
		
			[image: cover.png]
		

	
		
			Unity 2021 Shaders and Effects Cookbook

			Fourth Edition

			Over 50 recipes to help you transform your game into a visually stunning masterpiece

			John P. Doran

			
				
					[image:]
				

			

			BIRMINGHAM—MUMBAI

			Unity 2021 Shaders and Effects Cookbook

			Fourth Edition

			Copyright © 2021 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Publishing Product Manager: Pavan Ramchandani

			Senior Editor: Mark Dsouza

			Content Development Editor: Divya Vijayan

			Technical Editor: Saurabh Kadave

			Copy Editor: Safis Editing

			Project Coordinator: Manthan Patel

			Proofreader: Safis Editing

			Indexer: Manju Arasan

			Production Designer: Aparna Bhagat

			First published: June 2013

			Second edition: February 2016

			Third edition: June 2018

			Fourth edition: October 2021

			Production reference: 1141021

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-83921-862-0

			www.packt.com

			To my daughter, Johanna Mai Doran, and to my wife, Hien, for being my loving partner throughout our joint life journey.

			– John P. Doran

			Contributors

			About the author

			John P. Doran is a passionate and seasoned technical game designer, software engineer, and author who is currently based in Songdo, South Korea. His passion for game development began at an early age.

			For over a decade, John has gained extensive hands-on expertise in game development, working in various roles ranging from game designer to lead UI programmer in teams consisting of just himself to over 70 people in student, mod, and professional game projects, including working at LucasArts on Star Wars: 1313. Additionally, John has worked in game development education teaching in Singapore, South Korea, and the United States at schools including the DigiPen Institute of Technology and Bradley University. To date, he has authored over 10 books on game development.

			John is currently an instructor at George Mason University Korea. Prior to his present ventures, he was an award-winning videographer.

			I want to thank everyone at Packt for their assistance in the book-creation process, especially Pavan Ramchandani, Divij Kotian, Divya Vijayan, and Rohit Rajkumar. I am also grateful for the great advice and suggestions from my technical reviewers, Floris Groen and Kenneth Lammers. I'm incredibly proud of this edition of the book, and I hope everyone else is too.

			About the reviewers

			Floris Groen is an experienced software engineer and shader expert from the Netherlands. He taught himself how to use graphics APIs in his late teens and went on to become a graphics programmer. He has worked in the gaming industry, as well as in architectural visualization, where he contributed to several game titles and software products. During that time, he has coded two rendering engines as part of successful commercial software. Floris is currently working on bringing digital humans to life by using a context-sensitive procedural animation system combined with realistic shaders and lighting. In the past, he has volunteered as a coach for an initiative to get more women into the tech industry.

			Kenneth Lammers has over 15 years of experience in the gaming industry, working as a character artist, technical artist, technical art director, and programmer. Throughout his career, he has worked on titles such as Call of Duty 3, Crackdown 2, Alan Wake, and Kinect Star Wars. He currently owns and operates Ozone Interactive with his business partner, Noah Kaarbo. Together, they have worked with clients such as Amazon, Eline Media, IGT, and Microsoft. Kenny has worked for Microsoft Games Studios, Activision, and Surreal, and has recently gone out on his own, operating CreativeTD and Ozone Interactive. Kenny authored the first edition of Unity Shaders and Effects Cookbook by Packt Publishing and was very happy to be a part of the writing, updating, and reviewing of this book.

		

	
		
			Table of Contents

			Preface

			Chapter 1: Post Processing Stack

			Technical requirements

			Installing the Post Processing Stack

			Getting ready

			How to do it...

			Getting a filmic look using grain, vignetting, and depth of field

			Getting ready

			How to do it...

			How it works...

			Mimicking real life with bloom and anti-aliasing

			Getting ready

			How to do it...

			How it works...

			Setting the mood with color grading

			Getting ready

			How to do it...

			Creating a horror game look with fog

			Getting ready

			How to do it...

			How it works...

			Chapter 2: Creating Your First Shader

			Technical requirements

			Creating a basic Standard Shader

			Getting ready

			How to do it...

			How it works...

			There's more...

			Adding properties to a shader

			Getting ready

			How to do it...

			How it works...

			See also

			Using properties in a Surface Shader

			How to do it...

			How it works...

			There's more...

			See also

			Chapter 3: Working with Surface Shaders

			Technical requirements

			Implementing diffuse shading

			Getting ready

			How to do it...

			How it works...

			Accessing and modifying packed arrays

			How to do it...

			There's more...

			See also

			Creating a shader with normal mapping

			Getting ready

			How to do it...

			How it works...

			There's more...

			Creating a Holographic Shader

			Getting ready

			How to do it...

			How it works...

			There's more...

			See also

			Chapter 4: Working with Texture Mapping

			Technical requirements

			Adding a texture to a shader

			Getting ready

			How to do it...

			How it works...

			There's more...

			See also

			Scrolling textures by modifying UV values

			Getting ready

			How to do it...

			How it works...

			Creating a transparent material

			Getting ready

			How to do it...

			How it works...

			Packing and blending textures

			Getting ready

			How to do it...

			How it works...

			Creating a circle around your terrain

			Getting ready…

			How to do it...

			How it works...

			There's more…

			Chapter 5: Understanding Lighting Models

			Technical requirements

			Creating a custom diffuse lighting model

			Getting ready

			How to do it...

			How it works...

			Creating a toon shader

			Getting ready

			How to do it...

			How it works...

			There's more...

			Creating a Phong Specular type

			Getting ready

			How to do it...

			How it works...

			Creating a Blinn-Phong Specular type

			Getting ready

			How to do it...

			How it works...

			See also

			Creating an Anisotropic Specular type

			Getting ready

			How to do it...

			How it works...

			Chapter 6: Physically Based Rendering

			Technical requirements

			Understanding the metallic setup

			Getting ready

			How to do it...

			How it works...

			See also

			Adding transparency to PBR

			Getting ready

			How to do it...

			See also

			Creating mirrors and reflective surfaces

			Getting ready

			How to do it...

			How it works...

			See also

			Baking lights into your scene

			Getting ready

			How to do it...

			How it works...

			See also

			Chapter 7: Vertex Functions

			Technical requirements

			Accessing a vertex color in a Surface Shader

			Getting ready

			How to do it…

			How it works…

			There's more…

			Animating vertices in a Surface Shader

			Getting ready

			How to do it…

			How it works…

			Extruding your models

			Getting ready

			How to do it…

			How it works…

			There's more…

			Implementing a snow shader

			Getting ready

			How to do it…

			How it works…

			See also

			Implementing a volumetric explosion

			Getting ready

			How to do it…

			How it works…

			There's more…

			See also

			Chapter 8: Fragment Shaders and Grab Passes

			Technical requirements

			Understanding Vertex and Fragment Shaders

			Getting ready

			How to do it…

			How it works…

			There's more…

			See also

			Using grab passes to draw behind objects

			Getting ready

			How to do it…

			How it works…

			There's more…

			Implementing a Glass Shader

			Getting ready

			How to do it…

			How it works…

			There's more…

			Implementing a Water Shader for 2D games

			Getting ready

			How to do it…

			How it works…

			Chapter 9: Mobile Shader Adjustment

			Technical requirements

			Techniques to make shaders more efficient

			Getting ready

			How to do it...

			How it works...

			Profiling your shaders

			Getting ready

			How to do it...

			How it works...

			There's more...

			Modifying our shaders for mobile

			Getting ready

			How to do it...

			How it works...

			Chapter 10: Screen Effects with Unity Render Textures

			Technical requirements

			Setting up a screen effects script system

			Getting ready

			How to do it...

			How it works...

			There's more...

			Using brightness, saturation, and contrast with screen effects

			Getting ready

			How to do it...

			How it works...

			Using basic Photoshop-like Blend Modes with screen effects

			Getting ready

			How to do it...

			How it works...

			There's more...

			Using the Overlay Blend Mode with screen effects

			How to do it...

			How it works...

			Chapter 11: Gameplay and Screen Effects

			Technical requirements

			Creating an old movie screen effect

			Getting ready

			How to do it...

			How it works...

			See also

			Creating a night-vision screen effect

			Getting ready

			How to do it...

			How it works...

			There's more...

			Chapter 12: Advanced Shading Techniques

			Technical requirements

			Using Unity's built-in CgInclude files

			Getting ready

			How to do it...

			How it works...

			There's more...

			Making your shader work in a modular way with CgInclude

			Getting ready

			How to do it...

			How it works...

			Implementing a Fur Shader

			Getting ready

			How to do it...

			How it works...

			There's more...

			Implementing Heatmaps with arrays

			Getting ready

			How to do it...

			How it works...

			Chapter 13: Shader Graph – 2D

			Technical requirement

			Creating a URP-based Shader Graph project

			How to do it...

			How it works...

			Implementing a simple Shader Graph

			Getting ready

			How to do it...

			How it works...

			Exposing properties to the Inspector via Shader Graph

			Getting ready

			How to do it...

			How it works...

			Creating a Sprite Outline Shader

			Getting ready

			How to do it...

			How it works...

			Chapter 14: Shader Graph – 3D

			Technical requirements

			Implementing a glowing highlight system

			Getting ready

			How to do it...

			How it works...

			Portal Shaders in Unity

			Getting ready

			How to do it...

			How it works...

			Creating custom Shader Graph functions

			Getting ready

			How to do it...

			How it works...

			Other Books You May Enjoy

		

	

		
			Preface

			Unity 2021 Shaders and Effects Cookbook is your guide to becoming familiar with the creation of shaders and post-processing effects in Unity 2021. You will start your journey at the beginning, exploring the Post Processing Stack to see some of the possible ways you can use shaders to affect what you see without having to write scripts at all. Afterward, we will learn how to create shaders from scratch, starting by creating the most basic shaders and learning how the shader code is structured. This foundational knowledge will arm you with the means to progress further through each chapter, learning advanced techniques such as volumetric explosions and fur shading. We also explore the newly added Shader Graph editor to see how you can create shaders through a drag-and-drop interface as well! This edition of the book is written specifically for Unity 2021 and will help you to master physically based rendering and global illumination to get as close to photorealism as possible.

			By the end of each chapter, you will have gained new skills that will increase the quality of your shaders and even make your shader writing process more efficient. These chapters have been tailored so that you can jump into each section and learn a specific skill, going from beginner to expert. For those who are new to shader writing in Unity, you can progress through each chapter, one at a time, to build on your knowledge. Either way, you will learn the techniques that make modern games look the way they do.

			Once you have completed this book, you will have a set of shaders that you can use in your Unity 3D games as well as an understanding of how to add to them, accomplish new effects, and address performance needs. So, let's get started!

			Who this book is for

			Unity 2021 Shaders and Effects Cookbook is written for Game developers who want to create their first shaders in Unity 2021 or wish to take their game to a whole new level by adding professional post-processing effects. A solid understanding of Unity is required.

			What this book covers

			Chapter 1, Post Processing Stack, introduces you to the Post Processing Stack, which will allow users to tweak their game's appearance without having to write any additional scripts.

			Chapter 2, Creating Your First Shader, introduces you to the world of shader coding in Unity. You will build some basic shaders and learn how to introduce tweakable properties in your shaders to make them more interactive.

			Chapter 3, Working with Surface Shaders, covers the most common and useful techniques that you can implement with Surface Shaders, including how to use textures and normal maps for your models.

			Chapter 4, Working with Texture Mapping, will show how to use textures to animate, blend, and drive any other property that you like.

			Chapter 5, Understanding Lighting Models, gives you an in-depth explanation of how shaders model the behavior of light. This chapter teaches you how to create custom lighting models used to simulate special effects, such as toon shading.

			Chapter 6, Physically Based Rendering, shows you that physically based rendering is the standard technology used by Unity 5 to bring realism to your games. This chapter explains how to make the most out of it by mastering transparencies, reflective surfaces, and global illumination.

			Chapter 7, Vertex Functions, teaches you how shaders can be used to alter the geometry of an object. This chapter introduces vertex modifiers and uses them to bring volumetric explosions, snow shaders, and other effects to life.

			Chapter 8, Fragment Shaders and Grab Passes, explains how to use grab passes to make materials that emulate the deformations generated by semi-transparent materials.

			Chapter 9, Mobile Shader Adjustment, helps you optimize your shaders to get the most out of any device.

			Chapter 10, Screen Effects with Unity Render Textures, shows you how to create special effects and visuals that would otherwise be impossible to achieve.

			Chapter 11, Gameplay and Screen Effects, tells you how post-processing effects can be used to complement your gameplay, simulating, for instance, a night-vision effect.

			Chapter 12, Advanced Shading Techniques, introduces the most advanced techniques in this book, such as fur shading and heatmap rendering.

			Chapter 13, Shader Graph – 2D, explains how to set up a project to use Unity's newly added Shader Graph editor. We cover how to create a simple Shader Graph, how to expose properties, and explore the ways that we can use Shader Graph for 2D games.

			Chapter 14, Shader Graph – 3D, expands on the knowledge from the previous chapter and shows how to use Shader Graph for 3D games with examples such as how to interact with the Shader Graph through code using a glow highlight system, creating a portal shader, and using custom Shader Graph functions.

			To get the most out of this book

			You are expected to have experience of working with Unity and some scripting experience (C# is fine). The book is written with Unity 2021.1.9f1 but should work with future versions of the engine with some minor tweaks.

			
				
					[image:]
				

			

			If you are using the digital version of this book, we advise you to type the code yourself or access the code via the GitHub repository (link available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Unity-2021-Shaders-and-Effects-Cookbook-Fourth-Edition. In case there's an update to the code, it will be updated on the existing GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781839218620_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "Use the vertex color data from our Input struct to be assigned to the o.Albedo parameters in the built-in SurfaceOutput struct."

			A block of code is set as follows:

			void surf (Input IN, inout SurfaceOutput o)

			{

			 o.Albedo = IN.vertColor.rgb * _MainTint.rgb;

			}

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			struct Input

			{

			 float2 uv_MainTex;

			 float4 vertColor;

			};

			Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "From its Inspector tab, make sure that Filter Mode is set to Bilinear."

			Tips or important notes

			Appear like this.

			Sections

			In this book, you will find several headings that appear frequently (Getting ready, How to do it..., How it works..., There's more..., and See also).

			To give clear instructions on how to complete a recipe, use these sections as follows:

			Getting ready

			This section tells you what to expect in the recipe and describes how to set up any software or any preliminary settings required for the recipe.

			How to do it…

			This section contains the steps required to follow the recipe.

			How it works…

			This section usually consists of a detailed explanation of what happened in the previous section.

			There's more…

			This section consists of additional information about the recipe in order to make you more knowledgeable about the recipe.

			See also

			This section provides helpful links to other useful information for the recipe.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

			Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you've read Unity 2021 Shaders and Effects Cookbook, we'd love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

		

	

		
			Chapter 1: Post Processing Stack

			It's great to write your own shaders and effects and fine-tune your project so that it looks just the way that you want it to, and this is what we will be spending the majority of the book looking into. However, it's also good to point out that Unity already comes with some prebuilt ways to get some of the more common effects that users like to have; users can implement these effects by using the Post Processing Stack.

			For those who just want to get something up and running, the Post Processing Stack can be an excellent way for you to tweak the appearance of your game without having to write any additional code. Using the Post Processing Stack can also be useful in showing you what shaders can do and how they can improve your game projects as, behind the scenes, the Post Processing Stack provides several shaders as well as scripts that are applied to the screen via the aptly named screen shader.

			In this chapter, we will cover the following recipes:

			
					Installing the Post Processing Stack

					Getting a filmic look using grain, vignetting, and depth of field

					Mimicking real life with bloom and anti-aliasing

					Setting the mood with color grading

					Creating a horror game look with fog

			

			Technical requirements

			You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/Unity-2021-Shaders-and-Effects-Cookbook-Fourth-Edition/tree/main/Shaders-and-Effects-Cookbook-2021/Assets/Chapter%2001.

			Installing the Post Processing Stack

			Before we can use the Post Processing Stack, we must get it from the Package Manager. A Unity package is a single file that contains various assets that can be used in Unity, similar to a ZIP file. Previously, Unity used the Asset Store to share these files with users, but with time, the Package Manager has been added to give users an easy way to get free content from Unity. We will be using the Package Manager again in Chapter 13, Shader Graph – 2D, but for now, we will be using it for the Post Processing package that it contains.

			Getting ready

			To get started with this recipe, you will need to have Unity running and have created a new project with the 3D template. This chapter also requires you to have an environment to work from. The code files provided with this book contain a .unitypackage file called Chapter1_StartingPoint.unitypackage in the Unity Packages folder. It contains a basic scene and content for creating the scene with Unity's Standard Assets.

			Open the Chapter 1 | Starting Point scene inside the Asset | Chapter 01 | Scenes folder from the Project browser. If all goes well, you should see something like this from the Game tab:

			
				
					[image: Figure 1.1 – Starting point scene]
				

			

			Figure 1.1 – Starting point scene

			This is a simple environment that will allow us to easily see how changes that have been made with post-processing effects can modify how things are drawn on the screen.

			Note

			If you are interested in learning how to create the environment we've used here, check out my previous book, Unity 5.x Game Development Blueprints, also available from Packt Publishing.

			How to do it...

			To get started, follow these steps:

			
					Open Package Manager by going to Window | Package Manager:[image: Figure 1.2 – The Package Manager]
Figure 1.2 – The Package Manager

					From the Packages dropdown at the top left, select the Unity Registry option to display a list of all of the possible packages that are there. Once the list populates with all of the choices, select the Post Processing option:[image: Figure 1.3 – Post Processing selected]
Figure 1.3 – Post Processing selected
Note
If you know the name of the package you are looking for, you can also find packages by typing their name in the search bar at the top right of the menu.
[image: Figure 1.4 – Search bar of Package Manager]
Figure 1.4 – Search bar of Package Manager

					From there, at the bottom right of the menu, click on the Install button. You may need to wait for a while for it to finish downloading the content. Once it has finished downloading, you should see a checkmark to the right of the Post Processing option, which shows that it has been installed:[image: Figure 1.5 – Post Processing package installed]
Figure 1.5 – Post Processing package installed

					Close the Packages tab and go back to the Scene window to see the level. Then, from the Hierarchy window, select the object that has our Camera component attached to it. We are doing this because the Post Processing Stack needs to know which screen we want to modify. If you are using your own project, you can select the MainCamera object that comes with the default Unity scene, but the example project that is being used has Camera located as a child of the FPSController object. To select it, go to the Hierarchy window and then click on the arrow next to the name to extend the object's children. Then, select the FirstPersonCharacter object:[image: Figure 1.6 – FirstPersonCharacter selected]
Figure 1.6 – FirstPersonCharacter selected

					Upon selecting this object, you should see that the Inspector window is now showing information about the FirstPersonCharacter object, including what components are attached to it:[image: Figure 1.7 – The Inspector window with FirstPersonCharacter selected]
Figure 1.7 – The Inspector window with FirstPersonCharacter selected
This object has a Camera component attached to it, which is in charge of drawing what it is pointing at to the Game tab when the game starts:
Note
You can double-click on a game object in the Hierarchy tab to zoom the camera from the Scene tab onto the object's location. This makes it very easy to find things, even in a large game level.
[image: Figure 1.8 – The Scene view after double-clicking on the FirstPersonCharacter object]
Figure 1.8 – The Scene view after double-clicking on the FirstPersonCharacter object

					With the object selected and our Camera component attached to it, we need to add the Post-processing Behavior component to the object by going to Component | Rendering | Post-process Layer. Once added, you should be able to see the component in the Inspector window if you scroll down:[image: Figure 1.9 – The Post-process Layer component]
Figure 1.9 – The Post-process Layer component
The Post-process Layer component is responsible for rendering post-processing effects to a camera so that they're visible in our game. It requires us to be inside of a Post-process Volume that has a Layer defined on it.

					With that in mind, go to the top right of the Unity interface and select the Layers dropdown. This will show a list of all of the current layers in the game. From there, select Add Layers….

					The Inspector window will now show the Tags & Layers menu. Once opened, click on the arrow to expand the Layers section. From there, under one of the empty User Layer options, type in PostProcessing:[image: Figure 1.10 – Adding a custom User Layer]
Figure 1.10 – Adding a custom User Layer
Note
It is possible to type in any name you would want for this layer, so long as you assign that same layer to the volumes later.

					From the Hierarchy window, select the FirstPersonCharacter object once again to update the Inspector window. From the Inspector window, scroll down to the Post-Process Layer component, select the dropdown to the right of the Layer property, and select PostProcessing:[image: Figure 1.11 – Assigning Volume Layer]
Figure 1.11 – Assigning Volume Layer
This tells the component which objects we want to affect the screen with post-processing effects. When setting this, an object must have its Layer property set to PostProcessing to have its effects visible by this camera.

					To create a Post-process Volume, go to the GameObject menu and select 3D Object | Post-process Volume:[image: Figure 1.12 – Creating a Post-process Volume]
Figure 1.12 – Creating a Post-process Volume

					From there, go to the Inspector window and change the Layer property to PostProcessing. Finally, to make it easier to work with, change Position to 0, 0, 0. Then, under the Post-process Volume component, check the Is Global property:

			

			
				
					[image: Figure 1.13 – Assigning the Is Global property]
				

			

			Figure 1.13 – Assigning the Is Global property

			Notice that there is a Profile property for the volume. This property will contain information about how we wish to modify the screen. By checking Is Global, we are saying that this information should always be drawn by the Post-process Layer object. By unchecking it, the effects would only be visible from a certain distance from where the volume has been placed, as dictated by the trigger collider attached to the object. Depending on the game, this could allow you to drastically modify how the game appears in certain areas, but we only care about getting the visual effect at this point.

			Getting a filmic look using grain, vignetting, and depth of field

			Now that we have installed the Post Processing Stack, we can create our first post-processing volume. The new Post Processing Stack relies on using volumes that describe how things should be drawn, either globally or within a certain area.

			One of the most common appearances people like projects to have is that of a film. This is used quite frequently in titles such as the Uncharted series and Grand Theft Auto V. It's also used quite effectively in the Left 4 Dead series as its creators were trying to emulate the B-movie zombie films that the games are based on:

			
				
					[image: Figure 1.14 – The final result of the filmic look]
				

			

			Figure 1.14 – The final result of the filmic look

			Getting ready

			Make sure you have completed the Installing the Post Processing Stack recipe before starting this one.

			How to do it...

			Follow these steps to get a filmic look using grain, vignetting, and depth of field:

			
					First, we must create a new Post Processing Profile by going to the Project window. From there, right-click within the Assets | Chapter 1 folder and selecting Create | Post-processing Profile. Once selected, we can rename the item. Go ahead and set the name to FilmicProfile:[image: Figure 1.15 – Creating FilmicProfile]
Figure 1.15 – Creating FilmicProfile
Note
If you don't enter the name correctly, you can rename an item from the Project tab by clicking on the name and then clicking it again. Alternatively, you can right-click on the item and select Rename or hit F2 on your keyboard.

					Once the profile is created, you will notice that, when selected, the Inspector window now contains a button that says Add effect..., which will allow us to augment what is normally drawn on the screen.

					From the Hierarchy tab, select the Post-process Volume object again. Then, from the Inspector tab, go to the Post-process Volume component and assign the Profile property to FilmicProflie, which we just created, by dragging and dropping it from the Project window over the property and then letting go:[image: Figure 1.16 – Assigning the Profile of Post-process Volume]
Figure 1.16 – Assigning the Profile of Post-process Volume
Note
Once the Profile has been set, the Add effect... button shows up here as well. We can use this at either place and the changes will be saved in the file.

					To get started, click on the Add effect... button and select the Unity | Grain option. By default, you'll only see the Grain option with a check, so click on the arrow to expand its contents:[image: Figure 1.17 – Adding the Grain effect to Post-process Volume]
Figure 1.17 – Adding the Grain effect to Post-process Volume
By default, you'll see that everything is grayed out. To have the options affect anything, you have to click on the checkbox on the left-hand side of the options to enable them. You can quickly turn them all on or off by pressing the All or None buttons at the top left of the option.

					To see the differences in what we are doing, switch to the Game view by selecting that tab. In our case, check the Intensity option and set it to 1.0. Then, check the Size property and set it to 1.0. Afterward, switch to the Game tab to see a representation of what our tweaks have done:[image: Figure 1.18 – Representation of the Grain effect]
Figure 1.18 – Representation of the Grain effect
You will notice that the screen has become much fuzzier than before.

					We want to have a more subtle effect here, so we will decrease Intensity to 0.2, set Size to 0.3, and uncheck the Colored option:[image: Figure 1.19 – Altering the Grain effect]
Figure 1.19 – Altering the Grain effect
This will change the effect of the grain effect so that it looks like this:
[image: Figure 1.20 – Changing the Grain effect]
Figure 1.20 – Changing the Grain effect
Note
Unlike how users typically work in Unity, due to Post Processing Profiles being files, you can modify them while playing your game and, upon stopping the game, the values are still saved. This can be useful for tweaking values to achieve the exact look that you're after.

					The next property we want to tweak is the Vignette property, which will add blackened edges around the screen. Click on Add effect... and select Unity | Vignette. Open the properties, enable the Intensity property, and set it to 0.5. Afterward, enable and set Smoothness to 0.35:[image: Figure 1.21 – Creating a Vignette effect]
Figure 1.21 – Creating a Vignette effect
Adding this effect will make the screen look like this:
[image: Figure 1.22 – Visual of the Vignette effect]
Figure 1.22 – Visual of the Vignette effect

					Next, select Add effect... again and, this time, select Unity | Depth of Field. Expand the Depth of Field option if needed. It may be difficult to see the change right off the bat, but change Focus Distance to 6 and Focal Length to 80:[image: Figure 1.23 – Adjusting the Depth of Field values]
Figure 1.23 – Adjusting the Depth of Field values
Afterward, if you look at the Scene view, you should notice that the grass in front of the background and the mountain in the distance is now blurred:
[image: Figure 1.24 – Adding the Depth of Field effect]
Figure 1.24 – Adding the Depth of Field effect

					Now, if we go into the game itself and move around, we should see our filmic look in action:

			

			
				
					[image: Figure 1.25 – The final result of the filmic look]
				

			

			Figure 1.25 – The final result of the filmic look

			And with that, we now have a scene that looks much more like a film than what we had to begin with!

			How it works...

			Each time we add an effect to a post-processing volume, we are overriding what would normally be put onto the screen.

			If you've been to a movie theater that still uses film, you may have noticed how there were little specks in the filmstock while the film was playing. The grain effect simulates this film grain, causing the effect to become more pronounced the more the movie is played. This is often used in horror games to obscure the player's vision.

			Note

			For more information about the grain effect, check out https://github.com/Unity-Technologies/PostProcessing/wiki/Grain.

			In the film world, vignetting can be an unintended effect of using the wrong type of lens for the type of shot you are trying to achieve or the aspect ratio that you are shooting for. In game development, we typically use vignetting for dramatic effect or to have players focus on the center of the screen by darkening and/or desaturating the edges of the screen compared to the center.

			Note

			For more information about the vignette effect, check out https://github.com/Unity-Technologies/PostProcessing/wiki/Vignette.

			The depth of field setting determines what is blurry and what isn't. The idea is to have items of importance in focus while items in the background are not.

			Note

			For more information about the depth of field effect, check out https://github.com/Unity-Technologies/PostProcessing/wiki/Depth-of-Field.

			Mimicking real life with bloom and anti-aliasing

			The bloom optical effect aims to mimic the imaging effects of real-world cameras, where things in areas with lights will glow along the edges, thus overwhelming the camera. The bloom effect is very distinctive and you've likely seen it employed in areas in a game that are magical or heaven-like:

			
				
					[image: Figure 1.26 – The final result of using bloom and anti-aliasing]
				

			

			Figure 1.26 – The final result of using bloom and anti-aliasing

			Getting ready

			Make sure you have completed the Installing the Post Processing Stack recipe before starting this one.

			How to do it...

			To add the bloom and anti-aliasing effect, follow these steps:

			
					First, we must create a new Post-processing Profile by right-clicking within the Assets folder in the Project window and then selecting Create | Post-processing Profile. Once selected, we can rename the item. Go ahead and set the name to BloomProfile.

					Select the Post-process volume object and, from the Inspector window, go to the Post Processing Volume component and assign the Profile property to BloomProfile.

					Afterward, select the Game tab (if it hasn't been selected already) to see the results of the changes we are about to make.

					Select the Add effect... button and select Unity | Bloom. Once the effect has been added to the Overrides section of the Post-process Volume component, select the arrow to open its properties. Check the Intensity property and set it to 3. Afterward, check and set Threshold to 0.75 and Soft Knee to 0.1:[image: Figure 1.27 – Adding a Bloom effect]
Figure 1.27 – Adding a Bloom effect
This will give us the following effect:
[image: Figure 1.28 – Visual of the Bloom effect]
Figure 1.28 – Visual of the Bloom effect

					Next, select the object with the Post Process Layer component attached to it (in this example, it is the FPSController | FirstPersonCharacter object) and, from the Inspector tab, scroll down to the Post-process Layer component. From there, change the Anti-aliasing property's dropdown to Fast Approximate Anti-aliasing (FXAA):[image: Figure 1.29 – Adjusting the Mode value of Anti-aliasing]
Figure 1.29 – Adjusting the Mode value of Anti-aliasing

					Afterward, save your scene and hit the Play button to check out your project:

			

			
				
					[image: Figure 1.30 – The final result of using bloom and anti-aliasing]
				

			

			Figure 1.30 – The final result of using bloom and anti-aliasing

			How it works...

			As we mentioned previously, the bloom filter will make bright things even brighter while adding a glow to lighter areas. In this recipe, you may have noticed that the path is much lighter than it was previously. We can do this to ensure that players will follow the path to get to the next section of gameplay.

			Note

			For more information about bloom, check out https://github.com/Unity-Technologies/PostProcessing/wiki/Bloom.

			Anti-aliasing attempts to reduce the appearance of aliasing, which is the effect of lines appearing jagged on the screen. Any time anything is sampled below the Nyquist frequency, aliasing will occur. This is because the display the player is using to play the game doesn't have a high enough resolution to be displayed properly. Anti-aliasing will combine colors with nearby lines to remove their prominence, but at the cost of the game appearing somewhat blurry.

			Note

			For more information about anti-aliasing and what each mode means, check out https://github.com/Unity-Technologies/PostProcessing/wiki/Anti-aliasing.

			Setting the mood with color grading

			One of the best ways to easily change the mood of a scene is by changing the colors a scene uses. One of the best examples of this can be seen in the Matrix series of films, where the real world is always blue-tinted, while the computer-generated world is always tinted green. We can emulate this in our games by using color grading:

			
				
					[image: Figure 1.31 – The final result of using color grading]
				

			

			Figure 1.31 – The final result of using color grading

			Getting ready

			Make sure you have completed the Installing the Post Processing Stack recipe before starting this one.

			How to do it...

			To add color grading, follow these steps:

			
					First, we must create a new Post-processing Profile by right-clicking within the Assets folder in the Project window and then selecting Create | Post-processing Profile. Once selected, we can rename the item. Go ahead and set it to ColorProfile.

					Select the Post-process Volume object in the Hierarchy window and, from the Inspector window, go to the Post-processing Volume component and assign the Profile property to ColorProfile.

					Afterward, select the Game tab (if it hasn't been selected already) to see the results of the changes to be made.

					Select the Add effect... button and select Unity | Color Grading.

					Check the Mode property at the very top of the Color Grading section and set it to Low Definition Range:[image: Figure 1.32 – Assigning Low Definition Range for Mode]
Figure 1.32 – Assigning Low Definition Range for Mode

					From there, you'll see several properties that can be used to adjust the colors on the screen, similar to how Photoshop's hue/saturation menu works. Check the Temperature property and set it to 30. Afterward, set Hue Shift to -20 and Saturation to 15:[image: Figure 1.33 – Adjusting the properties of Color Grading]
Figure 1.33 – Adjusting the properties of Color Grading
From the Scene view, we will see the following output:
[image: Figure 1.34 – Visual effect of the Color Grading properties]
Figure 1.34 – Visual effect of the Color Grading properties

					After making these changes, dive into the game and move around to see what it looks like when playing it:

			

			
				
					[image: Figure 1.35 – The final result of using color grading]
				

			

			Figure 1.35 – The final result of using color grading

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/image/Figure_1.17_B15410.jpg
I3 v Post-process Volume

Is Global
Weight
Priority
Profile

Overrides
v Grain

v

0

L3 FilmicProfile (Post Prc @ || New | Clone

Add effect...

On

Off

OEBPS/image/Figure_1.27_B15410.jpg
© Inspector Cil=

Size X1 i 1 A 1
I3 v Post-process Volume e i i
Is Global v
Weight @ 1
Priority 0
Profile £3BloomProfile (® | New | Clone
Overrides

v Bloom H

On | Off

Bloom
v Intensity S
v Threshold 0.75
v SoftKnee L 0.1

Dirtiness

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/image/Figure_1.04_B15410.jpg
& [al

OEBPS/image/Figure_1.24_B15410.jpg

OEBPS/image/Figure_1.14_B15410.jpg

OEBPS/image/Figure_1.11_B15410.jpg
) Inspector | =]

Allow Dynamic Resolution

Target Display Display 1 v
4 command buffers
BeforeLighting: Deferred Ambient Occlusion (0 B)

BeforelmageEffectsOpaque: Opaque Only Post-processing (0 B) Lo
BeforelmageEffects: Post-processing (0 B)

BeforeReflections: Deferred Ambient Occlusion (0 B)

Remove all

1 v Audio Listener 0 it i
Ly v Post-process Layer o i+ i
Volume blending

Trigger 2 FirstPersonCharacter (Trar © This

Volume Layer PostProcessing v
Anti-aliasing

Mode No Anti-aliasing v

Stop NaN Propagation v
Directly to Camera Target

Toolkit
Custom Effect Sorting

OEBPS/image/Figure_1.21_B15410.jpg
@ Inspector
Weight
Priority
Profile

Overrides

>

NE S

v Grain
None
Colored

Intensity
Size

0
LiFilmicProfile (F® ~ New Clone

On | Off

® 0.2
® 0.3

Luminance Contributic 0.8

v Vignette
None

Mode

Color
Center
Intensity
Smoothness
Roundness
Rounded

Classic =

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/image/Figure_1.01_B15410.jpg
Scene o®Game W@ Asset Store
Game v Display 1 v 1920x1080
B .

OEBPS/image/Figure_1.31_B15410.jpg

OEBPS/image/Figure_1.34_B15410.jpg

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/cover.png
- .

Unity 2021

Shaders and Effects

Cookbook

Fourth Edition e
Over 50 recipes to help you transform your \\
game into a visually stunning masterpiece - \

John P. Doran)

OEBPS/image/Figure_1.35_B15410.jpg

OEBPS/image/Figure_1.06_B15410.jpg
= Hierarchy a
+v
<€ Chapter 1 - Starting Point

@ FPSController

&) FirstPersonCharacter
% WaterProDaytime
tional Light
in

OEBPS/image/Figure_1.16_B15410.jpg
Is Trigger %

Material None (Physic Material) ©
Center X0 Yo z0
MProject B Console [Timeline @ Animation £ X1 i1 0

a
236 x N

$ie -
* Favortes hssets > Chapter 01 € Post-process Volume 0
Q_ AllMaterials W 2
O, All Models
O, AllPrefabs Weight
priority
G Assets Profie FimicProfile (Post Pre G
ator Scenes standara
+ b Chapter 01
 Editor wverrides
B 7
e ' N No overrde seton this volume
Ches b o
e Packages Torans || Fimcrotie ¢

] Add Component

OEBPS/image/B15410_Preface_Table.jpg
Software/hardware covered in the book

OS requirements

Unity 2021.1.9f1

Windows, macOS, or Linux

OEBPS/image/Packt_Logo.jpg
Packb

OEBPS/image/Figure_1.08_B15410.jpg
Scene owGame @ Asset Store i
Shaded v o [@ w(gl

OEBPS/image/Figure_1.26_B15410.jpg

OEBPS/image/Figure_1.07_B15410.jpg
© Inspector a2

.0’ v FirstPersonCharacter Static v

Tag MainCamera v Layer Default v

N Transform o i
Position X 0 Y08 zo0
Rotation X 0 Yo zo
Scale @ 1 @

(v Camera LRE
Clear Flags Skybox =
Background ! P
Culling Mask Mixed... -
Projection Perspective -
FOV Axis Vertical -
Field of View] 60
Physical Camera
Clipping Planes Near 0.3

Far 1000
Viewport Rect X0 Yo

W1 H1
Depth 0

Rendering Path Use Graphics Settings -

OEBPS/image/Figure_1.30_B15410.jpg
4
Ir
“

. k\'"
AR AR
S
SR

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/toc.xhtml

		
		Contents

			
						Unity 2021 Shaders and Effects Cookbook

						Fourth Edition

						Contributors

						About the author

						About the reviewers

						Preface
					
								Who this book is for

								What this book covers

								To get the most out of this book
							
										Download the example code files

							

						

								Download the color images

								Conventions used

								Sections
							
										Getting ready

										How to do it…

										How it works…

										There's more…

										See also

							

						

								Get in touch

								Share Your Thoughts

					

				

						Chapter 1: Post Processing Stack
					
								Technical requirements

								Installing the Post Processing Stack
							
										Getting ready

										How to do it...

							

						

								Getting a filmic look using grain, vignetting, and depth of field
							
										Getting ready

										How to do it...

										How it works...

							

						

								Mimicking real life with bloom and anti-aliasing
							
										Getting ready

										How to do it...

										How it works...

							

						

								Setting the mood with color grading
							
										Getting ready

										How to do it...

							

						

								Creating a horror game look with fog
							
										Getting ready

										How to do it...

										How it works...

							

						

					

				

						Chapter 2: Creating Your First Shader
					
								Technical requirements

								Creating a basic Standard Shader
							
										Getting ready

										How to do it...

										How it works...

										There's more...

							

						

								Adding properties to a shader
							
										Getting ready

										How to do it...

										How it works...

										See also

							

						

								Using properties in a Surface Shader
							
										How to do it...

										How it works...

										There's more...

										See also

							

						

					

				

						Chapter 3: Working with Surface Shaders
					
								Technical requirements

								Implementing diffuse shading
							
										Getting ready

										How to do it...

										How it works...

							

						

								Accessing and modifying packed arrays
							
										How to do it...

										There's more...

										See also

							

						

								Creating a shader with normal mapping
							
										Getting ready

										How to do it...

										How it works...

										There's more...

							

						

								Creating a Holographic Shader
							
										Getting ready

										How to do it...

										How it works...

										There's more...

										See also

							

						

					

				

						Chapter 4: Working with Texture Mapping
					
								Technical requirements

								Adding a texture to a shader
							
										Getting ready

										How to do it...

										How it works...

										There's more...

										See also

							

						

								Scrolling textures by modifying UV values
							
										Getting ready

										How to do it...

										How it works...

							

						

								Creating a transparent material
							
										Getting ready

										How to do it...

										How it works...

							

						

								Packing and blending textures
							
										Getting ready

										How to do it...

										How it works...

							

						

								Creating a circle around your terrain
							
										Getting ready…

										How to do it...

										How it works...

										There's more…

							

						

					

				

						Chapter 5: Understanding Lighting Models
					
								Technical requirements

								Creating a custom diffuse lighting model
							
										Getting ready

										How to do it...

										How it works...

							

						

								Creating a toon shader
							
										Getting ready

										How to do it...

										How it works...

										There's more...

							

						

								Creating a Phong Specular type
							
										Getting ready

										How to do it...

										How it works...

							

						

								Creating a Blinn-Phong Specular type
							
										Getting ready

										How to do it...

										How it works...

										See also

							

						

								Creating an Anisotropic Specular type
							
										Getting ready

										How to do it...

										How it works...

							

						

					

				

						Chapter 6: Physically Based Rendering
					
								Technical requirements

								Understanding the metallic setup
							
										Getting ready

										How to do it...

										How it works...

										See also

							

						

								Adding transparency to PBR
							
										Getting ready

										How to do it...
									
												Semi-transparent materials

												Fading objects

												Solid geometries with holes

									

								

										See also

							

						

								Creating mirrors and reflective surfaces
							
										Getting ready

										How to do it...

										How it works...

										See also

							

						

								Baking lights into your scene
							
										Getting ready

										How to do it...
									
												Configuring the static geometry

												Configuring the light probes

												Baking the lights

									

								

										How it works...

										See also

							

						

					

				

						Chapter 7: Vertex Functions
					
								Technical requirements

								Accessing a vertex color in a Surface Shader
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Animating vertices in a Surface Shader
							
										Getting ready

										How to do it…

										How it works…

							

						

								Extruding your models
							
										Getting ready

										How to do it…

										How it works…

										There's more…
									
												Adding extrusion maps

									

								

							

						

								Implementing a snow shader
							
										Getting ready

										How to do it…

										How it works…
									
												Coloring the surface

												Altering the geometry

									

								

										See also

							

						

								Implementing a volumetric explosion
							
										Getting ready

										How to do it…

										How it works…

										There's more…

										See also

							

						

					

				

						Chapter 8: Fragment Shaders and Grab Passes
					
								Technical requirements

								Understanding Vertex and Fragment Shaders
							
										Getting ready

										How to do it…

										How it works…

										There's more…
									
												Input semantics

												Output semantics

									

								

										See also

							

						

								Using grab passes to draw behind objects
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Implementing a Glass Shader
							
										Getting ready

										How to do it…

										How it works…

										There's more…

							

						

								Implementing a Water Shader for 2D games
							
										Getting ready

										How to do it…

										How it works…

							

						

					

				

						Chapter 9: Mobile Shader Adjustment
					
								Technical requirements

								Techniques to make shaders more efficient
							
										Getting ready

										How to do it...

										How it works...

							

						

								Profiling your shaders
							
										Getting ready

										How to do it...

										How it works...

										There's more...

							

						

								Modifying our shaders for mobile
							
										Getting ready

										How to do it...

										How it works...

							

						

					

				

						Chapter 10: Screen Effects with Unity Render Textures
					
								Technical requirements

								Setting up a screen effects script system
							
										Getting ready

										How to do it...

										How it works...

										There's more...

							

						

								Using brightness, saturation, and contrast with screen effects
							
										Getting ready

										How to do it...

										How it works...

							

						

								Using basic Photoshop-like Blend Modes with screen effects
							
										Getting ready

										How to do it...

										How it works...

										There's more...

							

						

								Using the Overlay Blend Mode with screen effects
							
										How to do it...

										How it works...

							

						

					

				

						Chapter 11: Gameplay and Screen Effects
					
								Technical requirements

								Creating an old movie screen effect
							
										Getting ready

										How to do it...

										How it works...

										See also

							

						

								Creating a night-vision screen effect
							
										Getting ready

										How to do it...

										How it works...

										There's more...

							

						

					

				

						Chapter 12: Advanced Shading Techniques
					
								Technical requirements

								Using Unity's built-in CgInclude files
							
										Getting ready

										How to do it...

										How it works...

										There's more...

							

						

								Making your shader work in a modular way with CgInclude
							
										Getting ready

										How to do it...

										How it works...

							

						

								Implementing a Fur Shader
							
										Getting ready

										How to do it...

										How it works...

										There's more...

							

						

								Implementing Heatmaps with arrays
							
										Getting ready

										How to do it...

										How it works...

							

						

					

				

						Chapter 13: Shader Graph – 2D
					
								Technical requirement

								Creating a URP-based Shader Graph project
							
										How to do it...

										How it works...

							

						

								Implementing a simple Shader Graph
							
										Getting ready

										How to do it...

										How it works...

							

						

								Exposing properties to the Inspector via Shader Graph
							
										Getting ready

										How to do it...

										How it works...

							

						

								Creating a Sprite Outline Shader
							
										Getting ready

										How to do it...

										How it works...

							

						

					

				

						Chapter 14: Shader Graph – 3D
					
								Technical requirements

								Implementing a glowing highlight system
							
										Getting ready

										How to do it...

										How it works...

							

						

								Portal Shaders in Unity
							
										Getting ready

										How to do it...

										How it works...

							

						

								Creating custom Shader Graph functions
							
										Getting ready

										How to do it...

										How it works...

							

						

								Why subscribe?

					

				

						Other Books You May Enjoy
					
								Packt is searching for authors like you

								Share Your Thoughts

					

				

			

		
		
		Landmarks

			
						Cover

						Table of Contents

			

		
	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/image/Figure_1.10_B15410.jpg
© Inspector

0 Tags & Layers o

Tags
Sorting Layers
Layers

UserLayer 3

User Layer 6
User Layer 7

OEBPS/image/Figure_1.20_B15410.jpg

OEBPS/image/Figure_1.18_B15410.jpg

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/Figure_1.28_B15410.jpg

OEBPS/image/Figure_1.05_B15410.jpg
= Package Manager

=+ v Packages: Unity Registry v Sort: Name 4 v

Input System
JetBrains Rider Editor
Magic Leap XR Plugin
ML Agents

Mobile Notifications
Oculus XR Plugin

Polybrush

ProBuilder
Profile Analyzer

Last update Feb 4, 12:41

5.0.0-pre.7

1.0.2
3.0.3
6.0.0

1.0.6

1.3.2

7.0

1.0.2

aQ

Post Processing

Unity Technologies
Version 3.0.2 - January 20, 2021
View documentation . View changelog . View licenses

The post-processing stack (v2) comes with a collection of effects and
image filters you can apply to your cameras to improve the visuals of
your games.

More...

Remove

OEBPS/image/Figure_1.19_B15410.jpg
£5 v Post-process Volume LS

Global v
elght 1
Priority 0
Profile &FilmicProfile (Post Proc. © [New! | Clone:
Overrides

~ Grain

on [1off

~ Colored
 Intensity o

OEBPS/image/Figure_1.09_B15410.jpg
© Inspector a3
Target Display visplay 1 -
4 command buffers
BeforeLighting: Deferred Ambient Occlusion (0 B) -
BeforelmageEffectsOpaque: Opaque Only Post-processing (0 B) -
BeforelmageEffects: Post-processing (0 B) -
BeforeReflections: Deferred Ambient Occlusion (0 8) -
Remove all
{1 v Audio Listener e i+ i

L3 v Post-process Layer
Volume blending

Trigger 2 FirstPersonCharacter (Trar ©
Volume Layer Nothing

A\ o o7 nes veen se, e wigger witnever b affected by votumes

Anti-aliasing

Mode No Anti-aliasing

Stop NaN Propagation v
Directly to Camera Target

OEBPS/image/Figure_1.15_B15410.jpg
I Project B Console i Timeline
+ - Q
% Favorites
O, All Materials
O, All Models

O, All Prefabs

(aw Assets
[a@ Chapter 01
m Editor
= Scenes
I Standard Assets
m Terrains
M Packages

© Animation

Z &

Assets > Chapter 01

Editor Scenes Standard ...
Terrains

lessets/Chapter 071/FilmicProfile.asset

OEBPS/image/Figure_1.02_B15410.jpg
= Package Manager
4+ v Packages: In Project v Sort: Name ¥ v

Unity Technologies

JetBrains Rider Editor
Test Framework
TextMeshPro

Timeline

Unity Collaborate

Unity Ul

Visual Scripting

Visual Studio Code Editor
Visual Studio Editor

Last update Feb 4, 12:44

1.5.1-pre.3

1.5.1-pre.3

3.0.3
1.1.19
3.0.3

1.3.9

1.0.0

1.2.3

2.0.5

L L L0 Lo

JetBrains Rider Editor
Unity Technologies

Version 3.0.3 - November 25, 2020

View documentation « View changelog . View licenses

The JetBrains Rider Editor package provides an integration for using
the JetBrains Rider IDE as a code editor for Unity. It adds support for
qenerating .csproj files for code completion and auto-discovery of
More...

Registry Unity

Remove

OEBPS/image/Figure_1.12_B15410.jpg
i

= Hierarchy

+ -

I Project

File Edit Assets GameObject Component Mobile Input Window Help

Create Empty Ctrl+Shift+N [
Create Empty Child Alt+Shift+N

Create Empty Parent Ctrl+Shift+G Same WL=ses ol

3D Object > Cube

Effects > Sphere

Light > Capsule

Audio > Cylinder

Video > Plane

ul 2 Quad

Camera Text - TextMeshPro

S Variabl
CENE onabes Post-process Volume

Center On Children

Ragdoll...
Make Parent =

Terrain
Clear Parent

Tree
Set as first sibling Ctrl+= Wind Zone
Set as last .swb\mg Ctrl+- 3D Text
Move To View Ctrl+Alt+F
Align With View Ctrl+Shift+F

Align View to Selected

Toggle Active State Alt+Shift+A

Clear v Collapse Error Pause Editor ¥

OEBPS/image/Figure_1.32_B15410.jpg
I3 v Post-process Volume

Is Global
Weight
Priority
Profile

Overrides
v Color Grading

v Mode

v

(]

L ColorProfile (Post Pr @ | New | Clone

On

Off

| Low Definition Range

OEBPS/image/Figure_1.29_B15410.jpg
IS v Post-process Layer e i
Volume blending
Trigger 2 FirstPersonCharacter (Tra ® This
Volume Layer PostProcessing <

Anti-aliasing
Mode | Fast Approximate Anti-aliasing (FXAA) v |

Fast Mode
Keep Alpha

Stop NaN Propagation v
Directly to Camera Target

OEBPS/image/Figure_1.22_B15410.jpg

OEBPS/Fonts/CourierStd.otf

OEBPS/image/Figure_1.03_B15410.jpg
= Package Manager
<+ v Packages: Unity Registry v Sort: Name 4 v

Oculus XR Plugin

Polybrush

ProBuilder

Profile Analyzer

Remote Config
Scriptable Build Pipeline
Test Framework
TextMeshPro

Timeline

Last update Feb 4, 12:41

1.7.0
1.0.2

5.0.0-pre.7

1.0.3

2,01
1.15.2

1119 @
303 v

1.5.1-pre.3

aQ

Post Processing

Unity Technologies
Version 3.0.2 - January 20, 2021
View documentation « View changelog . View licenses

The post-processing stack (v2) comes with a collection of effects and
image filters you can apply to your cameras to improve the visuals of
your games.

More...

Install

OEBPS/image/Figure_1.33_B15410.jpg
I3 v Post-process Volume o i i

Is Global v

Weight @ 1
Priority 0

Profile LaColorProfile (PostPr © - New | Clone
Overrides

v Color Grading H
On | Off

v Mode Low Definition Range <
White Balance
v Temperature @ 30

Tone

v Hue Shift L
v Saturation L

OEBPS/image/Figure_1.23_B15410.jpg
© Inspector =]

v Colored
v Intensity L 0.2
v Size [0.3
Luminance Contributic 0.8
v Vignette H
Al None on | Off
Mode Classic Y
Color v
Center X 0.5 Y 0.5
v Intensity L} 0.5
v Smoothness L 0.35
Roundness 1
Rounded
v Depth Of Field H
Al None on | Off
v Focus Distance 6
Aperture 5.6

v Focal Length o

Max Blur Size Medium v

OEBPS/image/Figure_1.13_B15410.jpg
© Inspector a

), v Post-process Volume Static ¥
Tag Untagged ~ Layer PostProcessing -
r A Transform o i
Position X0 Yo z0
Rotation X0 Yo z0
Scale @ Y1 [
v @ v Box Collider o i
Edit Collider A
Is Trigger v
Material None (Physic Material) o]
Center X 0 Yo z0
Size X1 Y1 z1
v {3 v Post-process Volume e i
Is Global
Weight 1
Priority 0
profile B None (Post Process Profile @ [/NeW;

Assign a Post-process Profile to this volume using the "Asset” field or
create one automatically by clicking the “New button.

Q Assets are automatically put in a folder next to your scene file. If you
scene hasn't been saved yet they will be created at the root of the -

