

Die Pufferverwaltung bildet die internen Seiten auf die Blöcke der Dateischnittstelle DS des Betriebssystems ab, das die Externspeicherverwaltung übernimmt. Die Umsetzung der Operationen der Dateischnittstelle auf die Geräteschnittstelle erfolgt nun nicht mehr durch Komponenten des DBMS, sondern durch das Betriebssystem.

Nach der eher funktionsorientierten Sicht aus Abbildung 2.3 werden in Abbildung 2.4 zur Erläuterung typische Objekte, die durch die Sprachmittel der Schnittstellen manipuliert werden, sowie typische Operationen in die Architektur eingeordnet.

[image: image]

Abbildung 2.4: Typische Objekte (links) und Operatoren (rechts) der jeweiligen Schnittstellen in der Fünf-Schichten-Architektur

Die Fünf-Schichten-Architektur ist nur ein Vorschlag für eine Aufteilung in Transformationsschritte, der auf den ursprünglichen Prototyp-Entwicklungen für relationale DBMS basiert. Die Architektur kann etwa verkürzt werden, indem Zugriffssystem und Speichersystem in einer Komponente zusammengefasst werden. Einige ältere Datenbankmodelle, aber auch einige objektorientierte DBMS, bieten keine mengenorientierte Schnittstelle an und überlassen deren Aufgaben dem Anwendungsprogrammierer. Auch können einige Aufgaben der tieferen Ebenen alternativ auf den höheren Ebenen realisiert werden; ein Beispiel wäre die Realisierung eines Objektpuffers im Zugriffssystem anstelle eines Seitenpuffers.

Auch die Zuordnung der Datensicherungsmaßnahmen zu den Ebenen ist nicht zwingend vorgegeben. Die Sperrverwaltung kann zum Beispiel auf höheren Ebenen angesiedelt werden, während alternativ die Zugriffskontrolle implementierungsnäher modelliert werden könnte.

In den folgenden Abschnitten werden wir nun die einzelnen Schichten von unten beginnend beschreiben. Details für die meisten Problembereiche finden sich dann jedoch erst in den restlichen Kapiteln dieses Buches.

2.3 Hardware und Betriebssystem

Die Betriebssystemebene der Fünf-Schichten-Architektur ist die Grundlage für die weiteren, eher datenbankbezogenen Ebenen. Neben den Betriebssystemfunktionalitäten zur Verwaltung von Speichermedien werden die Treiberprogramme zum Zugriff auf die Daten dieser Medien und die Caching-Mechanismen benutzt.

Während als Hardwaregrundlage aufseiten der Prozessoren und Rechnerarchitekturen klassische Industriestandards eingesetzt werden, gibt es im Bereich der Speichermedien bei der Verwaltung großer Datenmengen spezielle Anforderungen, die in eine Speicherhierarchie münden (siehe Abbildung 2.5).

[image: image]

Abbildung 2.5: Speicherhierarchie mit Primär-, Sekundär- und Tertiärspeicher

Primärspeicher

Unverzichtbar ist der Primärspeicher, der im Wesentlichen aus dem Cache und dem Hauptspeicher besteht. Im Primärspeicher werden die Daten verarbeitet. Der Primärspeicher ist sehr schnell, der Zugriff auf die Daten fein granular. Letzteres bedeutet, dass jedes Byte im Hauptspeicher adressiert werden kann. Bei einer 32-Bit-Adressierung bedeutet dies aber auch, dass nur 232 Byte direkt adressiert werden können. Somit ist der Primärspeicher von der Größe her immer stark eingeschränkt. Ein weiterer Nachteil sind die im Vergleich zu den weiteren Speichermedien hohen Anschaffungskosten bei gleicher Speicherkapazität. Und schließlich ist der Primärspeicher ein flüchtiges Speichermedium (engl. volatile storage, non-reliable storage, non-stable storage), das sich für eine langfristige Datenspeicherung und die Gewährleistung der Ausfallsicherheit bei Systemfehlern nicht eignet.

Sekundärspeicher

Für Datenbanken extrem wichtig ist daher der Sekundärspeicher oder Onlinespeicher. Dieses meist als Plattenspeicher ausgebildete Medium ist ein nichtflüchtiger Speicher, der deshalb auch stabiler Speicher genannt wird (engl. nonvolatile storage, reliable storage, stable storage).

Im Vergleich zum Primärspeicher ist ein Plattenspeicher realisierter Sekundärspeicher weitaus größer. Er umfasst in typischen Konfigurationen mehrere Gigabyte Speicherkapazität pro Medium. Außerdem ist der Sekundärspeicher pro Byte Speicherkapazität um Größenordnungen preiswerter als der Primärspeicher. Leider lassen sich Daten nicht direkt auf dem Sekundärspeicher verarbeiten. Die Granularität des Zugriffs ist weitaus gröber: Während im Primärspeicher jedes Byte adressierbar ist, sind dies im Sekundärspeicher nur Blöcke, die in den meisten Fällen aus 512 Byte bestehen. Außerdem ist der Zugriff auf Informationen im Sekundärspeicher um den Faktor 105 langsamer als auf Informationen im Primärspeicher. Diesen Faktor nennt man auch Zugriffslücke. Da die Zugriffslücke die Anfragebearbeitung zunächst einmal verlangsamt, müssen durch eine intelligente Pufferverwaltung und eine gute Anfrageoptimierung die Auswirkungen dieser Zugriffslücke minimiert werden.

Als Alternative zu Plattenspeichern sind seit einigen Jahren Solid-State-Disks möglich. Diese Technologie weicht in wesentlichen Parametern von den Eigenschaften von Plattenspeichern ab. Wir werden in Kapitel 3 auf diese Alternative genauer eingehen.

Tertiärspeicher

Zur langfristigen Datensicherung (Archivierung) oder kurzfristigen Protokollierung (Journale) von Datenbeständen und Datenbankveränderungen ist aber selbst ein Sekundärspeicher noch zu teuer und zu klein. Möchte man mehrere hundert Gigabytes oder sogar Terabyte von Daten archivieren, so werden spezielle Tertiärspeicher (auch: Offlinespeicher, Archivspeicher) benutzt. Übliche Tertiärspeicher wie optische Platten und Magnetbänder sind sehr preiswert und haben eine entsprechende Kapazität. Der Begriff Offlinespeicher sagt bereits aus, dass die Speicherkapazität durch ein Wechselmedium beliebig erhöht werden kann. Der Nachteil ist natürlich, dass die Zugriffslücke extrem hoch wird. Während der Zugriff auf das sequenzielle Medium Magnetband schon für sich allein sehr langsam (weil sequenziell) ist, wächst die Zugriffszeit durch das Holen eines sicher verwahrten Bandes und das Einlegen dieses Bandes in das Magnetbandgerät noch stark an – auch wenn dieser Prozess nicht unbedingt durch einen Operator oder Systemadministrator durchgeführt werden muss, sondern durch Bandroboter oder Jukeboxes automatisiert werden kann.

[image: image]

Tabelle 2.1: Eigenschaften der verschiedenen Speichermedien

Die erwähnten Eigenschaften der Speichermedien sind in Tabelle 2.1 noch einmal zusammengefasst worden. Genauer werden wir auf diese Eigenschaften noch in Kapitel 3 eingehen.

Angebotene Dienste

Auf der Betriebssystemebene werden neben der Speicherhierarchie auch folgende Softwaredienste angeboten:

• Treiberprogramme zum Holen und Schreiben von Blöcken,

• die Zuordnung von Blöcken zu Seiten,

• das Ergänzen der Blockinformationen um Prüfsummen, um Schreib- oder Lesefehler zu ermitteln,

• Caching-Mechanismen, die bereits gelesene Daten im Hauptspeicher halten und verwalten, sowie

• Operationen des Dateisystems von Betriebssystemen (in vielen Fällen benutzen Datenbanksysteme aber nur eine einzige Datei und verwalten die aus Datensätzen bestehenden Datenbankdateien innerhalb dieser großen Betriebssystemdatei selbst).

Die eben skizzierten Dienste werden in Abschnitt 3.5 noch genauer erläutert.

2.4 Pufferverwaltung

Um benötigte Blöcke des Sekundärspeichers im Hauptspeicher zu verwalten, wird für eine begrenzte Menge von Seiten im Hauptspeicher ein Speicherplatz zur Verfügung gestellt, der Puffer genannt wird. Eine wichtige Aufgabe der Pufferverwaltung ist – aufgrund des begrenzten Platzes im Hauptspeicher – die Verdrängung von nicht mehr im Puffer benötigten Seiten durch die angeforderten Seiten. Welche Seiten dabei verdrängt werden, wird durch Seitenwechselstrategien festgelegt. Nicht zu verwechseln ist der unter Verantwortung des Datenbanksystems verwaltete Puffer mit dem Cache auf der Betriebssystemebene.

Puffer

Der Puffer (engl. buffer) ist ein ausgezeichneter Bereich des Hauptspeichers, der je nach Hauptspeichergröße einen beträchtlichen Umfang annehmen kann (bei großen Datenbanken bis zu einigen 100 MB, wobei als Empfehlung häufig 25% des verfügbaren Hauptspeichers angegeben wird). Trotzdem umfasst der Puffer im Normalfall natürlich nur einen ganz geringen Bruchteil der Datenbank (weniger als 1% etwa nach [HR01]). Alle Lese- und Schreibvorgänge werden jedoch von oder auf Seiten im Puffer durchgeführt. Jede zu bearbeitende Seite muss vor der Verarbeitung in den Puffer geladen werden. Dadurch kann der Puffer leicht zum Flaschenhals werden.

Ist der verfügbare Hauptspeicher sehr groß und die Datenbank relativ klein, so kann in Spezialfällen auch die gesamte Datenbank (etwa beim Start des Systems) in den Puffer geladen werden. In diesem Fall spricht man von Hauptspeicherdatenbanken (engl. main memory databases), die die Datenbanken im laufenden Betrieb ausschließlich im Hauptspeicher verwalten. Der Sekundärspeicher wird hierbei nur für die Datensicherung (und gegebenenfalls für das Recovery) und das jeweilige Laden der Datenbank beim Starten des operativen Betriebs genutzt [GLV84, JLR+94].

Pufferverwaltung

Aufgaben der Pufferverwaltung sind unter anderem

• die Zuteilung von Speicherplatz für Seiten,

• das Suchen und Ersetzen von Seiten im Puffer und

• die Optimierung der Lastverteilung zwischen parallelen Transaktionen.

Der prinzipielle Ablauf eines Zugriffs auf eine Seite kann folgendermaßen beschrieben werden (siehe auch Abbildung 2.6):

Die höhere Schicht (das Speichersystem) fordert bei der Pufferverwaltung eine Seite an. Die Referenzierung der Seite von dem Speichersystem aus nennt man auch logische Seitenreferenz. Folgende Situationen sind nun möglich:

• Die angeforderte Seite ist im Puffer und wird dem Speichersystem zur Verfügung gestellt.

[image: image]

Abbildung 2.6: Der Zugriff auf eine Seite über die Pufferverwaltung

• Die angeforderte Seite ist nicht im Puffer (engl. page fault). Es wird eine physische Seitenreferenz durch die Pufferverwaltung an die Betriebssystemebene weitergegeben. Nachdem die gewünschte Seite der Pufferverwaltung zur Verfügung gestellt wurde, muss im allgemeinen Fall bei gefülltem Puffer eine Seite aus dem Puffer verdrängt werden. Falls die zu verdrängende Seite geändert wurde, muss diese erst auf den Sekundärspeicher zurückgeschrieben werden.

Der Aufwand pro I/O-Operation beträgt nach [HR01] 2500 Instruktionen in der CPU und 15 bis 30 ms für den Zugriff auf den Sekundärspeicher.

Die Optimierung der Pufferverwaltung hängt inbesondere von folgenden Faktoren ab:

• Wie wird die Seite im Puffer gesucht?

• Wie wird die Speicherzuteilung im Puffer vorgenommen (wichtig gerade beim Mehrbenutzerbetrieb)?

• Welche Seitenersetzungsstrategien werden eingesetzt?

Suchverfahren, Speicherzuteilung und Seitenersetzungsstrategien werden genauer in Kapitel 4 beschrieben.

2.5 Speichersystem

Im Speichersystem sprechen wir statt von Seiten (also reinen Byte-Containern) nun schon von internen Datensätzen. Im Gegensatz zu internen Datensätzen werden die auf der nächsten Ebene der Fünf-Schichten-Architektur (der Ebene des Zugriffssystems) verwendeten Strukturen als logische Datensätze oder interne Tupel bezeichnet. Die Gesamtheit der internen Tupel eines bestimmten Typs wird in interne Relationen zusammengefasst. Ein Überblick über die verschiedenen Formen von Datensätzen oder Tupeln auf den verschiedenen Schichten der Architektur findet sich in Tabelle 2.2.

[image: image]

Tabelle 2.2: Formen von Datensätzen oder Tupeln in der Fünf-Schichten-Architektur

Anwendungsobjekte sind im Speichersystem in ihrer internen Speicherdarstellung sichtbar. Neben den internen Sätzen für Anwendungsobjekte werden aber auch Hilfsdaten wie Indexeinträge als interne Sätze dargestellt.

Zwei der Hauptprobleme des Speichersystems sind die Adressierung von Tupeln innerhalb der Seiten und insgesamt die Abbildung von Tupeln über logische und interne Datensätze auf Seiten. Bei der Adressierung von internen Datensätzen in Seiten muss darauf geachtet werden, dass bei Änderungen im Datenbestand die Aktualisierungen von Adressen effizient erfolgen können. Werden interne Sätze innerhalb einer Seite beispielsweise mit einem Offset x relativ zum Seitenanfang adressiert (interner Satz startet auf Byte x), so wirken sich Änderungen auf dieser Seite auf die verwendete Tupeladresse aus. Um das zu vermeiden, kann man das sogenannte TID-Konzept verwenden (Tupelidentifikator), bei dem die verwendete Adresse nicht den Offset des internen Satzes zum Seitenanfang benutzt, sondern indirekt nur den Offset eines Zeigerfeldes am Anfang der Seite. Erst der Eintrag im Zeigerfeld bestimmt dann den Offset des internen Satzes. Ändert sich die Position des internen Satzes auf der Seite, so muss nur der Eintrag lokal im Zeigerfeld verändert werden. Alle „außen“ verwendeten Adressen bleiben stabil.

Die verschiedenen Arten der Adressierung werden in Abbildung 2.7 zueinander in Beziehung gesetzt.

Bei der Abbildung von internen Sätzen auf Seiten können folgende, in Datenbanksystemen verwendete Satztypen unterschieden werden:

[image: image]

Abbildung 2.7: Klassifikation von Adressierungsarten

• Nichtspannsätze (engl. unspanned records) werden auf maximal eine Seite abgebildet. Ist ein Satz zu groß für eine in Bearbeitung befindliche Seite, wird von der Freispeicherverwaltung eine neue Seite angefordert.

• Spannsätze (engl. spanned records) können mehrere Seiten überspannen. Ist ein Satz zu groß für eine Seite, so wird der Beginn des Satzes auf dieser Seite, der Überlauf auf einer neuen Seite gespeichert.

• Sätze fester Länge bestehen für einen bestimmten Tupeltyp aus einer festen Anzahl von Bytes. Wird der Datentyp string für ein bestimmtes Attribut verwendet, so werden alle Attributwerte dieses Attributs mit der gleichen Anzahl von Bytes gespeichert.

• Sätze variabler Länge verwenden dagegen nur die wirklich benötigte Anzahl von Bytes für diese Attributwerte. Daher kann die Anzahl der Bytes pro Datensatz eines bestimmten Typs variieren.

Weitere, detailliertere Ausführungen zum Speichersystem werden in Abschnitt 3.5 folgen.

2.6 Zugriffssystem

Das Zugriffssystem abstrahiert von der internen Darstellung der Datensätze auf Seiten. Hier werden nun logische Datensätze oder interne Tupel betrachtet, die die Darstellung der Tupel aus den zu speichernden Relationen sind. Aufgabe des Zugriffssystems ist es daher unter anderem, die konzeptuellen Relationen oder Tupel auf interne Relationen oder Tupel abzubilden. Die internen Tupel können dann Elemente einer Dateidarstellung der konzeptuellen Relation oder Elemente eines Zugriffspfads auf die konzeptuellen Relationen sein. Die internen Tupel bestehen aus Feldern. Diese entsprechen den Attributen bei den konzeptuellen Tupeln.

Operationen im Zugriffssystem sind typischerweise Scans, die als interne Cursor auf Dateien oder Zugriffspfaden arbeiten. Mit Scan-Operationen können alle Elemente dieser internen Relationen durchlaufen werden.

Wird der Zugriffspfad auf eine Datei selbst wieder als Datei dargestellt, so nennt man diese auch Index oder Indexdatei. Ein Index enthält neben den Attributwerten der konzeptuellen Relation, über die ein schneller Zugriff auf die Relation verwirklicht werden soll, eine Liste von Tupeladressen. Die zugeordneten Adressen verweisen auf Tupel, die den indexierten Attributwert beinhalten.

Indexiert man über einen Primärschlüssel, so sind die Einträge in dem Index einelementig. Diesen Spezialfall einer Indexdatei nennt man auch Primärindex. Indexiert man über eine beliebige andere Attributmenge, so wird diese Sekundärschlüssel genannt (obwohl die Attributwerte gerade keine Schlüsseleigenschaft besitzen müssen, die Attributwerte also in mehreren Tupeln vorkommen können). Einen Index über Sekundärschlüssel bezeichnet man auch als Sekundärindex.

Wir geben in diesem Abschnitt nun noch kurz einen Überblick über die Dateioperationen auf internen Relationen oder Indexdateien. Die Charakteristika von Primär- und Sekundärschlüsselzugriff werden kurz erwähnt und die Arten von Dateien und Zugriffspfaden bereits klassifiziert. Genaueres zu allen Themen entnehme man den verschiedenen Abschnitten in Kapitel 5.

Dateioperationen

Folgende Dateioperationen stehen auf internen Relationen und Indexdateien zur Verfügung:

• Einfügen eines Datensatzes (insert),

• Löschen eines Datensatzes (remove oder delete),

• Modifizieren eines Datensatzes (modify),

• Suchen und Finden eines Satzes (lookup oder fetch).

Die möglichen Arten des lookup sind:

• Gegeben ist der Attributwert für ein bestimmtes Feld, gesucht sind die internen Tupel, die diesen Attributwert besitzen. Diese Art des lookup bezeichnen wir auch als single-match query.

• Gegeben ist eine Wertekombination für eine bestimmte Feldkombination der internen Tupel, gesucht sind wiederum alle Tupel, die diese Attributwerte besitzen:

– Sind Werte für alle Felder der Datei oder des Zugriffspfades gegeben, so heißt dieser lookup auch exact-match-Anfrage. Eine singlematch-Anfrage ist ein einfacher Spezialfall einer solchen exact-match-Anfrage.

– Sind Werte nur für einige Felder der Datei oder des Zugriffspfades gegeben, so sprechen wir von einer partial-match-Anfrage.

• Gegeben ist ein Wertintervall für ein oder mehrere Attribut(e), gesucht sind alle internen Tupel, die Attributwerte in diesem Intervall besitzen. Diese Art des lookup heißt range query oder auch Bereichsanfrage.

Bereichsanfragen und partial-match-Anfragen werden größere Herausforderungen an Dateistrukturen und Zugriffspfade stellen. Ein effizienter Zugriff für diese Anfragetypen läßt sich schwerer realisieren als für exact-match-Anfragen.

Zugriff auf Datensätze

Oft werden Datensätze in Abhängigkeit vom Primärschlüsselwert in einer Datei

• geordnet oder

• gehasht (gestreut)

gespeichert. Hiermit wird ein schneller Zugriff über den Primärschlüssel realisiert. Das geordnete Speichern kann über Bäume oder sequenzielle Dateiorganisationen erfolgen. Beim Hashen erfolgt eine Adressberechnung aufgrund einer Formel, die Primärschlüsselwerte auf Tupeladressen abbildet.

In der Regel ist jedoch auch ein schneller Zugriff über andere Attributmengen, die wir Sekundärschlüssel genannt haben, zu unterstützen. Diese werden standardmäßig über Sekundärindexe (also zusätzlich zu den in internen Relationen existierenden Zugriffspfaden) realisiert.

Da eine geordnete Speicherung in Abhängigkeit von Primärschlüsselwerten bei Einfügen und Ändern von Datensätzen aufwendig angepasst werden muss, können Datensätze auch in beliebiger Reihenfolge gespeichert werden und dann zur Zugriffsunterstützung nur Sekundärindexe angelegt werden.

Einordnungskriterien für Dateiorganisationen und Zugriffspfade

Die Organisationsformen für die internen Tabellen und die Zugriffspfade können nach verschiedenen Kriterien klassifiziert werden:

• Primärschlüssel/Sekundärschlüssel

Die Unterscheidung nach Primärschlüsselzugriff (nur eine Tupeladresse pro Attributwert) und Sekundärschlüsselzugriff (mehrere Tupeladressen pro Attributwert möglich) haben wir weiter oben schon getroffen. In den meisten Fällen wird der effiziente Zugriff über den Primärschlüssel durch die Dateiorganisationsform der gespeicherten Relation, über die verschiedenen Sekundärschlüssel durch zusätzliche Zugriffspfade realisiert.

• Eindimensional/mehrdimensional

Bei eindimensionalen Dateiorganisationsformen oder Zugriffspfaden wird der Zugriff für eine feste Feldkombination unterstützt. Dies entspricht dem lookup-Typ exact-match. Mehrdimensionale Dateiorganisationsformen oder Zugriffspfade können den Zugriff für eine variable Feldkombination unterstützen. Dies entspricht dem Anfragetyp partial-match.

• Statisch/dynamisch

Bei statischen Dateiorganisationsformen oder Zugriffspfaden ist die Zugriffsunterstützung nur optimal bei einer bestimmten Anzahl von zu verwaltenden Datensätzen. Wird diese Anzahl unter- oder überschritten, so ist die Zugriffsunterstützung nicht mehr optimal und müsste modifiziert werden. Bei dynamischen Dateiorganisationsformen oder Zugriffspfaden ist die Zugriffsunterstützung unabhängig von der Anzahl der Datensätze. Die Organisationsform oder der Zugriffspfad passen sich in diesem Fall wachsenden oder schrumpfenden Datenmengen automatisch an. Der Aufwand für diese Reorganisation muss deutlich geringer sein als die völlige Ersetzung eines Zugriffspfades durch einen geeigneteren.

• Nachbarschaftserhaltend/nicht nachbarschaftserhaltend:

Ist auf dem Datenbereich ein Nachbarschaftsmaß definiert, so kann man Zugriffsmethoden anhand des Grades der Nachbarschaftserhaltung klassifizieren. In eindimensionalen Datenbereichen wird die Nachbarschaft in der Regel durch das Sortierkriterium vorgegeben, während in mehrdimensionalen Datenräumen komplexere Nachbarschaftsmaße (etwa geometrische Entfernung) definiert sein können.

Wir schließen diesen Abschnitt mit der beispielhaften Nennung einiger Dateiorganisationsformen und Zugriffspfade ab, die in Kapitel 5 noch näher eingeführt werden:

• Ein B-Baum ist ein dynamischer, eindimensionaler Zugriffspfad. Zwar kann man einen B-Baum in den meisten Datenbanksystemen über mehrere Attribute einer Datei definieren, er bleibt aber eindimensional, da er nur ein exact-match auf dieser Feldkombination unterstützen kann.

• Ein klassisches Hashverfahren ist eine statische, eindimensionale Dateiorganisationsform. Die internen Tupel werden gemäß der Adressberechnung im Hashverfahren gespeichert. Wächst die Anzahl der Tupel stark, so werden je nach Wahl der Hashfunktion mit der Zeit immer mehr Kollisionen zu erwarten sein: Die Hashfunktion unterstützt dann den Zugriff auf die Datensätze nicht mehr optimal.

Beispiele für mehrdimensionale Verfahren werden ebenfalls noch in Kapitel 5 eingeführt.

2.7 Datensystem

In diesem Abschnitt werden wir die Umsetzung der mengenorientierten Schnittstelle von Datenbanksystemen skizzieren. Wir geben dabei nur einige wesentliche Komponenten an. Eine detailliertere Beschreibung des Datensystems folgt in den kommenden Kapiteln, insbesondere den Kapiteln 7 und 8.

Das Datensystem hat insbesondere drei Aufgaben:

• Optimierung

Die beispielsweise in SQL formulierte mengenorientierte Anfrage muss durch das System optimiert werden. Zur Optimierung gehören eine Umformung des Anfrageausdrucks in einen effizienter zu bearbeitenden Ausdruck (Query Rewriting, konzeptuelle oder logische Optimierung) und die Auswahl des effizientesten Anfrageausdrucks nach Kostenschätzungen (kostenbasierte Optimierung).

• Zugriffspfadauswahl

Die Zugriffspfadauswahl bestimmt die internen Strukturen und Operationen, die bei der Abarbeitung einer Anfrage benutzt werden sollen. Daher muss der Optimierer die am besten geeigneten Zugriffspfade bestimmen.

• Auswertung

Relationenalgebraoperatoren können auf verschiedene Weisen implementiert werden. Die Wahl der Auswertungsalgorithmen kann die Antwortzeit auf eine Anfrage entscheidend beeinflussen. Im Zusammenspiel mit der Zugriffspfadauswahl muss das Datensystem daher auch die Auswertungsalgorithmen auswählen.

Die Schicht des Datensystems ist ein besonderes Merkmal moderner relationaler Datenbanksysteme. So besitzt zwar jedes relationale Datenbanksystem diese Schicht, nicht jedoch die hierarchischen Datenbanksysteme und Netzwerkdatenbanksysteme älterer Bauart. Auch Objektdatenbanksysteme bieten in vielen Fällen kein Datensystem an. Im folgenden Abschnitt werden noch mehrere Datenbanksystemarchitekturen eingeführt, die die Fünf-Schichten-Architektur entweder verfeinern oder modifizieren.

2.8 Katalog und Data Dictionary

Das sogenannte Data Dictionary, auf deutsch „Datenwörterbuch“, beinhaltet die Beschreibung aller für die Datenbankverwaltung notwendigen Informationen, etwa die Schemadefinition der Datenbanktabellen im Relationenmodell. Weitere gebräuchliche Bezeichnungen sind (Daten-)Katalog, angelehnt an das Bibliothekswesen, oder Metadaten im Sinne von „Daten über Daten“.

Im Katalog müssen die Schemainformationen der Datenbankdefinition, die Realisierung der internen Ebene, Definition von Sichten, gespeicherte Prozeduren etc. gespeichert werden, die notwendig sind, um die Datenbank zu verwalten und Anfragen umzusetzen. Intern werden dort auch Statistiken etwa für die Optimierung abgelegt. Auch die Zugriffsrechte und weitere Funktionen des DBMS legen ihre spezifischen Daten im Katalog ab.

Der Katalog hat zwei Aufgaben: Dem DBMS selbst dient er zur Speicherung der Daten zur Verwaltung der Datenbank, und den mit der Datenbank arbeitenden Personen dient er zur Suche nach Informationen über tatsächlich gespeicherte Daten, Gewinnung von Strukturdaten bei der Anwendungsprogrammierung sowie zur Diagnose bei Leistungsproblemen. Aus diesen Aufgaben folgt eine Forderung: Auf dem Katalog sind dieselben Funktionen wie auf anderen Datenbeständen zu gewährleisten, also Garantie der Persistenz, Transaktionseigenschaften nach dem ACID-Prinzip sowie Anfragemöglichkeiten auch für Endbenutzer.

Es liegt daher nahe, den Katalog im angebotenen Datenmodell des DBMS selbst zu realisieren und nur intern spezielle Zugriffe etc. zu optimieren. Der Katalog in relationalen Datenbanken besteht folgerichtig aus wenigen Katalogrelationen mit zusätzlichen Sichten, um den Zugang zu den Katalogdaten benutzerfreundlicher zu gestalten.

Im SQL-Standard ist hierfür im Teil 11 [Int08] das Schema

INFORMATION_SCHEMA vorgeschrieben, das eine Reihe von Sichten auf die Katalogrelationen beinhaltet. Die eigentlichen Basisrelationen des Katalogs selbst sind im Schema DEFINITION_SCHEMA oder einem systemeigenen Schemakatalog gespeichert. Zu den Sichten aus INFORMATION_SCHEMA gehören unter anderem:

• SCHEMATA beinhaltet Informationen über alle Schemata im System,

• TABLES enthält für jede Tabelle einen Eintrag, wobei der Katalog (TABLE_CATALOG), das Schema (TABLE_SCHEMA), der Name der Tabelle (TABLE_NAME) sowie der Typ der Tabelle (TABLE_TYPE), also Basistabelle oder Sicht gespeichert sind,

• VIEWS stellt diese Informationen nur für die Sichten bereit,

• COLUMNS beschreibt die Eigenschaften von Attributen (Spalten), unter anderem den Namen (COLUMN_NAME), die Position in der Tabellendefinition (ORDINAL_POSITION) sowie Default-Wert (COLUMN_DEFAULT), Datentyp (DATA_TYPE) etc. und

• TABLE_CONSTRAINTS enthält Informationen über die definierten Integritätsbedingungen.

Die Sichten sind wie jede andere Relation auch über SQL anfragbar. Allerdings sind nur select-Operationen und keine Änderungen zulässig, um die Integrität der Katalogdaten und der Datenbank sicherzustellen. Eine Änderung dieser Sichten bzw. der zugrunde liegenden Basisrelationen kann somit ausschließlich über die DDL-Anweisungen (zum Beispiel create table) erfolgen.

Ein Beispiel für die Nutzung der Katalogrelationen ist die folgende Anfrage, die zur Tabelle KUNDE die wichtigsten Spalteninformationen ausgibt:

[image: image]

Die zweite Beispielanfrage liefert alle Tabellen, für die kein Primärschlüssel definiert ist:

[image: image]

Die Empfehlung des SQL-Standards mit dem INFORMATION_SCHEMA wird in dieser Form von Microsofts SQL Server, PostgreSQL und MySQL unterstützt. Oracle und IBM DB2 bieten ähnliche Strukturen, jedoch mit anderen Bezeichnern. So gibt es in Oracle für die meisten Katalogrelationen drei Sichten: In den USER-Sichten sind alle Objekte des aktuellen Nutzers aufgenommen, die ALL-Sichten enthalten alle Objekte, auf die der Nutzer zugreifen darf und in der DBA-Sicht sind alle Datenbankobjekte eingetragen. Entsprechend gibt es eine Sicht USER_TABLES mit Informationen zu den Tabellen des Nutzers, eine Sicht ALL_TABLES sowie eine Sicht DBA_TABLES. Die Attribute dieser Tabellen sind unter anderem der Eigentümer (owner), der Tabellenname (table_name) sowie diverse Statistikdaten. Spalteninformationen sind in der Sicht user_tab_columns bzw. den korrespondierenden Sichten zu finden, so etwa der Name der Spalte (column_name), der Datentyp (data_type), die Position (column_id) und die Tabelle (table_name).

In DB2 sind die Katalogrelationen im Systemkatalog SYSCAT eingeordnet. Auch hier gibt es die entsprechenden Sichten mit Informationen zu den Tabellen (TABLES, unter anderem mit dem Schema tabschema, dem Tabellennamen tabname und dem Typ type) und den Attributen (COLUMNS mit dem Schema tabschema, dem Tabellennamen tabname und dem Spaltennamen colname, der Position colno und dem Datentyp typename).

Zusätzlich zu den allgemeinen Strukturinformationen sind in den Katalogrelationen aller Systeme jeweils noch systemspezifische Erweiterungen etwa zu speziellen Objekten (Indexe, Trigger, Prozeduren) und Statistikinformationen zum Beispiel zur Größe der Relationen, zur Wertverteilung etc. gespeichert. Ingesamt enthält der Katalog eines realen Systems somit eine große Anzahl von Relationen – in der aktuellen DB2-Version sind es beispielsweise über 70! Darüber hinaus stellen die meisten Systeme noch eigene proprietäre Anweisungen zur Ausgabe der Katalogdaten zur Verfügung, beispielsweise describe in Oracle oder show in PostgreSQL und MySQL.

Abschließend sei noch angemerkt, dass die Kenntnis dieser Tabellen bzw. Sichten nur für den direkten SQL-Zugriff notwendig ist. Programmierschnittstellen wie JDBC oder ODBC bieten meist eigene Methoden und Funktionen, die eine systemneutrale Verwendung der Katalogrelationen ermöglichen [SS03].

2.9 Vertiefende Literatur

Die Vorstellung der Mehr-Ebenen-Architektur von DBMS basiert auf Ideen von Senko [SAAF73] und deren Weiterentwicklung von Härder [Här87] im Rahmen des IBM-Prototyps System R. Eine ausführliche Diskussion der Architekturkonzepte findet sich im Datenbank-Handbuch [LS87] und im Buch von Härder und Rahm [HR01]. Eine aktuellere Darstellung findet sich auch in [HSH07]. Lockemann und Dittrich widmen sich in ihrem Buch [LD04] ausfürlich der Diskussion von Aspekten der Architektur von Datenbanksystemen und betrachten dabei viele Beispiele konkreter Systeme. Ein weiteres deutschsprachiges Lehrbuch zu allen Implementierungsaspekten von Datenbanksystemen ist [Sch03].

Weitere Literaturhinweise zu den verschiedenen Ebenen von DBMS-Architekturen werden wir jeweils am Ende des betreffenden Kapitels geben.

Neben den in diesem Buch schwerpunktmäßig betrachteten Standardarchitekturen sowie DBMS-Architekturen für spezielle Datenmodelle wie Objekt-, XML- und RDF-Datenbanken werden seit einigen Jahren auch alternative Architekturen diskutiert. Ausgangspunkt dieser Diskussionen ist die These, dass der eher universelle Ansatz kommerzieller DBMS für spezialisierte Anwendungen zu Performanznachteilen führt. Beispiele für solche Anwendungsbereiche sind Szenarien mit vorwiegend lesenden Zugriffen (etwa Data Warehousing und Datenanalyse), Hochleistungstransaktionssysteme oder Systeme zur Verarbeitung von kontinuierlich erzeugten Daten (Datenströme). So postuliert Stonebraker in seinen Beiträgen [SC05a, SMA+07] das Ende der „One size fits all“-Ära und untersetzt dies in [SBc+07] mit Benchmark-Ergebnissen zu Systemen, die explizit für derartige spezielle Anwendungsbereiche entworfen wurden. Auch wenn die Bedeutung und Verbreitung von universellen (relationalen) DBMS ungebrochen bleiben, hat sich in den vergangenen Jahren ein neuer Markt für spezielle DBMS-Lösungen mit interessanten und innovativen Ideen eröffnet. Hierzu zählen unter anderem Data-Warehouse-Beschleuniger, die hauptspeicherbasierte und hochparallele Verarbeitungstechniken [FJL+10, KN11, SBKS11] oder spezielle Hardware wie FPGAs [MTA09] und GPUs [GLW+04] nutzen, und spezielle OLTP-DBMS [KKN+08]. Weitere Beispiele sind hochskalierbare, verteilte Datenmanagementlösungen, die bewusst auf den Funktionsreichtum von SQL-Systemen verzichten und daher auch NoSQL-Systeme genannt werden, sowie Systeme zur Verarbeitung von Datenströmen [ABB+03].

2.10 Übungen

Übung 2-1 Zeigen Sie die Überlappungen und Unterschiede zwischen der ANSI-SPARC-Architektur und der Fünf-Schichten-Architektur auf.

Übung 2-2 Stellen Sie dar, an welchen Stellen und wie die neun Anforderungen von Codd in der Fünf-Schichten-Architektur realisiert werden.

Übung 2-3 Wo befinden sich in den Architekturdarstellungen jeweils

• der physikalische Speicher,

• Tabellen in Form von Relationen,

• Zugriffsstrukturen und

• die Sichten auf ein Datenbankschema?

Übung 2-4 Geben Sie Datentypen und Funktionsschnittstellen zum Arbeiten mit Seiten und internen Tupeln im Typsystem einer Ihnen vertrauten Programmiersprache an.

Übung 2-5 Vergleichen Sie die Dateidienste eines Betriebssystems mit den Funktionen eines DBMS und versuchen Sie eine Zuordnung zu den genannten Schichten.

Übung 2-6 Warum sind verkettete Listen als primäre Dateiorganisationsform wenig geeignet?

Übung 2-7 Diskutieren Sie für die Varianten der Client-Server-Architektur für Objektdatenbanken die Aufteilung der Basisfunktionen eines DBMS (neun Punkte nach Codd, Komponenten eines DBMS) auf Client und Server.

Teil I

Speichermodelle und Zugriffspfade

3

Verwaltung des Hintergrundspeichers

In diesem Kapitel werden wir uns mit der physischen Speicherung von Datenbankdaten befassen. Daten werden auf verschiedenen Speichermedien wie Platten und Bändern gespeichert. Diese Speichermedien haben unterschiedliche Charakteristika, die ihre Anwendbarkeit für verschiedene Aufgaben einschränken. Speichermedien sind wiederum in Blöcke, Seiten und Sätzen strukturiert. Über diese Strukturen wird die Adressierung von Datenbankdaten zum Wiederauffinden der Daten vorgenommen. Zur Verarbeitung müssen die Daten dann vom Hintergrundspeicher in den Hauptspeicher übertragen werden. Dort werden die Daten im sogenannten Puffer verwaltet und möglichst lange zwischengespeichert, um sie für mögliche weitere Verarbeitungsschritte schneller zur Verfügung zu haben. Ein Spezialproblem ist der Datenschutz, der auch auf der Speicherungsebene der Daten unterstützt werden muss. Dazu können die Datenbankdaten mit kryptografischen Methoden verschlüsselt werden, sodass ein Auslesen der Speicherinhalte an den Datenschutzmechanismen des Datenbanksystems vorbei ohne Folgen bleibt.

Dieses Kapitel ist folgendermaßen aufgebaut:

• In Abschnitt 3.1 werden die verschiedenen Speichermedien wie Platten und Bänder eingeführt und ihre Charakteristika erläutert.

• Abschnitt 3.2 stellt eine Verbesserung der standardmäßigen Festplattentechnologie, die Platten-Arrays oder Redundant Arrays of Inexpensive Disks (RAID-Systeme), vor. Diese RAID-Technologie soll sowohl die Ausfallsicherheit von Datenbanksystemen als auch den Durchsatz beim Lesen und Speichern von Datenbankdaten erhöhen.

• Während in den vorhergehenden Abschnitten eher schnelle, aber relativ teure Hintergrundspeicher zum Direktzugriff auf Datenbankdaten vorgestellt wurden, beschäftigt sich Abschnitt 3.3 mit den Sicherungsmedien, den sogenannten Tertiärspeichern. Neben Bändern werden oft auch optische Speichermedien eingesetzt.

• Abschnitt 3.4 erläutert die Verwaltung des Hintergrundspeichers. Die Strukturierung des Hintergrundspeichers in Blöcke, Seiten und Sätze wird in Abschnitt 3.5 detailliert dargestellt.

Wie üblich runden Literaturhinweise und Übungsaufgaben dieses Kapitel ab.

3.1 Speichermedien

Speichermedien werden in Datenbanksystemen zu verschiedenen Zwecken eingesetzt. Sie sollen Daten zur Verarbeitung bereitstellen, Daten dauerhaft speichern (und trotzdem schnell verfügbar halten) oder Daten sehr langfristig und preiswert unter Inkaufnahme etwas längerer Zugriffszeiten archivieren.

3.1.1 Speicherhierarchie

In einem vereinfachten Modell einer Speicherhierarchie benötigen wir

• einen extrem schnellen, auf Registern arbeitenden Prozessor für die Ausführung von Operationen,

• einen schnellen, aber kleinen und flüchtigen Primärspeicher (Hauptspeicher), in dem die Daten zur Verarbeitung bereitgestellt werden,

• und einen langsamen, aber großen und stabilen Sekundärspeicher, auf dem die Daten gespeichert werden.

Heutzutage unterscheiden wir genauer folgende Arten von Speichermedien in der Speicherhierarchie:

1. extrem schneller Prozessor mit Registern,

2. sehr schneller Cache-Speicher,

3. schneller Hauptspeicher,

4. langsamer Sekundärspeicher mit wahlfreiem Zugriff,

5. sehr langsamer Nearline-Tertiärspeicher, bei dem die wechselbaren Speichermedien (zum Beispiel Bänder) automatisch bereitgestellt werden und

6. extrem langsamer Offline-Tertiärspeicher, bei dem die Speichermedien per Hand bereitgestellt werden.

Beispiele für verschiedene Arten von Tertiärspeichern sind:

• CD-R (Compact Disk Recordable) und wiederbeschreibbare CD-RW (Compact Disk ReWritable),

• DVD (Digital Versatile Disks) inklusive der verschiedenen beschreibbaren (DVD-R und DVD+R) und wiederbeschreibbaren (DVD-RW, DVD+RW und DVD-RAM) Varianten sowie Blu-ray-Discs und HD DVD als deren Nachfolger und

• Magnetbänder, etwa DLT (Digital Linear Tape).

Die Tertiärspeicher werden noch genauer in Abschnitt 3.3 betrachtet.

Cache-Hierarchie

Für die Speicherhierarchie gilt, dass Ebene x (etwa Ebene 3, der Hauptspeicher) eine wesentlich schnellere Zugriffszeit als Ebene x + 1 (etwa Ebene 4, der Sekundärspeicher) hat, aber gleichzeitig einen weitaus höheren Preis pro Speicherplatz und demzufolge – bei gleichen Kosten – eine weitaus geringere Kapazität besitzt. Außerdem erhöht sich die Lebensdauer der Daten, wenn sie auf Speicher höherer Ebenen gespeichert werden.

[image: image]

Abbildung 3.1: Speicherhierarchie mit Primär-, Sekundär- und Tertiärspeicher

Um die Zugriffslücke zwischen den einzelnen Ebenen, das heißt die Unterschiede zwischen den Zugriffsgeschwindigkeiten auf die Daten, zu vermindern, werden allgemein Cache-Speicher eingeführt, die auf Ebene x Daten von Ebene x + 1 zwischenspeichern. Es gibt verschiedene Arten von Caches:

• Sprechen wir nur abkürzend von Cache, so meinen wir den Hauptspeicher-Cache, der Hauptspeicherinhalte mit schnellerer Halbleiterspeicher-Technologie für den Prozessor bereitstellt. Dieser Cache ist als eigene Ebene (Ebene 2) in der Speicherhierarchie ausgewiesen.

• Eine weitere Art Cache ist der Plattenspeicher-Cache, der sich im Hauptspeicher befindet und Ausschnitte des Sekundärspeichers zwischenspeichert. Diesen Cache werden wir mit Puffer bezeichnen und in Kapitel 4 behandeln.

• Von Cache spricht man auch häufig beim Zugriff auf Daten im World Wide Web (WWW) über das HTTP-Protokoll. Der WWW-Cache ist ein Teil des Plattenspeichers, der Teile der im Internet bereitgestellten Daten zwischenspeichert. Man könnte hier die im Internet verteilten Datenbestände als höhere Speicherebene in der Hierarchie ansehen.

Wozu sind nun diese vielen Stufen nötig? Dazu schauen wir uns die oben erwähnte Zugriffslücke in Zahlen noch etwas genauer an.

Zugriffslücke

Während Magnetplatten pro Jahr 70% mehr Speicherdichte erreichen und somit auf demselben Raum entsprechend mehr Daten speichern können, sind die Zuwächse in der Zugriffsgeschwindigkeit nur 7% im Jahr. Dagegen ist die Prozessorleistung in letzter Zeit etwa um 70% pro Jahr angestiegen. Durch den langsamen Sekundärspeicher wird die mögliche Bearbeitungsgeschwindigkeit also stark gebremst. Der Sekundärspeicher, der zur langfristigen Haltung der Datenbank unersetzlich ist, wird zum Flaschenhals des Systems. Allein die Zugriffslücke zwischen dem Hauptspeicher und dem Magnetplattenspeicher beträgt 105, wie Tabelle 3.1 ausweist. Dabei steht in der Tabelle ns für Nanosekunden (also 10-9 Sekunden), ms für Millisekunden (10-3 Sekunden), KB (Kilobyte), MB (Megabyte), GB (Gigabyte), TB (Terabyte) und PB (Petabyte) für jeweils 103, 106, 109, 1012 und 1015 Byte.

Lokalität des Zugriffs

Zur Überwindung der Zugriffslücke kann das Caching-Prinzip nur deshalb eingesetzt werden, weil sich die Lokalität von Zugriffen ausnutzen lässt. Würden bei jeder Datenanforderung immer wieder neue Daten von der höheren Ebene der Speicherhierarchie benötigt werden, bringt ein Zwischenspeichern der Daten keinen Gewinn. In den meisten Anwendungsfällen ist Lokalität aber gegeben, die dabei in zwei Formen auftreten kann:

[image: image]

Tabelle 3.1: Die Zugriffslücke in Zahlen

• als zeitliche Lokalität in dem Sinne, dass in kurzer Zeit wiederholt auf die gleichen Daten zugriffen wird oder

• als räumliche Lokalität, das heißt, zusammen angefragte Daten sind auf dem Hintergrundspeicher zusammen (eventuell sogar auf dem gleichen Block) abgelegt.

Die erste Form bedeutet, dass der Großteil der Zugriffe (in den meisten Fällen über 90%) mit Daten aus dem Cache beantwortet werden können. Dieses Thema werden wir in Kapitel 4 bei der Vorstellung der Pufferverwaltung des Datenbanksystems genauer behandeln. Durch räumliche Lokalität kann die Anzahl der IO-Operationen oder – im Fall von Magnetplattenspeicher zumindest die Positionierungszeit – reduziert werden. Wir werden dies in Form einer geclusterten Speicherung in Abschnitt 5.5 beschreiben.

3.1.2 Cache, Hauptspeicher und Sekundärspeicher

Zur Realisierung von Cache, Hauptspeicher und Sekundärspeicher sollen hier noch einige technologische Anmerkungen gemacht werden:

• Der Cache-Speicher wird als Halbleiterspeicher realisiert. Die Informationen (Schaltungszustände) werden durch elektrischen Strom aufrechterhalten. Der Cache-Speicher ist daher flüchtig. Cache-Speicher werden meist mit SRAM-Chips realisiert (Static Random Access Memory).

• Der Hauptspeicher wird ebenfalls als flüchtiger Halbleiterspeicher realisiert. Er wird meist mit DRAM-Chips bestückt (Dynamic Random Access Memory). Ein Spezialfall sind mit Halbleitertechnologie realisierte RAM-Disks, die bei Stromausfall ihre gespeicherten Informationen behalten. Diese könnten eine Magnetplatte ersetzen, allerdings sind diese RAM-Disks deutlich teurer als Magnetplatten.

• Der Sekundärspeicher wird meist als Magnetplattenlaufwerk oder neuerdings auch als Festkörperlaufwerk (Solid State Disk) ausgeführt. Letztere verzichten völlig auf bewegliche mechanische Teile und basieren entweder auf SDRAMs (Synchronous Dynamic RAM) oder auf Flash-Speicher. SDRAM-Laufwerke sind wesentlich schneller als Magnetplattenlaufwerke und behalten durch eine eigene Pufferbatterie auch bei Stromausfall ihre gespeicherten Informationen. Allerdings sind sie wesentlich teurer. Ihr Einsatzgebiet liegt daher eher im Speichern von temporären Daten oder Logdateien. Flash-Speicher sind etwas langsamer als SDRAMs, aber immer noch schneller als Magnetplattenlaufwerke. Sie brauchen insbesondere im Vergleich zu SDRAMs deutlich weniger Energie und benötigen keine Pufferbatterie zur Überbrückung von Stromausfällen.

Magnetplatten- und Festkörperlaufwerke werden wir in den folgenden Unterabschnitten noch genauer betrachten. Für Details zu verschiedenen Arten von RAM-Speichern sei unter anderem auf [HP07] verwiesen.

3.1.3 Die Magnetplatte

Magnetplattenspeicher bestehen im Wesentlichen aus drei Komponenten:

• Die Aufzeichnungskomponente ist ein rotierender Plattenstapel.

• Die Positionierungskomponente besteht aus einem Zugriffskamm mit Zugriffsarmen, die mit Schreib-/Leseköpfen bestückt sind.

• Der Controller schließt das Magnetplattengerät an andere Hardware-Komponenten an und enthält einen eigenen Mikroprozessor, einen eigenen Cache sowie Schnittstellen zu einem Übertragungskanal oder Bussystem. Der Controller sorgt für die Abbildung der Speicheradresse auf die physischen Sektoren der Platte.

Der typische Aufbau eines Magnetplattenspeichers mit der Aufzeichnungs- und Positionierungskomponente ist in Abbildung 3.2 zu sehen.

OEBPS/images/Abb-01.jpg

OEBPS/images/014a.jpg
select Bezeichnung, PRODUKT.LName, Adresse
from PRODUKT, LIEFERANT
where Preis < 15 and PRODUKT.LName = LIEFERANT.LName

OEBPS/images/Abb-02.jpg
implementicrungstechniken

OEBPS/images/014b.jpg
update PRODUKT
set Preis = Preis * 0.9
where Preis < 10

OEBPS/images/014c.jpg
insert into PRODUKT
values (1050, 'Espresso Roma’, 14.90, ’'CoffeeDealer’)

OEBPS/images/014d.jpg
insert into KUNDE (
select ...from .

OEBPS/images/010a.jpg
create table PRODUKT (
ProdNr int not null,
Bezeichnung varchar(200),
Preis decimal(5,2),
LName varchar(30))

OEBPS/images/Abb-2-1.jpg
Externe Ebene Konzeptuelle Ebene Interne Ebene

Plattenzugriff

Operationen

Einbetiung
Masken

Date

Sichtdefinition organisation
Datendefinition <

OEBPS/images/logo.jpg
mitp

OEBPS/images/041a.jpg
select table_name, column_name, data.type, ordinal._position
from INFORMATION.SCHEMA.COLUMNS

where table name = 'KUNDE’

order by ordinal_position

OEBPS/images/041b.jpg
select table_name

from INFORMATION SCHEMA.TABLES

where (table_name, table_schema) not in
(select table name, table_schema
from INFORMATION_SCHEMA.KEY_COLUMN_USAGE
where constraint_name = ’'PRIMARY’)

OEBPS/images/Abb-2-7.jpg
Adressierung

physisch
itennr. + Offset o

OEBPS/images/Abb-2-6.jpg
Speichersystem

Pufferverwaltung

Betriebssystem

laden

7

-- -'ﬂ’?as:vﬂ_

logische
Seitenreferen:

physische
Seitenreferenz

OEBPS/images/Abb-2-3.jpg
MOS

508

155

sPS

DS

Gs

Mengenorienti

erte ___

ai

Datensystem

Systempuffer..
schnifstelle

Speichersystem

T

Dotei- -
schnittstello

Pufferverwaltung

Betriebssystem

Gersteschnittstelle ;

Exlsrmpaichar:

Obersetzung, Zugrifipfodwah,
Zugrifiskontrole, Integritatskonrolle

Data Dictionary, Currency Pointer,
Sortierung, Transakfionsverwaltung

Record Manager, Zugriffs-
pladverwaliung, Sperr-
verwallung, Logging, Recovery

Systempufferverwaltung,
Seitenersetzung, Seitenzuordnung

Externspeicherverwaltung,
Speicherzvordnung

OEBPS/images/Abb-2-2.jpg
Externe Ebene Konzeptuelle Ebene Interne Ebene

Anfragen

Updates

Db-
Operationen

Einbettung

Masken

OEBPS/images/Abb-2-5.jpg
Primérspeicher

Sekundarspeicher

Festplatten, Solid-StateDisk ‘

e
Opische Platten
Magnetbéinder

Tertidirspeicher

OEBPS/images/Abb-2-4.jpg
Relationen

SELECT
FROM ... WHERE ..
Datensystem
Extorne Séize
FIND NEXT safz
ocansokbier 505 ik STORE sotz
Zugriffssystem
interne Sétze

LOOKUP im B8aum
Baume 15§ "3 INSERT in BBaum

Hoshtabellen

Speichersystem

e g et

Pufferverwaltung
"% Lies Block k

Schreibe Block k

Betriebssystem

Zylinder S —
Rorei GS

Dateien

Blocke

OEBPS/images/cover.jpg
Andreas Heuer
Gunter Saake
Kai-Uwe Sattler

4. Auflage

Datenbanken

Implementierungstechniken

OEBPS/images/e.jpg

OEBPS/images/013e1.jpg

OEBPS/images/009a.jpg
PRODUKT

ProdNr [Bezeichnung Preis [LName
1042 | Jamaica Blue 14,90 | CoffeeShop
1043 | Arabica Black 10,90 | Kaffeebude
1044 | New York Espresso | 18,20 | Kaffeebude
1045 | Arabica Black 12,00 | CoffeeDealer

OEBPS/images/Tab-2-2.jpg
Struktur Systemkomponente

Tupel Datensystem

internes Tupel oder | Zugriffssystem
logischer Datensatz

interner Datensatz | Speichersystem

OEBPS/images/009b.jpg
LIEFERANT

LName Adresse
CoffeeShop | Miinchen
Kaffoebude | Berlin
CotfeeDealer | Magdeburg

OEBPS/images/013e3.jpg

OEBPS/images/Tab-2-1.jpg
Speicher || Geschwindigkeit | Preis Stabilitit | Grofie | Granulate
Primar__|[_schnell Tever Tlichtig | Klein Tein
Sekundar || Tangsam preiswert stabil o grob
Tertiar “sehr langsam. “sehr preiswert | stabil ‘sehr groB | grob

OEBPS/images/013e2.jpg
MBezeichnung, LName, Adresse (Opreis<15(7(PRODUKT))) &< r(LIEFERANT)

OEBPS/images/013e5.jpg

OEBPS/images/front.jpg
mitp

Hinweis des Verlages zum Urheberrecht und
Digitalen Rechtemanagement (DRM)

Der Verlag raumt Ihnen mit dem Kauf des ebooks das
Recht ein, die Inhalte im Rahmen des geltenden
Urheberrechts zu nutzen. Dieses Werk, einschlieBlich
aller seiner Teile, ist urheberrechtlich geschiitzt. Jede
Verwertung auBerhalb der engen Grenzen des Urhe-
berrechtsgesetzes ist ohne Zustimmung des Verlages
unzulassig und strafbar. Dies gilt insbesondere fiir Ver-
vielfaltigungen, Ubersetzungen, Mikroverfilmungen und
Einspeicherung und Verarbeitung in elektronischen
Systemen.

Der Verlag schiitzt seine ebooks vor Missbrauch des
Urheberrechts durch ein digitales Rechtemanagement.
Bei Kauf im Webshop des Verlages werden die ebooks
mit einem nicht sichtbaren digitalen Wasserzeichen
individuell pro Nutzer signiert.

Bei Kauf in anderen ebook-Webshops erfolgt die Signa-
tur durch die Shopbetreiber. Angaben zu diesem DRM
finden Sie auf den Seiten der jeweiligen Anbieter.

OEBPS/images/013e4.jpg

OEBPS/images/008e.jpg
t: R*)UD

OEBPS/images/008f.jpg
Ae R

OEBPS/images/008g.jpg
p €N

OEBPS/images/008h.jpg
t € {1,...

N

OEBPS/images/012a.jpg

OEBPS/images/008i.jpg
r e d

OEBPS/images/012b.jpg
ProdNr | Bezeichnung Preis | LName
1043 | Arabica Black 10,90 | Kaffeebude
1044 | New York Espresso | 18,20 | Kaffeebude

OEBPS/images/012c.jpg
TName (7" (PRODUKT))

OEBPS/images/012d.jpg
LName

CoffeeShop
Kaffeebude
CoffeeDealer

OEBPS/images/007.jpg
PRODUKT

ProdNr | Bezeichnung Preis | LName
1042 | Jamaica Blue 14,90 | CoffeeShop
1043 | Arabica Black 10,90 | Kaffeebude
1044 | New York Espresso | 18,20 | Kaffeebude
1045 | Arabica Black 12,00 | CoffeeDealer
LIEFERANT [LName Adresse
CoffeeShop | Minchen
Kaffeebude Berlin
CoffeeDealer | Magdeburg

OEBPS/images/008a.jpg
A, eU

OEBPS/images/008b.jpg

OEBPS/images/008c.jpg

OEBPS/images/008d.jpg
neN

OEBPS/images/009e1.jpg

OEBPS/images/Abb-1-2.jpg
Transformationskomponenten

Programmier-
komponenten

Benutzerkomponenten

Definitionskomponenten

OEBPS/images/009e2.jpg

OEBPS/images/Abb-1-1.jpg
Externe Ebene Konzeptuelle Ebene Interne Ebene

DB-
Operationen

Plattenzugriff

OEBPS/images/009e3.jpg

OEBPS/images/011a.jpg
create table PRODUKT (
ProdNr int,
Bezeichnung varchar (200) ,
Preis decimal(5,2),
LName varchar(30),
primary key (ProdNr),
foreign key (LName) references LIEFERANT (LName))

OEBPS/images/Abb-1-4.jpg
Konzeptuelle Interne Dateisystem/

Ebene Ebene Platte
Relationen — Logische Dateien — Physische Dateien
Tupel — Datensiitze (Records) — Seiten/Blocke

Attributwerte —» Felder _4 Bytes

OEBPS/images/Abb-1-3.jpg
konzeptuelles
Schema

internes
Schema

create view
drop view

create table create domain
drop table drop domain
alter table alter domain

create index
drop index
alter index

OEBPS/images/Abb-3-1.jpg
Primérspeicher

oy
Festplatten, Solid State Disk
L

Opfische Platten
Magnetbéinder

Sekundarspeicher |

Terticirspeicher

OEBPS/images/013.jpg
Bezeichnung | LName Adresse
Jamaica Blue | CoffeeShop | Manchen
Arabica Black | Kaffeebude | Berlin
Arabica Black | CoffeeDealer | Magdeburg

OEBPS/images/box.jpg

OEBPS/images/010e2.jpg

OEBPS/images/010e1.jpg

OEBPS/images/010e4.jpg

OEBPS/images/010e3.jpg

OEBPS/images/Tab-3-1.jpg
Speicherart typische Zugriffszeit | typische Kapazitit
Cache-Speicher 6ns | 512 KB (L) bis 32 MB (L3)
Hauptspeicher 60 ns | 1GB bis 15TB

— Zugriffslicke 10° —
Magnetplattenspeicher 12 ms | 160 GB bis 4 TB
Platten-Farm oder -Array 12 ms | im TB- bis PB-Bereich

OEBPS/images/007a.jpg

OEBPS/images/010e5.jpg
{t(X)|[ter} C{tY)|t € ro}

