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PREFACE

This book is designed to bridge the gap between theoretical knowledge and practical application in the fields of Python programming, machine learning, and the innovative use of ChatGPT in data science. It aims to provide a comprehensive guide for those who aspire to deepen their understanding and enhance their skills in these rapidly evolving areas.

The motivation stems from a growing demand for practical, in-depth resources that cater to the needs of students, data scientists, and AI researchers looking to leverage advanced techniques and tools. As these fields continue to grow in importance and impact, the ability to adeptly manipulate data, understand machine learning algorithms, and apply the latest advancements in AI becomes critical.

This book is structured to facilitate a deep understanding of several core topics:

■ Introduction to Pandas: We begin with a detailed introduction to Pandas, a cornerstone Python library for data manipulation and analysis. This section is tailored to help you master data frames and perform complex data cleaning and preparation tasks efficiently.

■ Machine Learning Classifiers: Next, we explore a variety of machine learning classifiers, providing you with the knowledge to choose and implement the right algorithm for your projects. From kNN to SVMs, you will learn the intricacies of each method through practical examples.

■ GPT-4 and Linear Regression: As we explore the capabilities of GPT-4, we discuss its application in enhancing traditional linear regression analysis. This section demonstrates how GPT-4 can be used to perform and interpret regression in ways that push the boundaries of conventional data analysis.

■ Data Visualization with ChatGPT: Finally, the book covers the innovative use of ChatGPT in data visualization. This segment focuses on how AI can transform data into compelling visual stories, making complex results accessible and understandable. It includes material AI apps, GANs, and DALL-E.

Each chapter is crafted to build on the knowledge from the previous sections, ensuring a cohesive and comprehensive learning experience. To cater to a wide range of learning styles, the book includes step-by-step tutorials, real-world applications, and sections dedicated to theoretical concepts backed by practical examples. This approach not only solidifies understanding but also enhances your ability to apply these techniques in real-world scenarios.

Features of This Book

■ Coverage of Latest Python Libraries: You will gain proficiency in using state-of-the-art libraries essential for modern data scientists.

■ Real-World Problem Solving: The book challenges you to apply your skills on real data, preparing you for professional success.

■ Companion files with source code, datasets, and figures are available for downloading by writing to the publisher (with proof of purchase) to info@merclearning.com.

This book is more than just a learning tool; it is a reference that you will return to repeatedly as you progress in your career. Whether you are a beginner aiming to get a solid start in programming and data science or an experienced professional looking to explore new advancements in AI, “Python 3 and Machine Learning Using ChatGPT/GPT-4” is an invaluable asset.

We hope that you will find this book to be a valuable resource, one that inspires you to explore further and apply your knowledge to solve complex problems. The future of Generative AI is exciting and full of possibilities.

O. Campesato

April 2024





CHAPTER 1

INTRODUCTION TO PANDAS

This chapter introduces you to Pandas and provides code samples that illustrate some of its useful features. If you are familiar with these topics, skim through the material and peruse the code samples, just in case they contain information that is new to you.

The first part contains a brief introduction to Pandas. This section contains code samples that illustrate some features of Pandas DataFrames and a brief discussion of series, which are two of the main features of Pandas.

The second part of this chapter discusses various types of data frames that you can create, such as numeric and Boolean data frames. In addition, we discuss examples of creating data frames with NumPy functions and random numbers.

Note: Several code samples in this chapter reference the NumPy library for working with arrays and generating random numbers, which you can learn from online articles.

WHAT IS PANDAS?

Pandas is a Python library that is compatible with other Python libraries, such as NumPy and Matplotlib. Install Pandas by opening a command shell and invoking this command for Python 3.x:

pip3 install pandas

In many ways, the semantics of the APIs in the Pandas library are similar to a spreadsheet, along with support for XSL, XML, HTML, and CSV file types. Pandas provides a data type called a data frame (similar to a Python dictionary) with an extremely powerful functionality.

Pandas data frames support a variety of input types, such as ndarray, list, dict, or series.

The data type series is another mechanism for managing data. In addition to performing an online search for more details regarding series, the following article contains a good introduction:

https://towardsdatascience.com/20-examples-to-master-pandas-series-bc4c68200324

Pandas Options and Settings

You can change the default values of environment variables, an example of which is shown below:

import pandas as pd

display_settings = {

'max_columns': 8,

'expand_frame_repr': True, # Wrap to multiple pages

'max_rows': 20,

'precision': 3,

'show_dimensions': True

}

for op, value in display_settings.items():

pd.set_option("display.{}".format(op), value)

Include the preceding code block in your own code if you want Pandas to display a maximum of 20 rows and 8 columns, and floating point numbers displayed with 3 decimal places. Set expand_frame_rep to True if you want the output to “wrap around” to multiple pages. The preceding for loop iterates through display_settings and sets the options equal to their corresponding values.

In addition, the following code snippet displays all Pandas options and their current values in your code:

print(pd.describe_option())

There are various other operations that you can perform with options and their values (such as the pd.reset() method for resetting values), as described in the Pandas user guide:

https://pandas.pydata.org/pandas-docs/stable/user_guide/options.html

Pandas Data Frames

In simplified terms, a Pandas data frame is a two-dimensional data structure, and it is convenient to think of the data structure in terms of rows and columns. Data frames can be labeled (rows as well as columns), and the columns can contain different data types. The source of the dataset for a Pandas data frame can be a data file, a database table, and a Web service. The data frame features include:


	Data frame methods

	Data frame statistics

	Grouping, pivoting, and reshaping

	Handle missing data

	Join data frames



The code samples in this chapter show you almost all the features in the preceding list.

Data Frames and Data Cleaning Tasks

The specific tasks that you need to perform depend on the structure and contents of a dataset. In general, you will perform a workflow with the following steps, not necessarily always in this order (and some might be optional). All of the following steps can be performed with a Pandas data frame:


	Read data into a data frame

	Display top of data frame

	Display column data types

	Display missing values

	Replace NA with a value

	Iterate through the columns

	Statistics for each column

	Find missing values

	Total missing values

	Percentage of missing values

	Sort table values

	Print summary information

	Columns with > 50% missing

	Rename columns



This chapter contains sections that illustrate how to perform many of the steps in the preceding list.

Alternatives to Pandas

Before delving into the code samples, there are alternatives to Pandas that offer very useful features, some of which are shown below:


	PySpark (for large datasets)

	Dask (for distributed processing)

	Modin (faster performance)

	Datatable (R data.table for Python)



The inclusion of these alternatives is not intended to diminish Pandas. Indeed, you might not need any of the functionality in the preceding list. However, in the event that you need such functionality in the future, so it is worthwhile for you to know about these alternatives now (and there may be even more powerful alternatives at some point in the future).

A PANDAS DATA FRAME WITH A NUMPY EXAMPLE

Listing 1.1 shows the content of pandas_df.py that illustrates how to define several data frames and display their contents.

LISTING 1.1: pandas_df.py

import pandas as pd

import numpy as np

myvector1 = np.array([1,2,3,4,5])

print("myvector1:")

print(myvector1)

print()

mydf1 = pd.Data frame(myvector1)

print("mydf1:")

print(mydf1)

print()

myvector2 = np.array([i for i in range(1,6)])

print("myvector2:")

print(myvector2)

print()

mydf2 = pd.Data frame(myvector2)

print("mydf2:")

print(mydf2)

print()

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])

print("myarray:")

print(myarray)

print()

mydf3 = pd.Data frame(myarray)

print("mydf3:")

print(mydf3)

print()

Listing 1.1 starts with standard import statements for Pandas and NumPy, followed by the definition of two one-dimensional NumPy arrays and a two-dimensional NumPy array. Each NumPy variable is followed by a corresponding Pandas data frame (mydf1, mydf2, and mydf3). Now launch the code in Listing 1.1 to see the following output, and you can compare the NumPy arrays with the Pandas data frames:

myvector1:

[1 2 3 4 5]

mydf1:

  0

0  1

1  2

2  3

3  4

4  5

myvector2:

[1 2 3 4 5]

mydf2:

  0

0  1

1  2

2  3

3  4

4  5

myarray:

[image: image]

mydf3:

[image: image]

By contrast, the following code block illustrates how to define two Pandas Series that are part of the definition of a Pandas data frame:

names = pd.Series(['SF', 'San Jose', 'Sacramento'])

sizes = pd.Series([852469, 1015785, 485199])

df = pd.Data frame({ 'Cities': names, 'Size': sizes })

print(df)

Create a Python file with the preceding code (along with the required import statement), and when you launch that code, you will see the following output:

[image: image]

DESCRIBING A PANDAS DATA FRAME

Listing 1.2 shows the content of pandas_df_describe.py, which illustrates how to define a Pandas data frame that contains a 3x3 NumPy array of integer values, where the rows and columns of the data frame are labeled. Other aspects of the data frame are also displayed.

LISTING 1.2: pandas_df_describe.py

import numpy as np

import pandas as pd

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])

rownames = ['apples', 'oranges', 'beer']

colnames = ['January', 'February', 'March']

mydf = pd.Data frame(myarray, index=rownames, columns=colnames)

print("contents of df:")

print(mydf)

print()

print("contents of January:")

print(mydf['January'])

print()

print("Number of Rows:")

print(mydf.shape[0])

print()

print("Number of Columns:")

print(mydf.shape[1])

print()

print("Number of Rows and Columns:")

print(mydf.shape)

print()

print("Column Names:")

print(mydf.columns)

print()

print("Column types:")

print(mydf.dtypes)

print()

print("Description:")

print(mydf.describe())

print()

Listing 1.2 starts with two standard import statements followed by the variable myarray, which is a 3x3 NumPy array of numbers. The variables rownames and colnames provide names for the rows and columns, respectively, of the Pandas data frame mydf, which is initialized as a Pandas data frame with the specified data source (i.e., myarray).

The first portion of the output below requires a single print() statement (which simply displays the contents of mydf). The second portion of the output is generated by invoking the describe() method that is available for any Pandas data frame. The describe() method is useful: you will see various statistical quantities, such as the mean, standard deviation minimum, and maximum performed by columns (not rows), along with values for the 25th, 50th, and 75th percentiles. The output of Listing 1.2 is here:

contents of df:

[image: image]

contents of January:

[image: image]

Name: January, dtype: int64

Number of Rows:

3

Number of Columns:

3

Number of Rows and Columns:

(3, 3)

Column Names:

Index(['January', 'February', 'March'], dtype='object')

Column types:

[image: image]

dtype: object

Description:

[image: image]

PANDAS BOOLEAN DATA FRAMES

Pandas supports Boolean operations on data frames, such as the logical OR, the logical AND, and the logical negation of a pair of data frames. Listing 1.3 shows the content of pandas_boolean_df.py that illustrates how to define a Pandas data frame whose rows and columns are Boolean values.

LISTING 1.3: pandas_boolean_df.py

import pandas as pd

df1 = pd.Data frame({'a': [1, 0, 1], 'b': [0, 1, 1] }, dtype=bool)

df2 = pd.Data frame({'a': [0, 1, 1], 'b': [1, 1, 0] }, dtype=bool)

print("df1 & df2:")

print(df1 & df2)

print("df1 | df2:")

print(df1 | df2)

print("df1 ^ df2:")

print(df1 ^ df2)

Listing 1.3 initializes the data frames df1 and df2, and then computes df1 & df2, df1 | df2, and df1 ^ df2, which represent the logical AND, the logical OR, and the logical negation, respectively, of df1 and df2. The output from launching the code in Listing 1.3 is as follows:

df1 & df2:

[image: image]

Transposing a Pandas Data Frame

The T attribute (as well as the transpose function) enables you to generate the transpose of a Pandas data frame, similar to the NumPy ndarray. The transpose operation switches rows to columns and columns to rows. For example, the following code snippet defines a Pandas data frame df1 and then displays the transpose of df1:

df1 = pd.Data frame({'a': [1, 0, 1], 'b': [0, 1, 1] }, dtype=int)

print("df1.T:")

print(df1.T)

The output of the preceding code snippet is here:

df1.T:

[image: image]

The following code snippet defines Pandas data frames df1 and df2 and then displays their sum:

df1 = pd.Data frame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, dtype=int)

df2 = pd.Data frame({'a' : [3, 3, 3], 'b' : [5, 5, 5] }, dtype=int)

print("df1 + df2:")

print(df1 + df2)

The output is here:

df1 + df2:

[image: image]

PANDAS DATA FRAMES AND RANDOM NUMBERS

Listing 1.4 shows the content of pandas_random_df.py that illustrates how to create a Pandas data frame with random integers.

LISTING 1.4: pandas_random_df.py

import pandas as pd

import numpy as np

df = pd.Data frame(np.random.randint(1, 5, size=(5, 2)), columns=['a','b'])

df = df.append(df.agg(['sum', 'mean']))

print("Contents of data frame:")

print(df)

Listing 1.4 defines the Pandas data frame df that consists of 5 rows and 2 columns of random integers between 1 and 5. Notice that the columns of df are labeled “a” and “b.” In addition, the next code snippet appends two rows consisting of the sum and the mean of the numbers in both columns. The output of Listing 1.4 is here:

[image: image]

Listing 1.5 shows the content of pandas_combine_df.py that illustrates how to combine Pandas data frames.

LISTING 1.5: pandas_combine_df.py

import pandas as pd

import numpy as np

[image: image]

print("contents of df:")

print(df)

print("contents of foo1:")

print(df.foo1)

print("contents of foo2:")

print(df.foo2)

Listing 1.5 defines the Pandas data frame df that consists of 5 rows and 2 columns (labeled “foo1” and “foo2”) of random real numbers between 0 and 5. The next portion of Listing 1.5 shows the content of df and foo1. The output of Listing 1.5 is as follows:

contents of df:

[image: image]

READING CSV FILES IN PANDAS

Pandas provides the read-csv() method for reading the contents of CSV files. For example, Listing 1.6 shows the contents of sometext.csv that contain labeled data (spam or ham), and Listing 1.7 shows the contents of read-csv-file.py that illustrate how to read the contents of a CSV file.

LISTING 1.6: sometext.csv







	type
	text



	ham
	Available only for today



	ham
	I'm joking with you



	spam
	Free entry in 2 a wkly comp



	ham
	U dun say so early hor



	ham
	I don't think he goes to usf



	spam
	FreeMsg Hey there



	ham
	my brother is not sick



	ham
	As per your request Melle



	spam
	WINNER!! As a valued customer




LISTING 1.7: read-csv-file.py

import pandas as pd

import numpy as np

df = pd.read-csv('sometext.csv', delimiter='\t')

print("=> First five rows:")

print(df.head(5))

Listing 1.7 reads the content of sometext.csv, whose columns are separated by a tab (“\t”) delimiter. Launch the code in Listing 1.7 to see the following output:

=> First five rows:

[image: image]

The default value for the head() method is 5, but you can display the first n rows of a data frame df with the code snippet df.head(n).

Specifying a Separator and Column Sets in Text Files

The previous section showed you how to use the delimiter attribute to specify the delimiter in a text file. You can also use the sep parameter specifies a different separator. In addition, you can assign the names parameter the column names in the data that you want to read. An example of using delimiter and sep is here:

[image: image]

Pandas also provides the read_table() method for reading the contents of CSV files, which uses the same syntax as the read_csv() method.

Specifying an Index in Text Files

Suppose that you know that a particular column in a text file contains the index value for the rows in the text file. For example, a text file that contains the data in a relational table would typically contain an index column.

Fortunately, Pandas allows you to specify the kth column as the index in a text file, as shown here:

df = pd.read_csv('myfile.csv', index_col=k)

THE LOC() AND ILOC() METHODS IN PANDAS

If you want to display the contents of a record in a Pandas data frame, specify the index of the row in the loc() method. For example, the following code snippet displays the data by feature name in a data frame df:

df.loc[feature_name]

Select the first row of the "height" column in the data frame:

df.loc([0], ['height'])

The following code snippet uses the iloc() function to display the first 8 records of the name column with this code snippet:

df.iloc[0:8]['name']

CONVERTING CATEGORICAL DATA TO NUMERIC DATA

One common task in machine learning involves converting a feature containing character data into a feature that contains numeric data. Listing 1.8 shows the contents of cat2numeric.py that illustrate how to replace a text field with a corresponding numeric field.

LISTING 1.8: cat2numeric.py

import pandas as pd

import numpy as np

df = pd.read_csv('sometext.csv', delimiter='\t')

print("=> First five rows (before):")

print(df.head(5))

print("-------------------------")

print()

# map ham/spam to 0/1 values:

df['type'] = df['type'].map( {'ham':0 , 'spam':1} )

print("=> First five rows (after):")

print(df.head(5))

print("-------------------------")

Listing 1.8 initializes the data frame df with the contents of the CSV file sometext.csv, and then displays the contents of the first five rows by invoking df.head(5), which is also the default number of rows to display.

The next code snippet in Listing 1.8 invokes the map() method to replace occurrences of ham with 0 and replace occurrences of spam with 1 in the column labeled type, as shown here:

df['type'] = df['type'].map( {'ham':0 , 'spam':1} )

The last portion of Listing 1.8 invokes the head() method again to display the first five rows of the dataset after having renamed the contents of the column type. Launch the code in Listing 1.8 to see the following output:

[image: image]

-------------------------

As another example, Listing 1.9 shows the contents of shirts.csv and Listing 1.10 shows the contents of shirts.py; these examples illustrate four techniques for converting categorical data into numeric data.

LISTING 1.9: shirts.csv

type,ssize

shirt,xxlarge

shirt,xxlarge

shirt,xlarge

shirt,xlarge

shirt,xlarge

shirt,large

shirt,medium

shirt,small

shirt,small

shirt,xsmall

shirt,xsmall

shirt,xsmall

LISTING 1.10: shirts.py

import pandas as pd

shirts = pd.read_csv("shirts.csv")

print("shirts before:")

print(shirts)

print()

# TECHNIQUE #1:

#shirts.loc[shirts['ssize']=='xxlarge','size'] = 4

#shirts.loc[shirts['ssize']=='xlarge', 'size'] = 4

#shirts.loc[shirts['ssize']=='large',  'size'] = 3

#shirts.loc[shirts['ssize']=='medium', 'size'] = 2

#shirts.loc[shirts['ssize']=='small',  'size'] = 1

#shirts.loc[shirts['ssize']=='xsmall', 'size'] = 1

# TECHNIQUE #2:

#shirts['ssize'].replace('xxlarge', 4, inplace=True)

#shirts['ssize'].replace('xlarge',  4, inplace=True)

#shirts['ssize'].replace('large',   3, inplace=True)

#shirts['ssize'].replace('medium',  2, inplace=True)

#shirts['ssize'].replace('small',   1, inplace=True)

#shirts['ssize'].replace('xsmall',  1, inplace=True)

# TECHNIQUE #3:

#shirts['ssize'] = shirts['ssize'].apply({'xxlarge':4, 'xlarge':4, 'large':3, 'medium':2, 'small':1, 'xsmall':1}.get)

# TECHNIQUE #4:

shirts['ssize'] = shirts['ssize'].replace(regex='xlarge', value=4)

shirts['ssize'] = shirts['ssize'].replace(regex='large',  value=3)

shirts['ssize'] = shirts['ssize'].replace(regex='medium', value=2)

shirts['ssize'] = shirts['ssize'].replace(regex='small',  value=1)

print("shirts after:")

print(shirts)

Listing 1.10 starts with a code block of six statements that uses direct comparison with strings to make numeric replacements. For example, the following code snippet replaces all occurrences of the string xxlarge with the value 4:

shirts.loc[shirts['ssize']=='xxlarge','size'] = 4

The second code block consists of six statements that use the replace() method to perform the same updates, an example of which is shown here:

shirts['ssize'].replace('xxlarge', 4, inplace=True)

The third code block consists of a single statement that uses the apply() method to perform the same updates, as shown here:

shirts['ssize'] = shirts['ssize'].apply({'xxlarge':4, 'xlarge':4, 'large':3, 'medium':2, 'small':1, 'xsmall':1}.get)

The fourth code block consists of four statements that use regular expressions to perform the same updates, an example of which is shown here:

shirts['ssize'] = shirts['ssize'].replace(regex='xlarge', value=4)

Since the preceding code snippet matches xxlarge as well as xlarge, we only need four statements instead of six statements. (If you are unfamiliar with regular expressions, you can find online articles that discuss regular expressions.) Now launch the code in Listing 1.10 to see the following output:

shirts before
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