

 [image: cover.png]

 Modern CMake for C++

 Second Edition

 Effortlessly build cutting-edge C++ code and deliver high-quality solutions

 Rafał Świdziński

 [image:]

 Modern CMake for C++

 Second Edition

 Copyright © 2024 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Senior Publishing Product Manager: Denim Pinto

 Acquisition Editor – Peer Reviews: Gaurav Gavas

 Project Editor: Amisha Vathare

 Content Development Editor: Tanya D’cruz

 Copy Editor: Safis Editing

 Technical Editor: Anjitha Murali

 Proofreader: Safis Editing

 Indexer: Rekha Nair

 Presentation Designer: Ganesh Bhadwalkar

 Developer Relations Marketing Executive: Vipanshu Parashar

 First published: February 2022

 Second edition: May 2024

 Production reference: 2290525

 Published by Packt Publishing Ltd.

 Grosvenor House

 11 St Paul’s Square

 Birmingham

 B3 1RB, UK.

 ISBN 978-1-80512-180-0

 www.packtpub.com

 Contributors

 About the author

 Rafał Świdziński, a seasoned staff engineer at Google, boasts over 12 years of full-stack development expertise. With a track record of spearheading projects for industry giants like Cisco Meraki, Amazon, and Ericsson, he embodies a commitment to innovation. As a Londoner by choice, he remains at the forefront of technological progress, engaging in a myriad of personal ventures. His recent pivot toward AI in healthcare reflects his dedication to impactful advancements. Rafał values top-notch code quality and craftsmanship, sharing insights through his YouTube channel and published books.

 To Zoe – I couldn’t have written this book without you.

 About the reviewers

 Eric Noulard has an engineering degree from ENSEEIHT and a PhD in computer science from UVSQ in France. Eric boasts a rich 25-year history in writing and compiling source code across various languages. A user of CMake since 2006, he has also actively contributed to its evolution. Eric has served both private companies and government agencies. He currently works at Antidot, a software vendor specialized in semantic search, AI, and content accessibility. Eric is in the research team, which brings new technology like generative AI and advanced NLP processing to Antidot’s flagship product, Fluid Topics.

 Giovanni Romano has 28 years of experience in IT ranging from software development to design of apps/components. Currently employed at Leica Geosystem AG as a Senior Software Engineer, he specializes in designing SDKs, microservices, and low-latency backends. As a Nokia/Blackberry Qt Ambassador, he believes in open-source software and contributing to the framework. His interests are cloud-native apps, Kubernetes, Docker, and GitOps. He loves working with the C language and playing tennis.

 Join our community on Discord

 Join our community’s Discord space for discussions with the author and other readers:

 https://discord.com/invite/vXN53A7ZcA

 [image:]

 Foreword

 In the ever-evolving landscape of C++, mastering CMake is indispensable for any developer striving to write efficient, maintainable, and scalable code. Modern CMake for C++ by Rafał Świdziński serves as a beacon, guiding both novices and seasoned programmers through the intricacies of CMake.

 This book is not just a manual; it is a journey. It starts with the basics, ensuring that even those new to CMake can grasp its concepts. As the chapters progress, readers are equipped with advanced techniques, empowering them to harness the full potential of CMake.

 What sets this book apart is its pragmatic approach. Real-world examples and best practices are interwoven throughout the text, ensuring that readers not only understand the concepts but also know how to apply them effectively in their projects.

 By the end of this book, readers will not only have a deep understanding of CMake but also a newfound confidence in their ability to navigate the complexities of C++ development. They will be armed with the knowledge and skills needed to write cleaner, more efficient code, setting them on a path to becoming proficient CMake developers.

 Modern CMake for C++ is not just a book; it is a tool that will empower its readers to elevate their C++ development skills to new heights. Whether you’re a beginner or an expert, this book will help you unlock the full potential of CMake, making your code more robust, maintainable, and scalable.

 Alexander Kushnir

 Principal Software Engineer, Biosense Webster

 Contents

 	Preface

 	Who this book is for

 	What this book covers

 	To get the most out of this book

 	Get in touch

 	First Steps with CMake

 	Getting the most out of this book – get to know your free benefits

 	Technical requirements

 	Understanding the basics

 	What is CMake?

 	How does it work?

 	The configuration stage

 	The generation stage

 	The building stage

 	Installing CMake on different platforms

 	Docker

 	Windows

 	Linux

 	macOS

 	Building from the source

 	Mastering the command line

 	CMake command line

 	Generating a project buildsystem

 	Building a project

 	Installing a project

 	Running a script

 	Running a command-line tool

 	Running a workflow preset

 	Getting help

 	CTest command line

 	CPack command line

 	CMake GUI

 	CCMake command line

 	Navigating project directories and files

 	The source tree

 	The build tree

 	Listfiles

 	Project file

 	Cache file

 	Package definition file

 	Generated files

 	JSON and YAML files

 	Preset files

 	File-based API

 	Configure log

 	Ignoring files in Git

 	Discovering scripts and modules

 	Scripts

 	Utility modules

 	Find-modules

 	Summary

 	Further reading

 	The CMake Language

 	Technical requirements

 	The basics of the CMake language syntax

 	Comments

 	Command invocations

 	Command arguments

 	Bracket arguments

 	Quoted arguments

 	Unquoted arguments

 	Working with variables

 	Variable references

 	Using environment variables

 	Using cache variables

 	How to correctly use variable scopes in CMake

 	Using lists

 	Understanding control structures in CMake

 	Conditional blocks

 	The syntax for conditional commands

 	Loops

 	while()

 	foreach() loops

 	Command definitions

 	Macros

 	Functions

 	The procedural paradigm in CMake

 	A word on naming conventions

 	Exploring the frequently used commands

 	The message() command

 	The include() command

 	The include_guard() command

 	The file() command

 	The execute_process() command

 	Summary

 	Further reading

 	Using CMake in Popular IDEs

 	Getting to know IDEs

 	Choosing an IDE

 	Choose a comprehensive IDE

 	Choose an IDE that is widely supported in your organization

 	Don’t pick an IDE based on the target OS and platform

 	Pick an IDE with remote development support

 	Installing toolchains

 	Using this book’s examples with IDEs

 	Starting with the CLion IDE

 	Why you might like it

 	Take your first steps

 	Advanced feature: Debugger on steroids

 	Starting with Visual Studio Code

 	Why you might like it

 	Take your first steps

 	Advanced feature: Dev Containers

 	Starting with the Visual Studio IDE

 	Why you might like it

 	Take your first steps

 	Advanced feature: Hot Reload debugging

 	Summary

 	Further reading

 	Setting Up Your First CMake Project

 	Technical requirements

 	Understanding the basic directives and commands

 	Specifying the minimum CMake version

 	Defining languages and metadata

 	Partitioning your project

 	Managing scope with subdirectories

 	When to use nested projects

 	Keeping external projects external

 	Thinking about the project structure

 	Scoping the environment

 	Detecting the operating system

 	Cross-compilation – what are host and target systems?

 	Abbreviated variables

 	Host system information

 	Does the platform have 32-bit or 64-bit architecture?

 	What is the endianness of the system?

 	Configuring the toolchain

 	Setting the C++ standard

 	Insisting on standard support

 	Vendor-specific extensions

 	Interprocedural optimization

 	Checking for supported compiler features

 	Compiling a test file

 	Disabling in-source builds

 	Summary

 	Further reading

 	Working with Targets

 	Technical requirements

 	Understanding the concept of a target

 	Defining executable targets

 	Defining library targets

 	Custom targets

 	Dependency graph

 	Visualizing dependencies

 	Setting properties of targets

 	What are Transitive Usage Requirements?

 	Dealing with conflicting propagated properties

 	Meet the pseudo targets

 	Imported targets

 	Alias targets

 	Interface libraries

 	Object libraries

 	Build targets

 	Writing custom commands

 	Using a custom command as a generator

 	Using a custom command as a target hook

 	Summary

 	Further reading

 	Using Generator Expressions

 	Technical requirements

 	What are generator expressions?

 	Learning the basic rules of general expression syntax

 	Nesting

 	Conditional expansion

 	Evaluating to Boolean

 	Logical operators

 	Comparisons

 	Queries

 	Querying and transforming

 	Dealing with strings, lists, and paths

 	Parametrizing the build configuration and platform

 	Tuning for toolchain

 	Querying target-related information

 	Escaping

 	Trying out examples

 	Build configurations

 	System-specific one liners

 	Interface libraries with compiler-specific flags

 	Nested generator expressions

 	The difference between a conditional expression and the evaluation of a BOOL operator

 	Summary

 	Further reading

 	Compiling C++ Sources with CMake

 	Technical requirements

 	The basics of compilation

 	How compilation works

 	Initial configuration

 	Requiring specific features from the compiler

 	Managing sources for targets

 	Configuring the preprocessor

 	Providing paths to included files

 	Preprocessor definitions

 	Avoid accessing private class fields in your unit tests

 	Using git commit to track a compiled version

 	Configuring the headers

 	Configuring the optimizer

 	General level

 	Function inlining

 	Loop unrolling

 	Loop vectorization

 	Managing the process of compilation

 	Reducing compilation time

 	Precompilation of headers

 	Unity builds

 	Finding mistakes

 	Configuring errors and warnings

 	Debugging the build

 	Providing information for the debugger

 	Summary

 	Further reading

 	Linking Executables and Libraries

 	Technical requirements

 	Getting the basics of linking right

 	Building different library types

 	Static libraries

 	Shared libraries

 	Shared modules

 	Position-independent code (PIC)

 	Solving problems with the ODR

 	Sorting out dynamically linked duplicated symbols

 	Use namespaces – don’t count on the linker

 	The order of linking and unresolved symbols

 	Dealing with unreferenced symbols

 	Separating main() for testing

 	Summary

 	Further reading

 	Managing Dependencies in CMake

 	Technical requirements

 	Using already installed dependencies

 	Finding packages with CMake’s find_package()

 	Writing your own find modules

 	Discovering legacy packages with FindPkgConfig

 	Using dependencies not present in the system

 	FetchContent

 	Basic example with a YAML reader

 	Downloading the dependencies

 	Updating and patching

 	Using the installed dependency where possible

 	ExternalProject

 	Summary

 	Further reading

 	Using the C++20 Modules

 	Technical requirements

 	What are the C++20 modules?

 	Writing projects with C++20 module support

 	Enabling the experimental support in CMake 3.26 and 3.27

 	Enabling support for CMake 3.28 and up

 	Setting the compiler requirements

 	Declaring a C++ module

 	Configuring the toolchain

 	Summary

 	Further reading

 	Testing Frameworks

 	Technical requirements

 	Why are automated tests worth the trouble?

 	Using CTest to standardize testing in CMake

 	Build-and-test mode

 	Test mode

 	Querying tests

 	Filtering tests

 	Shuffling tests

 	Handling failures

 	Repeating tests

 	Controlling output

 	Miscellaneous

 	Creating the most basic unit test for CTest

 	Structuring our projects for testing

 	Unit-testing frameworks

 	Catch2

 	GoogleTest

 	Using GTest

 	GMock

 	Generating test coverage reports

 	Using LCOV for coverage reports

 	Avoiding the SEGFAULT gotcha

 	Summary

 	Further reading

 	Program Analysis Tools

 	Technical requirements

 	Enforcing formatting

 	Using static checkers

 	clang-tidy

 	Cpplint

 	Cppcheck

 	include-what-you-use

 	Link What You Use

 	Dynamic analysis with Valgrind

 	Memcheck

 	Memcheck-Cover

 	Summary

 	Further reading

 	Generating Documentation

 	Technical requirements

 	Adding Doxygen to your project

 	Generating documentation with a modern look

 	Enhancing output with custom HTML

 	Summary

 	Further reading

 	Installing and Packaging

 	Technical requirements

 	Exporting without installation

 	Installing projects on the system

 	Installing logical targets

 	Utilizing the default destination for different platforms

 	Dealing with public headers

 	Low-level installation

 	Installing with install(FILES) and install(PROGRAMS)

 	Working with entire directories

 	Invoking scripts during installation

 	Installing runtime dependencies

 	Creating reusable packages

 	Understanding the issues with relocatable targets

 	Installing target export files

 	Writing basic config files

 	Creating advanced config files

 	Generating package version files

 	Defining components

 	How to use components in find_package()

 	How to use components in the install() command

 	Managing symbolic links for versioned shared libraries

 	Packaging with CPack

 	Summary

 	Further reading

 	Creating Your Professional Project

 	Technical requirements

 	Planning our work

 	Project layout

 	Shared libraries versus static libraries

 	Project file structure

 	Building and managing dependencies

 	Building the Calc library

 	Building the Calc console executable

 	Testing and program analysis

 	Preparing the Coverage module

 	Preparing the Memcheck module

 	Applying testing scenarios

 	Adding static analysis tools

 	Installing and packaging

 	Installation of the library

 	Installation of the executable

 	Packaging with CPack

 	Providing the documentation

 	Generating the technical documentation

 	Writing non-technical documents for a professional project

 	Summary

 	Further reading

 	Writing CMake Presets

 	Technical requirements

 	Using presets defined in a project

 	Writing a preset file

 	Defining stage-specific presets

 	Common features across presets

 	Unique name fields

 	Optional fields

 	Association with configuration-stage presets

 	Defining configuration-stage presets

 	Defining build-stage presets

 	Defining test-stage presets

 	Defining package-stage presets

 	Adding the installation preset

 	Defining workflow presets

 	Adding conditions and macros

 	Summary

 	Further reading

 	Unlock Your Book’s Exclusive Benefits

 	How to unlock these benefits in three easy steps

 	Step 3

 	Need help?

 	Appendix

 	Miscellaneous commands

 	The string() command

 	Search and replace

 	Manipulation

 	Comparison

 	Hashing

 	Generation

 	JSON

 	The list() command

 	Reading

 	Searching

 	Modification

 	Ordering

 	The file() command

 	Reading

 	Writing

 	Filesystem

 	Path conversion

 	Transfer

 	Locking

 	Archiving

 	The math() command

 	Other Books You May Enjoy

 	Share your thohughts

 	Index

 Landmarks

 	
 Cover

 	
 Index

 Preface

 Creating top-notch software is no easy task. Developers researching this subject online often struggle to determine which advice is current and which methods have been superseded by newer, better practices. Moreover, most resources explain the process chaotically, lacking proper background, context, and structure.

 Modern CMake for C++ provides an end-to-end guide that offers a simpler experience by treating the building of C++ solutions comprehensively. It not only teaches you how to use CMake in your projects but also highlights what makes them maintainable, elegant, and clean. The guide walks you through automating complex tasks common in many projects, including building, testing, and packaging.

 The book instructs you on organizing source directories, building targets, and creating packages. As you progress, you will learn to compile and link executables and libraries, understand these processes in detail, and optimize each step for the best results. Additionally, you will discover how to incorporate external dependencies into your project, such as third-party libraries, testing frameworks, program analysis tools, and documentation generators. Finally, you’ll learn how to export, install, and package your solution for both internal and external use.

 After completing this book, you’ll be able to use CMake confidently on a professional level.

 Who this book is for

 After you’ve learned C++, you’ll quickly discover that proficiency with the language alone isn’t enough to prepare you for delivering projects at the highest standards. This book fills that gap: it is addressed to anyone aspiring to become a better software developer or even a professional build engineer!

 Read it if you want to learn modern CMake from scratch or elevate and refresh your current CMake skills. It will help you understand how to make top-notch C++ projects and transition from other build environments.

 What this book covers

 Chapter 1, First Steps with CMake, covers the installation of CMake, the use of its command line interface, and introduces the fundamental building blocks necessary for a CMake project.

 Chapter 2, The CMake Language, cover the essential concepts of the CMake language, including command invocations, arguments, variables, control structures, and comments.

 Chapter 3, Using CMake in Popular IDEs, emphasizes the importance of Integrated Development Environments (IDEs), guides you through selecting an IDE, and provides setup instructions for Clion, Visual Studio Code, and Visual Studio IDE.

 Chapter 4, Setting up Your First CMake Project, will teach you how to configure a basic CMake project in its top-level file, structure the file tree, and prepare the toolchain necessary for development.

 Chapter 5, Working with Targets, explores the concept of logical build targets, understand their properties and different types, and learn how to define custom commands for CMake projects.

 Chapter 6, Using Generator Expressions, explains the purpose and syntax of generator expressions, including how to use them for conditional expansion, queries, and transformations.

 Chapter 7, Compiling C++ Sources with CMake, delves into the compilation process, configure the preprocessor and optimizer, and discover techniques to reduce build time and improve debugging.

 Chapter 8, Linking Executables and Libraries, understands the linking mechanism, different types of libraries, the One Definition Rule, the order of linking, and how to prepare your project for testing.

 Chapter 9, Managing Dependencies in CMake, will teach you to manage third-party libraries, add CMake support for those that lack it, and fetch external dependencies from the internet.

 Chapter 10, Using the C++20 Modules, introduces C++20 modules, shows how to enable their support in CMake, and configure the toolchain accordingly.

 Chapter 11, Testing Frameworks, will help you understand the importance of automated testing, leverage built-in testing support in CMake, and get started with unit testing using popular frameworks.

 Chapter 12, Program Analysis Tools, will show you how to automatically format source code and detect software errors during both build time and runtime.

 Chapter 13, Generating Documentation, presents how to use Doxygen for automating documentation creation from source code and add styling to enhance your documentation’s appearance.

 Chapter 14, Installing and Packaging, prepares your project for release with and without installation, create reusable packages, and designate individual components for packaging.

 Chapter 15, Creating Your Professional Project, applies all the knowledge acquired throughout the book to develop a comprehensive, professional-grade project.

 Chapter 16, Writing CMake Presets, encapsulates high-level project configurations into workflows using CMake preset files, making project setup and management more efficient.

 Appendix - Miscellaneous Commands, serves as a reference for various CMake commands related to strings, lists, files, and mathematical operations.

 To get the most out of this book

 Basic familiarity with C++ and Unix-like systems is assumed throughout the book. Although Unix knowledge isn’t a strict requirement, it will prove helpful in fully understanding the examples given in this book.

 This book targets CMake 3.26, but most of the techniques described should work from CMake 3.15 (features that were added after are usually highlighted). Some chapters have been updated to CMake 3.28 to cover the latest features.

 Preparation of the environment to run examples is covered in Chapters 1-3, but we specifically recommend using the Docker image provided with this book if you’re familiar with this tool.

 Download the example code files

 The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/gbp/9781805121800.

 Conventions used

 There are a number of text conventions used throughout this book.

 CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Mount the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

 A block of code is set as follows:

 cmake_minimum_required(VERSION 3.26)
project(Hello)
add_executable(Hello hello.cpp)

 When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

 cmake_minimum_required(VERSION 3.26)
project(Hello)
add_executable(Hello hello.cpp)
add_subdirectory(api)

 Any command-line input or output is written as follows:

 cmake --build <dir> --parallel [<number-of-jobs>]
cmake --build <dir> -j [<number-of-jobs>]

 Bold: Indicates a new term, an important word, or words that you see on the screen. For example: “Select System info from the Administration panel.”

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: Email feedback@packtpub.com, and mention the book’s title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book we would be grateful if you would report this to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

 Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

 Share your thoughts

 Once you’ve read Modern CMake for C++, Secon Edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

 Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

 1

 First Steps with CMake

 There is something magical about software creation. We’re not only creating a working mechanism that gets brought to life but we’re also often authoring the very idea behind the functionality of the solution.

 To cast our ideas into existence, we work in the following loop: design, code, and test. We invent changes, we phrase them in a language that the compiler understands, and we check whether they work as intended. To create proper, high-quality software from our source code, we need to meticulously execute repetitive, error-prone tasks: invoking the correct commands, checking the syntax, linking binary files, running tests, reporting issues, and more.

 It takes great effort to remember each step every single time. Instead, we want to stay focused on the actual coding and delegate everything else to automated tooling. Ideally, this process would start with a single button, right after we have changed our code. It would be smart, fast, extensible, and work in the same way across different OSs and environments. It would be supported by multiple Integrated Development Environments (IDEs). Going even further, we could streamline this process into Continuous Integration (CI) pipelines that build and test our software every time a change is submitted to a shared repository.

 CMake is the answer to many such needs; however, it requires a bit of work to configure and use correctly. CMake isn’t the source of the complexity; that stems from the subject that we’re dealing with here. Don’t worry, we will go through this whole learning process very methodically. Before you know it, you will become a software-building guru.

 I know you’re eager to rush off to start writing your own CMake projects, and this is exactly what we will be doing for most of this book. But since you’ll be creating your projects primarily for users (yourself included), it’s important for you to understand their perspective first.

 So, let’s start with just that: becoming a CMake power user. We’ll go through a few basics: what this tool is, how it works in principle, and how to install it. Then, we’ll do a deep dive into the command line and modes of operation. Finally, we’ll wrap up with the purposes of different files in a project, and we’ll explain how to use CMake without creating projects at all.

 In this chapter, we’re going to cover the following main topics:

 	Understanding the basics

 	Installing CMake on different platforms

 	Mastering the command line

 	Navigating project files

 	Discovering scripts and modules

 Getting the most out of this book – get to know your free benefits

 Unlock exclusive free benefits that come with your purchase, thoughtfully crafted to supercharge your learning journey and help you learn without limits.

 Here’s a quick overview of what you get with this book:

 Next-gen reader

 [image:]
 Figure 1.1: Illustration of the next-gen Packt Reader’s features

 Our web-based reader, designed to help you learn effectively, comes with the following features:

 [image: A black background with a black square AI-generated content may be incorrect.] Multi-device progress sync: Learn from any device with seamless progress sync.

 [image: A black background with a black square AI-generated content may be incorrect.] Highlighting and notetaking: Turn your reading into lasting knowledge.

 [image: A black background with a black square AI-generated content may be incorrect.] Bookmarking: Revisit your most important learnings anytime.

 [image: A black background with a black square AI-generated content may be incorrect.] Dark mode: Focus with minimal eye strain by switching to dark or sepia mode.

 Interactive AI assistant (beta)

 [image:]
 Figure 1.2: Illustration of Packt’s AI assistant

 Our interactive AI assistant has been trained on the content of this book, so it can help you out if you encounter any issues. It comes with the following features:

 [image: A black background with a black square AI-generated content may be incorrect.] Summarize it: Summarize key sections or an entire chapter.

 [image: A black background with a black square AI-generated content may be incorrect.] AI code explainers: In the next-gen Packt Reader, click the Explain button above each code block for AI-powered code explanations.

 Note: The AI assistant is part of next-gen Packt Reader and is still in beta.

 DRM-free PDF or ePub version

 [image:]
 Figure 1.3: Free PDF and ePub

 Learn without limits with the following perks included with your purchase:

 [image:]: Learn from anywhere with a DRM-free PDF copy of this book.

 [image:]: Use your favorite e-reader to learn using a DRM-free ePub version of this book.

 	
 Unlock this book’s exclusive benefits now

 Take a moment to get the most out of your purchase and enjoy the complete learning experience.

 	
 [image:]
 [image:]
 https://www.packtpub.com/unlock/9781805121800

 	
 Note: Have your purchase invoice ready before you begin.

 Technical requirements

 You can find the code files that are present in this chapter on GitHub at https://github.com/PacktPublishing/Modern-CMake-for-Cpp-2E/tree/main/examples/ch01.

 To build the examples provided in this book, always execute all the recommended commands:

 cmake -B <build tree> -S <source tree>
cmake --build <build tree>

 Be sure to replace the placeholders <build tree> and <source tree> with the appropriate paths. As you will learn in this chapter, build tree is the path of your output directory, and source tree is the path at which your source code is located.

 To build C++ programs, you also need a compiler appropriate for your platform. If you’re familiar with Docker, you can use a fully tooled image introduced in the Installing CMake on different platforms section. If you’d rather set up CMake manually, we’ll explain the installation in the same section.

 Understanding the basics

 The compilation of C++ source code appears to be a fairly straightforward process. Let’s start with the classic Hello World example.

 The following code is found in ch01/01-hello/hello.cpp, Hello world in the C++ language:

 #include <iostream>
int main() {
 std::cout << "Hello World!" << std::endl;
 return 0;
}

 To produce an executable, we of course need a C++ compiler. CMake doesn’t come with one, so you’ll need to pick and install one on your own. Popular choices include:

 	Microsoft Visual C++ compiler

 	The GNU compiler collection

 	Clang/LLVM

 Most readers are familiar with a compiler, as it is indispensable when learning C++, so we won’t go into picking one and installation. Examples in this book will use GNU GCC as it is a well-established, open-source software compiler available for free across many platforms.

 Assuming that we have our compiler already installed, running it is similar for most vendors and systems. We should call it with the filename as an argument:

 $ g++ hello.cpp -o hello

 Our code is correct, so the compiler will silently produce an executable binary file that our machine can understand. We can run it by calling its name:

 $./hello
Hello World!

 Running one command to build your program is simple enough; however, as our projects grow, you will quickly understand that keeping everything in a single file is simply not possible. Clean code practices recommend that source code files should be kept small and in well-organized structures. The manual compilation of every file can be a tiresome and fragile process. There must be a better way.

 What is CMake?

 Let’s say we automate building by writing a script that goes through our project tree and compiles everything. To avoid any unnecessary compilations, our script will detect whether the source has been modified since the last time we ran the script. Now, we’d like a convenient way to manage arguments that are passed to the compiler for each file – preferably, we’d like to do that based on configurable criteria. Additionally, our script should know how to link all of the compiled files into a single binary file or, even better, build whole solutions that can be reused and incorporated as modules into bigger projects.

 Building software is a very versatile process and can span multiple different aspects:

 	Compiling executables and libraries

 	Managing dependencies

 	Testing

 	Installing

 	Packaging

 	Producing documentation

 	Testing some more

 It would take a very long time to come up with a truly modular and powerful C++ building utility that is fit for every purpose. And it did. Bill Hoffman at Kitware implemented the first versions of CMake over 20 years ago. As you might have already guessed, it was very successful. Today, it has a lot of features and extensive support from the community. CMake is being actively developed and has become the industry standard for C and C++ programmers.

 The problem of building code in an automated way is much older than CMake, so naturally, there are plenty of options out there: GNU Make, Autotools, SCons, Ninja, Premake, and more. But why does CMake have the upper hand?

 There are a couple of things about CMake that I find (granted, subjectively) important:

 	It stays focused on supporting modern compilers and toolchains.

 	CMake is truly cross-platform – it supports building for Windows, Linux, macOS, and Cygwin.

 	It generates project files for popular IDEs: Microsoft Visual Studio, Xcode, and Eclipse CDT. Additionally, it is a project model for others, like CLion.

 	CMake operates on just the right level of abstraction – it allows you to group files in reusable targets and projects.

 	There are tons of projects that are built with CMake and offer an easy way to plug them into your project.

 	CMake views testing, packaging, and installing as an inherent part of the build process.

 	Old, unused features get deprecated to keep CMake lean.

 CMake provides a unified, streamlined experience across the board. It doesn’t matter whether you’re building your software in an IDE or directly from the command line; what’s really important is that it takes care of post-build stages as well.

 Your CI/CD pipeline can easily use the same CMake configuration and build projects using a single standard even if all of the preceding environments differ.

 How does it work?

 You might be under the impression that CMake is a tool that reads source code on one end and produces binaries on the other – while that’s true in principle, it’s not the full picture.

 CMake can’t build anything on its own – it relies on other tools in the system to perform the actual compilation, linking, and other tasks. You can think of it as the orchestrator of your building process: it knows what steps need to be done, what the end goal is, and how to find the right workers and materials for the job.

 This process has three stages:

 	Configuration

 	Generation

 	Building

 Let’s explore them in some detail.

 The configuration stage

 This stage is about reading project details stored in a directory, called the source tree, and preparing an output directory or build tree for the generation stage.

 CMake starts by checking whether the project was configured before and reads cached configuration variables from a CMakeCache.txt file. On a first run, this is not the case, so it creates an empty build tree and collects all of the details about the environment it is working in: for example, what the architecture is, what compilers are available, and what linkers and archivers are installed. Additionally, it checks whether a simple test program can be compiled correctly.

 Next, the CMakeLists.txt project configuration file is parsed and executed (yes, CMake projects are configured with CMake’s coding language). This file is the bare minimum of a CMake project (source files can be added later). It tells CMake about the project structure, its targets, and its dependencies (libraries and other CMake packages).

 During this process, CMake stores collected information in the build tree, such as system details, project configurations, logs, and temp files, which are used for the next step. Specifically, a CMakeCache.txt file is created to store more stable information (such as paths to compilers and other tools), which saves time when the whole build sequence is executed again.

 The generation stage

 After reading the project configuration, CMake will generate a buildsystem for the exact environment it is working in. Buildsystems are simply cut-to-size configuration files for other build tools (for example, Makefiles for GNU Make or Ninja and IDE project files for Visual Studio). During this stage, CMake can still apply some final touches to the build configuration by evaluating generator expressions.

 The generation stage is executed automatically after the configuration stage. For this reason, this book and other resources sometimes refer to both of these stages interchangeably when mentioning the “configuration” or “generation” of a buildsystem. To explicitly run just the configuration stage, you can use the cmake-gui utility.

 The building stage

 To produce the final artifacts specified in our project (like executables and libraries), CMake has to run the appropriate build tool. This can be invoked directly, through an IDE, or using the appropriate CMake command. In turn, these build tools will execute steps to produce target artifacts with compilers, linkers, static and dynamic analysis tools, test frameworks, reporting tools, and anything else you can think of.

 The beauty of this solution lies in the ability to produce buildsystems on demand for every platform with a single configuration (that is, the same project files):

 [image:]
 Figure 1.4: The stages of CMake

 Do you remember our hello.cpp application from the Understanding the basics section? It is really easy to build it with CMake. All we need is the following CMakeLists.txt file in the same directory as our source.

 ch01/01-hello/CMakeLists.txt

 cmake_minimum_required(VERSION 3.26)
project(Hello)
add_executable(Hello hello.cpp)

 After creating this file, execute the following commands in the same directory:

 cmake -B <build tree>
cmake --build <build tree>

 Note that <build tree> is a placeholder that should be replaced with a path to a temporary directory that will hold generated files.

 [image:] Quick tip: Enhance your coding experience with the AI Code Explainer and Quick Copy features. Open this book in the next-gen Packt Reader. Click the Copy button (1) to quickly copy code into your coding environment, or click the Explain button (2) to get the AI assistant to explain a block of code to you.

 [image:]
 [image:] The next-gen Packt Reader is included for free with the purchase of this book. Unlock it by scanning the QR code below or visiting https://www.packtpub.com/unlock/9781805121800.

 [image:]

 Here is the output from an Ubuntu system running in Docker (Docker is a virtual machine that can run within other systems; we’ll discuss it in the Installing CMake on different platforms section). The first command generates a buildsystem:

 ~/examples/ch01/01-hello# cmake -B ~/build_tree
-- The C compiler identification is GNU 11.3.0
-- The CXX compiler identification is GNU 11.3.0
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working C compiler: /usr/bin/cc - skipped
-- Detecting C compile features
-- Detecting C compile features - done
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++ - skipped
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done (1.0s)
-- Generating done (0.1s)
-- Build files have been written to: /root/build_tree

 The second command actually builds the project:

 ~/examples/ch01/01-hello# cmake --build ~/build_tree
Scanning dependencies of target Hello
[50%] Building CXX object CMakeFiles/Hello.dir/hello.cpp.o
[100%] Linking CXX executable Hello
[100%] Built target Hello

 All that’s left is to run the compiled program:

 ~/examples/ch01/01-hello# ~/build_tree/Hello
Hello World!

 Here, we have generated a buildsystem that is stored in the build tree directory. Following this, we executed the build stage and produced a final binary that we were able to run.

 Now you know what the result looks like, I’m sure you will be full of questions: what are the prerequisites to this process? What do these commands mean? Why do we need two of them? How do I write my own project files? Don’t worry – these questions will be answered in the following sections.

 This book will provide you with the most important information that is relevant to the current version of CMake (at the time of writing, this is 3.26). To provide you with the best advice, I have explicitly avoided any deprecated and no longer recommended features and I highly recommend using, at the very least, CMake version 3.15, which is considered the modern CMake. If you require more information, you can find the latest, complete documentation online at https://cmake.org/cmake/help/.

 Installing CMake on different platforms

 CMake is a cross-platform, open-source software written in C++. That means you can, of course, compile it yourself; however, the most likely scenario is that you won’t have to. This is because precompiled binaries are available for you to download from the official web page at https://cmake.org/download/.

 Unix-based systems provide ready-to-install packages directly from the command line.

 Remember that CMake doesn’t come with compilers. If your system doesn’t have them installed yet, you’ll need to provide them before using CMake. Make sure to add the paths to their executables to the PATH environment variable so that CMake can find them.

 To avoid facing tooling and dependency problems while learning from this book, I recommend practicing by following the first installation method: Docker. In a real-world scenario, you will of course want to use a native version, unless you’re working in a virtualized environment to begin with.

 Let’s go through some different environments in which CMake can be used.

 Docker

 Docker (https://www.docker.com/) is a cross-platform tool that provides OS-level virtualization, allowing applications to be shipped in well-defined packages called containers. These are self-sufficient bundles that contain a piece of software with all of the libraries, dependencies, and tools required to run it. Docker executes its containers in lightweight environments that are isolated one from another.

 This concept makes it extremely convenient to share whole toolchains that are necessary for a given process, configured and ready to go. I can’t stress enough how easy things become when you don’t need to worry about minuscule environmental differences.

 The Docker platform has a public repository of container images, https://registry.hub.docker.com/, that provides millions of ready-to-use images.

 For your convenience, I have published two Docker repositories:

 	swidzinski/cmake2:base: An Ubuntu-based image that contains the curated tools and dependencies that are necessary to build with CMake

 	swidzinski/cmake2:examples: An image based on the preceding toolchain with all of the projects and examples from this book

 The first option is for readers who simply want a clean-slate image ready to build their own projects, and the second option is for hands-on practice with examples as we go through the chapters.

 You can install Docker by following the instructions from its official documentation (please refer to docs.docker.com/get-docker). Then, execute the following commands in your terminal to download the image and start the container:

 $ docker pull swidzinski/cmake2:examples
$ docker run -it swidzinski/cmake2:examples
root@b55e271a85b2:root@b55e271a85b2:#

 Note that examples are available in the directories matching this format:

 devuser/examples/examples/ch<N>/<M>-<title>

 Here, <N> and <M> are zero-padded chapter and example numbers, respectively (like 01, 08, and 12).

 Windows

 Installing in Windows is straightforward – simply download the version for 32 or 64 bits from the official website. You can also pick a portable ZIP or MSI package for Windows Installer, which will add the CMake bin directory to the PATH environment variable (Figure 1.2) so that you can use it in any directory without any such errors:

 cmake is not recognized as an internal or external command, operable program, or batch file.

 If you select the ZIP package, you will have to do it manually. The MSI installer comes with a convenient GUI:

 [image:]
 Figure 1.5: The installation wizard can set up the PATH environment variable for you

 As I mentioned earlier, this is open-source software, so it is possible to build CMake yourself. However, on Windows, you will have to get a binary copy of CMake on your system first. This scenario is used by CMake contributors to generate newer versions.

 The Windows platform is no different from others, and it also requires a build tool that can finalize the build process started by CMake. A popular choice here is the Visual Studio IDE, which comes bundled with a C++ compiler. The Community edition is available for free from Microsoft’s website: https://visualstudio.microsoft.com/downloads/.

 Linux

 Installing CMake on Linux follows the same process as with any other popular package: call your package manager from the command line. Package repositories are usually kept up to date with fairly recent versions of CMake, but usually not the latest. If you’re fine with this and using a distribution like Debian or Ubuntu, it is simplest to just install the appropriate package:

 $ sudo apt-get install cmake

 For a Red Hat distribution, use the following command:

 $ yum install cmake

 Note that when installing a package, your package manager will fetch the latest available version in the repository configured for your OS. In many cases, package repositories don’t provide the latest version but, rather, a stable one that has been proven over time to work reliably. Pick according to your needs, but be aware that older versions won’t have all the features described in this book.

 To get the latest version, reference the download section of the official CMake website. If you know the current version number, you can use one of the following commands.

 The command for Linux x86_64 is:

 $ VER=3.26.0 && wget https://github.com/Kitware/CMake/releases/download/v$VER/cmake-$VER-linux-x86_64.sh && chmod +x cmake-$VER-linux-x86_64.sh && ./cmake-$VER-linux-x86_64.sh

 The command for Linux AArch64 is:

 $ VER=3.26.0 && wget https://github.com/Kitware/CMake/releases/download/v$VER/cmake-$VER-Linux-aarch64.sh && chmod +x cmake-$VER-Linux-aarch64.sh && ./cmake-$VER-Linux-aarch64.sh

 Alternatively, check out the Building from the source section to learn how to compile CMake on your platform yourself.

 macOS

 This platform is also strongly supported by CMake developers. The most popular choice of installation is through MacPorts with the following command:

 $ sudo port install cmake

 Do note that at the time of writing, the latest version available in MacPorts was 3.24.4. To get the latest version, install the cmake-devel package:

 $ sudo port install cmake-devel

 Alternatively, you can use the Homebrew package manager:

 $ brew install cmake

 macOS package managers will cover all necessary steps, but be mindful that you might not get the latest version unless you’re building from the source.

 Building from the source

 If you’re using another platform, or just want to experience the latest builds that haven’t been promoted to a release (or adopted by your favorite package repository), download the source from the official website and compile it yourself:

 $ wget https://github.com/Kitware/CMake/releases/download/v3.26.0/cmake-3.26.0.tar.gz
$ tar xzf cmake-3.26.0.tar.gz
$ cd cmake-3.26.0
$./bootstrap
$ make
$ make install

 Building from the source is relatively slow and requires more steps. However, there is no other way to have the freedom of picking any version of CMake. This is especially useful when packages that are available in repositories of your operating system are stale: the older the version of the system, the fewer updates it gets.

 Now that we have installed CMake, let’s learn how to use it!

 Mastering the command line

 The majority of this book will teach you how to prepare CMake projects for your users. To cater to their needs, we need to thoroughly understand how users interact with CMake in different scenarios. This will allow you to test your project files and ensure they’re working correctly.

 CMake is a family of tools and consists of five executables:

 	cmake: The main executable that configures, generates, and builds projects

 	ctest: The test driver program used to run and report test results

 	cpack: The packaging program used to generate installers and source packages

 	cmake-gui: The graphical wrapper around cmake

 	ccmake: The console-based GUI wrapper around cmake

 Additionally, Kitware, the company behind CMake, offers a separate tool called CDash to provide advanced oversight over the health of our projects’ builds.

 CMake command line

 The cmake is the main binary of the CMake suite, and provides a few modes of operation (also sometimes called actions):

 	Generating a project buildsystem

 	Building a project

 	Installing a project

 	Running a script

 	Running a command-line tool

 	Running a workflow preset

 	Getting help

 Let’s see how they work.

 Generating a project buildsystem

 The first step required to build our project is to generate a buildsystem. Here are three forms of command to execute the CMake generating a project buildsystem action:

 cmake [<options>] -S <source tree> -B <build tree>
cmake [<options>] <source tree>
cmake [<options>] <build tree>

 We’ll discuss available <options> in the upcoming sections. Right now, let’s focus on choosing the right form of the command. One important feature of CMake is the support for out-of-source builds or the support for storing build artifacts in a directory different from the source tree. This is a preferred approach to keep the source directory clean from any build-related files and avoid polluting the Version Control Systems (VCSs) with accidental files or ignore directives.

 This is why the first form of command is the most practical. It allows us to specify the paths to the source tree and the produced buildsystem specified with -S and -B, respectively:

 cmake -S ./project -B ./build

 CMake will read the project files from the ./project directory and generate a buildsystem in the ./build directory (creating it beforehand if needed).

 We can skip one of the arguments and cmake will “guess” that we intended to use the current directory for it. Note that skipping both will produce an in-source build and store the build artifacts along with source files, which we don’t want.

 BE EXPLICIT WHEN RUNNING CMAKE

 Do not use the second or third form of the cmake <directory> command, because they can produce a messy in-source build. In Chapter 4, Setting Up Your First CMake Project, we’ll learn how to prevent users from doing that.

 As hinted in the syntax snippet, the same command behaves differently if a previous build already exists in <directory>: it will use the cached path to the sources and rebuild from there. Since we often invoke the same commands from the Terminal command history, we might get into trouble here; before using this form, always check whether your shell is currently working in the right directory.

 Examples

 Generate the build tree in the current directory using the source from one directory up:

 cmake -S ..

 Generate the build tree in the ./build directory using the source from the current directory:

 cmake -B build

 Choosing a generator

 As discussed earlier, you can specify a few options during the generation stage. Selecting and configuring a generator decides which build tool from our system will be used for building in the subsequent Building a project section, what build files will look like, and what the structure of the build tree will be.

 So, should you care? Luckily, the answer is often “no.” CMake does support multiple native buildsystems on many platforms; however, unless you have installed a few generators at the same time, CMake will correctly select one for you. This can be overridden by the CMAKE_GENERATOR environment variable or by specifying the generator directly on the command line, like so:

 cmake -G <generator name> -S <source tree> -B <build tree>

 Some generators (such as Visual Studio) support a more in-depth specification of a toolset (compiler) and platform (compiler or SDK). Additionally, CMake will scan environment variables that override the defaults: CMAKE_GENERATOR_TOOLSET and CMAKE_GENERATOR_PLATFORM. Alternatively, the values can be specified directly in the command line:

 cmake -G <generator name>
 -T <toolset spec>
 -A <platform name>
 -S <source tree> -B <build tree>

 Windows users usually want to generate a buildsystem for their preferred IDE. On Linux and macOS, it’s very common to use the Unix Makefiles or Ninja generators.

 To check which generators are available on your system, use the following command:

 cmake --help

 At the end of the help printout, you will get a full list of generators, like this one produced on Windows 10 (some output was truncated for readability):

 The following generators are available on this platform:

 Visual Studio 17 2022
Visual Studio 16 2019
Visual Studio 15 2017 [arch]
Visual Studio 14 2015 [arch]
Visual Studio 12 2013 [arch]
Visual Studio 11 2012 [arch]
Visual Studio 9 2008 [arch]
Borland Makefiles
NMake Makefiles
NMake Makefiles JOM
MSYS Makefiles
MinGW Makefiles
Green Hills MULTI
Unix Makefiles
Ninja
Ninja Multi-Config
Watcom WMake
CodeBlocks - MinGW Makefiles
CodeBlocks - NMake Makefiles
CodeBlocks - NMake Makefiles JOM
CodeBlocks - Ninja
CodeBlocks - Unix Makefiles
CodeLite - MinGW Makefiles
CodeLite - NMake Makefiles
CodeLite - Ninja
CodeLite - Unix Makefiles
Eclipse CDT4 - NMake Makefiles
Eclipse CDT4 - MinGW Makefiles
Eclipse CDT4 - Ninja
Eclipse CDT4 - Unix Makefiles
Kate - MinGW Makefiles
Kate - NMake Makefiles
Kate - Ninja
Kate - Unix Makefiles
Sublime Text 2 - MinGW Makefiles
Sublime Text 2 - NMake Makefiles
Sublime Text 2 - Ninja
Sublime Text 2 - Unix Makefiles

 As you can see, CMake supports a lot of different generator flavors and IDEs.

 Managing the project cache

 CMake queries the system for all kinds of information during the configuration stage. Because these operations can take a bit of time, the collected information is cached in the CMakeCache.txt file in the build tree directory. There are a few command-line options that allow you to manage the behavior of the cache more conveniently.

 The first option at our disposal is the ability to prepopulate cached information:

 cmake -C <initial cache script> -S <source tree> -B <build tree>

 We can provide a path to the CMake listfile, which (only) contains a list of set() commands to specify variables that will be used to initialize an empty build tree. We’ll discuss writing the listfiles in the next chapter.

 The initialization and modification of existing cache variables can be done in another way (for instance, when creating a file is a bit much to only set a few variables). You can set them directly in a command line, as follows:

 cmake -D <var>[:<type>]=<value> -S <source tree> -B <build tree>

 The :<type> section is optional (it is used by GUIs) and it accepts the following types: BOOL, FILEPATH, PATH, STRING or INTERNAL. If you omit the type, CMake will check if the variable exists in the CMakeCache.txt file and use its type; otherwise, it will be set to UNINITIALIZED.

 One particularly important variable that we’ll often set through the command line specifies the build type (CMAKE_BUILD_TYPE). Most CMake projects will use it on numerous occasions to decide things such as the verbosity of diagnostic messages, the presence of debugging information, and the level of optimization for created artifacts.

 For single-configuration generators (such as GNU Make and Ninja), you should specify the build type during the configuration phase and generate a separate build tree for each type of config. Values used here are Debug, Release, MinSizeRel, or RelWithDebInfo. Missing this information may have undefined effects on projects that rely on it for configuration.

 Here’s an example:

 cmake -S . -B ../build -D CMAKE_BUILD_TYPE=Release

 Note that multi-configuration generators are configured during the build stage.

 For diagnostic purposes, we can also list cache variables with the -L option:

 cmake -L -S <source tree> -B <build tree>

 Sometimes, project authors may provide insightful help messages with variables – to print them, add the H modifier:

 cmake -LH -S <source tree> -B <build tree>
cmake -LAH -S <source tree> -B <build tree>

 Surprisingly, custom variables that are added manually with the -D option won’t be visible in this printout unless you specify one of the supported types.

 The removal of one or more variables can be done with the following option:

 cmake -U <globbing_expr> -S <source tree> -B <build tree>

 Here, the globbing expression supports the * (wildcard) and ? (any character) symbols. Be careful when using these, as it is easy to erase more variables than intended.

 Both the -U and -D options can be repeated multiple times.

 Debugging and tracing

 The cmake command can be run with a multitude of options that allow you to peek under the hood. To get general information about variables, commands, macros, and other settings, run the following:

 cmake --system-information [file]

 The optional file argument allows you to store the output in a file. Running it in the build tree directory will print additional information about the cache variables and build messages from the log files.

 In our projects, we’ll be using message() commands to report details of the build process. CMake filters the log output of these based on the current log level (by default, this is STATUS). The following line specifies the log level that we’re interested in:

 cmake --log-level=<level>

 Here, level can be any of the following: ERROR, WARNING, NOTICE, STATUS, VERBOSE, DEBUG, or TRACE. You can specify this setting permanently in the CMAKE_MESSAGE_LOG_LEVEL cache variable.

 Another interesting option allows you to display log context with each message() call. To debug very complex projects, the CMAKE_MESSAGE_CONTEXT variable can be used like a stack. Whenever your code enters an interesting context, you can name it descriptively. By doing this, our messages will be decorated with the current CMAKE_MESSAGE_CONTEXT variable, like so:

 [some.context.example] Debug message.

 The option to enable this kind of log output is as follows:

 cmake --log-context <source tree>

 We’ll discuss naming contexts and logging commands in more detail in Chapter 2, The CMake Language.

 If all else fails and we need to use the big guns, there is always trace mode, which will print every executed command with its filename, the line number it is called from, and a list of passed arguments. You can enable it as follows:

 cmake --trace

 As you can imagine, it’s not recommended for everyday use, as the output is very long.

 Configuring presets

 There are many, many options that users can specify to generate a build tree from your project. When dealing with the build tree path, generator, cache, and environmental variable, it’s easy to get confused or miss something. Developers can simplify how users interact with their projects and provide a CMakePresets.json file that specifies some defaults.

 To list all of the available presets, execute the following:

 cmake --list-presets

 You can use one of the available presets as follows:

 cmake --preset=<preset> -S <source> -B <build tree>

 To learn more, please refer to the Navigating the project files section of this chapter and Chapter 16, Writing CMake Presets.

 Cleaning the build tree

 Every now and then, we might need to erase generated files. This may be due to some changes in the environment that were made between builds, or just to ensure that we are working on a clean slate. We can go ahead and delete the build tree directory manually, or just add the --fresh parameter to the command line:

 cmake --fresh -S <source tree> -B <build tree>

 CMake will then erase CMakeCache.txt and CMakeFiles/ in a system-agnostic way and generate the buildsystem from scratch.

 Building a project

 After generating our build tree, we’re ready for the building a project action. Not only does CMake know how to generate input files for many different builders but it can also run them for us providing appropriate arguments, as required by our project.

 AVOID CALLING MAKE DIRECTLY

 Many online sources recommend running GNU Make directly after the generation stage by calling the make command directly. Because GNU Make is a default generator for Linux and macOS, this recommendation can work. However, use the method described in this section instead, as it is generator-independent and is officially supported across all platforms. As a result, you won’t need to worry about the exact environment of every user of your application.

 The syntax of build mode is:

 cmake --build <build tree> [<options>] [-- <build-tool-options>]

 In the majority of cases, it is enough to simply provide the bare minimum to get a successful build:

 cmake --build <build tree>

 The only required argument is the path to the generated build tree. This is the same path that was passed with the -B argument in the generation stage.

 CMake allows you to specify key build parameters that work for every builder. If you need to provide special arguments to your chosen native builder, pass them at the end of the command after the -- token:

 cmake --build <build tree> -- <build tool options>

 Let’s see what other options are available.

 Running parallel builds

 By default, many build tools will use multiple concurrent processes to leverage modern processors and compile your sources in parallel. Builders know the structure of project dependencies, so they can simultaneously process steps that have their dependencies met to save users’ time.

 You might want to override that setting if you’d like to build faster on a multi-core machine (or to force a single-threaded build for debugging).

 Simply specify the number of jobs with either of the following options:

 cmake --build <build tree> --parallel [<number of jobs>]
cmake --build <build tree> -j [<number of jobs>]

 The alternative is to set it with the CMAKE_BUILD_PARALLEL_LEVEL environment variable. The command-line option will override this variable.

 Selecting targets to build and clean

 Every project is made up of one or more parts, called targets (we’ll discuss these in the second part of the book). Usually, we’ll want to build all available targets; however, on occasion, we might be interested in skipping some or explicitly building a target that was deliberately excluded from normal builds. We can do this as follows:

 cmake --build <build tree> --target <target1> --target <target2> …

 We can specify multiple targets to build by repeating the –target argument. Also, there’s a shorthand version, -t <target>, that can be used instead.

 Cleaning the build tree

 One special target that isn’t normally built is called clean. Building it has the special effect of removing all artifacts from the build directory, so everything can be created from scratch later. You can start this process like this:

 cmake --build <build tree> -t clean

 Additionally, CMake offers a convenient alias if you’d like to clean first and then implement a normal build:

 cmake --build <build tree> --clean-first

 This action is different from cleaning mentioned in the Cleaning the build tree section, as it only affects target artifacts and nothing else (like the cache).

 Configuring the build type for multi-configuration generators

 So, we already know a bit about generators: they come in different shapes and sizes. Some of them offer the ability to build both Debug and Release build types in a single build tree. Generators that support this feature include Ninja Multi-Config, Xcode, and Visual Studio. Every other generator is a single-configuration generator, and they require a separate build tree for every config type we want to build.

 Select Debug, Release, MinSizeRel, or RelWithDebInfo and specify it as follows:

 cmake --build <build tree> --config <cfg>

 Otherwise, CMake will use Debug as the default.

 Debugging the build process

 When things go bad, the first thing we should do is check the output messages. However, veteran developers know that printing all the details all the time is confusing, so they often hide them by default. When we need to peek under the hood, we can ask for far more detailed logs by telling CMake to be verbose:

 cmake --build <build tree> --verbose
cmake --build <build tree> -v

 The same effect can be achieved by setting the CMAKE_VERBOSE_MAKEFILE cached variable.

 Installing a project

 When artifacts are built, users can install them on the system. Usually, this means copying files into the correct directories, installing libraries, or running some custom installation logic from a CMake script.

 The syntax of installation mode is:

 cmake --install <build tree> [<options>]

 As with other modes of operation, CMake requires a path to a generated build tree:

 cmake --install <build tree>

 The install action also has plenty of additional options. Let’s see what they can do.

 Choosing the installation directory

 We can prepend the installation path with a prefix of our choice (for example, when we have limited write access to some directories). The /usr/local path that is prefixed with /home/user becomes /home/user/usr/local.

 The signature for this option is as follows:

 cmake --install <build tree> --install-prefix <prefix>

 If you use CMake 3.21 or older, you’ll have to use a less explicit option:

 cmake --install <build tree> --prefix <prefix>

 Note that this won’t work on Windows, as paths on this platform usually start with the drive letter.

 Installation for multi-configuration generators

 Just like in the build stage, we can specify which build type we want to use for our installation (for more details, please refer to the Building a project section). The available types include Debug, Release, MinSizeRel, and RelWithDebInfo. The signature is as follows:

 cmake --install <build tree> --config <cfg>

 Selecting components to install

 As a developer, you might choose to split your project into components that can be installed independently. We’ll discuss the concept of components in further detail in Chapter 14, Installing and Packaging. For now, let’s just assume they represent sets of artifacts that don’t need to be used in every case. This might be something like application, docs, and extra-tools.

 To install a single component, use the following option:

 cmake --install <build tree> --component <component>

 Setting file permissions

 If the installation is performed on a Unix-like platform, you can specify default permissions for the installed directories with the following option, using the format of u=rwx,g=rx,o=rx:

 cmake --install <build tree>
 --default-directory-permissions <permissions>

 Debugging the installation process

 Similarly to the build stage, we can also choose to view a detailed output of the installation stage. To do this, use any of the following:

 cmake --install <build tree> --verbose
cmake --install <build tree> -v

 The same effect can be achieved if the VERBOSE environment variable is set.

 Running a script

 CMake projects are configured using CMake’s custom language. It’s cross-platform and quite powerful. Since it’s already there, why not make it available for other tasks? Sure enough, CMake can run standalone scripts (more on that in the Discovering scripts and modules section), like so:

 cmake [{-D <var>=<value>}...] -P <cmake script file>
 [-- <unparsed options>...]

 Running such a script won’t run any configuration or generate stages, and it won’t affect the cache.

 There are two ways you can pass values to this script:

 	Through variables defined with the -D option

 	Through arguments that can be passed after a -- token

 CMake will create CMAKE_ARGV<n> variables for all arguments passed to the script with the latter (including the -- token).

 Running a command-line tool

 On rare occasions, we might need to run a single command in a platform-independent way – perhaps copy a file or compute a checksum. Not all platforms were created equal, so not all commands are available in every system (or they have been named differently).

 CMake offers a mode in which most common commands can be executed in the same way across platforms. Its syntax is:

 cmake -E <command> [<options>]

 As the use of this particular mode is fairly limited, we won’t cover it in depth. However, if you’re interested in the details, I recommend calling cmake -E to list all the available commands. To simply get a glimpse of what’s on offer, CMake 3.26 supports the following commands: capabilities, cat, chdir, compare_files, copy, copy_directory, copy_directory_if_different, copy_if_different, echo, echo_append, env, environment, make_directory, md5sum, sha1sum, sha224sum, sha256sum, sha384sum, sha512sum, remove, remove_directory, rename, rm, sleep, tar, time, touch, touch_nocreate, create_symlink, create_hardlink, true, and false.

 If a command you’d like to use is missing or you need a more complex behavior, consider wrapping it in a script and running it in -P mode.

 Running a workflow preset

 We mentioned in the How does it work? section that building with CMake has three stages: configure, generate, and build. Additionally, we can also run automated tests and even create redistributable packages with CMake. Usually, users need to manually execute every such step separately by calling the appropriate cmake action through the command line. However, advanced projects can specify workflow presets that bundle multiple steps into a single action that can be executed with just one command. For now, we’ll only mention that users can get the list of available presets by running:

 cmake ––workflow --list-presets

 They can execute a workflow preset with:

 cmake --workflow --preset <name>

 This will be explained in depth in Chapter 16, Writing CMake Presets.

 Getting help

 It isn’t a surprise that CMake offers extensive help that is accessible through its command line. The syntax of help mode is:

 cmake --help

 This will print the list of the possible topics to dive deeper into and explain which parameters need to be added to the command to get more help.

 CTest command line

 Automated testing is very important in order to produce and maintain high-quality code. The CMake suite comes with a dedicated command-line tool for this purpose called CTest. It is provided to standardize the way tests are run and reported. As a CMake user, you don’t need to know the details of testing this particular project: what framework is used or how to run it. CTest provides a convenient interface to list, filter, shuffle, retry, and timebox test runs.

 To run tests for a built project, we just need to call ctest in the generated build tree:

 $ ctest
Test project /tmp/build
Guessing configuration Debug
 Start 1: SystemInformationNew
1/1 Test #1: SystemInformationNew Passed 3.19 sec
100% tests passed, 0 tests failed out of 1
Total Test time (real) = 3.24 sec

 We devoted an entire chapter to this subject: Chapter 11, Testing Frameworks.

 CPack command line

 After we have built and tested our amazing software, we are ready to share it with the world. The rare few power users are completely fine with the source code. However, the vast majority of the world uses precompiled binaries for convenience and time-saving reasons.

 CMake doesn’t leave you stranded here; it comes with batteries included. CPack is a tool that will create redistributable packages for various platforms: compressed archives, executable installers, wizards, NuGet packages, macOS bundles, DMG packages, RPMs, and more.

 CPack works in a very similar way to CMake: it is configured with the CMake language and has many package generators to pick from (not to be confused with CMake buildsystem generators). We’ll go through all the details in Chapter 14, Installing and Packaging, as this tool is meant to be used by mature CMake projects.

 CMake GUI

 CMake for Windows comes with a GUI version to configure the building process of previously prepared projects. For Unix-like platforms, there is a version built with Qt libraries. Ubuntu provides it in the cmake-qt-gui package.

 To access the CMake GUI, run the cmake-gui executable:

 [image:]
 Figure 1.6: The CMake GUI – the configuring stage for a buildsystem using a generator for Visual Studio 2019

 The GUI application is a convenience for users of your application: it can be useful for those who aren’t familiar with the command line and would prefer a graphical interface.

 USE COMMAND-LINE TOOLS INSTEAD

 I would definitely recommend the GUI to end users, but for programmers like you, I suggest avoiding any manual blocking steps that require clicking on forms every time you build your programs. This is especially advantageous in mature projects, where entire builds can be fully executed without any user interaction.

 CCMake command line

 The ccmake executable is an interactive text user interface for CMake on Unix-like platforms (it’s unavailable for Windows unless explicitly built). I’m mentioning it here so you know what it is when you see it (Figure 1.4, but as with the GUI, developers will benefit more from editing the CMakeCache.txt file directly.

 [image:]
 Figure 1.7: The configuring stage in ccmake

 Having this out of the way, we have concluded the basic introduction to the command line of the CMake suite. It’s time to discover the structure of a typical CMake project.

 Navigating project directories and files

 Quite a lot of files and directories make up CMake projects. Let’s get a general idea of what each one does so we can start tinkering with them. There are several general categories:

 	Of course, we’ll have project files that we, as developers, prepare and change as our project grows.

 	There will be files that CMake generates for itself, and even though they will contain CMake language commands, they aren’t meant for developers to edit. Any manual changes made there will be overwritten by CMake.

 	Some files are meant for advanced users (as in: not project developers) to customize how CMake builds the project to their individual needs.

 	Finally, there are some temporary files that provide valuable information in specific contexts.

 This section will also suggest which files you can put in the ignore file of your Version Control System (VCS).

 The source tree

 This is the directory where your project will live (it is also called the project root). It contains all of the C++ sources and CMake project files.

 Here are the most important takeaways from this directory:

 	It requires a CMakeLists.txt configuration file.

 	The path to this directory is given by the user with a -S argument of the cmake command when generating a buildsystem.

 	Avoid hardcoding any absolute paths to the source tree in your CMake code – users of your software will store the project in another path.

 It’s a good idea to initialize a repository in this directory, perhaps using a VCS like Git.

 The build tree

 CMake creates this directory in a path specified by the user. It will store the buildsystem and everything that gets created during the build: the artifacts of the project, the transient configuration, the cache, the build logs, and the output of your native build tool (like GNU Make). Alternative names for this directory include build root and binary tree.

 Key things to remember:

 	Your build configuration (buildsystem) and build artifacts will be created here (such as binary files, executables, and libraries, along with object files and archives used for final linking).

 	CMake recommends that this directory be placed outside the source tree directory (a practice known as out-of-source builds). This way, we can prevent the pollution of our project (in-source builds).

 	It is specified with -B to the cmake command when generating a buildsystem.

 	This directory isn’t meant as a final destination for generated files. Rather, it’s recommended that your projects include an installation stage that copies the final artifacts where they should be in the system and removes all temporary files used for building.

 Don’t add this directory to your VCS – every user picks one for themselves. If you have a good reason to do an in-source build, make sure to add this directory to the VCS ignore file (like .gitignore).

 Listfiles

 Files that contain the CMake language are called listfiles and can be included one in another by calling include() and find_package(), or indirectly with add_subdirectory(). CMake doesn’t enforce any naming rules for these files but, by convention, they have a .cmake extension.

 Project file

 CMake projects are configured with a CMakeLists.txt listfile (notice that due to historical reasons, this file has an unconventional extension). This file is required at the top of the source tree of every project and is the first to be executed in the configuration stage.

 A top-level CMakeLists.txt should contain at least two commands:

 	cmake_minimum_required(VERSION <x.xx>): Sets an expected version of CMake and tells CMake how to handle legacy behaviors with policies

 	project(<name> <OPTIONS>): Names the project (the provided name will be stored in the PROJECT_NAME variable) and specifies the options to configure it (more on this in Chapter 2, The CMake Language)

 As your software grows, you might want to partition it into smaller units that can be configured and reasoned about separately. CMake supports this through the notion of subdirectories with their own CMakeLists.txt files. Your project structure might look similar to the following example:

 myProject/CMakeLists.txt
myProject/api/CMakeLists.txt
myProject/api/api.h
myProject/api/api.cpp

 A very simple top-level CMakeLists.txt file can then be used to bring it all together:

 cmake_minimum_required(VERSION 3.26)
project(app)
message(“Top level CMakeLists.txt”)
add_subdirectory(api)

 The main aspects of the project are covered in the top-level file: managing the dependencies, stating the requirements, and detecting the environment. We also have an add_subdirectory(api) command to include another CMakeListst.txt file from the api subdirectory to perform steps that are specific to the API part of our application.

 Cache file

 Cache variables will be generated from the listfiles and stored in CMakeCache.txt when the configure stage is run for the first time. This file resides in the root of the build tree and has a fairly simple format (some lines removed for brevity):

 # This is the CMakeCache file.
For build in directory: /root/build tree
It was generated by CMake: /usr/local/bin/cmake
The syntax for the file is as follows:
KEY:TYPE=VALUE
KEY is the name of a variable in the cache.
TYPE is a hint to GUIs for the type of VALUE, DO NOT EDIT
 #TYPE!.
VALUE is the current value for the KEY.
########################
EXTERNAL cache entries
########################
Flags used by the CXX compiler during DEBUG builds.
CMAKE_CXX_FLAGS_DEBUG:STRING=/MDd /Zi /Ob0 /Od /RTC1
... more variables here ...
########################
INTERNAL cache entries
########################
Minor version of cmake used to create the current loaded
 cache
CMAKE_CACHE_MINOR_VERSION:INTERNAL=19
... more variables here ...

 As you can see from the header comments, this format is pretty self-explanatory. Cache entries in the EXTERNAL section are meant for users to modify, while the INTERNAL section is managed by CMake.

 Here are a couple of key takeaways to bear in mind:

 	You can manage this file manually, by calling cmake (see Options for caching in the Mastering the command line section of this chapter), or through ccmake or cmake-gui.

 	You can reset the project to its default configuration by deleting this file; it will be regenerated from the listfiles.

 Cache variables can be read and written from the listfiles. Sometimes, variable reference evaluation is a bit complicated; we will cover that in more detail in Chapter 2, The CMake Language.

 Package definition file

 A big part of the CMake ecosystem is the external packages that projects can depend on. They provide libraries and tools in a seamless, cross-platform way. Package authors that want to provide CMake support will ship it with a CMake package configuration file.

 We’ll learn how to write those files in Chapter 14, Installing and Packaging. Meanwhile, here’s a few interesting details to bear in mind:

 	Config-files (original spelling) contain information regarding how to use the library binaries, headers, and helper tools. Sometimes, they expose CMake macros and functions that can be used in your project.

 	Config-files are named <PackageName>-config.cmake or <PackageName>Config.cmake.

 	Use the find_package() command to include packages.

 If a specific version of the package is required, CMake will check this against the associated <PackageName>-config-version.cmake or <PackageName>ConfigVersion.cmake.

 If a vendor doesn’t provide a config file for the package, sometimes, the configuration is bundled with the CMake itself or can be provided in the project with Find-module (original spelling).

 Generated files

 Many files are generated in the build tree by the cmake executable in the generation stage. As such, they shouldn’t be edited manually. CMake uses them as a configuration for the cmake install action, CTest, and CPack.

 Files that you may encounter are:

 	cmake_install.cmake

 	CTestTestfile.cmake

 	CPackConfig.cmake

 If you’re implementing an in-source build, it’s probably a good idea to add them to the VCS ignore file.

 JSON and YAML files

 Other formats used by CMake are JavaScript Object Notation (JSON) and Yet Another Markup Language (YAML). These files are introduced as an interface to communicate with external tools (like IDEs) or to provide configuration that can be easily generated and parsed.

 Preset files

 The advanced configuration of the projects can become a relatively busy task when we need to be specific about things such as cache variables, chosen generators, the path of the build tree, and more – especially when we have more than one way of building our project. This is where the presets come in – instead of manually configuring these values through the command line, we can just provide a file that stores all the details and ship it with the project. Since CMake 3.25, presets also allow us to configure workflows, which tie stages (configure, build, test, and package) into a named list of steps to execute.

 As mentioned in the Mastering the command line section of this chapter, users can choose presets through the GUI or use the command --list-presets and select a preset for the buildsystem with the --preset=<preset> option.

 Presets are stored in two files:

 	CMakePresets.json: This is meant for project authors to provide official presets.

 	CMakeUserPresets.json: This is dedicated to users who want to customize the project configuration to their liking (you can add it to your VCS ignore file).

 Presets are not required in projects and only become useful in advanced scenarios. See Chapter 16, Writing CMake Presets, for details.

 File-based API

 CMake 3.14 introduced an API that allows external tools to query the buildsystem information: paths to generated files, cache entries, toolchains, and such. We only mention this very advanced topic to avoid confusion if you come across a file-based API phrase in the documentation. The name suggests how it works: a JSON file with a query has to be placed in a special path inside the build tree. CMake will read this file during the buildsystem generation and write a response to another file, so it can be parsed by external applications.

 The file-based API was introduced to replace a deprecated mechanism called server mode (or cmake-server), which was finally removed in CMake 3.26.

 Configure log

 Since version 3.26, CMake will provide a structured log file for really advanced debugging of the configure stage at:

 <build tree>/CMakeFiles/CMakeConfigureLog.yaml

 It’s one of these features that you don’t normally need to pay attention to – until you do.

 Ignoring files in Git

 There are many VCSs; one of the most popular out there is Git. Whenever we start a new project, it is good to make sure that we only add the necessary files to the repository. Project hygiene is easier to maintain if we specify unwanted files in the .gitignore file. For example, we might exclude files that are generated, user-specific, or temporary.

 Git will automatically skip them when forming new commits. Here’s the file that I use in my projects:

OEBPS/Images/freepdfandepub.png

OEBPS/Images/nextgen.png

OEBPS/Images/B19844_01_02.png
) Install Options. -
nstll Otons
hoose optionsfornsaling Coke

By defaut CMake does not add it direcory o the system PATH.

()0 ot add Cake toth system PATH

[rm ke o st T ol |

(O Add CMake to the system PATH for the current user

[Create CMake Desktop Icon

OEBPS/Images/9781805121800.png

OEBPS/Images/B19844_01_01.png
Build
Configure

Generate

OEBPS/Images/sparkler.png

OEBPS/Images/blockquote-top.png

OEBPS/Images/cloud-computing.png

OEBPS/Images/epub_(2).png

OEBPS/Images/brightness-and-contrast_(1).png

OEBPS/Images/4.png
o\

OEBPS/Images/B19844_01_03.png
Name Ve

(ST N N oo

rss Configur o update and iy e voes i e then e Generate t gerats slctd bl fes.

e ——

¥ ¥
[Cooking for pthresd.h

Looking for pthread.h - not found

Found Threads: TRUE

Checking whether C compiler has ssize_t in unistd.h
Checking whether C compiler has ssize_t in unistd.h - no
Looking for GetProcessMemoryInfo

Looking for GetProcessMemoryInfo - found

Checking whether <ext/stdio_filebuf.h> is available
Checking whether <ext/stdio_filebuf.h> is available - no
Found NGHTTP2: cmnghttp2

Looking for 13 include files windows.h,
Looking for 13 include files windows.h,
Check size of size_t

Check size of size_t - done

Check size of ssize_t

Check size of ssize_t - failed

<

, libgen.h
, libgen.h - not found

OEBPS/Images/tip.png

OEBPS/Images/InteractiveAIAssistantgrayscaled.png

OEBPS/Images/3.png

OEBPS/Images/cover.png
EXPERT INSIGHT

Modern CMake
for C++

Effortlessly build cutting-edge C++ code
and deliver high-quality solutions

Foreword by:

Alexander Kushnir
Princi ft e Engineer, Biosense Webster

3

Rafat Swidziriski <packt>

OEBPS/Images/info.png

OEBPS/Images/97818051218001.png

OEBPS/Images/blockquote-bottom.png

OEBPS/Images/B19844_01_04.png
B root@deb94335c57t: ~ =
Page 1 of 1

CHAKE_BUILD_TYPE
CHAKE_INSTALL_PREFIX

s are: None Debug Release Rel

of build,
[sntslfeoTediopticaleessl) eoleatet eTonTentzy

[c] to configure

[h] for help Press [q] to quit without generating
[t] to toggle advanced mode (Currently OFf)

OEBPS/Images/New_Packt_Logo.png
<packn

OEBPS/Images/highlighter.png

OEBPS/Images/QR_Code94081075213645359.png

OEBPS/Images/bookmark-white.png

OEBPS/Images/1.png
& g
LUNLOCK NOW‘

OEBPS/Images/image_(2).png
Copy Explain

function calculate(a, b) { (5] []
return {sum: a + b};

4]

OEBPS/Images/pdf.png

