

 [image: Cover.png]

 Machine Learning for Algorithmic Trading

 Second Edition

 Predictive models to extract signals from market and alternative data for systematic trading strategies with Python

 Stefan Jansen

 [image: C:\Users\murtazat\Desktop\Packt-Logo-beacon.png]

 BIRMINGHAM - MUMBAI

 Machine Learning for Algorithmic Trading

 Second Edition

 Copyright © 2020 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Producer: Tushar Gupta

 Acquisition Editor – Peer Reviews: Suresh Jain

 Content Development Editor: Chris Nelson

 Technical Editor: Aniket Shetty

 Project Editor: Carol Lewis

 Copy Editor: Safis Editing

 Proofreader: Safis Editing

 Indexer: Priyanka Dhadke

 Presentation Designer: Pranit Padwal

 First published: December 2018

 Second edition: July 2020

 Production reference: 2141022

 Published by Packt Publishing Ltd.

 Livery Place

 35 Livery Street

 Birmingham B3 2PB, UK.

 ISBN 978-1-83921-771-5

 www.packt.com

 [image:]

 packt.com

 Subscribe to our online digital library for full access to over 7,000 books and videos, as well as industry leading tools to help you plan your personal development and advance your career. For more information, please visit our website.

 Why subscribe?

 	Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

 	Learn better with Skill Plans built especially for you

 	Get a free eBook or video every month

 	Fully searchable for easy access to vital information

 	Copy and paste, print, and bookmark content

 Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.Packt.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for more details.

 At www.Packt.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

 Contributors

 About the author

 Stefan Jansen is the founder and CEO of Applied AI. He advises Fortune 500 companies, investment firms, and start-ups across industries on data and AI strategy, building data science teams, and developing end-to-end machine learning solutions for a broad range of business problems.

 Before his current venture, he was a partner and managing director at an international investment firm, where he built the predictive analytics and investment research practice. He was also a senior executive at a global fintech company with operations in 15 markets, advised central banks in emerging markets, and consulted for the World Bank.

 He holds master's degrees in computer science from Georgia Tech and in economics from Harvard and Free University Berlin, and a CFA charter. He has worked in six languages across Europe, Asia, and the Americas and taught data science at DataCamp and General Assembly.

 This thorough revision of the first edition was only possible with the collaboration and support of my family, friends, and colleagues. I want to thank the team at Packt for responding to reader feedback and taking the project from start to finish. Chris Nelson was a thorough editor and provided constructive advice. I want to thank my clients for the opportunity to do such exciting work that often offered valuable inspiration for this book.

 Most important, however, has been the unrelenting patience and support of Mariana. To her and Bastian, who make it all worthwhile, I dedicate this book.

 About the reviewers

 Prem Jebaseelan has about 20 years of experience in handling different financial data and enjoys the challenge of organizing, storing, retrieving, and analyzing large volumes of data. Prem has designed and implemented several enterprise-level solutions for front office trading strategies, middle office, and back office applications for funds, and has good experience in applying machine learning and AI-based solutions. Prem has an engineering degree.

 Prem is currently the co-founder and CEO of Zentropy Technologies, a fintech company that specializes in creating machine learning based solutions in the financial domain. Prior to this, Prem worked in one of the leading hedge funds as a technology solutions provider.

 I would like to thank all my previous employers who have helped me in developing real-world solutions that bring technology and finance together. I would specifically like to thank Dr Yves Hilpisch for our work together in the application of machine learning to real-world trading strategies.

 Ramanathan Ramakrishnamoorthy is one of the co founders and directors at Zentropy Technologies. Ramanathan started his professional career with a leading hedge fund and in his latest position, he worked as a project manager responsible for building tools and technologies required by the middle and back office. At Zentropy, Ramanathan is primarily responsible for better understanding project requirements and converting them to technical specs. alongside executing them. Having a keen eye for subtle data patterns, Ramanathan also has a good understanding of the machine learning and data science domain, particularly with expertise in the time series analysis domain. Ramanathan's experience has primarily been around building trading systems, quant warehouses, and backtesting engines for capital markets.

 Ramanathan is also an active core group member in the Hyderabad Python group. He leads some of the most important activities of the community, like organizing conferences, monthly meetups, and conducting Python sessions at colleges.

 Contents

 	Preface

 	What to expect

 	What's new in the second edition

 	Who should read this book

 	What this book covers

 	To get the most out of this book

 	Get in touch

 	Machine Learning for Trading – From Idea to Execution

 	The rise of ML in the investment industry

 	From electronic to high-frequency trading

 	Factor investing and smart beta funds

 	Algorithmic pioneers outperform humans

 	ML-driven funds attract $1 trillion in AUM

 	The emergence of quantamental funds

 	Investments in strategic capabilities

 	ML and alternative data

 	Crowdsourcing trading algorithms

 	Designing and executing an ML-driven strategy

 	Sourcing and managing data

 	From alpha factor research to portfolio management

 	The research phase

 	The execution phase

 	Strategy backtesting

 	ML for trading – strategies and use cases

 	The evolution of algorithmic strategies

 	Use cases of ML for trading

 	Data mining for feature extraction and insights

 	Supervised learning for alpha factor creation

 	Asset allocation

 	Testing trade ideas

 	Reinforcement learning

 	Summary

 	Market and Fundamental Data – Sources and Techniques

 	Market data reflects its environment

 	Market microstructure – the nuts and bolts

 	How to trade – different types of orders

 	Where to trade – from exchanges to dark pools

 	Working with high-frequency data

 	How to work with Nasdaq order book data

 	Communicating trades with the FIX protocol

 	The Nasdaq TotalView-ITCH data feed

 	How to parse binary order messages

 	Summarizing the trading activity for all 8,500 stocks

 	How to reconstruct all trades and the order book

 	From ticks to bars – how to regularize market data

 	The raw material – tick bars

 	Plain-vanilla denoising – time bars

 	Accounting for order fragmentation – volume bars

 	Accounting for price changes – dollar bars

 	AlgoSeek minute bars – equity quote and trade data

 	From the consolidated feed to minute bars

 	Quote and trade data fields

 	How to process AlgoSeek intraday data

 	API access to market data

 	Remote data access using pandas

 	Reading HTML tables

 	pandas-datareader for market data

 	yfinance – scraping data from Yahoo! Finance

 	How to download end-of-day and intraday prices

 	How to download the option chain and prices

 	Quantopian

 	Zipline

 	Quandl

 	Other market data providers

 	How to work with fundamental data

 	Financial statement data

 	Automated processing – XBRL

 	Building a fundamental data time series

 	Other fundamental data sources

 	pandas-datareader – macro and industry data

 	Efficient data storage with pandas

 	Summary

 	Alternative Data for Finance – Categories and Use Cases

 	The alternative data revolution

 	Sources of alternative data

 	Individuals

 	Business processes

 	Sensors

 	Satellites

 	Geolocation data

 	Criteria for evaluating alternative data

 	Quality of the signal content

 	Asset classes

 	Investment style

 	Risk premiums

 	Alpha content and quality

 	Quality of the data

 	Legal and reputational risks

 	Exclusivity

 	Time horizon

 	Frequency

 	Reliability

 	Technical aspects

 	Latency

 	Format

 	The market for alternative data

 	Data providers and use cases

 	Social sentiment data

 	Satellite data

 	Geolocation data

 	Email receipt data

 	Working with alternative data

 	Scraping OpenTable data

 	Parsing data from HTML with Requests and BeautifulSoup

 	Introducing Selenium – using browser automation

 	Building a dataset of restaurant bookings and ratings

 	Taking automation one step further with Scrapy and Splash

 	Scraping and parsing earnings call transcripts

 	Summary

 	Financial Feature Engineering – How to Research Alpha Factors

 	Alpha factors in practice – from data to signals

 	Building on decades of factor research

 	Momentum and sentiment – the trend is your friend

 	Why might momentum and sentiment drive excess returns?

 	How to measure momentum and sentiment

 	Value factors – hunting fundamental bargains

 	Relative value strategies

 	Why do value factors help predict returns?

 	How to capture value effects

 	Volatility and size anomalies

 	Why do volatility and size predict returns?

 	How to measure volatility and size

 	Quality factors for quantitative investing

 	Why quality matters

 	How to measure asset quality

 	Engineering alpha factors that predict returns

 	How to engineer factors using pandas and NumPy

 	Loading, slicing, and reshaping the data

 	Resampling – from daily to monthly frequency

 	How to compute returns for multiple historical periods

 	Using lagged returns and different holding periods

 	Computing factor betas

 	How to add momentum factors

 	Adding time indicators to capture seasonal effects

 	How to create lagged return features

 	How to create forward returns

 	How to use TA-Lib to create technical alpha factors

 	Denoising alpha factors with the Kalman filter

 	How does the Kalman filter work?

 	How to apply a Kalman filter using pykalman

 	How to preprocess your noisy signals using wavelets

 	From signals to trades – Zipline for backtests

 	How to backtest a single-factor strategy

 	A single alpha factor from market data

 	Built-in Quantopian factors

 	Combining factors from diverse data sources

 	Separating signal from noise with Alphalens

 	Creating forward returns and factor quantiles

 	Predictive performance by factor quantiles

 	The information coefficient

 	Factor turnover

 	Alpha factor resources

 	Alternative algorithmic trading libraries

 	Summary

 	Portfolio Optimization and Performance Evaluation

 	How to measure portfolio performance

 	Capturing risk-return trade-offs in a single number

 	The Sharpe ratio

 	The information ratio

 	The fundamental law of active management

 	How to manage portfolio risk and return

 	The evolution of modern portfolio management

 	Mean-variance optimization

 	How it works

 	Finding the efficient frontier in Python

 	Challenges and shortcomings

 	Alternatives to mean-variance optimization

 	The 1/N portfolio

 	The minimum-variance portfolio

 	Global Portfolio Optimization – the Black-Litterman approach

 	How to size your bets – the Kelly criterion

 	Optimal investment – multiple assets

 	Risk parity

 	Risk factor investment

 	Hierarchical risk parity

 	Trading and managing portfolios with Zipline

 	Scheduling signal generation and trade execution

 	Implementing mean-variance portfolio optimization

 	Measuring backtest performance with pyfolio

 	Creating the returns and benchmark inputs

 	Getting pyfolio input from Alphalens

 	Getting pyfolio input from a Zipline backtest

 	Walk-forward testing – out-of-sample returns

 	Summary performance statistics

 	Drawdown periods and factor exposure

 	Modeling event risk

 	Summary

 	The Machine Learning Process

 	How machine learning from data works

 	The challenge – matching the algorithm to the task

 	Supervised learning – teaching by example

 	Unsupervised learning – uncovering useful patterns

 	Use cases – from risk management to text processing

 	Cluster algorithms – seeking similar observations

 	Dimensionality reduction – compressing information

 	Reinforcement learning – learning by trial and error

 	The machine learning workflow

 	Basic walkthrough – k-nearest neighbors

 	Framing the problem – from goals to metrics

 	Prediction versus inference

 	Regression – popular loss functions and error metrics

 	Classification – making sense of the confusion matrix

 	Collecting and preparing the data

 	Exploring, extracting, and engineering features

 	Using information theory to evaluate features

 	Selecting an ML algorithm

 	Design and tune the model

 	The bias-variance trade-off

 	Underfitting versus overfitting – a visual example

 	How to manage the bias-variance trade-off

 	Learning curves

 	How to select a model using cross-validation

 	How to implement cross-validation in Python

 	KFold iterator

 	Leave-one-out CV

 	Leave-P-Out CV

 	ShuffleSplit

 	Challenges with cross-validation in finance

 	Time series cross-validation with scikit-learn

 	Purging, embargoing, and combinatorial CV

 	Parameter tuning with scikit-learn and Yellowbrick

 	Validation curves – plotting the impact of hyperparameters

 	Learning curves – diagnosing the bias-variance trade-off

 	Parameter tuning using GridSearchCV and pipeline

 	Summary

 	Linear Models – From Risk Factors to Return Forecasts

 	From inference to prediction

 	The baseline model – multiple linear regression

 	How to formulate the model

 	How to train the model

 	Ordinary least squares – how to fit a hyperplane to the data

 	Maximum likelihood estimation

 	Gradient descent

 	The Gauss–Markov theorem

 	How to conduct statistical inference

 	How to diagnose and remedy problems

 	Goodness of fit

 	Heteroskedasticity

 	Serial correlation

 	Multicollinearity

 	How to run linear regression in practice

 	OLS with statsmodels

 	Stochastic gradient descent with sklearn

 	How to build a linear factor model

 	From the CAPM to the Fama–French factor models

 	Obtaining the risk factors

 	Fama–Macbeth regression

 	Regularizing linear regression using shrinkage

 	How to hedge against overfitting

 	How ridge regression works

 	How lasso regression works

 	How to predict returns with linear regression

 	Preparing model features and forward returns

 	Creating the investment universe

 	Selecting and computing alpha factors using TA-Lib

 	Adding lagged returns

 	Generating target forward returns

 	Dummy encoding of categorical variables

 	Linear OLS regression using statsmodels

 	Selecting the relevant universe

 	Estimating the vanilla OLS regression

 	Diagnostic statistics

 	Linear regression using scikit-learn

 	Selecting features and targets

 	Cross-validating the model

 	Evaluating the results – information coefficient and RMSE

 	Ridge regression using scikit-learn

 	Tuning the regularization parameters using cross-validation

 	Cross-validation results and ridge coefficient paths

 	Top 10 coefficients

 	Lasso regression using sklearn

 	Cross-validating the lasso model

 	Evaluating the results – IC and lasso path

 	Comparing the quality of the predictive signals

 	Linear classification

 	The logistic regression model

 	The objective function

 	The logistic function

 	Maximum likelihood estimation

 	How to conduct inference with statsmodels

 	Predicting price movements with logistic regression

 	How to convert a regression into a classification problem

 	Cross-validating the logistic regression hyperparameters

 	Evaluating the results using AUC and IC

 	Summary

 	The ML4T Workflow – From Model to Strategy Backtesting

 	How to backtest an ML-driven strategy

 	Backtesting pitfalls and how to avoid them

 	Getting the data right

 	Look-ahead bias – use only point-in-time data

 	Survivorship bias – track your historical universe

 	Outlier control – do not exclude realistic extremes

 	Sample period – try to represent relevant future scenarios

 	Getting the simulation right

 	Mark-to-market performance – track risks over time

 	Transaction costs – assume a realistic trading environment

 	Timing of decisions – properly sequence signals and trades

 	Getting the statistics right

 	The minimum backtest length and the deflated SR

 	Optimal stopping for backtests

 	How a backtesting engine works

 	Vectorized versus event-driven backtesting

 	Key implementation aspects

 	Data ingestion – format, frequency, and timing

 	Factor engineering – built-in factors versus libraries

 	ML models, predictions, and signals

 	Trading rules and execution

 	Performance evaluation

 	backtrader – a flexible tool for local backtests

 	Key concepts of backtrader's Cerebro architecture

 	Data feeds, lines, and indicators

 	From data and signals to trades – strategy

 	Commissions instead of commission schemes

 	Making it all happen – Cerebro

 	How to use backtrader in practice

 	How to load price and other data

 	How to formulate the trading logic

 	How to configure the Cerebro instance

 	backtrader summary and next steps

 	Zipline – scalable backtesting by Quantopian

 	Calendars and the Pipeline for robust simulations

 	Bundles – point-in-time data with on-the-fly adjustments

 	The Algorithm API – backtests on a schedule

 	Known issues

 	Ingesting your own bundles with minute data

 	Getting your data ready to be bundled

 	Writing your custom bundle ingest function

 	Registering your bundle

 	Creating and registering a custom TradingCalendar

 	The Pipeline API – backtesting an ML signal

 	Enabling the DataFrameLoader for our Pipeline

 	Creating a pipeline with a custom ML factor

 	How to train a model during the backtest

 	Preparing the features – how to define pipeline factors

 	How to design a custom ML factor

 	Tracking model performance during a backtest

 	Instead of how to use

 	Summary

 	Time-Series Models for Volatility Forecasts and Statistical Arbitrage

 	Tools for diagnostics and feature extraction

 	How to decompose time-series patterns

 	Rolling window statistics and moving averages

 	How to measure autocorrelation

 	How to diagnose and achieve stationarity

 	Transforming a time series to achieve stationarity

 	Handling instead of how to handle

 	On unit roots and random walks

 	How to diagnose a unit root

 	How to remove unit roots and work with the resulting series

 	Time-series transformations in practice

 	Univariate time-series models

 	How to build autoregressive models

 	How to identify the number of lags

 	How to diagnose model fit

 	How to build moving-average models

 	How to identify the number of lags

 	The relationship between the AR and MA models

 	How to build ARIMA models and extensions

 	How to model differenced series

 	How to identify the number of AR and MA terms

 	Adding features – ARMAX

 	Adding seasonal differencing – SARIMAX

 	How to forecast macro fundamentals

 	How to use time-series models to forecast volatility

 	The ARCH model

 	Generalizing ARCH – the GARCH model

 	How to build a model that forecasts volatility

 	Multivariate time-series models

 	Systems of equations

 	The vector autoregressive (VAR) model

 	Using the VAR model for macro forecasts

 	Cointegration – time series with a shared trend

 	The Engle-Granger two-step method

 	The Johansen likelihood-ratio test

 	Statistical arbitrage with cointegration

 	How to select and trade comoving asset pairs

 	Pairs trading in practice

 	Distance-based heuristics to find cointegrated pairs

 	How well do the heuristics predict significant cointegration?

 	Preparing the strategy backtest

 	Precomputing the cointegration tests

 	Getting entry and exit trades

 	Backtesting the strategy using backtrader

 	Tracking pairs with a custom DataClass

 	Running and evaluating the strategy

 	Extensions – how to do better

 	Summary

 	Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading

 	How Bayesian machine learning works

 	How to update assumptions from empirical evidence

 	Exact inference – maximum a posteriori estimation

 	How to select priors

 	How to keep inference simple – conjugate priors

 	Dynamic probability estimates of asset price moves

 	Deterministic and stochastic approximate inference

 	Markov chain MonteCarlo sampling

 	Variational inference and automatic differentiation

 	Probabilistic programming with PyMC3

 	Bayesian machine learning with Theano

 	The PyMC3 workflow – predicting a recession

 	The data – leading recession indicators

 	Model definition – Bayesian logistic regression

 	Exact MAP inference

 	Approximate inference – MCMC

 	Approximate inference – variational Bayes

 	Model diagnostics

 	How to generate predictions

 	Summary and key takeaways

 	Bayesian ML for trading

 	Bayesian Sharpe ratio for performance comparison

 	Defining a custom probability model

 	Comparing the performance of two return series

 	Bayesian rolling regression for pairs trading

 	Stochastic volatility models

 	Summary

 	Random Forests – A Long-Short Strategy for Japanese Stocks

 	Decision trees – learning rules from data

 	How trees learn and apply decision rules

 	Decision trees in practice

 	The data – monthly stock returns and features

 	Building a regression tree with time-series data

 	Building a classification tree

 	Visualizing a decision tree

 	Evaluating decision tree predictions

 	Overfitting and regularization

 	How to regularize a decision tree

 	Decision tree pruning

 	Hyperparameter tuning

 	Using GridsearchCV with a custom metric

 	How to inspect the tree structure

 	Comparing regression and classification performance

 	Diagnosing training set size with learning curves

 	Gaining insight from feature importance

 	Strengths and weaknesses of decision trees

 	Random forests – making trees more reliable

 	Why ensemble models perform better

 	Bootstrap aggregation

 	How bagging lowers model variance

 	Bagged decision trees

 	How to build a random forest

 	How to train and tune a random forest

 	Feature importance for random forests

 	Out-of-bag testing

 	Pros and cons of random forests

 	Long-short signals for Japanese stocks

 	The data – Japanese equities

 	The features – lagged returns and technical indicators

 	The outcomes – forward returns for different horizons

 	The ML4T workflow with LightGBM

 	From universe selection to hyperparameter tuning

 	Sampling tickers to speed up cross-validation

 	Defining lookback, lookahead, and roll-forward periods

 	Hyperparameter tuning with LightGBM

 	Cross-validating signals over various horizons

 	Analyzing cross-validation performance

 	Ensembling forecasts – signal analysis using Alphalens

 	The strategy – backtest with Zipline

 	Ingesting Japanese Equities into Zipline

 	Running an in- and out-of-sample strategy backtest

 	The results – evaluation with pyfolio

 	Summary

 	Boosting Your Trading Strategy

 	Getting started – adaptive boosting

 	The AdaBoost algorithm

 	Using AdaBoost to predict monthly price moves

 	Gradient boosting – ensembles for most tasks

 	How to train and tune GBM models

 	Ensemble size and early stopping

 	Shrinkage and learning rate

 	Subsampling and stochastic gradient boosting

 	How to use gradient boosting with sklearn

 	How to tune parameters with GridSearchCV

 	Parameter impact on test scores

 	How to test on the holdout set

 	Using XGBoost, LightGBM, and CatBoost

 	How algorithmic innovations boost performance

 	Second-order loss function approximation

 	Simplified split-finding algorithms

 	Depth-wise versus leaf-wise growth

 	GPU-based training

 	DART – dropout for additive regression trees

 	Treatment of categorical features

 	Additional features and optimizations

 	A long-short trading strategy with boosting

 	Generating signals with LightGBM and CatBoost

 	From Python to C++ – creating binary data formats

 	How to tune hyperparameters

 	How to evaluate the results

 	Inside the black box – interpreting GBM results

 	Feature importance

 	Partial dependence plots

 	SHapley Additive exPlanations

 	Backtesting a strategy based on a boosting ensemble

 	Lessons learned and next steps

 	Boosting for an intraday strategy

 	Engineering features for high-frequency data

 	Minute-frequency signals with LightGBM

 	Evaluating the trading signal quality

 	Summary

 	Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning

 	Dimensionality reduction

 	The curse of dimensionality

 	Linear dimensionality reduction

 	Principal component analysis

 	Independent component analysis

 	Manifold learning – nonlinear dimensionality reduction

 	t-distributed Stochastic Neighbor Embedding

 	Uniform Manifold Approximation and Projection

 	PCA for trading

 	Data-driven risk factors

 	Preparing the data – top 350 US stocks

 	Running PCA to identify the key return drivers

 	Eigenportfolios

 	Clustering

 	k-means clustering

 	Assigning observations to clusters

 	Evaluating cluster quality

 	Hierarchical clustering

 	Different strategies and dissimilarity measures

 	Visualization – dendrograms

 	Density-based clustering

 	DBSCAN

 	Hierarchical DBSCAN

 	Gaussian mixture models

 	Hierarchical clustering for optimal portfolios

 	How hierarchical risk parity works

 	Backtesting HRP using an ML trading strategy

 	Ensembling the gradient boosting model predictions

 	Using PyPortfolioOpt to compute HRP weights

 	Performance comparison with pyfolio

 	Summary

 	Text Data for Trading – Sentiment Analysis

 	ML with text data – from language to features

 	Key challenges of working with text data

 	The NLP workflow

 	Parsing and tokenizing text data – selecting the vocabulary

 	Linguistic annotation – relationships among tokens

 	Semantic annotation – from entities to knowledge graphs

 	Labeling – assigning outcomes for predictive modeling

 	Applications

 	From text to tokens – the NLP pipeline

 	NLP pipeline with spaCy and textacy

 	Parsing, tokenizing, and annotating a sentence

 	Batch-processing documents

 	Sentence boundary detection

 	Named entity recognition

 	N-grams

 	spaCy's streaming API

 	Multi-language NLP

 	NLP with TextBlob

 	Stemming

 	Sentiment polarity and subjectivity

 	Counting tokens – the document-term matrix

 	The bag-of-words model

 	Creating the document-term matrix

 	Measuring the similarity of documents

 	Document-term matrix with scikit-learn

 	Using CountVectorizer

 	TfidfTransformer and TfidfVectorizer

 	Key lessons instead of lessons learned

 	NLP for trading

 	The naive Bayes classifier

 	Bayes' theorem refresher

 	The conditional independence assumption

 	Classifying news articles

 	Sentiment analysis with Twitter and Yelp data

 	Binary sentiment classification with Twitter data

 	Multiclass sentiment analysis with Yelp business reviews

 	Summary

 	Topic Modeling – Summarizing Financial News

 	Learning latent topics – Goals and approaches

 	How to implement LSI using sklearn

 	Strengths and limitations

 	Probabilistic latent semantic analysis

 	How to implement pLSA using sklearn

 	Strengths and limitations

 	Latent Dirichlet allocation

 	How LDA works

 	The Dirichlet distribution

 	The generative model

 	Reverse engineering the process

 	How to evaluate LDA topics

 	Perplexity

 	Topic coherence

 	How to implement LDA using sklearn

 	How to visualize LDA results using pyLDAvis

 	How to implement LDA using Gensim

 	Modeling topics discussed in earnings calls

 	Data preprocessing

 	Model training and evaluation

 	Running experiments

 	Topic modeling for with financial news

 	Summary

 	Word Embeddings for Earnings Calls and SEC Filings

 	How word embeddings encode semantics

 	How neural language models learn usage in context

 	word2vec – scalable word and phrase embeddings

 	Model objective – simplifying the softmax

 	Automating phrase detection

 	Evaluating embeddings using semantic arithmetic

 	How to use pretrained word vectors

 	GloVe – Global vectors for word representation

 	Custom embeddings for financial news

 	Preprocessing – sentence detection and n-grams

 	The skip-gram architecture in TensorFlow 2

 	Noise-contrastive estimation – creating validation samples

 	Generating target-context word pairs

 	Creating the word2vec model layers

 	Visualizing embeddings using TensorBoard

 	How to train embeddings faster with Gensim

 	word2vec for trading with SEC filings

 	Preprocessing – sentence detection and n-grams

 	Automatic phrase detection

 	Labeling filings with returns to predict earnings surprises

 	Model training

 	Model evaluation

 	Performance impact of parameter settings

 	Sentiment analysis using doc2vec embeddings

 	Creating doc2vec input from Yelp sentiment data

 	Training a doc2vec model

 	Training a classifier with document vectors

 	Lessons learned and next steps

 	New frontiers – pretrained transformer models

 	Attention is all you need

 	BERT – towards a more universal language model

 	Key innovations – deeper attention and pretraining

 	Using pretrained state-of-the-art models

 	Trading on text data – lessons learned and next steps

 	Summary

 	Deep Learning for Trading

 	Deep learning – what's new and why it matters

 	Hierarchical features tame high-dimensional data

 	DL as representation learning

 	How DL extracts hierarchical features from data

 	Good and bad news – the universal approximation theorem

 	How DL relates to ML and AI

 	Designing an NN

 	A simple feedforward neural network architecture

 	Key design choices

 	Hidden units and activation functions

 	Output units and cost functions

 	How to regularize deep NNs

 	Parameter norm penalties

 	Early stopping

 	Dropout

 	Training faster – optimizations for deep learning

 	Stochastic gradient descent

 	Momentum

 	Adaptive learning rates

 	Summary – how to tune key hyperparameters

 	A neural network from scratch in Python

 	The input layer

 	The hidden layer

 	The output layer

 	Forward propagation

 	The cross-entropy cost function

 	How to implement backprop using Python

 	How to compute the gradient

 	The loss function gradient

 	The output layer gradients

 	The hidden layer gradients

 	Putting it all together

 	Training the network

 	Popular deep learning libraries

 	Leveraging GPU acceleration

 	How to use TensorFlow 2

 	How to use TensorBoard

 	How to use PyTorch 1.4

 	How to create a PyTorch DataLoader

 	How to define the neural network architecture

 	How to train the model

 	How to evaluate the model predictions

 	Alternative options

 	Apache MXNet

 	Microsoft Cognitive Toolkit (CNTK)

 	Fastai

 	Optimizing an NN for a long-short strategy

 	Engineering features to predict daily stock returns

 	Defining an NN architecture framework

 	Cross-validating design options to tune the NN

 	Evaluating the predictive performance

 	Backtesting a strategy based on ensembled signals

 	Ensembling predictions to produce tradeable signals

 	Evaluating signal quality using Alphalens

 	Backtesting the strategy using Zipline

 	How to further improve the results

 	Summary

 	CNNs for Financial Time Series and Satellite Images

 	How CNNs learn to model grid-like data

 	From hand-coding to learning filters from data

 	How the elements of a convolutional layer operate

 	The convolution stage – extracting local features

 	The detector stage – adding nonlinearity

 	The pooling stage – downsampling the feature maps

 	The evolution of CNN architectures – key innovations

 	Performance breakthroughs and network size

 	Lessons learned

 	CNNs for satellite images and object detection

 	LeNet5 – The first CNN with industrial applications

 	"Hello World" for CNNs – handwritten digit classification

 	Defining the LeNet5 architecture

 	Training and evaluating the model

 	AlexNet – reigniting deep learning research

 	Preprocessing CIFAR-10 data using image augmentation

 	Defining the model architecture

 	Comparing AlexNet performance

 	Transfer learning – faster training with less data

 	Alternative approaches to transfer learning

 	Building on state-of-the-art architectures

 	Transfer learning with VGG16 in practice

 	Classifying satellite images with transfer learning

 	Object detection and segmentation

 	Object detection in practice

 	Preprocessing the source images

 	Transfer learning with a custom final layer

 	Creating a custom loss function and evaluation metrics

 	Fine-tuning the VGG16 weights and final layer

 	Lessons learned

 	CNNs for time-series data – predicting returns

 	An autoregressive CNN with 1D convolutions

 	Preprocessing the data

 	Defining the model architecture

 	Model training and performance evaluation

 	CNN-TA – clustering time series in 2D format

 	Creating technical indicators at different intervals

 	Computing rolling factor betas for different horizons

 	Features selecting based on mutual information

 	Hierarchical feature clustering

 	Creating and training a convolutional neural network

 	Assembling the best models to generate tradeable signals

 	Backtesting a long-short trading strategy

 	Summary and lessons learned

 	Summary

 	RNNs for Multivariate Time Series and Sentiment Analysis

 	How recurrent neural nets work

 	Unfolding a computational graph with cycles

 	Backpropagation through time

 	Alternative RNN architectures

 	Output recurrence and teacher forcing

 	Bidirectional RNNs

 	Encoder-decoder architectures, attention, and transformers

 	How to design deep RNNs

 	The challenge of learning long-range dependencies

 	Long short-term memory – learning how much to forget

 	Gated recurrent units

 	RNNs for time series with TensorFlow 2

 	Univariate regression – predicting the S&P 500

 	How to get time series data into shape for an RNN

 	How to define a two-layer RNN with a single LSTM layer

 	Training and evaluating the model

 	Re-scaling the predictions

 	Stacked LSTM – predicting price moves and returns

 	Preparing the data – how to create weekly stock returns

 	How to create multiple inputs in RNN format

 	How to define the architecture using Keras' Functional API

 	Predicting returns instead of directional price moves

 	Multivariate time-series regression for macro data

 	Loading sentiment and industrial production data

 	Making the data stationary and adjusting the scale

 	Creating multivariate RNN inputs

 	Defining and training the model

 	RNNs for text data

 	LSTM with embeddings for sentiment classification

 	Loading the IMDB movie review data

 	Defining embedding and the RNN architecture

 	Sentiment analysis with pretrained word vectors

 	Preprocessing the text data

 	Loading the pretrained GloVe embeddings

 	Defining the architecture with frozen weights

 	Predicting returns from SEC filing embeddings

 	Source stock price data using yfinance

 	Preprocessing SEC filing data

 	Preparing data for the RNN model

 	Building, training, and evaluating the RNN model

 	Lessons learned and next steps

 	Summary

 	Autoencoders for Conditional Risk Factors and Asset Pricing

 	Autoencoders for nonlinear feature extraction

 	Generalizing linear dimensionality reduction

 	Convolutional autoencoders for image compression

 	Managing overfitting with regularized autoencoders

 	Fixing corrupted data with denoising autoencoders

 	Seq2seq autoencoders for time series features

 	Generative modeling with variational autoencoders

 	Implementing autoencoders with TensorFlow 2

 	How to prepare the data

 	One-layer feedforward autoencoder

 	Defining the encoder

 	Defining the decoder

 	Training the model

 	Evaluating the results

 	Feedforward autoencoder with sparsity constraints

 	Deep feedforward autoencoder

 	Visualizing the encoding

 	Convolutional autoencoders

 	Denoising autoencoders

 	A conditional autoencoder for trading

 	Sourcing stock prices and metadata information

 	Computing predictive asset characteristics

 	Creating the conditional autoencoder architecture

 	Lessons learned and next steps

 	Summary

 	Generative Adversarial Networks for Synthetic Time-Series Data

 	Creating synthetic data with GANs

 	Comparing generative and discriminative models

 	Adversarial training – a zero-sum game of trickery

 	The rapid evolution of the GAN architecture zoo

 	Deep convolutional GANs for representation learning

 	Conditional GANs for image-to-image translation

 	GAN applications to images and time-series data

 	CycleGAN – unpaired image-to-image translation

 	StackGAN – text-to-photo image synthesis

 	SRGAN – photorealistic single image super-resolution

 	Synthetic time series with recurrent conditional GANs

 	How to build a GAN using TensorFlow 2

 	Building the generator network

 	Creating the discriminator network

 	Setting up the adversarial training process

 	Defining the generator and discriminator loss functions

 	The core – designing the training step

 	Putting it together – the training loop

 	Evaluating the results

 	TimeGAN for synthetic financial data

 	Learning to generate data across features and time

 	Combining adversarial and supervised training

 	The four components of the TimeGAN architecture

 	Joint training of an autoencoder and adversarial network

 	Implementing TimeGAN using TensorFlow 2

 	Preparing the real and random input series

 	Creating the TimeGAN model components

 	Training phase 1 – autoencoder with real data

 	Training phase 2 – supervised learning with real data

 	Training phase 3 – joint training with real and random data

 	Generating synthetic time series

 	Evaluating the quality of synthetic time-series data

 	Assessing diversity – visualization using PCA and t-SNE

 	Assessing fidelity – time-series classification performance

 	Assessing usefulness – train on synthetic, test on real

 	Lessons learned and next steps

 	Summary

 	Deep Reinforcement Learning – Building a Trading Agent

 	Elements of a reinforcement learning system

 	The policy – translating states into actions

 	Rewards – learning from actions

 	The value function – optimal choice for the long run

 	With or without a model – look before you leap?

 	How to solve reinforcement learning problems

 	Key challenges in solving RL problems

 	Credit assignment

 	Exploration versus exploitation

 	Fundamental approaches to solving RL problems

 	Solving dynamic programming problems

 	Finite Markov decision problems

 	Sequences of states, actions, and rewards

 	Value functions – how to estimate the long-run reward

 	The Bellman equations

 	From a value function to an optimal policy

 	Policy iteration

 	Value iteration

 	Generalized policy iteration

 	Dynamic programming in Python

 	Setting up the gridworld

 	Computing the transition matrix

 	Implementing the value iteration algorithm

 	Defining and running policy iteration

 	Solving MDPs using pymdptoolbox

 	Lessons learned

 	Q-learning – finding an optimal policy on the go

 	Exploration versus exploitation – ε-greedy policy

 	The Q-learning algorithm

 	How to train a Q-learning agent using Python

 	Deep RL for trading with the OpenAI Gym

 	Value function approximation with neural networks

 	The Deep Q-learning algorithm and extensions

 	(Prioritized) Experience replay – focusing on past mistakes

 	The target network – decorrelating the learning process

 	Double deep Q-learning – decoupling action and prediction

 	Introducing the OpenAI Gym

 	How to implement DDQN using TensorFlow 2

 	Creating the DDQN agent

 	Adapting the DDQN architecture to the Lunar Lander

 	Memorizing transitions and replaying the experience

 	Setting up the OpenAI environment

 	Key hyperparameter choices

 	Lunar Lander learning performance

 	Creating a simple trading agent

 	How to design a custom OpenAI trading environment

 	Designing a DataSource class

 	The TradingSimulator class

 	The TradingEnvironment class

 	Registering and parameterizing the custom environment

 	Deep Q-learning on the stock market

 	Adapting and training the DDQN agent

 	Benchmarking DDQN agent performance

 	Lessons learned

 	Summary

 	Conclusions and Next Steps

 	Key takeaways and lessons learned

 	Data is the single most important ingredient

 	The new oil? Quality control for raw and intermediate data

 	Data integration – the whole exceeds the sum of its parts

 	Domain expertise – telling the signal from the noise

 	ML is a toolkit for solving problems with data

 	Model diagnostics help speed up optimization

 	Making do without a free lunch

 	Managing the bias-variance trade-off

 	Defining targeted model objectives

 	The optimization verification test

 	Beware of backtest overfitting

 	How to gain insights from black-box models

 	ML for trading in practice

 	Data management technologies

 	Database systems

 	Big data technologies – from Hadoop to Spark

 	ML tools

 	Online trading platforms

 	Quantopian

 	QuantConnect

 	QuantRocket

 	Conclusion

 	Appendix: Alpha Factor Library

 	Common alpha factors implemented in TA-Lib

 	A key building block – moving averages

 	Simple moving average

 	Exponential moving average

 	Weighted moving average

 	Double exponential moving average

 	Triple exponential moving average

 	Triangular moving average

 	Kaufman adaptive moving average

 	MESA adaptive moving average

 	Visual comparison of moving averages

 	Overlap studies – price and volatility trends

 	Bollinger Bands

 	Parabolic SAR

 	Momentum indicators

 	Average directional movement indicators

 	Aroon Oscillator

 	Balance of power

 	Commodity channel index

 	Moving average convergence divergence

 	Stochastic relative strength index

 	Stochastic oscillator

 	Ultimate oscillator

 	Volume and liquidity indicators

 	Chaikin accumulation/distribution line and oscillator

 	On-balance volume

 	Volatility indicators

 	Average true range

 	Normalized average true range

 	Fundamental risk factors

 	WorldQuant's quest for formulaic alphas

 	Cross-sectional and time-series functions

 	Formulaic alpha expressions

 	Alpha 001

 	Alpha 054

 	Bivariate and multivariate factor evaluation

 	Information coefficient and mutual information

 	Feature importance and SHAP values

 	Comparison – the top 25 features for each metric

 	Financial performance – Alphalens

 	References

 	Index

 Landmarks

 	
 Cover

 	
 Index

 Preface

 If you are reading this, you are probably aware that machine learning (ML) has become a strategic capability in many industries, including the investment industry. The explosion of digital data closely related to the rise of ML is having a particularly powerful impact on investing, which already has a long history of using sophisticated models to process information. These trends are enabling novel approaches to quantitative investment and are boosting the demand for the application of data science to both discretionary and algorithmic trading strategies.

 The scope of trading across asset classes is vast because it ranges from equities and government bonds to commodities and real estate. This implies that a very large range of new alternative data sources may be relevant above and beyond the market and fundamental data that used to be at the center of most analytical efforts in the past.

 You also may have come across the insight that the successful application of ML or data science requires the integration of statistical knowledge, computational skills, and domain expertise at the individual or team level. In other words, it is essential to ask the right questions, identify and understand the data that may provide the answers, deploy a broad range of tools to obtain results, and interpret them in a way that leads to the right decisions.

 Therefore, this book provides an integrated perspective on the application of ML to the domain of investment and trading. In this preface, we outline what you should expect, how we have organized the content to facilitate achieving our objectives, and what you need both to meet your goals and have fun in the process.

 What to expect

 This book aims to equip you with a strategic perspective, conceptual understanding, and practical tools to add value when applying ML to the trading and investment process. To this end, we cover ML as a key element in a process rather than a standalone exercise. Most importantly, we introduce an end-to-end ML for trading (ML4T) workflow that we apply to numerous use cases with relevant data and code examples.

 The ML4T workflow starts with generating ideas and sourcing data and continues to extracting features, tuning ML models, and designing trading strategies that act on the models' predictive signals. It also includes simulating strategies on historical data using a backtesting engine and evaluating their performance.

 First and foremost, the book demonstrates how you can extract signals from a diverse set of data sources and design trading strategies for different asset classes using a broad range of supervised, unsupervised, and reinforcement learning algorithms. In addition, it provides relevant mathematical and statistical background to facilitate tuning an algorithm and interpreting the results. Finally, it includes financial background to enable you to work with market and fundamental data, extract informative features, and manage the performance of a trading strategy.

 The book emphasizes that investors can gain at least as much value from third-party data as other industries. As a consequence, it covers not only how to work with market and fundamental data but also how to source, evaluate, process, and model alternative data sources such as unstructured text and image data.

 It should not be a surprise that this book does not provide investment advice or ready-made trading algorithms. On the contrary, it intends to communicate that ML faces many additional challenges in the trading domain, ranging from lower signal content to shorter time series that often make it harder to achieve robust results. In fact, we have included several examples that do not yield great results to avoid exaggerating the benefits of ML or understating the effort it takes to have a good idea, obtain the right data, engineer ingenious features, and design an effective strategy (with potentially attractive rewards).

 Instead, you should find the book most useful as a guide to leveraging key ML algorithms to inform a trading strategy using a systematic workflow. To this end, we present a framework that guides you through the ML4T process of the following:

 	Sourcing, evaluating, and combining data for any investment objective

 	Designing and tuning ML models that extract predictive signals from the data

 	Developing and evaluating trading strategies based on the results

 After reading this book, you will be able to begin designing and evaluating your own ML-based strategies and might want to consider participating in competitions or connecting to the API of an online broker and begin trading in the real world.

 What's new in the second edition

 This second edition emphasizes the end-to-end ML4T workflow, reflected in a new chapter on strategy backtesting (Chapter 8, The ML4T Workflow – From Model to Strategy Backtesting), a new appendix describing over 100 different alpha factors, and many new practical applications. We have also rewritten most of the existing content for clarity and readability.

 The applications now use a broader range of data sources beyond daily US equity prices, including international stocks and ETFs, as well as minute-frequency equity data to demonstrate an intraday strategy. Also, there is now broader coverage of alternative data sources, including SEC filings for sentiment analysis and return forecasts, as well as satellite images to classify land use.

 Furthermore, the book replicates several applications recently published in academic papers. Chapter 18, CNNs for Financial Time Series and Satellite Images, demonstrates how to apply convolutional neural networks to time series converted to image format for return predictions. Chapter 20, Autoencoders for Conditional Risk Factors and Asset Pricing, shows how to extract risk factors conditioned on stock characteristics for asset pricing using autoencoders. Chapter 21, Generative Adversarial Networks for Synthetic Time-Series Data, examines how to create synthetic training data using generative adversarial networks.

 All applications now use the latest available (at the time of writing) software versions, such as pandas 1.0 and TensorFlow 2.2. There is also a customized version of Zipline that makes it easy to include machine learning model predictions when designing a trading strategy.

 Who should read this book

 You should find the book informative if you are an analyst, data scientist, or ML engineer with an understanding of financial markets and an interest in trading strategies. You should also find value as an investment professional who aims to leverage ML to make better decisions.

 If your background is in software and ML, you may be able to just skim or skip some introductory material in this area. Similarly, if your expertise is in investment, you will likely be familiar with some, or all, of the financial context that we provide for those with different backgrounds.

 The book assumes that you want to continue to learn about this very dynamic area. To this end, it includes numerous end-of-chapter academic references and additional resources linked in the README files for each chapter in the companion GitHub repository.

 You should be comfortable using Python 3 and scientific computing libraries like NumPy, pandas, or SciPy and look forward to picking up numerous others along the way. Some experience with ML and scikit-learn would be helpful, but we briefly cover the basic workflow and reference various resources to fill gaps or dive deeper. Similarly, basic knowledge of finance and investment will make some terminology easier to follow.

 What this book covers

 This book provides a comprehensive introduction to how ML can add value to the design and execution of trading strategies. It is organized into four parts that cover different aspects of the data sourcing and strategy development process, as well as different solutions to various ML challenges.

 Part 1 – Data, alpha factors, and portfolios

 The first part covers fundamental aspects relevant across trading strategies that leverage machine learning. It focuses on the data that drives the ML algorithms and strategies discussed in this book, outlines how you can engineer features that capture the data's signal content, and explains how to optimize and evaluate the performance of a portfolio.

 Chapter 1, Machine Learning for Trading – From Idea to Execution, summarizes how and why ML became important for trading, describes the investment process, and outlines how ML can add value.

 Chapter 2, Market and Fundamental Data – Sources and Techniques, covers how to source and work with market data, including exchange-provided tick data, and reported financials. It also demonstrates access to numerous open source data providers that we will rely on throughout this book.

 Chapter 3, Alternative Data for Finance – Categories and Use Cases, explains categories and criteria to assess the exploding number of sources and providers. It also demonstrates how to create alternative datasets by scraping websites, for example, to collect earnings call transcripts for use with natural language processing (NLP) and sentiment analysis, which we cover in the second part of the book.

 Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, presents the process of creating and evaluating data transformations that capture the predictive signal and shows how to measure factor performance. It also summarizes insights from research into risk factors that aim to explain alpha in financial markets otherwise deemed to be efficient. Furthermore, it demonstrates how to engineer alpha factors using Python libraries offline and introduces the Zipline and Alphalens libraries to backtest factors and evaluate their predictive power.

 Chapter 5, Portfolio Optimization and Performance Evaluation, introduces how to manage, optimize, and evaluate a portfolio resulting from the execution of a strategy. It presents risk metrics and shows how to apply them using the Zipline and pyfolio libraries. It also introduces methods to optimize a strategy from a portfolio risk perspective.

 Part 2 – ML for trading – Fundamentals

 The second part illustrates how fundamental supervised and unsupervised learning algorithms can inform trading strategies in the context of an end-to-end workflow.

 Chapter 6, The Machine Learning Process, sets the stage by outlining how to formulate, train, tune, and evaluate the predictive performance of ML models in a systematic way. It also addresses domain-specific concerns, such as using cross-validation with financial time series to select among alternative ML models.

 Chapter 7, Linear Models – From Risk Factors to Return Forecasts, shows how to use linear and logistic regression for inference and prediction and how to use regularization to manage the risk of overfitting. It demonstrates how to predict US equity returns or the direction of their future movements and how to evaluate the signal content of these predictions using Alphalens.

 Chapter 8, The ML4T Workflow – From Model to Strategy Backtesting, integrates the various building blocks of the ML4T workflow thus far discussed separately. It presents an end-to-end perspective on the process of designing, simulating, and evaluating a trading strategy driven by an ML algorithm. To this end, it demonstrates how to backtest an ML-driven strategy in a historical market context using the Python libraries backtrader and Zipline.

 Chapter 9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage, covers univariate and multivariate time series diagnostics and models, including vector autoregressive models as well as ARCH/GARCH models for volatility forecasts. It also introduces cointegration and shows how to use it for a pairs trading strategy using a diverse set of exchange-traded funds (ETFs).

 Chapter 10, Bayesian ML – Dynamic Sharpe Ratios and Pairs Trading, presents probabilistic models and how Markov chain Monte Carlo (MCMC) sampling and variational Bayes facilitate approximate inference. It also illustrates how to use PyMC3 for probabilistic programming to gain deeper insights into parameter and model uncertainty, for example, when evaluating portfolio performance.

 Chapter 11, Random Forests – A Long-Short Strategy for Japanese Stocks, shows how to build, train, and tune nonlinear tree-based models for insight and prediction. It introduces tree-based ensembles and shows how random forests use bootstrap aggregation to overcome some of the weaknesses of decision trees. We then proceed to develop and backtest a long-short strategy for Japanese equities.

 Chapter 12, Boosting Your Trading Strategy, introduces gradient boosting and demonstrates how to use the libraries XGBoost, LightBGM, and CatBoost for high-performance training and prediction. It reviews how to tune the numerous hyperparameters and interpret the model using SHapley Additive exPlanation (SHAP) values before building and evaluating a strategy that trades US equities based on LightGBM return forecasts.

 Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning, shows how to use dimensionality reduction and clustering for algorithmic trading. It uses principal and independent component analysis to extract data-driven risk factors and generate eigenportfolios. It presents several clustering techniques and demonstrates the use of hierarchical clustering for asset allocation.

 Part 3 – Natural language processing

 Part 3 focuses on text data and introduces state-of-the-art unsupervised learning techniques to extract high-quality signals from this key source of alternative data.

 Chapter 14, Text Data for Trading – Sentiment Analysis, demonstrates how to convert text data into a numerical format and applies the classification algorithms from Part 2 for sentiment analysis to large datasets.

 Chapter 15, Topic Modeling – Summarizing Financial News, uses unsupervised learning to extract topics that summarize a large number of documents and offer more effective ways to explore text data or use topics as features for a classification model. It demonstrates how to apply this technique to earnings call transcripts sourced in Chapter 3 and to annual reports filed with the Securities and Exchange Commission (SEC).

 Chapter 16, Word Embeddings for Earnings Calls and SEC Filings, uses neural networks to learn state-of-the-art language features in the form of word vectors that capture semantic context much better than traditional text features and represent a very promising avenue for extracting trading signals from text data.

 Part 4 – Deep and reinforcement learning

 Part 4 introduces deep learning and reinforcement learning.

 Chapter 17, Deep Learning for Trading, introduces TensorFlow 2 and PyTorch, the most popular deep learning frameworks, which we will use throughout Part 4. It presents techniques for training and tuning, including regularization. It also builds and evaluates a trading strategy for US equities.

 Chapter 18, CNNs for Financial Time Series and Satellite Images, covers convolutional neural networks (CNNs) that are very powerful for classification tasks with unstructured data at scale. We will introduce successful architectural designs, train a CNN on satellite data (for example, to predict economic activity), and use transfer learning to speed up training. We'll also replicate a recent idea to convert financial time series into a two-dimensional image format to leverage the built-in assumptions of CNNs.

 Chapter 19, RNNs for Multivariate Time Series and Sentiment Analysis, shows how recurrent neural networks (RNNs) are useful for sequence-to-sequence modeling, including for univariate and multivariate time series to predict. It demonstrates how RNNs capture nonlinear patterns over longer periods using word embeddings introduced in Chapter 16 to predict returns based on the sentiment expressed in SEC filings.

 Chapter 20, Autoencoders for Conditional Risk Factors and Asset Pricing, covers autoencoders for the nonlinear compression of high-dimensional data. It implements a recent paper that uses a deep autoencoder to learn both risk factor returns and factor loadings from the data while conditioning the latter on asset characteristics. We'll create a large US equity dataset with metadata and generate predictive signals.

 Chapter 21, Generative Adversarial Networks for Synthetic Time-Series Data, presents one of the most exciting advances in deep learning. Generative adversarial networks (GANs) are capable of learning to reproduce synthetic replicas of a target data type, such as images of celebrities. In addition to images, GANs have also been applied to time-series data. This chapter replicates a novel approach to generate synthetic stock price data that could be used to train an ML model or backtest a strategy, and also evaluate its quality.

 Chapter 22, Deep Reinforcement Learning – Building a Trading Agent, presents how reinforcement learning (RL) permits the design and training of agents that learn to optimize decisions over time in response to their environment. You will see how to create a custom trading environment and build an agent that responds to market signals using OpenAI Gym.

 Chapter 23, Conclusions and Next Steps, summarizes the lessons learned and outlines several steps you can take to continue learning and building your own trading strategies.

 Appendix, Alpha Factor Library, lists almost 200 popular financial features, explains their rationale, and shows how to compute them. It also evaluates and compares their performance in predicting daily stock returns.

 To get the most out of this book

 In addition to the content summarized in the previous section, the hands-on nature of the book consists of over 160 Jupyter notebooks hosted on GitHub that demonstrate the use of ML for trading in practice on a broad range of data sources. This section describes how to use the GitHub repository, obtain the data used in the numerous examples, and set up the environment to run the code.

 The GitHub repository

 The book revolves around the application of ML algorithms to trading. The hands-on aspects are covered in Jupyter notebooks, hosted on GitHub, that illustrate many of the concepts and models in more detail. While the chapters aim to be self-contained, the code examples and results often take up too much space to include in their complete forms. Therefore, it is very important to view the notebooks that contain significant additional content while reading the chapter, even if you do not intend to run the code yourself.

 The repository is organized so that each chapter has its own directory containing the relevant notebooks and a README file containing separate instructions where needed, as well as references and resources specific to the chapter's content. The relevant notebooks are identified throughout each chapter, as necessary. The repository also contains instructions on how to install the requisite libraries and obtain the data.

 You can find the code files placed at: https://github.com/PacktPublishing/Machine-Learning-for-Algorithmic-Trading-Second-Edition.

 Data sources

 We will use freely available historical data from market, fundamental, and alternative sources. Chapter 2 and Chapter 3 cover characteristics and access to these data sources and introduce key providers that we will use throughout the book. The companion GitHub repository just described contains instructions on how to obtain or create some of the datasets that we will use throughout and includes some smaller datasets.

 A few sample data sources that we will source and work with include, but are not limited to:

 	Nasdaq ITCH order book data

 	Electronic Data Gathering, Analysis, and Retrieval (EDGAR) SEC filings

 	Earnings call transcripts from Seeking Alpha

 	Quandl daily prices and other data points for over 3,000 US stocks

 	International equity data from Stooq and using the yfinance library

 	Various macro fundamental and benchmark data from the Federal Reserve

 	Large Yelp business reviews and Twitter datasets

 	EUROSAT satellite image data

 Some of the data is large (several gigabytes), such as Nasdaq and SEC filings. The notebooks indicate when that is the case.

 See the data directory in the root folder of the GitHub repository for instructions.

 Anaconda and Docker images

 The book requires Python 3.7 or higher and uses the Anaconda distribution. The book uses various conda environments for the four parts to cover a broad range of libraries while limiting dependencies and conflicts.

 The installation directory in the GitHub repository contains detailed instructions. You can either use the provided Docker image to create a container with the necessary environments or use the .yml files to create them locally.

 Download the example code files

 You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files emailed directly to you.

 You can download the code files by following these steps:

 	Log in or register at http://www.packtpub.com.

 	Select the SUPPORT tab.

 	Click on Code Downloads & Errata.

 	Enter the name of the book in the Search box and follow the on-screen instructions.

 Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of your preferred compression tool:

 	WinRAR or 7-Zip for Windows

 	Zipeg, iZip, or UnRarX for Mac

 	7-Zip or PeaZip for Linux

 The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Machine-Learning-for-Algorithmic-Trading-Second-Edition. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781839217715_ColorImages.pdf.

 Conventions used

 There are a number of text conventions used throughout this book.

 CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example, "The compute_factors() method creates a MeanReversion factor instance and creates long, short, and ranking pipeline columns."

 A block of code is set as follows:

 from pykalman import KalmanFilter
kf = KalmanFilter(transition_matrices = [1],
 observation_matrices = [1],
 initial_state_mean = 0,
 initial_state_covariance = 1,
 observation_covariance=1,
 transition_covariance=.01)

 Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in menus or dialog boxes, also appear in the text like this. For example, "The Python Algorithmic Trading Library (PyAlgoTrade) focuses on backtesting and offers support for paper trading and live trading."

 Informational notes appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: Email feedback@packtpub.com, and mention the book's title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book we would be grateful if you would report this to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

 Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

 Reviews

 Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions, we at Packt can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

 For more information about Packt, please visit packtpub.com.

 Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

 	Scan the QR code or visit the link below
 [image:]
https://packt.link/free-ebook/9781839217715

 	Submit your proof of purchase

 	That’s it! We’ll send your free PDF and other benefits to your email directly

 1

 Machine Learning for Trading – From Idea to Execution

 Algorithmic trading relies on computer programs that execute algorithms to automate some or all elements of a trading strategy. Algorithms are a sequence of steps or rules designed to achieve a goal. They can take many forms and facilitate optimization throughout the investment process, from idea generation to asset allocation, trade execution, and risk management.

 Machine learning (ML) involves algorithms that learn rules or patterns from data to achieve a goal such as minimizing a prediction error. The examples in this book will illustrate how ML algorithms can extract information from data to support or automate key investment activities. These activities include observing the market and analyzing data to form expectations about the future and decide on placing buy or sell orders, as well as managing the resulting portfolio to produce attractive returns relative to the risk.

 Ultimately, the goal of active investment management is to generate alpha, defined as portfolio returns in excess of the benchmark used for evaluation. The fundamental law of active management postulates that the key to generating alpha is having accurate return forecasts combined with the ability to act on these forecasts (Grinold 1989; Grinold and Kahn 2000).

 This law defines the information ratio (IR) to express the value of active management as the ratio of the return difference between the portfolio and a benchmark to the volatility of those returns. It further approximates the IR as the product of the following:

 	The information coefficient (IC), which measures the quality of forecasts as their rank correlation with outcomes

 	The square root of the breadth of a strategy expressed as the number of independent bets on these forecasts

 The competition of sophisticated investors in financial markets implies that making precise predictions to generate alpha requires superior information, either through access to better data, a superior ability to process it, or both.

 This is where ML comes in: applications of ML for trading (ML4T) typically aim to make more efficient use of a rapidly diversifying range of data to produce both better and more actionable forecasts, thus improving the quality of investment decisions and results.

 Historically, algorithmic trading used to be more narrowly defined as the automation of trade execution to minimize the costs offered by the sell-side. This book takes a more comprehensive perspective since the use of algorithms in general and ML in particular has come to impact a broader range of activities, from generating ideas and extracting signals from data to asset allocation, position-sizing, and testing and evaluating strategies.

 This chapter looks at industry trends that have led to the emergence of ML as a source of competitive advantage in the investment industry. We will also look at where ML fits into the investment process to enable algorithmic trading strategies. More specifically, we will be covering the following topics:

 	Key trends behind the rise of ML in the investment industry

 	The design and execution of a trading strategy that leverages ML

 	Popular use cases for ML in trading

 You can find links to additional resources and references in the README file for this chapter in the GitHub repository (https://github.com/PacktPublishing/Machine-Learning-for-Algorithmic-Trading-Second-Edition).

 The rise of ML in the investment industry

 The investment industry has evolved dramatically over the last several decades and continues to do so amid increased competition, technological advances, and a challenging economic environment. This section reviews key trends that have shaped the overall investment environment and the context for algorithmic trading and the use of ML more specifically.

 The trends that have propelled algorithmic trading and ML to their current prominence include:

 	Changes in the market microstructure, such as the spread of electronic trading and the integration of markets across asset classes and geographies

 	The development of investment strategies framed in terms of risk-factor exposure, as opposed to asset classes

 	The revolutions in computing power, data generation and management, and statistical methods, including breakthroughs in deep learning

 	The outperformance of the pioneers in algorithmic trading relative to human, discretionary investors

 In addition, the financial crises of 2001 and 2008 have affected how investors approach diversification and risk management. One outcome is the rise in low-cost passive investment vehicles in the form of exchange-traded funds (ETFs).

 Amid low yields and low volatility following the 2008 crisis, which triggered large-scale asset purchases by leading central banks, cost-conscious investors shifted over $3.5 trillion from actively managed mutual funds into passively managed ETFs.

 Competitive pressure is also reflected in lower hedge fund fees, which dropped from the traditional 2 percent annual management fee and 20 percent take of profits to an average of 1.48 percent and 17.4 percent, respectively, in 2017.

 From electronic to high-frequency trading

 Electronic trading has advanced dramatically in terms of capabilities, volume, coverage of asset classes, and geographies since networks started routing prices to computer terminals in the 1960s. Equity markets have been at the forefront of this trend worldwide. See Harris (2003) and Strumeyer (2017) for comprehensive coverage of relevant changes in financial markets; we will return to this topic when we cover how to work with market and fundamental data in the next chapter.

 The 1997 order-handling rules by the SEC introduced competition to exchanges through electronic communication networks (ECNs). ECNs are automated alternative trading systems (ATS) that match buy-and-sell orders at specified prices, primarily for equities and currencies, and are registered as broker-dealers. It allows significant brokerages and individual traders in different geographic locations to trade directly without intermediaries, both on exchanges and after hours.

 Dark pools are another type of private ATS that allows institutional investors to trade large orders without publicly revealing their information, contrary to how exchanges managed their order books prior to competition from ECNs. Dark pools do not publish pre-trade bids and offers, and trade prices only become public some time after execution. They have grown substantially since the mid-2000s to account for 40 percent of equities traded in the US due to concerns about adverse price movements of large orders and order front-running by high-frequency traders. They are often housed within large banks and are subject to SEC regulation.

 With the rise of electronic trading, algorithms for cost-effective execution developed rapidly and adoption spread quickly from the sell-side to the buy-side and across asset classes. Automated trading emerged around 2000 as a sell-side tool aimed at cost-effective execution that broke down orders into smaller, sequenced chunks to limit their market impact. These tools spread to the buy side and became increasingly sophisticated by taking into account, for example, transaction costs and liquidity, as well as short-term price and volume forecasts.

 Direct market access (DMA) gives a trader greater control over execution by allowing them to send orders directly to the exchange using the infrastructure and market participant identification of a broker who is a member of an exchange. Sponsored access removes pre-trade risk controls by the brokers and forms the basis for high-frequency trading (HFT).

 HFT refers to automated trades in financial instruments that are executed with extremely low latency in the microsecond range and where participants hold positions for very short periods. The goal is to detect and exploit inefficiencies in the market microstructure, the institutional infrastructure of trading venues.

 HFT has grown substantially over the past 10 years and is estimated to make up roughly 55 percent of trading volume in US equity markets and about 40 percent in European equity markets. HFT has also grown in futures markets to roughly 80 percent of foreign-exchange futures volumes and two-thirds of both interest rate and Treasury 10-year futures volumes (Miller 2016).

 HFT strategies aim to earn small profits per trade using passive or aggressive strategies. Passive strategies include arbitrage trading to profit from very small price differentials for the same asset, or its derivatives, traded on different venues. Aggressive strategies include order anticipation or momentum ignition. Order anticipation, also known as liquidity detection, involves algorithms that submit small exploratory orders to detect hidden liquidity from large institutional investors and trade ahead of a large order to benefit from subsequent price movements. Momentum ignition implies an algorithm executing and canceling a series of orders to spoof other HFT algorithms into buying (or selling) more aggressively and benefit from the resulting price changes.

 Regulators have expressed concern over the potential link between certain aggressive HFT strategies and increased market fragility and volatility, such as that experienced during the May 2010 Flash Crash, the October 2014 Treasury market volatility, and the sudden crash by over 1,000 points of the Dow Jones Industrial Average on August 24, 2015. At the same time, market liquidity has increased with trading volumes due to the presence of HFT, which has lowered overall transaction costs.

 The combination of reduced trading volumes amid lower volatility and rising costs of technology and access to both data and trading venues has led to financial pressure. Aggregate HFT revenues from US stocks were estimated to have dropped beneath $1 billion in 2017 for the first time since 2008, down from $7.9 billion in 2009. This trend has led to industry consolidation, with various acquisitions by, for example, the largest listed proprietary trading firm, Virtu Financial, and shared infrastructure investments, such as the new Go West ultra-low latency route between Chicago and Tokyo. Simultaneously, start-ups such as Alpha Trading Labs are making HFT trading infrastructure and data available to democratize HFT by crowdsourcing algorithms in return for a share of the profits.

 Factor investing and smart beta funds

 The return provided by an asset is a function of the uncertainty or risk associated with the investment. An equity investment implies, for example, assuming a company's business risk, and a bond investment entails default risk. To the extent that specific risk characteristics predict returns, identifying and forecasting the behavior of these risk factors becomes a primary focus when designing an investment strategy. It yields valuable trading signals and is the key to superior active-management results. The industry's understanding of risk factors has evolved very substantially over time and has impacted how ML is used for trading. Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, and Chapter 5, Portfolio Optimization and Performance Evaluation, will dive deeper into the practical applications of the concepts outlined here; see Ang (2014) for comprehensive coverage.

 Modern portfolio theory (MPT) introduced the distinction between idiosyncratic and systematic sources of risk for a given asset. Idiosyncratic risk can be eliminated through diversification, but systematic risk cannot. In the early 1960s, the capital asset pricing model (CAPM) identified a single factor driving all asset returns: the return on the market portfolio in excess of T-bills. The market portfolio consisted of all tradable securities, weighted by their market value. The systematic exposure of an asset to the market is measured by beta, which is the correlation between the returns of the asset and the market portfolio.

 The recognition that the risk of an asset does not depend on the asset in isolation, but rather how it moves relative to other assets and the market as a whole, was a major conceptual breakthrough. In other words, assets earn a risk premium based on their exposure to underlying, common risks experienced by all assets, not due to their specific, idiosyncratic characteristics.

 Subsequently, academic research and industry experience have raised numerous critical questions regarding the CAPM prediction that an asset's risk premium depends only on its exposure to a single factor measured by the asset's beta. Instead, numerous additional risk factors have since been discovered. A factor is a quantifiable signal, attribute, or any variable that has historically correlated with future stock returns and is expected to remain correlated in the future.

 These risk factors were labeled anomalies since they contradicted the efficient market hypothesis (EMH). The EMH maintains that market equilibrium would always price securities according to the CAPM so that no other factors should have predictive power (Malkiel 2003). The economic theory behind factors can be either rational, where factor risk premiums compensate for low returns during bad times, or behavioral, where agents fail to arbitrage away excess returns.

 Well-known anomalies include the value, size, and momentum effects that help predict returns while controlling for the CAPM market factor. The size effect rests on small firms systematically outperforming large firms (Banz 1981; Reinganum 1981). The value effect (Basu et. al. 1981) states that firms with low valuation metrics outperform their counterparts with the opposite characteristics. It suggests that firms with low price multiples, such as the price-to-earnings or the price-to-book ratios, perform better than their more expensive peers (as suggested by the inventors of value investing, Benjamin Graham and David Dodd, and popularized by Warren Buffet).

 The momentum effect, discovered in the late 1980s by, among others, Clifford Asness, the founding partner of AQR, states that stocks with good momentum, in terms of recent 6-12 month returns, have higher returns going forward than poor momentum stocks with similar market risk. Researchers also found that value and momentum factors explain returns for stocks outside the US, as well as for other asset classes, such as bonds, currencies, and commodities, and additional risk factors (Jegadeesh and Titman 1993; Asness, Moskowitz, and Pedersen 2013).

 In fixed income, the value strategy is called riding the yield curve and is a form of the duration premium. In commodities, it is called the roll return, with a positive return for an upward-sloping futures curve and a negative return otherwise. In foreign exchange, the value strategy is called carry.

 There is also an illiquidity premium. Securities that are more illiquid trade at low prices and have high average excess returns, relative to their more liquid counterparts. Bonds with a higher default risk tend to have higher returns on average, reflecting a credit risk premium. Since investors are willing to pay for insurance against high volatility when returns tend to crash, sellers of volatility protection in options markets tend to earn high returns.

 Multifactor models define risks in broader and more diverse terms than just the market portfolio. In 1976, Stephen Ross proposed the arbitrage pricing theory, which asserted that investors are compensated for multiple systematic sources of risk that cannot be diversified away (Roll and Ross 1984). The three most important macro factors are growth, inflation, and volatility, in addition to productivity, demographic, and political risk. In 1993, Eugene Fama and Kenneth French combined the equity risk factors' size and value with a market factor into a single three-factor model that better explained cross-sectional stock returns. They later added a model that also included bond risk factors to simultaneously explain returns for both asset classes (Fama and French 1993; 2015).

 A particularly attractive aspect of risk factors is their low or negative correlation. Value and momentum risk factors, for instance, are negatively correlated, reducing the risk and increasing risk-adjusted returns above and beyond the benefit implied by the risk factors. Furthermore, using leverage and long-short strategies, factor strategies can be combined into market-neutral approaches. The combination of long positions in securities exposed to positive risks with underweight or short positions in the securities exposed to negative risks allows for the collection of dynamic risk premiums.

 As a result, the factors that explained returns above and beyond the CAPM were incorporated into investment styles that tilt portfolios in favor of one or more factors, and assets began to migrate into factor-based portfolios. The 2008 financial crisis underlined how asset-class labels could be highly misleading and create a false sense of diversification when investors do not look at the underlying factor risks, as asset classes came crashing down together.

 Over the past several decades, quantitative factor investing has evolved from a simple approach based on two or three styles to multifactor smart or exotic beta products. Smart beta funds have crossed $1 trillion AUM in 2017, testifying to the popularity of the hybrid investment strategy that combines active and passive management. Smart beta funds take a passive strategy but modify it according to one or more factors, such as cheaper stocks or screening them according to dividend payouts, to generate better returns. This growth has coincided with increasing criticism of the high fees charged by traditional active managers as well as heightened scrutiny of their performance.

 The ongoing discovery and successful forecasting of risk factors that, either individually or in combination with other risk factors, significantly impact future asset returns across asset classes is a key driver of the surge in ML in the investment industry and will be a key theme throughout this book.

 Algorithmic pioneers outperform humans

 The track record and growth of assets under management (AUM) of firms that spearheaded algorithmic trading has played a key role in generating investor interest and subsequent industry efforts to replicate their success. Systematic funds differ from HFT in that trades may be held significantly longer while seeking to exploit arbitrage opportunities as opposed to advantages from sheer speed.

 Systematic strategies that mostly or exclusively rely on algorithmic decision-making were most famously introduced by mathematician James Simons, who founded Renaissance Technologies in 1982 and built it into the premier quant firm. Its secretive Medallion Fund, which is closed to outsiders, has earned an estimated annualized return of 35 percent since 1982.

 D. E. Shaw, Citadel, and Two Sigma, three of the most prominent quantitative hedge funds that use systematic strategies based on algorithms, rose to the all-time top-20 performers for the first time in 2017, in terms of total dollars earned for investors, after fees, and since inception.

 D. E. Shaw, founded in 1988 and with $50 billion in AUM in 2019, joined the list at number 3. Citadel, started in 1990 by Kenneth Griffin, manages $32 billion, and ranked 5. Two Sigma, started only in 2001 by D. E. Shaw alumni John Overdeck and David Siegel, has grown from $8 billion in AUM in 2011 to $60 billion in 2019. Bridgewater, started by Ray Dalio in 1975, had over $160 billion in AUM in 2019 and continues to lead due to its Pure Alpha fund, which also incorporates systematic strategies.

 Similarly, on the Institutional Investors 2018 Hedge Fund 100 list, the four largest firms, and five of the top six firms, rely largely or completely on computers and trading algorithms to make investment decisions—and all of them have been growing their assets in an otherwise challenging environment. Several quantitatively focused firms climbed the ranks and, in some cases, grew their assets by double-digit percentages. Number 2-ranked Applied Quantitative Research (AQR) grew its hedge fund assets by 48 percent in 2017 and by 29 percent in 2018 to nearly $90 billion.

 ML-driven funds attract $1 trillion in AUM

 The familiar three revolutions in computing power, data availability, and statistical methods have made the adoption of systematic, data-driven strategies not only more compelling and cost-effective but a key source of competitive advantage.

 As a result, algorithmic approaches are not only finding wider application in the hedge-fund industry that pioneered these strategies but across a broader range of asset managers and even passively managed vehicles such as ETFs. In particular, predictive analytics using ML and algorithmic automation play an increasingly prominent role in all steps of the investment process across asset classes, from idea generation and research to strategy formulation and portfolio construction, trade execution, and risk management.

 Estimates of industry size vary because there is no objective definition of a quantitative or algorithmic fund. Many traditional hedge funds or even mutual funds and ETFs are introducing computer-driven strategies or integrating them into a discretionary environment in a human-plus-machine approach.

 According to the Economist, in 2016, systematic funds became the largest driver of institutional trading in the US stock market (ignoring HFT, which mainly acts as a middleman). In 2019, they accounted for over 35 percent of institutional volume, up from just 18 percent in 2010; just 10% of trading is still due to traditional equity funds. Measured by the Russell 3000 index, the value of US stocks is around $31 trillion. The three types of computer-managed funds—index funds, ETFs, and quant funds—run around 35 percent, whereas human managers at traditional hedge funds and other mutual funds manage just 24 percent.

 The market research firm Preqin estimates that almost 1,500 hedge funds make a majority of their trades with help from computer models. Quantitative hedge funds are now responsible for 27 percent of all US stock trades by investors, up from 14 percent in 2013. But many use data scientists—or quants—who, in turn, use machines to build large statistical models.

 In recent years, however, funds have moved toward true ML, where artificially intelligent systems can analyze large amounts of data at speed and improve themselves through such analyses. Recent examples include Rebellion Research, Sentient, and Aidyia, which rely on evolutionary algorithms and deep learning to devise fully automatic artificial intelligence (AI)-driven investment platforms.

 From the core hedge fund industry, the adoption of algorithmic strategies has spread to mutual funds and even passively managed EFTs in the form of smart beta funds, and to discretionary funds in the form of quantamental approaches.

 The emergence of quantamental funds

 Two distinct approaches have evolved in active investment management: systematic (or quant) and discretionary investing. Systematic approaches rely on algorithms for a repeatable and data-driven approach to identify investment opportunities across many securities. In contrast, a discretionary approach involves an in-depth analysis of the fundamentals of a smaller number of securities. These two approaches are becoming more similar as fundamental managers take more data science-driven approaches.

 Even fundamental traders now arm themselves with quantitative techniques, accounting for $55 billion of systematic assets, according to Barclays. Agnostic to specific companies, quantitative funds trade based on patterns and dynamics across a wide swath of securities. Such quants accounted for about 17 percent of total hedge fund assets, as data compiled by Barclays in 2018 showed.

 Point72, with $14 billion in assets, has been shifting about half of its portfolio managers to a human-plus-machine approach. Point72 is also investing tens of millions of dollars into a group that analyzes large amounts of alternative data and passes the results on to traders.

 Investments in strategic capabilities

 Three trends have boosted the use of data in algorithmic trading strategies and may further shift the investment industry from discretionary to quantitative styles:

 	The exponential increase in the availability of digital data

 	The increase in computing power and data storage capacity at a lower cost

 	The advances in statistical methods for analyzing complex datasets

 Rising investments in related capabilities—technology, data, and, most importantly, skilled humans—highlight how significant algorithmic trading using ML has become for competitive advantage, especially in light of the rising popularity of passive, indexed investment vehicles, such as ETFs, since the 2008 financial crisis.

 Morgan Stanley noted that only 23 percent of its quant clients say they are not considering using or not already using ML, down from 44 percent in 2016. Guggenheim Partners built what it calls a supercomputing cluster for $1 million at the Lawrence Berkeley National Laboratory in California to help crunch numbers for Guggenheim's quant investment funds. Electricity for computers costs another $1 million per year.

 AQR is a quantitative investment group that relies on academic research to identify and systematically trade factors that have, over time, proven to beat the broader market. The firm used to eschew the purely computer-powered strategies of quant peers such as Renaissance Technologies or DE Shaw. More recently, however, AQR has begun to seek profitable patterns in markets using ML to parse through novel datasets, such as satellite pictures of shadows cast by oil wells and tankers.

 The leading firm BlackRock, with over $5 trillion in AUM, also bets on algorithms to beat discretionary fund managers by heavily investing in SAE, a systematic trading firm it acquired during the financial crisis. Franklin Templeton bought Random Forest Capital, a debt-focused, data-led investment company, for an undisclosed amount, hoping that its technology can support the wider asset manager.

 ML and alternative data

 Hedge funds have long looked for alpha through informational advantage and the ability to uncover new uncorrelated signals. Historically, this included things such as proprietary surveys of shoppers, or of voters ahead of elections or referendums.

 Occasionally, the use of company insiders, doctors, and expert networks to expand knowledge of industry trends or companies crosses legal lines: a series of prosecutions of traders, portfolio managers, and analysts for using insider information after 2010 has shaken the industry.

 In contrast, the informational advantage from exploiting conventional and alternative data sources using ML is not related to expert and industry networks or access to corporate management, but rather the ability to collect large quantities of very diverse data sources and analyze them in real time.

 Conventional data includes economic statistics, trading data, or corporate reports. Alternative data is much broader and includes sources such as satellite images, credit card sales, sentiment analysis, mobile geolocation data, and website scraping, as well as the conversion of data generated in the ordinary course of business into valuable intelligence. It includes, in principle, any data source containing (potential) trading signals.

 For instance, data from an insurance company on the sales of new car insurance policies captures not only the volumes of new car sales but can be broken down into brands or geographies. Many vendors scrape websites for valuable data, ranging from app downloads and user reviews to airline and hotel bookings. Social media sites can also be scraped for hints on consumer views and trends.

 Typically, the datasets are large and require storage, access, and analysis using scalable data solutions for parallel processing, such as Hadoop and Spark. There are more than 1 billion websites with more than 10 trillion individual web pages, with 500 exabytes (or 500 billion gigabytes) of data, according to Deutsche Bank. And more than 100 million websites are added to the internet every year.

 Real-time insights into a company's prospects, long before their results are released, can be gleaned from a decline in job listings on its website, the internal rating of its chief executive by employees on the recruitment site Glassdoor, or a dip in the average price of clothes on its website. Such information can be combined with satellite images of car parks and geolocation data from mobile phones that indicate how many people are visiting stores. On the other hand, strategic moves can be learned from a jump in job postings for specific functional areas or in certain geographies.

 Among the most valuable sources is data that directly reveals consumer expenditures, with credit card information as a primary source. This data offers only a partial view of sales trends, but it can offer vital insights when combined with other data. Point72, for instance, at some point analyzed 80 million credit card transactions every day. We will explore the various sources, their use cases, and how to evaluate them in detail in Chapter 3, Alternative Data for Finance – Categories and Use Cases.

 Investment groups have more than doubled their spending on alternative sets and data scientists in the past two years, as the asset management industry has tried to reinvigorate its fading fortunes. In December 2018, there were 375 alternative data providers listed on alternativedata.org (sponsored by provider Yipit).

 Asset managers spent a total of $373 million on datasets and hiring new employees to parse them in 2017, up 60 percent from 2016, and will probably spend a total of $616 million this year, according to a survey of investors by alternativedata.org. It forecast that overall expenditures will climb to over $1 billion by 2020. Some estimates are even higher: Optimus, a consultancy, estimates that investors are spending about $5 billion per year on alternative data, and expects the industry to grow 30 percent per year over the coming years.

 As competition for valuable data sources intensifies, exclusivity arrangements are a key feature of data-source contracts, to maintain an informational advantage. At the same time, privacy concerns are mounting, and regulators have begun to start looking at the currently largely unregulated data-provider industry.

 Crowdsourcing trading algorithms

 More recently, several algorithmic trading firms have begun to offer investment platforms that provide access to data and a programming environment to crowdsource risk factors that become part of an investment strategy or entire trading algorithms. Key examples include WorldQuant, Quantopian, and, most recently, Alpha Trading Labs (launched in 2018).

 WorldQuant was spun out of Millennium Management (AUM: $41 billion) in 2007, for whom it manages around $5 billion. It employs hundreds of scientists and many more part-time workers around the world in its alpha factory, which organizes the investment process as a quantitative assembly line. This factory claims to have produced 4 million successfully tested alpha factors for inclusion in more complex trading strategies and is aiming for 100 million. Each alpha factor is an algorithm that seeks to predict a future asset price change. Other teams then combine alpha factors into strategies and strategies into portfolios, allocate funds between portfolios, and manage risk while avoiding strategies that cannibalize each other. See the Appendix, Alpha Factor Library, for dozens of examples of quantitative factors used at WorldQuant.

 Designing and executing an ML-driven strategy

 In this book, we demonstrate how ML fits into the overall process of designing, executing, and evaluating a trading strategy. To this end, we'll assume that an ML-based strategy is driven by data sources that contain predictive signals for the target universe and strategy, which, after suitable preprocessing and feature engineering, permit an ML model to predict asset returns or other strategy inputs. The model predictions, in turn, translate into buy or sell orders based on human discretion or automated rules, which in turn may be manually encoded or learned by another ML algorithm in an end-to-end approach.

 Figure 1.1 depicts the key steps in this workflow, which also shapes the organization of this book:

 [image:]
 Figure 1.1: The ML4T workflow

 Part 1 introduces important skills and techniques that apply across different strategies and ML use cases. These include the following:

 	How to source and manage important data sources

 	How to engineer informative features or alpha factors that extract signal content

 	How to manage a portfolio and track strategy performance

 Moreover, Chapter 8, The ML4T Workflow – From Model to Strategy Backtesting, in Part 2, covers strategy backtesting. We will briefly outline each of these areas before turning to relevant ML use cases, which make up the bulk of the book in Parts 2, 3, and 4.

 Sourcing and managing data

 The dramatic evolution of data availability in terms of volume, variety, and velocity is a key complement to the application of ML to trading, which in turn has boosted industry spending on the acquisition of new data sources. However, the proliferating supply of data requires careful selection and management to uncover the potential value, including the following steps:

 	Identify and evaluate market, fundamental, and alternative data sources containing alpha signals that do not decay too quickly.

 	Deploy or access a cloud-based scalable data infrastructure and analytical tools like Hadoop or Spark to facilitate fast, flexible data access.

 	Carefully manage and curate data to avoid look-ahead bias by adjusting it to the desired frequency on a point-in-time basis. This means that data should reflect only information available and known at the given time. ML algorithms trained on distorted historical data will almost certainly fail during live trading.

 We will cover these aspects in practical detail in Chapter 2, Market and Fundamental Data – Sources and Techniques, and Chapter 3, Alternative Data for Finance – Categories and Use Cases.

 From alpha factor research to portfolio management

 Alpha factors are designed to extract signals from data to predict returns for a given investment universe over the trading horizon. A typical factor takes on a single value for each asset when evaluated at a given point in time, but it may combine one or several input variables or time periods. If you are already familiar with the ML workflow (see Chapter 6, The Machine Learning Process), you may view alpha factors as domain-specific features designed for a specific strategy. Working with alpha factors entails a research phase and an execution phase as outlined in Figure 1.2:

 [image:]
 Figure 1.2: The alpha factor research process

 The research phase

 The research phase includes the design and evaluation of alpha factors. A predictive factor captures some aspect of a systematic relationship between a data source and an important strategy input like asset returns. Optimizing the predictive power requires creative feature engineering in the form of effective data transformations.

 False discoveries due to data mining are a key risk that requires careful management. One way of reducing the risk is to focus the search process by following the guidance of decades of academic research that has produced several Nobel prizes. Many investors still prefer factors that align with theories about financial markets and investor behavior. Laying out these theories is beyond the scope of this book, but the references highlight avenues to dive deeper into this important framing aspect.

 Validating the signal content of an alpha factor requires a robust estimate of its predictive power in a representative context. There are numerous methodological and practical pitfalls that undermine a reliable estimate. In addition to data mining and the failure to correct for multiple testing bias, these pitfalls include the use of data contaminated by survivorship or look-ahead bias, not reflecting realistic Principal, Interest and Taxes (PIT) information. Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, discusses how to successfully manage this process.

 The execution phase

 During the execution phase, alpha factors emit signals that lead to buy or sell orders. The resulting portfolio holdings, in turn, have specific risk profiles that interact and contribute to the aggregate portfolio risk. Portfolio management involves optimizing position sizes to achieve a balance of return and risk of the portfolio that aligns with the investment objectives.

 Chapter 5, Portfolio Optimization and Performance Evaluation, introduces key techniques and tools applicable to this phase of the trading strategy workflow, from portfolio optimization to performance measurement.

 Strategy backtesting

 Incorporating an investment idea into a real-life algorithmic strategy implies a significant risk that requires a scientific approach. Such an approach involves extensive empirical tests with the goal of rejecting the idea based on its performance in alternative out-of-sample market scenarios. Testing may involve simulated data to capture scenarios deemed possible but not reflected in historic data.

 To obtain unbiased performance estimates for a candidate strategy, we need a backtesting engine that simulates its execution in a realistic manner. In addition to the potential biases introduced by the data or a flawed use of statistics, the backtesting engine needs to accurately represent the practical aspects of trade-signal evaluation, order placement, and execution in line with market conditions.

 Chapter 8, The ML4T Workflow – From Model to Strategy Backtesting, shows how to use backtrader and Zipline and navigate the multiple methodological challenges and completes the introduction to the end-to-end ML4T workflow.

 ML for trading – strategies and use cases

 In practice, we apply ML to trading in the context of a specific strategy to meet a certain business goal. In this section, we briefly describe how trading strategies have evolved and diversified, and outline real-world examples of ML applications, highlighting how they relate to the content covered in this book.

 The evolution of algorithmic strategies

 Quantitative strategies have evolved and become more sophisticated in three waves:

 	In the 1980s and 1990s, signals often emerged from academic research and used a single or very few inputs derived from market and fundamental data. AQR, one of the largest quantitative hedge funds today, was founded in 1998 to implement such strategies at scale. These signals are now largely commoditized and available as ETF, such as basic mean-reversion strategies.

 	In the 2000s, factor-based investing proliferated based on the pioneering work by Eugene Fama and Kenneth French and others. Funds used algorithms to identify assets exposed to risk factors like value or momentum to seek arbitrage opportunities. Redemptions during the early days of the financial crisis triggered the quant quake of August 2007, which cascaded through the factor-based fund industry. These strategies are now also available as long-only smart beta funds that tilt portfolios according to a given set of risk factors.

 	The third era is driven by investments in ML capabilities and alternative data to generate profitable signals for repeatable trading strategies. Factor decay is a major challenge: the excess returns from new anomalies have been shown to drop by a quarter from discovery to publication, and by over 50 percent after publication due to competition and crowding.

 Today, traders pursue a range of different objectives when using algorithms to execute rules:

 	Trade execution algorithms that aim to achieve favorable pricing

 	Short-term trades that aim to profit from small price movements, for example, due to arbitrage

 	Behavioral strategies that aim to anticipate the behavior of other market participants

 	Trading strategies based on absolute and relative price and return predictions

 Trade-execution programs aim to limit the market impact of trades and range from the simple slicing of trades to match time-weighted or volume-weighted average pricing. Simple algorithms leverage historical patterns, whereas more sophisticated versions take into account transaction costs, implementation shortfall, or predicted price movements.

 HFT funds most prominently rely on very short holding periods to benefit from minor price movements based on bid-ask or statistical arbitrage. Behavioral algorithms usually operate in lower-liquidity environments and aim to anticipate moves by a larger player with significant price impact, based, for example, on sniffing algorithms that generate insights into other market participants' strategies.

 In this book, we will focus on strategies that trade based on expectations of relative price changes over various time horizons beyond the very short term, dominated by latency advantages, because they are both widely used and very suitable for the application of ML.

 Use cases of ML for trading

 ML is capable of extracting tradable signals from a wide range of market, fundamental, and alternative data and is thus applicable to strategies targeting a range of asset classes and investment horizons. More generally, however, it is a flexible tool to support or automate decisions with quantifiable goals and digital data relevant to achieving these goals. Therefore, it can be applied at several steps of the trading process. There are numerous use cases in different categories, including:

 	Data mining to identify patterns, extract features, and generate insights

 	Supervised learning to generate risk factors or alphas and create trade ideas

 	The aggregation of individual signals into a strategy

 	The allocation of assets according to risk profiles learned by an algorithm

 	The testing and evaluation of strategies, including through the use of synthetic data

 	The interactive, automated refinement of a strategy using reinforcement learning

 We briefly highlight some of these applications and identify where we will demonstrate their use in later chapters.

 Data mining for feature extraction and insights

 The cost-effective evaluation of large, complex datasets requires the detection of signals at scale. There are several examples throughout the book:

 	Information theory helps estimate a signal content of candidate features and is thus useful for extracting the most valuable inputs for an ML model. In Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, we use mutual information to compare the potential values of individual features for a supervised learning algorithm to predict asset returns. Chapter 18 in De Prado (2018) estimates the information content of a price series as a basis for deciding between alternative trading strategies.

 	Unsupervised learning provides a broad range of methods to identify structure in data to gain insights or help solve a downstream task. We provide several examples:
 	In Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning, we introduce clustering and dimensionality reduction to generate features from high-dimensional datasets.

 	In Chapter 15, Topic Modeling – Summarizing Financial News, we apply Bayesian probability models to summarize financial text data.

 	In Chapter 20, Autoencoders for Conditional Risk Factors and Asset Pricing, we use deep learning to extract nonlinear risk factors conditioned on asset characteristics and predict stock returns based on Kelly et al. (2020).

 	Model transparency emphasizes model-specific ways to gain insights into the predictive power of individual variables and introduce a novel game-theoretic approach called SHapley Additive exPlanations (SHAP). We apply it to gradient boosting machines with a large number of input variables in Chapter 12, Boosting Your Trading Strategy, and the Appendix, Alpha Factor Library.

 Supervised learning for alpha factor creation

 The most familiar rationale for applying ML to trading is to obtain predictions of asset fundamentals, price movements, or market conditions. A strategy can leverage multiple ML algorithms that build on each other:

 	Downstream models can generate signals at the portfolio level by integrating predictions about the prospects of individual assets, capital market expectations, and the correlation among securities.

 	Alternatively, ML predictions can inform discretionary trades as in the quantamental approach outlined previously.

 ML predictions can also target specific risk factors, such as value or volatility, or implement technical approaches, such as trend-following or mean reversion:

 	In Chapter 3, Alternative Data for Finance – Categories and Use Cases, we illustrate how to work with fundamental data to create inputs to ML-driven valuation models.

 	In Chapter 14, Text Data for Trading – Sentiment Analysis, Chapter 15, Topic Modeling – Summarizing Financial News, and Chapter 16, Word Embeddings for Earnings Calls and SEC Filings, we use alternative data on business reviews that can be used to project revenues for a company as an input for a valuation exercise.

 	In Chapter 9, Time-Series Models for Volatility Forecasts and Statistical Arbitrage, we demonstrate how to forecast macro variables as inputs to market expectations and how to forecast risk factors such as volatility.

 	In Chapter 19, RNNs for Multivariate Time Series and Sentiment Analysis, we introduce recurrent neural networks that achieve superior performance with nonlinear time series data.

 Asset allocation

 ML has been used to allocate portfolios based on decision-tree models that compute a hierarchical form of risk parity. As a result, risk characteristics are driven by patterns in asset prices rather than by asset classes and achieve superior risk-return characteristics.

 In Chapter 5, Portfolio Optimization and Performance Evaluation, and Chapter 13, Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning, we illustrate how hierarchical clustering extracts data-driven risk classes that better reflect correlation patterns than conventional asset class definition (see Chapter 16 in De Prado 2018).

 Testing trade ideas

 Backtesting is a critical step to select successful algorithmic trading strategies. Cross-validation using synthetic data is a key ML technique to generate reliable out-of-sample results when combined with appropriate methods to correct for multiple testing. The time-series nature of financial data requires modifications to the standard approach to avoid look-ahead bias or otherwise contaminating the data used for training, validation, and testing. In addition, the limited availability of historical data has given rise to alternative approaches that use synthetic data.

 We will demonstrate various methods to test ML models using market, fundamental, and alternative data sources that obtain sound estimates of out-of-sample errors.

 In Chapter 21, Generative Adversarial Networks for Synthetic Time-Series Data, we present generative adversarial networks (GANs), which are capable of producing high-quality synthetic data.

 Reinforcement learning

 Trading takes place in a competitive, interactive marketplace. Reinforcement learning aims to train agents to learn a policy function based on rewards; it is often considered as one of the most promising areas in financial ML. See, for example, Hendricks and Wilcox (2014) and Nevmyvaka, Feng, and Kearns (2006) for applications to trade execution.

 In Chapter 22, Deep Reinforcement Learning – Building a Trading Agent, we present key reinforcement algorithms like Q-learning to demonstrate the training of reinforcement learning algorithms for trading using OpenAI's Gym environment.

 Summary

 In this chapter, we reviewed key industry trends around algorithmic trading strategies, the emergence of alternative data, and the use of ML to exploit these new sources of informational advantage. Furthermore, we introduced key elements of the ML4T workflow and outlined important use cases of ML for trading in the context of different strategies.

 In the next two chapters, we will take a closer look at the oil that fuels any algorithmic trading strategy—the market, fundamental, and alternative data sources—using ML.

 2

 Market and Fundamental Data – Sources and Techniques

 Data has always been an essential driver of trading, and traders have long made efforts to gain an advantage from access to superior information. These efforts date back at least to the rumors that the House of Rothschild benefited handsomely from bond purchases upon advance news about the British victory at Waterloo, which was carried by pigeons across the channel.

 Today, investments in faster data access take the shape of the Go West consortium of leading high-frequency trading (HFT) firms that connects the Chicago Mercantile Exchange (CME) with Tokyo. The round-trip latency between the CME and the BATS (Better Alternative Trading System) exchanges in New York has dropped to close to the theoretical limit of eight milliseconds as traders compete to exploit arbitrage opportunities. At the same time, regulators and exchanges have started to introduce speed bumps that slow down trading to limit the adverse effects on competition of uneven access to information.

 Traditionally, investors mostly relied on publicly available market and fundamental data. Efforts to create or acquire private datasets, for example, through proprietary surveys, were limited. Conventional strategies focus on equity fundamentals and build financial models on reported financials, possibly combined with industry or macro data to project earnings per share and stock prices. Alternatively, they leverage technical analysis to extract signals from market data using indicators computed from price and volume information.

 Machine learning (ML) algorithms promise to exploit market and fundamental data more efficiently than human-defined rules and heuristics, particularly when combined with alternative data, which is the topic of the next chapter. We will illustrate how to apply ML algorithms ranging from linear models to recurrent neural networks (RNNs) to market and fundamental data and generate tradeable signals.

 This chapter introduces market and fundamental data sources and explains how they reflect the environment in which they are created. The details of the trading environment matter not only for the proper interpretation of market data but also for the design and execution of your strategy and the implementation of realistic backtesting simulations.

 We also illustrate how to access and work with trading and financial statement data from various sources using Python.

 In particular, this chapter will cover the following topics:

 	How market data reflects the structure of the trading environment

 	Working with trade and quote data at minute frequency

 	Reconstructing an order book from tick data using Nasdaq ITCH

 	Summarizing tick data using various types of bars

 	Working with eXtensible Business Reporting Language (XBRL)-encoded electronic filings

 	Parsing and combining market and fundamental data to create a price-to-earnings (P/E) series

 	How to access various market and fundamental data sources using Python

 You can find the code samples for this chapter and links to additional resources in the corresponding directory of the GitHub repository. The notebooks include color versions of the images.

 Market data reflects its environment

 Market data is the product of how traders place orders for a financial instrument directly or through intermediaries on one of the numerous marketplaces, how they are processed, and how prices are set by matching demand and supply. As a result, the data reflects the institutional environment of trading venues, including the rules and regulations that govern orders, trade execution, and price formation. See Harris (2003) for a global overview and Jones (2018) for details on the U.S. market.

 Algorithmic traders use algorithms, including ML, to analyze the flow of buy and sell orders and the resulting volume and price statistics to extract trade signals that capture insights into, for example, demand-supply dynamics or the behavior of certain market participants.

 We will first review institutional features that impact the simulation of a trading strategy during a backtest before we start working with actual tick data created by one such environment, namely Nasdaq.

 Market microstructure – the nuts and bolts

 Market microstructure studies how the institutional environment affects the trading process and shapes outcomes like price discovery, bid-ask spreads and quotes, intraday trading behavior, and transaction costs (Madhavan 2000; 2002). It is one of the fastest-growing fields of financial research, propelled by the rapid development of algorithmic and electronic trading.

 Today, hedge funds sponsor in-house analysts to track the rapidly evolving, complex details and ensure execution at the best possible market prices and design strategies that exploit market frictions. We will provide only a brief overview of these key concepts before we dive into the data generated by trading. The references contain several sources that treat this subject in great detail.

 How to trade – different types of orders

 Traders can place various types of buy or sell orders. Some orders guarantee immediate execution, while others may state a price threshold or other conditions that trigger execution. Orders are typically valid for the same trading day unless specified otherwise.

 A market order is intended for immediate execution of the order upon arrival at the trading venue, at the price that prevails at that moment. In contrast, a limit order only executes if the market price is higher than the limit for a sell limit order, or lower than the limit for a buy limit order. A stop order, in turn, only becomes active when the market price rises above a specified price for a buy stop order, or falls below a specified price for a sell order. A buy stop order can be used to limit the losses of short sales. Stop orders may also have limits.

 Numerous other conditions can be attached to orders. For example, all or none orders prevent partial execution; they are filled only if a specified number of shares is available and can be valid for a day or longer. They require special handling and are not visible to market participants. Fill or kill orders also prevent partial execution but cancel if not executed immediately. Immediate or cancel orders immediately buy or sell the number of shares that are available and cancel the remainder. Not-held orders allow the broker to decide on the time and price of execution. Finally, the market on open/close orders executes on or near the opening or closing of the market. Partial executions are allowed.

 Where to trade – from exchanges to dark pools

 Securities trade in highly organized and regulated exchanges or with varying degrees of formality in over-the-counter (OTC) markets. An exchange is a central marketplace where buyers and sellers compete for the lowest ask and highest bid, respectively. Exchange regulations typically impose listing and reporting requirements to create transparency and attract more traders and liquidity. OTC markets, such as the Best Market (OTCQX) or the Venture Market (OTCQB), often have lower regulatory barriers. As a result, they are suitable for a far broader range of securities, including bonds or American Depositary Receipts (ADRs; equity listed on a foreign exchange, for example, for Nestlé, S.A.).

 Exchanges may rely on bilateral trading or centralized order-driven systems that match all buy and sell orders according to certain rules. Many exchanges use intermediaries that provide liquidity by making markets in certain securities. These intermediaries include dealers that act as principals on their own behalf and brokers that trade as agents on behalf of others. Price formation may occur through auctions, such as in the New York Stock Exchange (NYSE), where the highest bid and lowest offer are matched, or through dealers who buy from sellers and sell to buyers.

 Back in the day, companies either registered and traded mostly on the NYSE, or they traded on OTC markets like Nasdaq. On the NYSE, a sole specialist intermediated trades of a given security. The specialist received buy and sell orders via a broker and tracked limit orders in a central order book. Limit orders were executed with a priority based on price and time. Buy market orders routed to the specialist transacted with the lowest ask (and sell market orders routed to the specialist transacted with the highest bid) in the limit order book, prioritizing earlier limit orders in the case of ties. Access to all orders in the central order book allowed the specialist to publish the best bid, ask prices, and set market prices based on the overall buy-sell imbalance.

 On Nasdaq, multiple market makers facilitated stock trades. Each dealer provided their best bid and ask price to a central quotation system and stood ready to transact the specified number of shares at the specified prices. Traders would route their orders to the market maker with the best quote via their broker. The competition for orders made execution at fair prices very likely. Market makers ensured a fair and orderly market, provided liquidity, and disseminated prices like specialists but only had access to the orders routed to them as opposed to market-wide supply and demand. This fragmentation could create difficulties in identifying fair value market prices.

 Today, trading has fragmented; instead of two principal venues in the US, there are more than thirteen displayed trading venues, including exchanges and (unregulated) alternative trading systems (ATSs) such as electronic communication networks (ECNs). Each reports trades to the consolidated tape, but at different latencies. To make matters more difficult, the rules of engagement for each venue differ with several different pricing and queuing models.

 The following table lists some of the larger global exchanges and the trading volumes for the 12 months ending 03/2018 in various asset classes, including derivatives. Typically, a minority of financial instruments account for most trading:

 	
 Exchange

 	
 Stocks

 	
 Market cap (USD mn)

 	
 # Listed companies

 	
 Volume / day (USD mn)

 	
 # Shares / day ('000)

 	
 # Options / day ('000)

 	
 NYSE

 	
 23,138,626

 	
 2,294

 	
 78,410

 	
 6,122

 	
 1,546

 	
 Nasdaq — US

 	
 10,375,718

 	
 2,968

 	
 65,026

 	
 7,131

 	
 2,609

 	
 Japan Exchange Group Inc.

 	
 6,287,739

 	
 3,618

 	
 28,397

 	
 3,361

 	
 1

 	
 Shanghai Stock Exchange

 	
 5,022,691

 	
 1,421

 	
 34,736

 	
 9,801

 	

 	
 Euronext

 	
 4,649,073

 	
 1,240

 	
 9,410

 	
 836

 	
 304

 	
 Hong Kong Exchanges and Clearing

 	
 4,443,082

 	
 2,186

 	
 12,031

 	
 1,174

 	
 516

 	
 LSE Group

 	
 3,986,413

 	
 2,622

 	
 10,398

 	
 1,011

 	

 	
 Shenzhen Stock Exchange

 	
 3,547,312

 	
 2,110

 	
 40,244

 	
 14,443

 	

 	
 Deutsche Boerse AG

 	
 2,339,092

 	
 506

 	
 7,825

 	
 475

 	

 	
 BSE India Limited

 	
 2,298,179

 	
 5,439

 	
 602

 	
 1,105

 	

 	
 National Stock Exchange of India Limited

 	
 2,273,286

 	
 1,952

 	
 5,092

 	
 10,355

 	

 	
 BATS Global Markets - US

 	
 	
 	
 	
 	
 1,243

 	
 Chicago Board Options Exchange

 	
 	
 	
 	
 	
 1,811

 	
 International Securities Exchange

 	
 	
 	
 	
 	
 1,204

 The ATSs mentioned previously include dozens of dark pools that allow traders to execute anonymously. They are estimated to account for 40 percent of all U.S. stock trades in 2017, compared with an estimated 16 percent in 2010. Dark pools emerged in the 1980s when the SEC allowed brokers to match buyers and sellers of big blocks of shares. The rise of high-frequency electronic trading and the 2007 SEC Order Protection rule that intended to spur competition and cut transaction costs through transparency as part of Regulation National Market System (Reg NMS) drove the growth of dark pools, as traders aimed to avoid the visibility of large trades (Mamudi 2017). Reg NMS also established the National Best Bid and Offer (NBBO) mandate for brokers to route orders to venues that offer the best price.

 Some ATSs are called dark pools because they do not broadcast pre-trade data, including the presence, price, and amount of buy and sell orders as traditional exchanges are required to do. However, dark pools report information about trades to the Financial Industry Regulatory Authority (FINRA) after they occur. As a result, dark pools do not contribute to the process of price discovery until after trade execution but provide protection against various HFT strategies outlined in the first chapter.

 In the next section, we will see how market data captures trading activity and reflect the institutional infrastructure in U.S. markets.

 Working with high-frequency data

 Two categories of market data cover the thousands of companies listed on U.S. exchanges that are traded under Reg NMS: the consolidated feed combines trade and quote data from each trading venue, whereas each individual exchange offers proprietary products with additional activity information for that particular venue.

 In this section, we will first present proprietary order flow data provided by Nasdaq that represents the actual stream of orders, trades, and resulting prices as they occur on a tick-by-tick basis. Then, we will demonstrate how to regularize this continuous stream of data that arrives at irregular intervals into bars of a fixed duration. Finally, we will introduce AlgoSeek's equity minute bar data, which contains consolidated trade and quote information. In each case, we will illustrate how to work with the data using Python so that you can leverage these sources for your trading strategy.

 How to work with Nasdaq order book data

 The primary source of market data is the order book, which updates in real time throughout the day to reflect all trading activity. Exchanges typically offer this data as a real-time service for a fee; however, they may provide some historical data for free.

 In the United States, stock markets provide quotes in three tiers, namely Level L1, L2, and L3, that offer increasingly granular information and capabilities:

 	Level 1 (L1): Real-time bid- and ask-price information, as available from numerous online sources.

 	Level 2 (L2): Adds information about bid and ask prices by specific market makers as well as the size and time of recent transactions for better insights into the liquidity of a given equity.

 	Level 3 (L3): Adds the ability to enter or change quotes, execute orders, and confirm trades and is available only to market makers and exchange member firms. Access to Level 3 quotes permits registered brokers to meet best execution requirements.

 The trading activity is reflected in numerous messages about orders sent by market participants. These messages typically conform to the electronic Financial Information eXchange (FIX) communications protocol for the real-time exchange of securities transactions and market data or a native exchange protocol.

 Communicating trades with the FIX protocol

 Just like SWIFT is the message protocol for back-office (for example, in trade-settlement) messaging, the FIX protocol is the de facto messaging standard for communication before and during trade executions between exchanges, banks, brokers, clearing firms, and other market participants. Fidelity Investments and Salomon Brothers introduced FIX in 1992 to facilitate the electronic communication between broker-dealers and institutional clients who, until then, exchanged information over the phone.

 It became popular in global equity markets before expanding into foreign exchange, fixed income and derivatives markets, and further into post-trade to support straight-through processing. Exchanges provide access to FIX messages as a real-time data feed that is parsed by algorithmic traders to track market activity and, for example, identify the footprint of market participants and anticipate their next move.

 The sequence of messages allows for the reconstruction of the order book. The scale of transactions across numerous exchanges creates a large amount (~10 TB) of unstructured data that is challenging to process and, hence, can be a source of competitive advantage.

 The FIX protocol, currently at version 5.0, is a free and open standard with a large community of affiliated industry professionals. It is self-describing, like the more recent XML, and a FIX session is supported by the underlying Transmission Control Protocol (TCP) layer. The community continually adds new functionality.

 The protocol supports pipe-separated key-value pairs, as well as a tag-based FIXML syntax. A sample message that requests a server login would look as follows:

 8=FIX.5.0|9=127|35=A|59=theBroker.123456|56=CSERVER|34=1|32=20180117- 08:03:04|57=TRADE|50=any_string|98=2|108=34|141=Y|553=12345|554=passw0rd!|10=131|

 There are a few open source FIX implementations in Python that can be used to formulate and parse FIX messages. The service provider Interactive Brokers offers a FIX-based computer-to-computer interface (CTCI) for automated trading (refer to the resources section for this chapter in the GitHub repository).

 The Nasdaq TotalView-ITCH data feed

 While FIX has a dominant market share, exchanges also offer native protocols. Nasdaq offers a TotalView-ITCH direct data-feed protocol, which allows subscribers to track individual orders for equity instruments from placement to execution or cancellation.

 Historical records of this data flow permit the reconstruction of the order book that keeps track of the active limit orders for a specific security. The order book reveals the market depth throughout the day by listing the number of shares being bid or offered at each price point. It may also identify the market participant responsible for specific buy and sell orders unless they are placed anonymously. Market depth is a key indicator of liquidity and the potential price impact of sizable market orders.

 In addition to matching market and limit orders, Nasdaq also operates auctions or crosses that execute a large number of trades at market opening and closing. Crosses are becoming more important as passive investing continues to grow and traders look for opportunities to execute larger blocks of stock. TotalView also disseminates the Net Order Imbalance Indicator (NOII) for Nasdaq opening and closing crosses and Nasdaq IPO/Halt Cross.

 How to parse binary order messages

 The ITCH v5.0 specification declares over 20 message types related to system events, stock characteristics, the placement and modification of limit orders, and trade execution. It also contains information about the net order imbalance before the open and closing cross.

 Nasdaq offers samples of daily binary files for several months. The GitHub repository for this chapter contains a notebook, parse_itch_order_flow_messages.ipynb, that illustrates how to download and parse a sample file of ITCH messages. The notebook rebuild_nasdaq_order_book.ipynb then goes on to reconstruct both the executed trades and the order book for any given ticker.

 The following table shows the frequency of the most common message types for the sample file date October 30, 2019:

 	
 Message type

 	
 Order book impact

 	
 Number of messages

 	
 A

 	
 New unattributed limit order

 	
 127,214,649

 	
 D

 	
 Order canceled

 	
 123,296,742

 	
 U

 	
 Order canceled and replaced

 	
 25,513,651

 	
 E

 	
 Full or partial execution; possibly multiple messages for the same original order

 	
 7,316,703

 	
 X

 	
 Modified after partial cancellation

 	
 3,568,735

 	
 F

 	
 Add attributed order

 	
 1,423,908

 	
 P

 	
 Trade message (non-cross)

 	
 1,525,363

 	
 C

 	
 Executed in whole or in part at a price different from the initial display price

 	
 129,729

 	
 Q

 	
 Cross trade message

 	
 17,775

 For each message, the specification lays out the components and their respective length and data types:

 	
 Name

 	
 Offset

 	
 Length

 	
 Value

 	
 Notes

 	
 Message type

 	
 0

 	
 1

 	
 S

 	
 System event message.

 	
 Stock locate

 	
 1

 	
 2

 	
 Integer

 	
 Always 0.

 	
 Tracking number

 	
 3

 	
 2

 	
 Integer

 	
 Nasdaq internal tracking number.

 	
 Timestamp

 	
 5

 	
 6

 	
 Integer

 	
 The number of nanoseconds since midnight.

 	
 Order reference number

 	
 11

 	
 8

 	
 Integer

 	
 The unique reference number assigned to the new order at the time of receipt.

 	
 Buy/sell indicator

 	
 19

 	
 1

 	
 Alpha

 	
 The type of order being added: B = Buy Order, and S = Sell Order.

 	
 Shares

 	
 20

 	
 4

 	
 Integer

 	
 The total number of shares associated with the order being added to the book.

 	
 Stock

 	
 24

 	
 8

 	
 Alpha

 	
 Stock symbol, right - padded with spaces.

 	
 Price

 	
 32

 	
 4

 	
 Price (4)

 	
 The display price of the new order. Refer to Data Types in the specification for field processing notes.

 	
 Attribution

 	
 36

 	
 4

 	
 Alpha

 	
 The Nasdaq market participant identifier associated with the entered order.

 Python provides the struct module to parse binary data using format strings that identify the message elements by indicating the length and type of the various components of the byte string as laid out in the specification.

 Let's walk through the critical steps required to parse the trading messages and reconstruct the order book:

 	The ITCH parser relies on the message specifications provided in the file message_types.xlsx (refer to the notebook parse_itch_order_flow_messages.ipynb for details). It assembles format strings according to the formats dictionary:
 formats = {
 ('integer', 2): 'H', # int of length 2 => format string 'H'
 ('integer', 4): 'I',
 ('integer', 6): '6s', # int of length 6 => parse as string,
 convert later
 ('integer', 8): 'Q',
 ('alpha', 1) : 's',
 ('alpha', 2) : '2s',
 ('alpha', 4) : '4s',
 ('alpha', 8) : '8s',
 ('price_4', 4): 'I',
 ('price_8', 8): 'Q',
}

 	The parser translates the message specs into format strings and named tuples that capture the message content:
 # Get ITCH specs and create formatting (type, length) tuples
specs = pd.read_csv('message_types.csv')
specs['formats'] = specs[['value', 'length']].apply(tuple,
 axis=1).map(formats)
Formatting for alpha fields
alpha_fields = specs[specs.value == 'alpha'].set_index('name')
alpha_msgs = alpha_fields.groupby('message_type')
alpha_formats = {k: v.to_dict() for k, v in alpha_msgs.formats}
alpha_length = {k: v.add(5).to_dict() for k, v in alpha_msgs.length}
Generate message classes as named tuples and format strings
message_fields, fstring = {}, {}
for t, message in specs.groupby('message_type'):
 message_fields[t] = namedtuple(typename=t,
 field_names=message.name.tolist())
 fstring[t] = '>' + ''.join(message.formats.tolist())

 	Fields of the alpha type require postprocessing, as defined in the format_alpha function:
 def format_alpha(mtype, data):
 """Process byte strings of type alpha"""
 for col in alpha_formats.get(mtype).keys():
 if mtype != 'R' and col == 'stock':
 data = data.drop(col, axis=1)
 continue
 data.loc[:, col] = (data.loc[:, col]
 .str.decode("utf-8")
 .str.strip())
 if encoding.get(col):
 data.loc[:, col] = data.loc[:, col].map(encoding.get(col))
 return data

 The binary file for a single day contains over 300,000,000 messages that are worth over 9 GB. The script appends the parsed result iteratively to a file in the fast HDF5 format to avoid memory constraints. (Refer to the Efficient data storage with pandas section later in this chapter for more information on the HDF5 format.)

 The following (simplified) code processes the binary file and produces the parsed orders stored by message type:

 with (data_path / file_name).open('rb') as data:
 while True:
 message_size = int.from_bytes(data.read(2), byteorder='big',
 signed=False)
 message_type = data.read(1).decode('ascii')
 message_type_counter.update([message_type])
 record = data.read(message_size - 1)
 message = message_fields[message_type]._make(
 unpack(fstring[message_type], record))
 messages[message_type].append(message)

 # deal with system events like market open/close
 if message_type == 'S':
 timestamp = int.from_bytes(message.timestamp,
 byteorder='big')
 if message.event_code.decode('ascii') == 'C': # close
 store_messages(messages)
 break

 Summarizing the trading activity for all 8,500 stocks

 As expected, a small number of the 8,500-plus securities traded on this day account for most trades:

 with pd.HDFStore(itch_store) as store:
 stocks = store['R'].loc[:, ['stock_locate', 'stock']]
 trades = (store['P'].append(
 store['Q'].rename(columns={'cross_price': 'price'}),
 sort=False).merge(stocks))
trades['value'] = trades.shares.mul(trades.price)
trades['value_share'] = trades.value.div(trades.value.sum())
trade_summary = (trades.groupby('stock').value_share
 .sum().sort_values(ascending=False))
trade_summary.iloc[:50].plot.bar(figsize=(14, 6),
 color='darkblue',
 title='Share of Traded Value')
f = lambda y, _: '{:.0%}'.format(y)
plt.gca().yaxis.set_major_formatter(FuncFormatter(f))

 Figure 2.1 shows the resulting plot:

 [image:]
 Figure 2.1: The share of traded value of the 50 most traded securities

 How to reconstruct all trades and the order book

 The parsed messages allow us to rebuild the order flow for the given day. The 'R' message type contains a listing of all stocks traded during a given day, including information about initial public offerings (IPOs) and trading restrictions.

 Throughout the day, new orders are added, and orders that are executed and canceled are removed from the order book. The proper accounting for messages that reference orders placed on a prior date would require tracking the order book over multiple days.

 The get_messages() function illustrates how to collect the orders for a single stock that affects trading. (Refer to the ITCH specification for details about each message.) The code is slightly simplified; refer to the notebook rebuild_nasdaq_order_book.ipynb for further details:

 def get_messages(date, stock=stock):
 """Collect trading messages for given stock"""
 with pd.HDFStore(itch_store) as store:
 stock_locate = store.select('R', where='stock =
 stock').stock_locate.iloc[0]
 target = 'stock_locate = stock_locate'
 data = {}
 # relevant message types
 messages = ['A', 'F', 'E', 'C', 'X', 'D', 'U', 'P', 'Q']
 for m in messages:
 data[m] = store.select(m,
 where=target).drop('stock_locate', axis=1).assign(type=m)
 order_cols = ['order_reference_number', 'buy_sell_indicator',
 'shares', 'price']
 orders = pd.concat([data['A'], data['F']], sort=False,
 ignore_index=True).loc[:, order_cols]
 for m in messages[2: -3]:
 data[m] = data[m].merge(orders, how='left')
 data['U'] = data['U'].merge(orders, how='left',
 right_on='order_reference_number',
 left_on='original_order_reference_number',
 suffixes=['', '_replaced'])
 data['Q'].rename(columns={'cross_price': 'price'}, inplace=True)
 data['X']['shares'] = data['X']['cancelled_shares']
 data['X'] = data['X'].dropna(subset=['price'])
 data = pd.concat([data[m] for m in messages], ignore_index=True,
 sort=False)

 Reconstructing successful trades—that is, orders that were executed as opposed to those that were canceled from trade-related message types C, E, P, and Q—is relatively straightforward:

 def get_trades(m):
 """Combine C, E, P and Q messages into trading records"""
 trade_dict = {'executed_shares': 'shares', 'execution_price': 'price'}
 cols = ['timestamp', 'executed_shares']
 trades = pd.concat([m.loc[m.type == 'E',
 cols + ['price']].rename(columns=trade_dict),
 m.loc[m.type == 'C',
 cols + ['execution_price']]
 .rename(columns=trade_dict),
 m.loc[m.type == 'P', ['timestamp', 'price',
 'shares']],
 m.loc[m.type == 'Q',
 ['timestamp', 'price', 'shares']]
 .assign(cross=1),],
 sort=False).dropna(subset=['price']).fillna(0)
 return trades.set_index('timestamp').sort_index().astype(int)

 The order book keeps track of limit orders, and the various price levels for buy and sell orders constitute the depth of the order book. Reconstructing the order book for a given level of depth requires the following steps:

 The add_orders() function accumulates sell orders in ascending order and buy orders in descending order for a given timestamp up to the desired level of depth:

 def add_orders(orders, buysell, nlevels):
 new_order = []
 items = sorted(orders.copy().items())
 if buysell == 1:
 items = reversed(items)
 for i, (p, s) in enumerate(items, 1):
 new_order.append((p, s))
 if i == nlevels:
 break
 return orders, new_order

 We iterate over all ITCH messages and process orders and their replacements as required by the specification:

 for message in messages.itertuples():
 i = message[0]
 if np.isnan(message.buy_sell_indicator):
 continue
 message_counter.update(message.type)
 buysell = message.buy_sell_indicator
 price, shares = None, None
 if message.type in ['A', 'F', 'U']:
 price, shares = int(message.price), int(message.shares)
 current_orders[buysell].update({price: shares})
 current_orders[buysell], new_order =
 add_orders(current_orders[buysell], buysell, nlevels)
 order_book[buysell][message.timestamp] = new_order
 if message.type in ['E', 'C', 'X', 'D', 'U']:
 if message.type == 'U':
 if not np.isnan(message.shares_replaced):
 price = int(message.price_replaced)
 shares = -int(message.shares_replaced)
 else:
 if not np.isnan(message.price):
 price = int(message.price)
 shares = -int(message.shares)
 if price is not None:
 current_orders[buysell].update({price: shares})
 if current_orders[buysell][price] <= 0:
 current_orders[buysell].pop(price)
 current_orders[buysell], new_order =
 add_orders(current_orders[buysell], buysell, nlevels)
 order_book[buysell][message.timestamp] = new_order

 Figure 2.2 highlights the depth of liquidity at any given point in time using different intensities that visualize the number of orders at different price levels. The left panel shows how the distribution of limit order prices was weighted toward buy orders at higher prices.

 The right panel plots the evolution of limit orders and prices throughout the trading day: the dark line tracks the prices for executed trades during market hours, whereas the red and blue dots indicate individual limit orders on a per-minute basis (refer to the notebook for details):

 [image:]
 Figure 2.2: AAPL market liquidity according to the order book

 From ticks to bars – how to regularize market data

 The trade data is indexed by nanoseconds, arrives at irregular intervals, and is very noisy. The bid-ask bounce, for instance, causes the price to oscillate between the bid and ask prices when trade initiation alternates between buy and sell market orders. To improve the noise-signal ratio and the statistical properties of the price series, we need to resample and regularize the tick data by aggregating the trading activity.

 We typically collect the open (first), high, low, and closing (last) price and volume (jointly abbreviated as OHLCV) for the aggregated period, alongside the volume-weighted average price (VWAP) and the timestamp associated with the data.

 Refer to the normalize_tick_data.ipynb notebook in the folder for this chapter on GitHub for additional details.

 The raw material – tick bars

 The following code generates a plot of the raw tick price and volume data for AAPL:

 stock, date = 'AAPL', '20191030'
title = '{} | {}'.format(stock, pd.to_datetime(date).date()
with pd.HDFStore(itch_store) as store:
 sys_events = store['S'].set_index('event_code') # system events
 sys_events.timestamp = sys_events.timestamp.add(pd.to_datetime(date)).dt.time
 market_open = sys_events.loc['Q', 'timestamp']
 market_close = sys_events.loc['M', 'timestamp']
with pd.HDFStore(stock_store) as store:
 trades = store['{}/trades'.format(stock)].reset_index()
trades = trades[trades.cross == 0] # excluding data from open/close crossings
trades.price = trades.price.mul(1e-4) # format price
trades = trades[trades.cross == 0] # exclude crossing trades
trades = trades.between_time(market_open, market_close) # market hours only
tick_bars = trades.set_index('timestamp')
tick_bars.index = tick_bars.index.time
tick_bars.price.plot(figsize=(10, 5), title=title), lw=1)

 Figure 2.3 displays the resulting plot:

 [image:]
 Figure 2.3: Tick bars

 The tick returns are far from normally distributed, as evidenced by the low p-value of scipy.stats.normaltest:

 from scipy.stats import normaltest
normaltest(tick_bars.price.pct_change().dropna())
NormaltestResult(statistic=62408.76562431228, pvalue=0.0)

 Plain-vanilla denoising – time bars

 Time bars involve trade aggregation by period. The following code gets the data for the time bars:

 def get_bar_stats(agg_trades):
 vwap = agg_trades.apply(lambda x: np.average(x.price,
 weights=x.shares)).to_frame('vwap')
 ohlc = agg_trades.price.ohlc()
 vol = agg_trades.shares.sum().to_frame('vol')
 txn = agg_trades.shares.size().to_frame('txn')
 return pd.concat([ohlc, vwap, vol, txn], axis=1)
resampled = trades.groupby(pd.Grouper(freq='1Min'))
time_bars = get_bar_stats(resampled)

 We can display the result as a price-volume chart:

 def price_volume(df, price='vwap', vol='vol', suptitle=title, fname=None):
 fig, axes = plt.subplots(nrows=2, sharex=True, figsize=(15, 8))
 axes[0].plot(df.index, df[price])
 axes[1].bar(df.index, df[vol], width=1 / (len(df.index)),
 color='r')
 xfmt = mpl.dates.DateFormatter('%H:%M')
 axes[1].xaxis.set_major_locator(mpl.dates.HourLocator(interval=3))
 axes[1].xaxis.set_major_formatter(xfmt)
 axes[1].get_xaxis().set_tick_params(which='major', pad=25)
 axes[0].set_title('Price', fontsize=14)
 axes[1].set_title('Volume', fontsize=14)
 fig.autofmt_xdate()
 fig.suptitle(suptitle)
 fig.tight_layout()
 plt.subplots_adjust(top=0.9)
price_volume(time_bars)

 The preceding code produces Figure 2.4:

 [image:]
 Figure 2.4: Time bars

 Alternatively, we can represent the data as a candlestick chart using the Bokeh plotting library:

 resampled = trades.groupby(pd.Grouper(freq='5Min')) # 5 Min bars for better print
df = get_bar_stats(resampled)
increase = df.close > df.open
decrease = df.open > df.close
w = 2.5 * 60 * 1000 # 2.5 min in ms
WIDGETS = "pan, wheel_zoom, box_zoom, reset, save"
p = figure(x_axis_type='datetime', tools=WIDGETS, plot_width=1500,
 title = "AAPL Candlestick")
p.xaxis.major_label_orientation = pi/4
p.grid.grid_line_alpha=0.4
p.segment(df.index, df.high, df.index, df.low, color="black")
p.vbar(df.index[increase], w, df.open[increase], df.close[increase],
 fill_color="#D5E1DD", line_color="black")
p.vbar(df.index[decrease], w, df.open[decrease], df.close[decrease],
 fill_color="#F2583E", line_color="black")
show(p)

 This produces the plot in Figure 2.5:

 [image:]
 Figure 2.5: Bokeh candlestick plot

 Accounting for order fragmentation – volume bars

 Time bars smooth some of the noise contained in the raw tick data but may fail to account for the fragmentation of orders. Execution-focused algorithmic trading may aim to match the volume-weighted average price (VWAP) over a given period. This will divide a single order into multiple trades and place orders according to historical patterns. Time bars would treat the same order differently, even though no new information has arrived in the market.

 Volume bars offer an alternative by aggregating trade data according to volume. We can accomplish this as follows:

 min_per_trading_day = 60 * 7.5
trades_per_min = trades.shares.sum() / min_per_trading_day
trades['cumul_vol'] = trades.shares.cumsum()
df = trades.reset_index()
by_vol = (df.groupby(df.cumul_vol.
 div(trades_per_min)
 .round().astype(int)))
vol_bars = pd.concat([by_vol.timestamp.last().to_frame('timestamp'),
 get_bar_stats(by_vol)], axis=1)
price_volume(vol_bars.set_index('timestamp'))

 We get the plot in Figure 2.6 for the preceding code:

 [image:]
 Figure 2.6: Volume bars

 Accounting for price changes – dollar bars

 When asset prices change significantly, or after stock splits, the value of a given amount of shares changes. Volume bars do not correctly reflect this and can hamper the comparison of trading behavior for different periods that reflect such changes. In these cases, the volume bar method should be adjusted to utilize the product of shares and prices to produce dollar bars.

 The following code shows the computation for dollar bars:

 value_per_min = trades.shares.mul(trades.price).sum()/(60*7.5) # min per trading day
trades['cumul_val'] = trades.shares.mul(trades.price).cumsum()
df = trades.reset_index()
by_value = df.groupby(df.cumul_val.div(value_per_min).round().astype(int))
dollar_bars = pd.concat([by_value.timestamp.last().to_frame('timestamp'), get_bar_stats(by_value)], axis=1)
price_volume(dollar_bars.set_index('timestamp'),
 suptitle=f'Dollar Bars | {stock} | {pd.to_datetime(date).date()}')

 The plot looks quite similar to the volume bar since the price has been fairly stable throughout the day:

 [image:]
 Figure 2.7: Dollar bars

 AlgoSeek minute bars – equity quote and trade data

 AlgoSeek provides historical intraday data of the quality previously available only to institutional investors. The AlgoSeek Equity bars provide very detailed intraday quote and trade data in a user-friendly format, which is aimed at making it easy to design and backtest intraday ML-driven strategies. As we will see, the data includes not only OHLCV information but also information on the bid-ask spread and the number of ticks with up and down price moves, among others.

 AlgoSeek has been so kind as to provide samples of minute bar data for the Nasdaq 100 stocks from 2013-2017 for demonstration purposes and will make a subset of this data available to readers of this book.

 In this section, we will present the available trade and quote information and show how to process the raw data. In later chapters, we will demonstrate how you can use this data for ML-driven intraday strategies.

 From the consolidated feed to minute bars

 AlgoSeek minute bars are based on data provided by the Securities Information Processor (SIP), which manages the consolidated feed mentioned at the beginning of this section. You can view the documentation at https://www.algoseek.com/samples/.

 The SIP aggregates the best bid and offers quotes from each exchange, as well as the resulting trades and prices. Exchanges are prohibited by law from sending their quotes and trades to direct feeds before sending them to the SIP. Given the fragmented nature of U.S. equity trading, the consolidated feed provides a convenient snapshot of the current state of the market.

 More importantly, the SIP acts as the benchmark used by regulators to determine the National Best Bid and Offer (NBBO) according to Reg NMS. The OHLC bar quote prices are based on the NBBO, and each bid or ask quote price refers to an NBBO price.

 Every exchange publishes its top-of-book price and the number of shares available at that price. The NBBO changes when a published quote improves the NBBO. Bid/ask quotes persist until there is a change due to trade, price improvement, or the cancelation of the latest bid or ask. While historical OHLC bars are often based on trades during the bar period, NBBO bid/ask quotes may be carried forward from the previous bar until there is a new NBBO event.

 AlgoSeek bars cover the whole trading day, from the opening of the first exchange until the closing of the last exchange. Bars outside regular market hours normally exhibit limited activity. Trading hours, in Eastern Time, are:

 	Premarket: Approximately 04:00:00 (this varies by exchange) to 09:29:59

 	Market: 09:30:00 to 16:00:00

 	Extended hours: 16:00:01 to 20:00:00

 Quote and trade data fields

 The minute bar data contains up to 54 fields. There are eight fields for the open, high, low, and close elements of the bar, namely:

 	The timestamp for the bar and the corresponding trade

 	The price and the size for the prevailing bid-ask quote and the relevant trade

 There are also 14 data points with volume information for the bar period:

 	The number of shares and corresponding trades

 	The trade volumes at or below the bid, between the bid quote and the midpoint, at the midpoint, between the midpoint and the ask quote, and at or above the ask, as well as for crosses

 	The number of shares traded with upticks or downticks, that is, when the price rose or fell, as well as when the price did not change, differentiated by the previous direction of price movement

 The AlgoSeek data also contains the number of shares reported to FINRA and processed internally at broker-dealers, by dark pools, or OTC. These trades represent volume that is hidden or not publicly available until after the fact.

 Finally, the data includes the volume-weighted average price (VWAP) and minimum and maximum bid-ask spread for the bar period.

 How to process AlgoSeek intraday data

 In this section, we'll process the AlgoSeek sample data. The data directory on GitHub contains instructions on how to download that data from AlgoSeek.

 The minute bar data comes in four versions: with and without quote information, and with or without FINRA's reported volume. There is one zipped folder per day, containing one CSV file per ticker.

 The following code example extracts the trade-only minute bar data into daily .parquet files:

 directories = [Path(d) for d in ['1min_trades']]
target = directory / 'parquet'
for zipped_file in directory.glob('*/**/*.zip'):
 fname = zipped_file.stem
 print('\t', fname)
 zf = ZipFile(zipped_file)
 files = zf.namelist()
 data = (pd.concat([pd.read_csv(zf.open(f),
 parse_dates=[['Date',
 'TimeBarStart']])
 for f in files],
 ignore_index=True)
 .rename(columns=lambda x: x.lower())
 .rename(columns={'date_timebarstart': 'date_time'})
 .set_index(['ticker', 'date_time']))
 data.to_parquet(target / (fname + '.parquet'))

 We can combine the parquet files into a single piece of HDF5 storage as follows, yielding 53.8 million records that consume 3.2 GB of memory and covering 5 years and 100 stocks:

 path = Path('1min_trades/parquet')
df = pd.concat([pd.read_parquet(f) for f in path.glob('*.parquet')]).dropna(how='all', axis=1)
df.columns = ['open', 'high', 'low', 'close', 'trades', 'volume', 'vwap']
df.to_hdf('data.h5', '1min_trades')
print(df.info(null_counts=True))
MultiIndex: 53864194 entries, (AAL, 2014-12-22 07:05:00) to (YHOO, 2017-06-16 19:59:00)
Data columns (total 7 columns):
open 53864194 non-null float64
high 53864194 non-null float64
Low 53864194 non-null float64
close 53864194 non-null float64
trades 53864194 non-null int64
volume 53864194 non-null int64
vwap 53852029 non-null float64

 We can use plotly to quickly create an interactive candlestick plot for one day of AAPL data to view in a browser:

 idx = pd.IndexSlice
with pd.HDFStore('data.h5') as store:
 print(store.info())
 df = (store['1min_trades']
 .loc[idx['AAPL', '2017-12-29'], :]
 .reset_index())
fig = go.Figure(data=go.Ohlc(x=df.date_time,
 open=df.open,
 high=df.high,
 low=df.low,
 close=df.close))

 Figure 2.8 shows the resulting static image:

 [image:]
 Figure 2.8: Plotly candlestick plot

 AlgoSeek also provides adjustment factors to correct pricing and volumes for stock splits, dividends, and other corporate actions.

 API access to market data

 There are several options you can use to access market data via an API using Python. We will first present a few sources built into the pandas library and the yfinance tool that facilitates the downloading of end-of-day market data and recent fundamental data from Yahoo! Finance.

 Then we will briefly introduce the trading platform Quantopian, the data provider Quandl, and the Zipline backtesting library that we will use later in the book, as well as listing several additional options to access various types of market data. The directory data_providers on GitHub contains several notebooks that illustrate the usage of these options.

 Remote data access using pandas

 The pandas library enables access to data displayed on websites using the read_html function and access to the API endpoints of various data providers through the related pandas-datareader library.

 Reading HTML tables

 Downloading the content of one or more HTML tables, such as for the constituents of the S&P 500 index from Wikipedia, works as follows:

 sp_url = 'https://en.wikipedia.org/wiki/List_of_S%26P_500_companies'
sp = pd.read_html(sp_url, header=0)[0] # returns a list for each table
sp.info()
RangeIndex: 505 entries, 0 to 504
Data columns (total 9 columns):
Symbol 505 non-null object
Security 505 non-null object
SEC filings 505 non-null object
GICS Sector 505 non-null object
GICS Sub Industry 505 non-null object
Headquarters Location 505 non-null object
Date first added 408 non-null object
CIK 505 non-null int64
Founded 234 non-null object

 pandas-datareader for market data

 pandas used to facilitate access to data provider APIs directly, but this functionality has moved to the pandas-datareader library (refer to the README for links to the documentation).

 The stability of the APIs varies with provider policies and continues to change. Please consult the documentation for up-to-date information. As of December 2019, at version 0.8.1, the following sources are available:

 	
 Source

 	
 Scope

 	
 Comment

 	
 Tiingo

 	
 Historical end-of-day prices on equities, mutual funds, and ETF.

 	
 Free registration for the API key. Free accounts can access only 500 symbols.

 	
 Investor Exchange (IEX)

 	
 Historical stock prices are available if traded on IEX.

 	
 Requires an API key from IEX Cloud Console.

 	
 Alpha Vantage

 	
 Historical equity data for daily, weekly, and monthly frequencies, 20+ years, and the past 3-5 days of intraday data. It also has FOREX and sector performance data.

 	

 	
 Quandl

 	
 Free data sources as listed on their website.

 	

 	
 Fama/French

 	
 Risk factor portfolio returns.

 	
 Used in Chapter 7, Linear Models – From Risk Factors to Return Forecasts.

 	
 TSP Fund Data

 	
 Mutual fund prices.

 	

 	
 Nasdaq

 	
 Latest metadata on traded tickers.

 	

 	
 Stooq Index Data

 	
 Some equity indices are not available from elsewhere due to licensing issues.

 	

 	
 MOEX

 	
 Moscow Exchange historical data.

 	

 The access and retrieval of data follow a similar API for all sources, as illustrated for Yahoo! Finance:

 import pandas_datareader.data as web
from datetime import datetime
start = '2014' # accepts strings
end = datetime(2017, 5, 24) # or datetime objects
yahoo= web.DataReader('FB', 'yahoo', start=start, end=end)
yahoo.info()
DatetimeIndex: 856 entries, 2014-01-02 to 2017-05-25
Data columns (total 6 columns):
High 856 non-null float64
Low 856 non-null float64
Open 856 non-null float64
Close 856 non-null float64
Volume 856 non-null int64
Adj Close 856 non-null float64
dtypes: float64(5), int64(1)

 yfinance – scraping data from Yahoo! Finance

 yfinance aims to provide a reliable and fast way to download historical market data from Yahoo! Finance. The library was originally named fix-yahoo-finance. The usage of this library is very straightforward; the notebook yfinance_demo illustrates the library's capabilities.

 How to download end-of-day and intraday prices

 The Ticker object permits the downloading of various data points scraped from Yahoo's website:

 import yfinance as yf
symbol = 'MSFT'
ticker = yf.Ticker(symbol)

 The .history method obtains historical prices for various periods, from one day to the maximum available, and at different frequencies, whereas intraday is only available for the last several days. To download adjusted OHLCV data at a one-minute frequency and corporate actions, use:

 data = ticker.history(period='5d',
 interval='1m',
 actions=True,
 auto_adjust=True)
data.info()
DatetimeIndex: 1747 entries, 2019-11-22 09:30:00-05:00 to 2019-11-29 13:00:00-05:00
Data columns (total 7 columns):
Open 1747 non-null float64
High 1747 non-null float64
Low 1747 non-null float64
Close 1747 non-null float64
Volume 1747 non-null int64
Dividends 1747 non-null int64
Stock Splits 1747 non-null int64

 The notebook also illustrates how to access quarterly and annual financial statements, sustainability scores, analyst recommendations, and upcoming earnings dates.

 How to download the option chain and prices

 yfinance also provides access to the option expiration dates and prices and other information for various contracts. Using the ticker instance from the previous example, we get the expiration dates using:

 ticker.options
('2019-12-05', '2019-12-12', '2019-12-19',..)

 For any of these dates, we can access the option chain and view details for the various put/call contracts as follows:

 options = ticker.option_chain('2019-12-05')
options.calls.info()
Data columns (total 14 columns):
contractSymbol 35 non-null object
lastTradeDate 35 non-null datetime64[ns]
strike 35 non-null float64
lastPrice 35 non-null float64
bid 35 non-null float64
ask 35 non-null float64
change 35 non-null float64
percentChange 35 non-null float64
volume 34 non-null float64
openInterest 35 non-null int64
impliedVolatility 35 non-null float64
inTheMoney 35 non-null bool
contractSize 35 non-null object
currency 35 non-null object

 The library also permits the use of proxy servers to prevent rate limiting and facilitates the bulk downloading of multiple tickers. The notebook demonstrates the usage of these features as well.

 Quantopian

 Quantopian is an investment firm that offers a research platform to crowd-source trading algorithms. Registration is free, and members can research trading ideas using a broad variety of data sources. It also offers an environment to backtest the algorithm against historical data, as well as to forward-test it out of sample with live data. It awards investment allocations for top-performing algorithms whose authors are entitled to a 10 percent (at the time of writing) profit share.

 The Quantopian research platform consists of a Jupyter Notebook environment for research and development for alpha-factor research and performance analysis. There is also an interactive development environment (IDE) for coding algorithmic strategies and backtesting the result using historical data since 2002 with minute-bar frequency.

 Users can also simulate algorithms with live data, which is known as paper trading. Quantopian provides various market datasets, including U.S. equity and futures price and volume data at a one-minute frequency, and U.S. equity corporate fundamentals, and it also integrates numerous alternative datasets.

 We will dive into the Quantopian platform in much more detail in Chapter 4, Financial Feature Engineering – How to Research Alpha Factors, and rely on its functionality throughout the book, so feel free to open an account right away. (Refer to the GitHub repository for more details.)

 Zipline

 Zipline is the algorithmic trading library that powers the Quantopian backtesting and live-trading platform. It is also available offline to develop a strategy using a limited number of free data bundles that can be ingested and used to test the performance of trading ideas before porting the result to the online Quantopian platform for paper and live trading.

 Zipline requires a custom environment—view the instructions at the beginning of the notebook zipline_data_demo.ipynb The following code illustrates how Zipline permits us to access daily stock data for a range of companies. You can run Zipline scripts in the Jupyter Notebook using the magic function of the same name.

 First, you need to initialize the context with the desired security symbols. We'll also use a counter variable. Then, Zipline calls handle_data, where we use the data.history() method to look back a single period and append the data for the last day to a .csv file:

 %load_ext zipline
%%zipline --start 2010-1-1 --end 2018-1-1 --data-frequency daily
from zipline.api import order_target, record, symbol
def initialize(context):
 context.i = 0
 context.assets = [symbol('FB'), symbol('GOOG'), symbol('AMZN')]

def handle_data(context, data):
 df = data.history(context.assets, fields=['price', 'volume'],
 bar_count=1, frequency="1d")
 df = df.to_frame().reset_index()

 if context.i == 0:
 df.columns = ['date', 'asset', 'price', 'volume']
 df.to_csv('stock_data.csv', index=False)
 else:
 df.to_csv('stock_data.csv', index=False, mode='a', header=None)
 context.i += 1
df = pd.read_csv('stock_data.csv')
df.date = pd.to_datetime(df.date)
df.set_index('date').groupby('asset').price.plot(lw=2, legend=True,
 figsize=(14, 6));

 We get the following plot for the preceding code:

 [image:]
 Figure 2.9: Zipline data access

 We will explore the capabilities of Zipline, and especially the online Quantopian platform, in more detail in the coming chapters.

 Quandl

 Quandl provides a broad range of data sources, both free and as a subscription, using a Python API. Register and obtain a free API key to make more than 50 calls per day. Quandl data covers multiple asset classes beyond equities and includes FX, fixed income, indexes, futures and options, and commodities.

 API usage is straightforward, well-documented, and flexible, with numerous methods beyond single-series downloads, for example, including bulk downloads or metadata searches.

 The following call obtains oil prices from 1986 onward, as quoted by the U.S. Department of Energy:

 import quandl
oil = quandl.get('EIA/PET_RWTC_D').squeeze()
oil.plot(lw=2, title='WTI Crude Oil Price')

 We get this plot for the preceding code:

 [image:]
 Figure 2.10: Quandl oil price example

 Other market data providers

 A broad variety of providers offer market data for various asset classes. Examples in relevant categories include:

 	Exchanges derive a growing share of their revenues from an ever-broader range of data services, typically using a subscription.

 	Bloomberg and Thomson Reuters have long been the leading data aggregators with a combined share of over 55 percent in the $28.5 billion financial data market. Smaller rivals, such as FactSet, are growing or emerging, such as money.net, Quandl, Trading Economics, and Barchart.

 	Specialist data providers abound. One example is LOBSTER, which aggregates Nasdaq order-book data in real time.

 	Free data providers include Alpha Vantage, which offers Python APIs for real-time equity, FX, and cryptocurrency market data, as well as technical indicators.

 	Crowd-sourced investment firms that provide research platforms with data access include, in addition to Quantopian, Alpha Trading Labs, launched in March 2018, which provides HFT infrastructure and data.

 How to work with fundamental data

 Fundamental data pertains to the economic drivers that determine the value of securities. The nature of the data depends on the asset class:

 	For equities and corporate credit, it includes corporate financials, as well as industry and economy-wide data.

 	For government bonds, it includes international macro data and foreign exchange.

 	For commodities, it includes asset-specific supply-and-demand determinants, such as weather data for crops.

 We will focus on equity fundamentals for the U.S., where data is easier to access. There are some 13,000+ public companies worldwide that generate 2 million pages of annual reports and more than 30,000 hours of earnings calls. In algorithmic trading, fundamental data and features engineered from this data may be used to derive trading signals directly, for example, as value indicators, and are an essential input for predictive models, including ML models.

 Financial statement data

 The Securities and Exchange Commission (SEC) requires U.S. issuers—that is, listed companies and securities, including mutual funds—to file three quarterly financial statements (Form 10-Q) and one annual report (Form 10-K), in addition to various other regulatory filing requirements.

 Since the early 1990s, the SEC made these filings available through its Electronic Data Gathering, Analysis, and Retrieval (EDGAR) system. They constitute the primary data source for the fundamental analysis of equity and other securities, such as corporate credit, where the value depends on the business prospects and financial health of the issuer.

 Automated processing – XBRL

 Automated analysis of regulatory filings has become much easier since the SEC introduced XBRL, which is a free, open, and global standard for the electronic representation and exchange of business reports. XBRL is based on XML; it relies on taxonomies that define the meaning of the elements of a report and map to tags that highlight the corresponding information in the electronic version of the report. One such taxonomy represents the U.S. Generally Accepted Accounting Principles (GAAP).

 The SEC introduced voluntary XBRL filings in 2005 in response to accounting scandals before requiring this format for all filers as of 2009, and it continues to expand the mandatory coverage to other regulatory filings. The SEC maintains a website that lists the current taxonomies that shape the content of different filings and can be used to extract specific items.

 The following datasets provide information extracted from EX-101 attachments submitted to the commission in a flattened data format to assist users in consuming data for analysis. The data reflects selected information from the XBRL-tagged financial statements. It currently includes numeric data from the quarterly and annual financial statements, as well as certain additional fields, for example, Standard Industrial Classification (SIC).

 There are several avenues to track and access fundamental data reported to the SEC:

 	As part of the EDGAR Public Dissemination Service (PDS), electronic feeds of accepted filings are available for a fee.

 	The SEC updates the RSS feeds, which list the structured disclosure submissions, every 10 minutes.

 	There are public index files for the retrieval of all filings through FTP for automated processing.

 	The financial statement (and notes) datasets contain parsed XBRL data from all financial statements and the accompanying notes.

 The SEC also publishes log files containing the internet search traffic for EDGAR filings through SEC.gov, albeit with a six month delay.

 Building a fundamental data time series

 The scope of the data in the financial statement and notes datasets consists of numeric data extracted from the primary financial statements (balance sheet, income statement, cash flows, changes in equity, and comprehensive income) and footnotes on those statements. The available data is from as early as 2009.

 Extracting the financial statements and notes dataset

 The following code downloads and extracts all historical filings contained in the financial statement and notes (FSN) datasets for the given range of quarters (refer to edgar_xbrl.ipynb for additional details):

 SEC_URL = 'https://www.sec.gov/files/dera/data/financial-statement-and-notes-data-sets/'
first_year, this_year, this_quarter = 2014, 2018, 3
past_years = range(2014, this_year)
filing_periods = [(y, q) for y in past_years for q in range(1, 5)]
filing_periods.extend([(this_year, q) for q in range(1, this_quarter +
 1)])
for i, (yr, qtr) in enumerate(filing_periods, 1):
 filing = f'{yr}q{qtr}_notes.zip'
 path = data_path / f'{yr}_{qtr}' / 'source'
 response = requests.get(SEC_URL + filing).content
 with ZipFile(BytesIO(response)) as zip_file:
 for file in zip_file.namelist():
 local_file = path / file
 with local_file.open('wb') as output:
 for line in zip_file.open(file).readlines():
 output.write(line)

OEBPS/Images/B15439_02_09.png
— Equiy(1037 [7BI)
— Equit(1244 [GOOG)
— Equiy(167 [AMZN))

1000

20

»°

N

»

»°

OEBPS/Images/Information_Box_Icon.png

OEBPS/Images/B15439_02_05.png

OEBPS/Images/B15439_02_03.png
2445

2440

2435

2425

2420

Tick Bars | AAPL | 2019-10-30

09:43:20

11:06:40

1230

135320

15:16:40

OEBPS/Images/B15439_02_08.png
m

1705

170

1695

160

0600

Dex 29,2017

oo =y

m00 100 1500 1800

OEBPS/Images/Image836.png
Packh

OEBPS/Images/B15439_02_04.png
IREERE

o

Time Bars | AAPL | 2019-10-30

Price

Wonr

M

Volume

MnJthhLu.M.nlmJu.m..u“

o

-

‘MMMWI‘LI‘h\ﬂ‘hmllmh‘\hud\mm\

MM

OEBPS/Images/B15439_01_02.png
Research Execution

Get Define Design Combine
Predictive Investment Alpha Alpha
Data Universe Factors Factors

Optimize Execute
Portfolio Trades

OEBPS/Images/B15439_02_10.png
WTI Crude Oil Price

OEBPS/Images/lightbulb.png

OEBPS/Images/B15439_02_01.png
‘Share of Traded Value.

OEBPS/Images/B15439_01_01.png
The ML4T Workflow

\ \
Data Sources Machine Learning Models
g - PointnTime \ | Factor &Feature \
Adjustments /| Engineering / + Model Design
= = == / - Parameter Tuning
Market Fundamental Alternative / / + Cross-Validation
Execution \ Live Portfolio Monitoring & Evaluation
\ symbol Position \, + Risk Management +Risk Factors
Global AvZN so0 +Performance Prices & Returns
Markets v 1500/ - Aftribution - Covariance
/ UBER -350 / / - .
- T / / /
Orders TargetPortfolio |/ Portfolio Optimizer |/ psset Selection

Symbol Order Shares Limit ‘Symbol / . /

AMZN BUY 200 12345 AMZN agoo | Aseet Alacation { + Rule-based
voOSEL 50 3121 v 2300 |\ R erefie * Model-based

UBER SELL 250 145.83 UBER -500 \ T v - Bot Sizing

\

OEBPS/Images/B15439_02_07.png
Oollar Bars | AAPL | 2019-10:30
Price

250

225

\MNNHJW\MMU!!Il\JHH\NMIHI!I!

OEBPS/Images/Cover.png
EEEEEEEEEEEEE

Machine Learning
for Algorlthmlc

Predictive models to extract signals fro
arket and alternative data for systematic
trading strategies with Python
Q
h*.
A 'S, ~
i g:.\
—— S
5
s
\

Second Edition

Stefan Jansen PCICI(T)

OEBPS/Images/B15439_QR_Free_PDF.png

OEBPS/Images/B15439_02_06.png
Volume Bars | AAPL | 2018-10-30
Price
us0
2uas
u0
208
200
220

!Hi\l\\'MHHIMHHﬁIHHIMII

OEBPS/Images/Image829.png

OEBPS/Images/B15439_02_02.png
‘Staves (000)

H

H

¥

o

Limit Order Price Distribution

£ w0

prco

OEBPS/Images/quote.png

