

[image: image]

[image: image]

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and companion files (the “Work”), you agree that this license grants permission to use the contents contained herein, including the disc, but does not give you the right of ownership to any of the textual content in the book / disc or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to ensure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book and/or disc, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” vary from state to state, and might not apply to the purchaser of this product.

Companion files for this title are available by writing to the publisher with proof of purchase at info@merclearning.com.

[image: image]

Copyright ©2024 by MERCURY LEARNING AND INFORMATION.

An Imprint of DeGruyter Inc. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display, or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION

121 High Street, 3rd Floor

Boston, MA 02110

info@merclearning.com

www.merclearning.com

800-232-0223

O. Campesato. Python 3 and Machine Learning Using ChatGPT / GPT-4.

ISBN: 978-1-50152-295-6

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2024935754

242526321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors. Companion files (figures and code listings) for this title are available with proof of purchase by contacting info@merclearning.com. The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the files, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.

I’d like to dedicate this book to my parents

– may this bring joy and happiness into their lives.

CONTENTS

Preface

Chapter 1: Introduction to Pandas

What is Pandas?

Pandas Options and Settings

Pandas Data Frames

Data Frames and Data Cleaning Tasks

Alternatives to Pandas

A Pandas Data Frame with a NumPy Example

Describing a Pandas Data Frame

Pandas Boolean Data Frames

Transposing a Pandas Data Frame

Pandas Data Frames and Random Numbers

Reading CSV Files in Pandas

Specifying a Separator and Column Sets in Text Files

Specifying an Index in Text Files

The loc() and iloc() Methods in Pandas

Converting Categorical Data to Numeric Data

Matching and Splitting Strings in Pandas

Converting Strings to Dates in Pandas

Working with Date Ranges in Pandas

Detecting Missing Dates in Pandas

Interpolating Missing Dates in Pandas

Other Operations with Dates in Pandas

Merging and Splitting Columns in Pandas

Reading HTML Web Pages in Pandas

Saving a Pandas Data Frame as an HTML Web Page

Summary

Chapter 2: Introduction to Machine Learning

What is Machine Learning?

Types of Machine Learning

Types of Machine Learning Algorithms

Machine Learning Tasks

Feature Engineering, Selection, and Extraction

Dimensionality Reduction

PCA

Covariance Matrix

Working with Datasets

Training Data Versus Test Data

What is Cross-validation?

What is Regularization?

Machine Learning and Feature Scaling

Data Normalization versus Standardization

The Bias-Variance Tradeoff

Metrics for Measuring Models

Limitations of R-Squared

Confusion Matrix

Accuracy versus Precision versus Recall

The ROC Curve

Other Useful Statistical Terms

What is an F1 score?

What is a p-value?

What is Linear Regression?

Linear Regression vs. Curve-Fitting

When are Solutions Exact Values?

What is Multivariate Analysis?

Other Types of Regression

Working with Lines in the Plane (optional)

Scatter Plots with NumPy and Matplotlib (1)

Why the Perturbation Technique is Useful

Scatter Plots with NumPy and Matplotlib (2)

A Quadratic Scatter Plot with NumPy and Matplotlib

The Mean Squared Error (MSE) Formula

A List of Error Types

Non-linear Least Squares

Calculating the MSE Manually

Approximating Linear Data with np.linspace()

Calculating MSE with np.linspace() API

Summary

Chapter 3: Classifiers in Machine Learning

What is Classification?

What are Classifiers?

Common Classifiers

Binary versus Multiclass Classification

Multilabel Classification

What are Linear Classifiers?

What is kNN?

How to Handle a Tie in kNN

What are Decision Trees?

What are Random Forests?

What are SVMs?

Tradeoffs of SVMs

What is Bayesian Inference?

Bayes’ Theorem

Some Bayesian Terminology

What is MAP?

Why Use Bayes’ Theorem?

What is a Bayesian Classifier?

Types of Naïve Bayes’ Classifiers

Training Classifiers

Evaluating Classifiers

What are Activation Functions?

Why Do We Need Activation Functions?

How Do Activation Functions Work?

Common Activation Functions

Activation Functions in Python

The ReLU and ELU Activation Functions

The Advantages and Disadvantages of ReLU

ELU

Sigmoid, Softmax, and Hardmax Similarities

Softmax

Softplus

Tanh

Sigmoid, Softmax, and HardMax Differences

What is Logistic Regression?

Setting a Threshold Value

Logistic Regression: Important Assumptions

Linearly Separable Data

Summary

Chapter 4: ChatGPT and GPT-4

What is Generative AI?

Important Features of Generative AI

Popular Techniques in Generative AI

What Makes Generative AI Unique

Conversational AI versus Generative AI

Primary Objectives

Applications

Technologies Used

Training and Interaction

Evaluation

Data Requirements

Is DALL-E Part of Generative AI?

Are ChatGPT and GPT-4 Part of Generative AI?

DeepMind

DeepMind and Games

Player of Games (PoG)

OpenAI

Cohere

Hugging Face

Hugging Face Libraries

Hugging Face Model Hub

AI21

InflectionAI

Anthropic

What is Prompt Engineering?

Prompts and Completions

Types of Prompts

Instruction Prompts

Reverse Prompts

System Prompts versus Agent Prompts

Prompt Templates

Prompts for Different LLMs

Poorly Worded Prompts

What is ChatGPT?

ChatGPT

ChatGPT: Google “Code Red”

ChatGPT versus Google Search

ChatGPT Custom Instructions

ChatGPT on Mobile Devices and Browsers

ChatGPT and Prompts

GPTBot

ChatGPT Playground

Plugins, Advanced Data Analysis, and Code Whisperer

Plugins

Advanced Data Analysis

Advanced Data Analysis Versus Claude 2

Code Whisperer

Detecting Generated Text

Concerns about ChatGPT

Code Generation and Dangerous Topics

ChatGPT Strengths and Weaknesses

Sample Queries and Responses from ChatGPT

Alternatives to ChatGPT

Google Gemini

YouChat

Pi from Inflection

Machine Learning and ChatGPT: Advanced Data Analysis

What is InstructGPT?

VizGPT and Data Visualization

What is GPT-4?

GPT-4 and Test-Taking Scores

GPT-4 Parameters

GPT-4 Fine Tuning

ChatGPT and GPT-4 Competitors

Gemini

CoPilot (OpenAI/Microsoft)

Codex (OpenAI)

Apple GPT

PaLM-2

Med-PaLM M

Claude 2

Llama 2

How to Download Llama 2

Llama 2 Architecture Features

Fine Tuning Llama 2

When Will GPT-5 Be Available?

Summary

Chapter 5: Linear Regression with GPT-4

What is Linear Regression?

Examples of Linear Regression

Metrics for Linear Regression

Coefficient of Determination (R^2)

Linear Regression with Random Data with GPT-4

Linear Regression with a Dataset with GPT-4

Descriptions of the Features of the death.csv Dataset

The Preparation Process of the Dataset

The Exploratory Analysis

Detailed EDA on the death.csv Dataset

Bivariate and Multivariate Analyses

The Model Selection Process

Code for Linear Regression with the death.csv Dataset

Describe the Model Diagnostics

Describe Additional Model Diagnostics

More Recommendations from GPT-4

Summary

Chapter 6: Machine Learning Classifiers with GPT-4

Machine Learning (According to GPT-4)

What is Scikit-Learn?

What is the kNN Algorithm?

Selecting the Value of k in the kNN Algorithm

Cross-Validation

Bias-Variance Tradeoff

Distance Metric

Square Root Rule

Domain Knowledge

Even versus Odd k

Computational Efficiency

Diversity in the Dataset

The Elbow Method for the kNN Algorithm

A Machine Learning Model with the kNN Algorithm

A Machine Learning Model with the Decision Tree Algorithm

A Machine Learning Model with the Random Forest Algorithm

A Machine Learning Model with the SVM Algorithm

The Logistic Regression Algorithm

The Naïve Bayes Algorithm

The SVM Algorithm

The Decision Tree Algorithm

The Random Forest Algorithm

Summary

Chapter 7: Machine Learning Clustering with GPT-4

What is Clustering?

Ten Clustering Algorithms

Metrics for Clustering Algorithms

K-means Clustering

Hierarchical Clustering

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

What is the K-means Algorithm?

What is the Hierarchical Clustering Algorithm?

What is the DBSCAN Algorithm?

A Machine Learning Model with the K-means Algorithm

A Machine Learning Model with the Hierarchical Clustering Algorithm

A Machine Learning Model with the DBSCAN Algorithm

Summary

Chapter 8: ChatGPT and Data Visualization

Working with Charts and Graphs

Bar Charts

Pie Charts

Line Graphs

Heat Maps

Histograms

Box Plots

Pareto Charts

Radar Charts

Treemaps

Waterfall Charts

Line Plots with Matplotlib

Pie Charts Using Matplotlib

Box and Whisker Plots Using Matplotlib

Time Series Visualization with Matplotlib

Stacked Bar Charts with Matplotlib

Donut Charts Using Matplotlib

3D Surface Plots with Matplotlib

Radial (or Spider) Charts with Matplotlib

Matplotlib’s Contour Plots

Streamplots for Vector Fields

Quiver Plots for Vector Fields

Polar Plots

Bar Charts with Seaborn

Scatter Plots with Regression Lines Using Seaborn

Heatmaps for Correlation Matrices with Seaborn

Histograms with Seaborn

Violin Plots with Seaborn

Pair Plots Using Seaborn

Facet Grids with Seaborn

Hierarchical Clustering

Swarm Plots

Joint Plots for Bivariate Data

Point Plots for Factorized Views

Seaborn’s KDE Plots for Density Estimations

Seaborn’s Ridge Plots

Summary

Index

PREFACE

This book is designed to bridge the gap between theoretical knowledge and practical application in the fields of Python programming, machine learning, and the innovative use of ChatGPT in data science. It aims to provide a comprehensive guide for those who aspire to deepen their understanding and enhance their skills in these rapidly evolving areas.

The motivation stems from a growing demand for practical, in-depth resources that cater to the needs of students, data scientists, and AI researchers looking to leverage advanced techniques and tools. As these fields continue to grow in importance and impact, the ability to adeptly manipulate data, understand machine learning algorithms, and apply the latest advancements in AI becomes critical.

This book is structured to facilitate a deep understanding of several core topics:

■ Introduction to Pandas: We begin with a detailed introduction to Pandas, a cornerstone Python library for data manipulation and analysis. This section is tailored to help you master data frames and perform complex data cleaning and preparation tasks efficiently.

■ Machine Learning Classifiers: Next, we explore a variety of machine learning classifiers, providing you with the knowledge to choose and implement the right algorithm for your projects. From kNN to SVMs, you will learn the intricacies of each method through practical examples.

■ GPT-4 and Linear Regression: As we explore the capabilities of GPT-4, we discuss its application in enhancing traditional linear regression analysis. This section demonstrates how GPT-4 can be used to perform and interpret regression in ways that push the boundaries of conventional data analysis.

■ Data Visualization with ChatGPT: Finally, the book covers the innovative use of ChatGPT in data visualization. This segment focuses on how AI can transform data into compelling visual stories, making complex results accessible and understandable. It includes material AI apps, GANs, and DALL-E.

Each chapter is crafted to build on the knowledge from the previous sections, ensuring a cohesive and comprehensive learning experience. To cater to a wide range of learning styles, the book includes step-by-step tutorials, real-world applications, and sections dedicated to theoretical concepts backed by practical examples. This approach not only solidifies understanding but also enhances your ability to apply these techniques in real-world scenarios.

Features of This Book

■ Coverage of Latest Python Libraries: You will gain proficiency in using state-of-the-art libraries essential for modern data scientists.

■ Real-World Problem Solving: The book challenges you to apply your skills on real data, preparing you for professional success.

■ Companion files with source code, datasets, and figures are available for downloading by writing to the publisher (with proof of purchase) to info@merclearning.com.

This book is more than just a learning tool; it is a reference that you will return to repeatedly as you progress in your career. Whether you are a beginner aiming to get a solid start in programming and data science or an experienced professional looking to explore new advancements in AI, “Python 3 and Machine Learning Using ChatGPT/GPT-4” is an invaluable asset.

We hope that you will find this book to be a valuable resource, one that inspires you to explore further and apply your knowledge to solve complex problems. The future of Generative AI is exciting and full of possibilities.

O. Campesato

April 2024

CHAPTER 1

INTRODUCTION TO PANDAS

This chapter introduces you to Pandas and provides code samples that illustrate some of its useful features. If you are familiar with these topics, skim through the material and peruse the code samples, just in case they contain information that is new to you.

The first part contains a brief introduction to Pandas. This section contains code samples that illustrate some features of Pandas DataFrames and a brief discussion of series, which are two of the main features of Pandas.

The second part of this chapter discusses various types of data frames that you can create, such as numeric and Boolean data frames. In addition, we discuss examples of creating data frames with NumPy functions and random numbers.

Note: Several code samples in this chapter reference the NumPy library for working with arrays and generating random numbers, which you can learn from online articles.

WHAT IS PANDAS?

Pandas is a Python library that is compatible with other Python libraries, such as NumPy and Matplotlib. Install Pandas by opening a command shell and invoking this command for Python 3.x:

pip3 install pandas

In many ways, the semantics of the APIs in the Pandas library are similar to a spreadsheet, along with support for XSL, XML, HTML, and CSV file types. Pandas provides a data type called a data frame (similar to a Python dictionary) with an extremely powerful functionality.

Pandas data frames support a variety of input types, such as ndarray, list, dict, or series.

The data type series is another mechanism for managing data. In addition to performing an online search for more details regarding series, the following article contains a good introduction:

https://towardsdatascience.com/20-examples-to-master-pandas-series-bc4c68200324

Pandas Options and Settings

You can change the default values of environment variables, an example of which is shown below:

import pandas as pd

display_settings = {

'max_columns': 8,

'expand_frame_repr': True, # Wrap to multiple pages

'max_rows': 20,

'precision': 3,

'show_dimensions': True

}

for op, value in display_settings.items():

pd.set_option("display.{}".format(op), value)

Include the preceding code block in your own code if you want Pandas to display a maximum of 20 rows and 8 columns, and floating point numbers displayed with 3 decimal places. Set expand_frame_rep to True if you want the output to “wrap around” to multiple pages. The preceding for loop iterates through display_settings and sets the options equal to their corresponding values.

In addition, the following code snippet displays all Pandas options and their current values in your code:

print(pd.describe_option())

There are various other operations that you can perform with options and their values (such as the pd.reset() method for resetting values), as described in the Pandas user guide:

https://pandas.pydata.org/pandas-docs/stable/user_guide/options.html

Pandas Data Frames

In simplified terms, a Pandas data frame is a two-dimensional data structure, and it is convenient to think of the data structure in terms of rows and columns. Data frames can be labeled (rows as well as columns), and the columns can contain different data types. The source of the dataset for a Pandas data frame can be a data file, a database table, and a Web service. The data frame features include:

	Data frame methods

	Data frame statistics

	Grouping, pivoting, and reshaping

	Handle missing data

	Join data frames

The code samples in this chapter show you almost all the features in the preceding list.

Data Frames and Data Cleaning Tasks

The specific tasks that you need to perform depend on the structure and contents of a dataset. In general, you will perform a workflow with the following steps, not necessarily always in this order (and some might be optional). All of the following steps can be performed with a Pandas data frame:

	Read data into a data frame

	Display top of data frame

	Display column data types

	Display missing values

	Replace NA with a value

	Iterate through the columns

	Statistics for each column

	Find missing values

	Total missing values

	Percentage of missing values

	Sort table values

	Print summary information

	Columns with > 50% missing

	Rename columns

This chapter contains sections that illustrate how to perform many of the steps in the preceding list.

Alternatives to Pandas

Before delving into the code samples, there are alternatives to Pandas that offer very useful features, some of which are shown below:

	PySpark (for large datasets)

	Dask (for distributed processing)

	Modin (faster performance)

	Datatable (R data.table for Python)

The inclusion of these alternatives is not intended to diminish Pandas. Indeed, you might not need any of the functionality in the preceding list. However, in the event that you need such functionality in the future, so it is worthwhile for you to know about these alternatives now (and there may be even more powerful alternatives at some point in the future).

A PANDAS DATA FRAME WITH A NUMPY EXAMPLE

Listing 1.1 shows the content of pandas_df.py that illustrates how to define several data frames and display their contents.

LISTING 1.1: pandas_df.py

import pandas as pd

import numpy as np

myvector1 = np.array([1,2,3,4,5])

print("myvector1:")

print(myvector1)

print()

mydf1 = pd.Data frame(myvector1)

print("mydf1:")

print(mydf1)

print()

myvector2 = np.array([i for i in range(1,6)])

print("myvector2:")

print(myvector2)

print()

mydf2 = pd.Data frame(myvector2)

print("mydf2:")

print(mydf2)

print()

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])

print("myarray:")

print(myarray)

print()

mydf3 = pd.Data frame(myarray)

print("mydf3:")

print(mydf3)

print()

Listing 1.1 starts with standard import statements for Pandas and NumPy, followed by the definition of two one-dimensional NumPy arrays and a two-dimensional NumPy array. Each NumPy variable is followed by a corresponding Pandas data frame (mydf1, mydf2, and mydf3). Now launch the code in Listing 1.1 to see the following output, and you can compare the NumPy arrays with the Pandas data frames:

myvector1:

[1 2 3 4 5]

mydf1:

 0

0 1

1 2

2 3

3 4

4 5

myvector2:

[1 2 3 4 5]

mydf2:

 0

0 1

1 2

2 3

3 4

4 5

myarray:

[image: image]

mydf3:

[image: image]

By contrast, the following code block illustrates how to define two Pandas Series that are part of the definition of a Pandas data frame:

names = pd.Series(['SF', 'San Jose', 'Sacramento'])

sizes = pd.Series([852469, 1015785, 485199])

df = pd.Data frame({ 'Cities': names, 'Size': sizes })

print(df)

Create a Python file with the preceding code (along with the required import statement), and when you launch that code, you will see the following output:

[image: image]

DESCRIBING A PANDAS DATA FRAME

Listing 1.2 shows the content of pandas_df_describe.py, which illustrates how to define a Pandas data frame that contains a 3x3 NumPy array of integer values, where the rows and columns of the data frame are labeled. Other aspects of the data frame are also displayed.

LISTING 1.2: pandas_df_describe.py

import numpy as np

import pandas as pd

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])

rownames = ['apples', 'oranges', 'beer']

colnames = ['January', 'February', 'March']

mydf = pd.Data frame(myarray, index=rownames, columns=colnames)

print("contents of df:")

print(mydf)

print()

print("contents of January:")

print(mydf['January'])

print()

print("Number of Rows:")

print(mydf.shape[0])

print()

print("Number of Columns:")

print(mydf.shape[1])

print()

print("Number of Rows and Columns:")

print(mydf.shape)

print()

print("Column Names:")

print(mydf.columns)

print()

print("Column types:")

print(mydf.dtypes)

print()

print("Description:")

print(mydf.describe())

print()

Listing 1.2 starts with two standard import statements followed by the variable myarray, which is a 3x3 NumPy array of numbers. The variables rownames and colnames provide names for the rows and columns, respectively, of the Pandas data frame mydf, which is initialized as a Pandas data frame with the specified data source (i.e., myarray).

The first portion of the output below requires a single print() statement (which simply displays the contents of mydf). The second portion of the output is generated by invoking the describe() method that is available for any Pandas data frame. The describe() method is useful: you will see various statistical quantities, such as the mean, standard deviation minimum, and maximum performed by columns (not rows), along with values for the 25th, 50th, and 75th percentiles. The output of Listing 1.2 is here:

contents of df:

[image: image]

contents of January:

[image: image]

Name: January, dtype: int64

Number of Rows:

3

Number of Columns:

3

Number of Rows and Columns:

(3, 3)

Column Names:

Index(['January', 'February', 'March'], dtype='object')

Column types:

[image: image]

dtype: object

Description:

[image: image]

PANDAS BOOLEAN DATA FRAMES

Pandas supports Boolean operations on data frames, such as the logical OR, the logical AND, and the logical negation of a pair of data frames. Listing 1.3 shows the content of pandas_boolean_df.py that illustrates how to define a Pandas data frame whose rows and columns are Boolean values.

LISTING 1.3: pandas_boolean_df.py

import pandas as pd

df1 = pd.Data frame({'a': [1, 0, 1], 'b': [0, 1, 1] }, dtype=bool)

df2 = pd.Data frame({'a': [0, 1, 1], 'b': [1, 1, 0] }, dtype=bool)

print("df1 & df2:")

print(df1 & df2)

print("df1 | df2:")

print(df1 | df2)

print("df1 ^ df2:")

print(df1 ^ df2)

Listing 1.3 initializes the data frames df1 and df2, and then computes df1 & df2, df1 | df2, and df1 ^ df2, which represent the logical AND, the logical OR, and the logical negation, respectively, of df1 and df2. The output from launching the code in Listing 1.3 is as follows:

df1 & df2:

[image: image]

Transposing a Pandas Data Frame

The T attribute (as well as the transpose function) enables you to generate the transpose of a Pandas data frame, similar to the NumPy ndarray. The transpose operation switches rows to columns and columns to rows. For example, the following code snippet defines a Pandas data frame df1 and then displays the transpose of df1:

df1 = pd.Data frame({'a': [1, 0, 1], 'b': [0, 1, 1] }, dtype=int)

print("df1.T:")

print(df1.T)

The output of the preceding code snippet is here:

df1.T:

[image: image]

The following code snippet defines Pandas data frames df1 and df2 and then displays their sum:

df1 = pd.Data frame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, dtype=int)

df2 = pd.Data frame({'a' : [3, 3, 3], 'b' : [5, 5, 5] }, dtype=int)

print("df1 + df2:")

print(df1 + df2)

The output is here:

df1 + df2:

[image: image]

PANDAS DATA FRAMES AND RANDOM NUMBERS

Listing 1.4 shows the content of pandas_random_df.py that illustrates how to create a Pandas data frame with random integers.

LISTING 1.4: pandas_random_df.py

import pandas as pd

import numpy as np

df = pd.Data frame(np.random.randint(1, 5, size=(5, 2)), columns=['a','b'])

df = df.append(df.agg(['sum', 'mean']))

print("Contents of data frame:")

print(df)

Listing 1.4 defines the Pandas data frame df that consists of 5 rows and 2 columns of random integers between 1 and 5. Notice that the columns of df are labeled “a” and “b.” In addition, the next code snippet appends two rows consisting of the sum and the mean of the numbers in both columns. The output of Listing 1.4 is here:

[image: image]

Listing 1.5 shows the content of pandas_combine_df.py that illustrates how to combine Pandas data frames.

LISTING 1.5: pandas_combine_df.py

import pandas as pd

import numpy as np

[image: image]

print("contents of df:")

print(df)

print("contents of foo1:")

print(df.foo1)

print("contents of foo2:")

print(df.foo2)

Listing 1.5 defines the Pandas data frame df that consists of 5 rows and 2 columns (labeled “foo1” and “foo2”) of random real numbers between 0 and 5. The next portion of Listing 1.5 shows the content of df and foo1. The output of Listing 1.5 is as follows:

contents of df:

[image: image]

READING CSV FILES IN PANDAS

Pandas provides the read-csv() method for reading the contents of CSV files. For example, Listing 1.6 shows the contents of sometext.csv that contain labeled data (spam or ham), and Listing 1.7 shows the contents of read-csv-file.py that illustrate how to read the contents of a CSV file.

LISTING 1.6: sometext.csv

	type
	text

	ham
	Available only for today

	ham
	I'm joking with you

	spam
	Free entry in 2 a wkly comp

	ham
	U dun say so early hor

	ham
	I don't think he goes to usf

	spam
	FreeMsg Hey there

	ham
	my brother is not sick

	ham
	As per your request Melle

	spam
	WINNER!! As a valued customer

LISTING 1.7: read-csv-file.py

import pandas as pd

import numpy as np

df = pd.read-csv('sometext.csv', delimiter='\t')

print("=> First five rows:")

print(df.head(5))

Listing 1.7 reads the content of sometext.csv, whose columns are separated by a tab (“\t”) delimiter. Launch the code in Listing 1.7 to see the following output:

=> First five rows:

[image: image]

The default value for the head() method is 5, but you can display the first n rows of a data frame df with the code snippet df.head(n).

Specifying a Separator and Column Sets in Text Files

The previous section showed you how to use the delimiter attribute to specify the delimiter in a text file. You can also use the sep parameter specifies a different separator. In addition, you can assign the names parameter the column names in the data that you want to read. An example of using delimiter and sep is here:

[image: image]

Pandas also provides the read_table() method for reading the contents of CSV files, which uses the same syntax as the read_csv() method.

Specifying an Index in Text Files

Suppose that you know that a particular column in a text file contains the index value for the rows in the text file. For example, a text file that contains the data in a relational table would typically contain an index column.

Fortunately, Pandas allows you to specify the kth column as the index in a text file, as shown here:

df = pd.read_csv('myfile.csv', index_col=k)

THE LOC() AND ILOC() METHODS IN PANDAS

If you want to display the contents of a record in a Pandas data frame, specify the index of the row in the loc() method. For example, the following code snippet displays the data by feature name in a data frame df:

df.loc[feature_name]

Select the first row of the "height" column in the data frame:

df.loc([0], ['height'])

The following code snippet uses the iloc() function to display the first 8 records of the name column with this code snippet:

df.iloc[0:8]['name']

CONVERTING CATEGORICAL DATA TO NUMERIC DATA

One common task in machine learning involves converting a feature containing character data into a feature that contains numeric data. Listing 1.8 shows the contents of cat2numeric.py that illustrate how to replace a text field with a corresponding numeric field.

LISTING 1.8: cat2numeric.py

import pandas as pd

import numpy as np

df = pd.read_csv('sometext.csv', delimiter='\t')

print("=> First five rows (before):")

print(df.head(5))

print("-------------------------")

print()

map ham/spam to 0/1 values:

df['type'] = df['type'].map({'ham':0 , 'spam':1})

print("=> First five rows (after):")

print(df.head(5))

print("-------------------------")

Listing 1.8 initializes the data frame df with the contents of the CSV file sometext.csv, and then displays the contents of the first five rows by invoking df.head(5), which is also the default number of rows to display.

The next code snippet in Listing 1.8 invokes the map() method to replace occurrences of ham with 0 and replace occurrences of spam with 1 in the column labeled type, as shown here:

df['type'] = df['type'].map({'ham':0 , 'spam':1})

The last portion of Listing 1.8 invokes the head() method again to display the first five rows of the dataset after having renamed the contents of the column type. Launch the code in Listing 1.8 to see the following output:

[image: image]

As another example, Listing 1.9 shows the contents of shirts.csv and Listing 1.10 shows the contents of shirts.py; these examples illustrate four techniques for converting categorical data into numeric data.

LISTING 1.9: shirts.csv

type,ssize

shirt,xxlarge

shirt,xxlarge

shirt,xlarge

shirt,xlarge

shirt,xlarge

shirt,large

shirt,medium

shirt,small

shirt,small

shirt,xsmall

shirt,xsmall

shirt,xsmall

LISTING 1.10: shirts.py

import pandas as pd

shirts = pd.read_csv("shirts.csv")

print("shirts before:")

print(shirts)

print()

TECHNIQUE #1:

#shirts.loc[shirts['ssize']=='xxlarge','size'] = 4

#shirts.loc[shirts['ssize']=='xlarge', 'size'] = 4

#shirts.loc[shirts['ssize']=='large', 'size'] = 3

#shirts.loc[shirts['ssize']=='medium', 'size'] = 2

#shirts.loc[shirts['ssize']=='small', 'size'] = 1

#shirts.loc[shirts['ssize']=='xsmall', 'size'] = 1

TECHNIQUE #2:

#shirts['ssize'].replace('xxlarge', 4, inplace=True)

#shirts['ssize'].replace('xlarge', 4, inplace=True)

#shirts['ssize'].replace('large', 3, inplace=True)

#shirts['ssize'].replace('medium', 2, inplace=True)

#shirts['ssize'].replace('small', 1, inplace=True)

#shirts['ssize'].replace('xsmall', 1, inplace=True)

TECHNIQUE #3:

#shirts['ssize'] = shirts['ssize'].apply({'xxlarge':4, 'xlarge':4, 'large':3, 'medium':2, 'small':1, 'xsmall':1}.get)

TECHNIQUE #4:

shirts['ssize'] = shirts['ssize'].replace(regex='xlarge', value=4)

shirts['ssize'] = shirts['ssize'].replace(regex='large', value=3)

shirts['ssize'] = shirts['ssize'].replace(regex='medium', value=2)

shirts['ssize'] = shirts['ssize'].replace(regex='small', value=1)

print("shirts after:")

print(shirts)

Listing 1.10 starts with a code block of six statements that uses direct comparison with strings to make numeric replacements. For example, the following code snippet replaces all occurrences of the string xxlarge with the value 4:

shirts.loc[shirts['ssize']=='xxlarge','size'] = 4

The second code block consists of six statements that use the replace() method to perform the same updates, an example of which is shown here:

shirts['ssize'].replace('xxlarge', 4, inplace=True)

The third code block consists of a single statement that uses the apply() method to perform the same updates, as shown here:

shirts['ssize'] = shirts['ssize'].apply({'xxlarge':4, 'xlarge':4, 'large':3, 'medium':2, 'small':1, 'xsmall':1}.get)

The fourth code block consists of four statements that use regular expressions to perform the same updates, an example of which is shown here:

shirts['ssize'] = shirts['ssize'].replace(regex='xlarge', value=4)

Since the preceding code snippet matches xxlarge as well as xlarge, we only need four statements instead of six statements. (If you are unfamiliar with regular expressions, you can find online articles that discuss regular expressions.) Now launch the code in Listing 1.10 to see the following output:

shirts before

OEBPS/images/img_7b.jpg
January into4
February intoe4
March inteéd

OEBPS/images/img_8.jpg
January epruary
count 3.000000 3.000000 3.
mean 353.333333 690.000000 1026.
std 560.386771 1134.504297 17009.
min 10.000000 30.000000 20.
25% 30.000000 35.000000 40.
50% 50.000000 40.000000 60.
75% 525.000000 1020.000000 1530.
max 1T000.000000 2000.000000 33000 .

OO0 000G o

OEBPS/images/img_7a.jpg
apples
oranges 50
beer 1000

OEBPS/images/halftitleimg.jpg
PyTHON 3
AND
MACHINE LEARNING
UsinG CHATGPT / GPT-4

OEBPS/images/titleimg.jpg
PYyTHON 3
AND
MACHINE LEARNING
UsinG CHATGPT / GPT-4

Oswald Campesato

m

MERCURY LEARNING AND INFORMATION
Boston, Massachusetts

OEBPS/images/img_7.jpg
apples
oranges
beer

January
10

50

1000

February
30

40

2000

OEBPS/images/img_5.jpg
2

10
50
1000

nE

30
40
2000

OEBPS/images/img_13.jpg
=> Filrst five rows (before):

type text
0 ham Available only for today
1 ham I'm joking with you
2 spam Free entry in 2 a wkly comp
3 ham U dun say so early hor
4 ham I don't think he goes to usf

=> First five rows (after):

type text
0 Available only for today
0 I'm joking with you
1 Free entry in 2 a wkly comp
0 U dun say so early hor
0 I don't think he goes to usf

Sw NN RO

OEBPS/images/img_9.jpg

OEBPS/images/img_5a.jpg
Lt 10 30 20]
[50 40 60]
1000 2000 30007]

OEBPS/images/img_8a.jpg
0 False False
1 False True
2 True False
dfl | df2

a b

0 True True
1 True True
2 True True

dfl ~ df2:

a b
0 True True
1 True False

2 False Tr1e

OEBPS/images/img_12a.jpg
= pd.read csv(data.csv’,sep="|
names=["Name", "Surname", "Height", "Weig
ht"1)

OEBPS/images/img_9a.jpg
Q0 O O

T < M

OEBPS/images/img_6.jpg
City name slzes
0 SF 852469
1 San Jose 1015785
2 Qacramento 4857199

OEBPS/images/img_10.jpg
2
1
3
1
2
9
1

.0

.0

10

sum

2

mean

OEBPS/images/img_12.jpg
= w RO

type
ham
ham
spam
ham
ham

text

Available only for today
I'm joking with you

Free entry in 2 a wkly comp
U dun say so early hor

I don't think he goes to usf

OEBPS/images/img_11.jpg
Tool TooZ
0.274680 0.848669

0

1 -0.399771 -0.814679
2 0.454443 -0.363392
3 0.473753 0.550849
4 -0.211783 -0.015014
contents of fool:

0 0.256773

1 1.204322

2 1.040515

3 -0.518414

4 0.634141

Name: fool, dtype: floate4
contents of foo2:

0 -2.506550
1 -0.896516
2 -0.222923
3 0.934574
4 0.527033

Name: foo2, dtype: floatod

OEBPS/images/cover.jpg
PyTHON 3
AND
MAcHINE LEARNING
Using CHATGPT / GPT-4

0. CAMPESATO

@ MLI GENERATIVE Al SERIES

OEBPS/images/p16.jpg
shirts before
type size
xxlarge
xxlarge
xlarge
xlarge
xlarge
large
medium
small
small
xsmall
xsmall
xsmall

fter:

W Jo Ok W= O
0
=
P
H

Nej
0 0
[on [ox
- - - - b
H B
nh T T T T cr T T T T T r T

10 shir
11 shir
shirts a
typ
shir
shir
shir
shir
shir
shir
shir
shir
shir
shir
shir
<shir

(]
]
s
N
(]

— = O WO J o Uk WD O
S DD W S S S D

(r ¢cr ¢cr ¢cr ¢cr ¢cr ¢cr ¢ ¢t ¢cr ¢cr ¢t

OEBPS/images/img_10a.jpg
df = pd.Data frame({ fool' : np.random.randnf(o),
'foo2'" : np.random.randn(5) })

