
		
			[image: Cover.png]
		

	
		
			C++ Game Animation Programming

			Learn modern animation techniques from theory to implementation using C++, OpenGL, and Vulkan

			Michael Dunsky

			Gabor Szauer

			[image: Packt Logo]

			BIRMINGHAM—MUMBAI

			C++ Game Animation Programming

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Rohit Rajkumar

			Publishing Product Manager: Kaustubh Manglurkar

			Book Project Manager: Sonam Pandey

			Senior Editor: Rashi Dubey

			Technical Editor: Simran Ali

			Copy Editor: Safis Editing

			Proofreader: Safis Editing

			Indexer: Hemangini Bari

			Production Designer: Shankar Kalbhor

			DevRel Marketing Coordinators: Nivedita Pandey and Namita Velgekar

			First published: June 2020

			Second edition: December 2023

			Production reference: 2221223

			Published by

			Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB, UK.

			ISBN: 978-1-80324-652-9

			www.packtpub.com

			To my mother, Christel, for her patience as a single mother while raising a nerd.

			To my kids, Eric and Greta, for following my footsteps into the tech world.

			– Michael Dunsky

			Contributors

			About the authors

			Michael Dunsky is an educated electronics technician, game developer, and console porting programmer with more than 20 years of programming experience. He started at the age of 14 with BASIC, adding along the way Assembly language, C, C++, Java, Python, VHDL, OpenGL, GLSL, and Vulkan to his portfolio. During his career, he has also gained extensive knowledge of virtual machines, server operation, infrastructure automation, and other DevOps topics. Michael holds a master of science degree in computer science from FernUniversität in Hagen, focused on computer graphics, parallel programming, and software systems.

			Thanks to Fred and Mikkel for supporting my crazy idea of writing a book as a spare-time
project – while working as a full-time programmer at Slipgate and in parallel to the completion
of my Master of Science degree.

			Gabor Szauer has been making games since 2010. He graduated from Full Sail University in 2010 with a bachelor’s degree in game development. Gabor maintains an active Twitter/X presence and has a programming-oriented game development blog. Gabor’s previously published books are Game Physics Programming Cookbook and Lua Quick Start Guide, both published by Packt Publishing.

			About the reviewers

			Hardik Dubal has been working in game development for the past 14 years. He has worked with gaming studios such as Gameloft, Gameshastra, Megarama, and Offworld Industries. He also co-founded and operated his own game studio known as Timeloop Technologies. Throughout his career in the gaming industry, he has worked with several game development technologies, including but not limited to C++, Unreal Engine, the Cocos2d-x Engine, Unity, C#, Box2D, Flash, and ActionScript 3.

			Eric-Per Dunsky works as a programmer at Slipgate Ironworks. Eric started programming with Java at the age of 11, and he is also fluent in C++ and C#. Eric has experience in Unreal Engine and Unity, and he also has low-level knowledge of how to create 3D graphics with OpenGL, the Vulkan API, and GLSL.

			Illina Bokareva is a game programmer with a passion for crafting immersive experiences. She skillfully navigates Unity, Unreal Engine, C#/C++, OpenGL, SDL, and Vulkan, weaving her expertise into diverse game projects. Her unquenchable desire for knowledge and collaboration makes her an invaluable asset to the gaming industry, where she continually embraces new technologies and thrives in the company of fellow professionals.

		

	
		
			Table of Contents

			Preface

			Part 1:Building a Graphics Renderer

			1

			Creating the Game Window

			Technical requirements

			Getting the source code and the basic tools

			Code organization in this book

			The basic code for our application

			NULL versus nullptr

			Creating your first window

			Adding support for OpenGL or Vulkan to the window

			GLFW and OpenGL

			GLFW and Vulkan

			Event handling in GLFW

			The GLFW event queue handling

			Mixing the C++ classes and the C callbacks

			The mouse and keyboard input for the game window

			Key code, scan code, and modifiers

			Different styles of mouse movement

			Summary

			Practical sessions

			Additional resources

			2

			Building an OpenGL 4 Renderer

			Technical requirements

			The rendering pipeline of OpenGL 4

			Basic elements of the OpenGL 4 renderer

			The OpenGL loader generator Glad

			Anatomy of the OpenGL renderer

			The main OpenGL class

			Buffer types for the OpenGL renderer

			Loading and compiling shaders

			Vertex and fragment shaders

			Creating our shader loader

			Creating the simple Model class

			Getting an image for the texture

			Summary

			Practical sessions

			Additional resources

			3

			Building a Vulkan Renderer

			Technical requirements

			Basic anatomy of a Vulkan application

			Differences and similarities between OpenGL 4 and Vulkan

			Technical similarities

			Differences

			Using helper libraries for Vulkan

			Initializing Vulkan via vk-bootstrap

			Memory management with VMA

			Fitting the Vulkan nuts and bolts together

			General considerations about classes

			Changes in the Window class

			Passing around the VkRenderData structure

			Vulkan object initialization structs

			Required changes to the shaders

			Drawing the triangles on the screen

			Differences and similarities between OpenGL and Vulkan, reprised

			Summary

			Practical sessions

			Additional resources

			4

			Working with Shaders

			Technical requirements

			Shader basics

			GLM, the OpenGL Mathematics library

			GLM data types and basic operations

			GLM transformations

			Vertex data transfer to the GPU

			Switching shaders at runtime

			Creating a new set of shaders

			Binding the shader switching to a key

			The shader switch in the draw call

			Shader switching in Vulkan

			Sending additional data to the GPU

			Using uniform buffers to upload constant data

			Creating a uniform buffer

			Shader changes to use the data in the buffer

			Preparing and uploading data

			Using uniform buffers in Vulkan

			Using push constants in Vulkan

			Summary

			Practical sessions

			Additional resources

			5

			Adding Dear ImGui to Show Valuable Information

			Technical requirements

			What is Dear ImGui?

			Adding ImGui to the OpenGL and Vulkan renderers

			Adding the headers to the OpenGL renderer

			Adding the headers to the Vulkan renderer

			CMake adjustments needed for ImGui

			Moving the shared data to the OGLRenderData header

			Creating the UserInterface class

			Adding the implementation of the UserInterface class

			Adding the UserInterface class to the OpenGL renderer

			Creating an FPS counter

			Using GLFW as a simple timer

			Adding the values to the user interface

			Timing sections of your code and showing the results

			Adding the Timer class

			Integrating the new Timer class into the renderer

			Adding UI elements to control the application

			Adding a checkbox

			Adding a button to switch between the shaders

			Adding a slider to control the field of view

			Summary

			Practical sessions

			Additional resources

			Part 2: Mathematics Roundup

			6

			Understanding Vector and Matrix

			Technical requirements

			A review of the vector and its operations

			Representations of vectors

			Adding and subtracting vectors

			Calculating the length of a vector

			Zero and unit vectors

			Vector normalization

			Vector multiplication

			A review of the matrix and its operations

			Matrix representation

			Null matrix and identity matrix

			Matrix addition and subtraction

			Matrix multiplication

			Transposed and inverse matrices

			Matrix/vector multiplication

			Adding a camera to the renderer

			Creating the new Camera class

			Integrating the new camera into the Renderer class

			Implementing mouse control in the Window class

			Showing the camera values in the user interface

			Adding camera movement

			Using new variables to change the camera position

			Moving the camera around

			Adding the camera position to the user interface

			Summary

			Practical sessions

			Additional resources

			7

			A Primer on Quaternions and Splines

			Technical requirements

			What are quaternions?

			Imaginary and complex numbers

			The discovery of the quaternion

			Creating a quaternion

			Quaternion operations and transformations

			Exploring vector rotation

			The Euler rotations

			The gimbal lock

			Rotating using quaternions

			Incremental rotations

			Using quaternions for smooth rotations

			A quick take on splines

			Constructing a Hermite spline

			Spline continuity

			Hermite polynomials

			Combining quaternions and splines

			Summary

			Practical sessions

			Additional resources

			Part 3: Working with Models and Animations

			8

			Loading Models in the glTF Format

			Technical requirements

			An analysis of the glTF file format

			Exploring an example glTF file

			Understanding the scenes element

			Finding the nodes and meshes

			Decoding the raw data in the buffers element

			Understanding the accessor element

			Translating data using the buffer views

			Checking the glTF version in the asset element

			Using a C++ glTF loader to get the model data

			Adding new glTF shaders

			Organizing the loaded data into a C++ class

			Learning about the design and implementation of the C++ class

			Adding the new model class to the renderer

			Adding the glTF loader and model to the Vulkan renderer

			Summary

			Practical sessions

			Additional resources

			9

			The Model Skeleton and Skin

			Technical requirements

			These skeletons are not spooky

			Why do we create a node tree of the skeleton?

			Adding the node class

			Filling the skeleton tree in the Gltf model class

			The inverse bind matrices and the binding pose

			How (not) to apply a skin to a skeleton

			Naive model skinning

			Vertex skinning in glTF

			Connecting joints and nodes

			Joints and weights for the vertices

			Creating the joint transformation matrices

			Applying vertex skinning

			Implementing GPU-based skinning

			Moving the joints and weights to the vertex shader

			Getting rid of the UBO fixed array size

			Identifying linear skinning problems

			The dual quaternion

			Using dual quaternions as data storage

			Dual quaternions in GLM

			Adding dual quaternions to the glTF model

			Adding a dual quaternion shader

			Adjusting the renderer

			Summary

			Practical sessions

			Additional resources

			10

			About Poses, Frames, and Clips

			Technical requirements

			A brief overview of animations

			What is a pose and how do we represent it?

			From a single frame to an entire animation clip

			Pouring the knowledge into C++ classes

			Storing the channel data in a class

			Adding the class for the animation clips

			Loading the animation data from the glTF model file

			Adding new control variables for the animations

			Managing the animations in the user interface

			Adding the animation replay to the renderer

			Summary

			Practical sessions

			Additional resources

			11

			Blending between Animations

			Technical requirements

			Does it blend?

			Fading animation clips in and out

			Crossfading between animation clips

			Adding multiple animation clips into one clip

			Blending between the binding pose and animation clip

			Enhancing the node class

			Updating the model class

			Adding the blend to the animation clip class

			Implementing animation blending in the OpenGL renderer

			Crossfading animations

			Upgrading the model classes

			Adjusting the OpenGL renderer

			Adding new controls to the user interface

			How to do additive blending

			Splitting the node skeleton – part I

			Splitting the node skeleton – part II

			Updating the animation clip class

			Finalizing additive blending in the OpenGL renderer

			Exposing the additive blending parameters in the user interface

			Summary

			Practical sessions

			Part 4: Advancing Your Code to the Next Level

			12

			Cleaning Up the User Interface

			Technical requirements

			UI controls are cool

			Creating combo boxes and radio buttons

			Implementing a combo box the C++ way

			Swapping the data types

			Filling the arrays for the combo boxes

			Fine-tuning selections with radio buttons

			Adjusting the renderer code

			Updating the model class

			Switching the control elements in the user interface

			Drawing time series with ImGui

			One ring buffer to rule them all

			Creating plots in ImGui

			Adding plots to the user interface

			Popping up a tooltip with the plot

			The sky is the limit

			Summary

			Practical sessions

			Additional resources

			13

			Implementing Inverse Kinematics

			Technical requirements

			What is Inverse Kinematics, and why do we need it?

			The two types of Kinematics

			Choosing a path to reach the target

			Building a CCD solver

			Understanding the CCD basics

			Updating the code of the node class

			Updating the model class

			Outlining the new solver class

			Implementing the Inverse Kinematics solver class and the CCD solver

			Adding Inverse Kinematics to the renderer

			Extending the user interface

			Building a FABRIK solver

			Understanding the FABRIK basics

			Adding the methods for the FABRIK algorithm

			Implementing the FABRIK solving methods

			Completing the FABRIK solver

			Updating the renderer

			Allowing the selection of FABRIK in the user interface

			Summary

			Practical sessions

			Additional resources

			14

			Creating Instanced Crowds

			Technical requirements

			Splitting the model class into two parts

			Deciding which data to keep in the model class

			Collecting the data to move

			Adding a new ModelSettings struct to store the instance data

			Adjusting the OGLRenderData struct

			Cutting the model class into two pieces

			Implementing the logic in the new instance class

			Enhancing the shader code

			Preparing the renderer class

			Changing the renderer to create and manage instances

			Displaying the instance data in the user interface

			What about Vulkan?

			The need for application speed

			Rendering instances of different models

			Using GPU instancing to reduce data transfers

			Changing the model class to use instanced drawing

			Firing the turbo boost in the renderer

			Textures are not just for pictures

			YABT – Yet Another Buffer Type

			Updating the vertex shader one last time

			Summary

			Practical sessions

			Additional resources

			15

			Measuring Performance and Optimizing the Code

			Technical requirements

			Measure twice, cut once!

			Always measure before you take actions

			Three steps of code optimization

			Avoid premature optimizations

			Moving computations to different places

			Recalculate only when necessary

			Utilize compile time over runtime

			Convert your data as soon as possible

			Split the calculations into multiple threads

			Use compute shaders on your graphics card

			Profiling the code to find hotspots

			Profiling code using Visual Studio

			Profiling code using GCC or Clang on Linux

			Profiling code using Eclipse

			Analyzing the code and planning the optimizations

			Promoting the local matrices to member variables

			Moving the matrix calculations

			Fixing the getNodeMatrix() method

			Re-profiling the application

			Using RenderDoc to analyze a GPU frame

			Downloading and installing RenderDoc

			Analyzing frames of an application

			Comparing the results of different versions of our application

			Scale it up and do A/B tests

			Scale up to get better results

			Make one change at a time and profile again

			Summary

			Practical sessions

			Additional resources

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			Character animations have existed since the first games were created for computers. The spaceships in SpaceWar!, written by Steve Russell in 1962 for a PDP-1, and Computer Space by Nolan Bushnell, released in 1971 as an arcade cabinet, were animated, with the animation showing the direction in which the spaceships headed.

			Over time, the evolution of character animation went from these raster graphics, drawn by the electron beam inside the cathode-ray tube of old TV sets, to simple 2D pictures (so-called “sprites”). These sprites were drawn by hand, picture by picture, and every one of these pictures showed a different animation phase. To create the illusion of real-time animations, the pictures were shown quickly one after another, like cartoons. The main characters in Pac-Man and Super Mario Bros. are just a bunch of two-dimensional pictures, brought to life by proper timing between the sprites and their motion over the screen.

			Eventually, the character models became real 3D objects. First, they were made of simply dozens of triangles, and as the graphics hardware became more powerful, the numbers got larger and larger. Current 3D models can have more than 500,000 polygons, and even these characters are animated smoothly in real time.

			This book covers the animation of 3D game characters, taking a closer look at the principles of character components and animation. After explaining the theoretical elements of animation, we will provide an example implementation that will guide you from the conceptual stage to the real-world usage in an application. With this knowledge, you will be able to implement a similar animation system, regardless of the programming language or rendering API.

			Who this book is for

			This book is for programmers who want to “look behind the curtain” of character animation in games. You should be familiar with C++, and it would be best to have a modern version such as C++17. Basic knowledge of a rendering pipeline will come in handy too, but it is not required, as it will be covered in the book. The remaining skills, including opening a window, preparing a rendering API to draw triangles, and loading models and animating them, will also be explained throughout the book.

			What this book covers

			Chapter 1, Creating the Game Window, covers the initial steps to open a window using GLFW, a lightweight cross-platform window management library. The window will be enhanced to detect OpenGL 4.6 and Vulkan 1.1; code for handling window events such as resizing and moving will be added, followed by an introduction on using the keyboard and mouse as input devices.

			Chapter 2, Building an OpenGL 4 Renderer, explains how to create a basic OpenGL 4 renderer that can display a textured quad consisting of two triangles.

			Chapter 3, Building a Vulkan API Renderer, explores the creation of a renderer, similar to Chapter 2, but instead using the newer Vulkan API to display the textured quad.

			Chapter 4, Working with Shaders, covers the different shaders of the graphics pipeline for OpenGL and Vulkan, the buffer types, and how to access the variables of shaders from renderer code. At the end of the chapter, the parts of a vertex and a fragment shader will be discussed.

			Chapter 5, Adding Dear ImGui to Show Valuable Information, explains how to add a simple UI to both renderers to display information about the rendering process, such as the frames per second or timing of code sections. Also, checkboxes, buttons, and sliders will be added to the UI to control the rendering parameters.

			Chapter 6, Understanding Vector and Matrix, is a quick recap of the data types of a vector and a matrix, their transformations, and their operations.

			Chapter 7, A Primer on Quaternions and Splines, explains the advantage of quaternions over matrix operations and introduces some spline types that are used in game character animations.

			Chapter 8, Loading Models in the glTF format, covers the internals of the glTF file format. glTF is an open file format, supported by many 3D content creation tools. Being able to load this format will let you view models and animations authored in many 3D creation tools in the application.

			Chapter 9, The Model Skeleton and Skin, covers the internal skeleton of a model as a base for animation, plus vertex skinning to match different poses of the skeleton. Different methods to apply vertex skinning will be discussed in this chapter.

			Chapter 10, About Poses, Frames, and Clips, explains the different data types required for character animation, allowing you to get from a simple model pose to a complete animation clip.

			Chapter 11, Blending between Animations, shows different blending methods for animated mode. The chapter covers simple blending between a basic pose and an animation clip, cross-blending between different clips, and additive blending to mix different clips.

			Chapter 12, Cleaning Up the User Interface, enhances the UI created in Chapter 4 with more
user-interactable elements, such as combo boxes and radio buttons. These controls enable the modification of animation parameters in real time. In addition, the timer values for the code sections will be visualized as graphical plots.

			Chapter 13, Implementing Inverse Kinematics, explains how to use inverse kinematics to achieve an interaction between a character and its environment. The two inverse kinematics methods, Cyclic Coordinate Descent (CCD) and Forward And Backward Reaching Inverse Kinematics (FABRIK), will be explained and implemented.

			Chapter 14, Creating Instanced Crowds, shows how to add more than one model to a scene, plus different ways to transfer model data to the graphics memory.

			Chapter 15, Measuring Performance and Optimizing the Code, introduces methods to find bottlenecks by profiling code and using RenderDoc to analyze the graphics pipeline. It also offers ideas to move calculations from runtime to compile time and examines the importance of scaling to get meaningful results.

			To get the most out of this book

			To follow the code snippets and the example code, you should have some experience using C++. Any special or advanced features will be explained, and resources to learn more about these features are included in the chapters when they are first used. However, you should be able to debug simple C++ problems (e.g., by using logging statements).

			The code in this book is written for OpenGL 4.6 and Vulkan 1.1. These versions are widely supported in modern GPUs; the oldest graphics cards known to work with these API versions are from the Intel HD Graphics 4000 series, created about 10 years ago.

			
				
					
					
				
				
					
							
							Software used in the book

						
							
							Operating system requirements

						
					

				
				
					
							
							OpenGL 4.6 and Vulkan 1.1

						
							
							Windows or Linux

						
					

				
			

			The example code presented in this book can be compiled on any desktop computer or laptop running a recent version of Windows and Linux. The code has been tested with the following combinations:

			
					Windows 10 with Visual Studio 2022

					Windows 10 with Eclipse 2023-06, using GCC from MSYS2 and Ninja as the build system

					Ubuntu 22.04 with Eclipse 2023-06, using GCC or Clang

					Ubuntu 22.04 compiling on the command line, using GCC or Clang

			

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			The full source code for the examples is available from the book’s GitHub repository (a link is available in the next section). The chapters in the book contain only excerpts from the code, covering the important parts.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Cpp-Game-Animation-Programming-Second-Edition. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Now, the include directives for Glad will work in our code.”

			A block of code is set as follows:

			
 public:
 bool init(unsigned int width, unsigned int height);
 bool resize(unsigned int newWidth, unsigned int newHeight);
 void bind();
 void unbind();
 void drawToScreen();

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
> Set-ExecutionPolicy RemoteSigned -Scope CurrentUser
> irm get.scoop.sh | iex

			Any command-line input or output is written as follows:

			
pacman –S base-devel

			Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Right-click the CMakeLists.txt file and choose Build.”

			Note

			Important notes appear like this text.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read C++ Game Animation Programming, Second Edition, we’d love to hear your thoughts! Please https://packt.link/r/1803246529 for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image: Download a free PDF copy of this book]
				

			

			https://packt.link/free-ebook/9781803246529

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			Part 1:
Building a Graphics Renderer

		

		
			In this part, you will get an overview of the steps to open a simple application window and handle keyboard and mouse input. In addition, you will learn how to draw textured 3D objects on a screen with OpenGL 4 and the Vulkan API. We will briefly explain GPU shaders, small programs running on a graphics card, working hard to calculate the pictures of the 3D objects you see on the screen. Finally, you will be introduced to Dear ImGui and learn how to add basic control elements to an application.

			In this part, we will cover the following chapters:

			
					Chapter 1, Creating the Game Window

					Chapter 2, Building an OpenGL 4 Renderer

					Chapter 3, Building a Vulkan Renderer

					Chapter 4, Working with Shaders

					Chapter 5, Adding Dear ImGui to Show Valuable Information

			

		

		
			
			

		

		
			
			

		

	

		
			1

			Creating the Game Window

			This is the start of your journey into the world of game character animation programming. In this book, you will open a window into a virtual world, enabling the user to take control and move around in it. The window will utilize hardware-accelerated graphics rendering to show detailed characters that have been loaded from a simple file on your system. You will be introduced to character animation, starting with basic steps such as how to show a single, static pose, and you will move on to more advanced topics such as Inverse Kinematics. By the end, the application will have a large crowd of animated people, who are the inhabitants of your virtual world. In addition, the window will have fancy UI elements that you can use to control the animations of the characters, and you will learn how to debug the application if you encounter any trouble, both on the CPU and the GPU. I hope you enjoy the ride – it will take you to various wonderful locations, steep hills, long roads, and nice cities. Buckle up!

			To begin, welcome to Chapter 1! The first step might be the most important as it sets the foundation for all the other chapters in this book. Without a window to your virtual world, you won’t be able to see your creations. But it’s not as hard as you might expect, and the right tools can solve this quickly and easily.

			As we are using open source software and platform-independent libraries in this book, you should be able to compile and run the code “out of the box” on Windows and Linux. You will find a detailed list of the required software and libraries in the Technical requirements section.

			To that end, in this chapter, we will cover the following topics:

			
					Creating your first window

					Adding support for OpenGL or Vulkan to the window

					Event handling in GLFW

					The mouse and keyboard input for the game window

			

			Technical requirements

			For this chapter, you will need the following:

			
					A PC with Windows or Linux and the tools listed later in this section

					A text editor (such as Notepad++ or Kate) or a full IDE (such as Visual Studio or Eclipse)

			

			Now, let’s get the source code for this book and start unpacking the code.

			Getting the source code and the basic tools

			The code for this book is hosted on GitHub, which you can find here:

			https://github.com/PacktPublishing/Cpp-Game-Animation-Programming-Second-Edition

			To unpack the code, you can use any of the following methods.

			Getting the code as a ZIP file

			If you download the code as a ZIP file, you will need to unpack it onto your system. My suggested way is to create a subfolder inside the home directory of the local user account on your computer as the destination, that is, inside the Documents folder, and unpack it there. But any other place is also fine; it depends on your personal preference.

			Please make sure the path contains no spaces or special characters such as umlauts, as this might confuse some compilers and development environments.

			Getting the code using Git

			To get the code of the book, you can also use Git. Using Git offers you additional features, such as reverting changes if you have broken the code during the exploration of the source, or while working on the practical sessions at the end of each chapter. For Linux systems, use your package manager. For Ubuntu,the following line installs git:

			
sudo apt install git

			On Windows, you can download it here: https://git-scm.com/downloads

			You can get a local checkout of the code in a specific location on your system either through the git GUI, or by executing the following command in CMD:

			git clone (GitHub-Link)

			Also, please make sure that you use a path without spaces or special characters.

			Downloading and installing GLFW

			If you use Windows, you can download the binary distribution here: https://www.glfw.org/download

			Unpack it and copy the contents of the include folder here, as CMake will only search within this location:

			
C:\Program Files (x86)\glfw\include

			Then, copy the libraries from the lib-vc2022 subfolder into this lib folder:

			
C:\Program Files (x86)\glfw\lib

			As a Linux user, you can install the development package of glfw3 using the package manager of your distribution. For Ubuntu, this line installs GLFW:

			
sudo apt install libglfw3-dev

			Downloading and installing CMake

			To build the code, we will use CMake. CMake is a collection of tools used to create native Makefiles for your compiler and operating system (OS).CMake also searches for the libraries, the headers to include, and more. It refers to all that “dirty” stuff you don’t want to lay your hands on during compilation time.

			Important note

			You only need CMake if you are using Eclipse or the command-line-based approach to compile the source code. Visual Studio installs its own version of CMake.

			Windows users can download it here: https://cmake.org/download/.

			Linux users can use the package manager of their distribution to install Cmake. If you use Ubuntu, the following line will install CMake on your system:

			
sudp apt install cmake

			Using the example code with Visual Studio 2022 on Windows

			If you want to use Visual Studio for the example files and don’t have it installed yet, download the Community Edition of Visual Studio at https://visualstudio.microsoft.com/de/downloads/.

			Then, follow these steps:

			
					Choose the Desktop development with C++ option so that the C++ compiler and the other required tools are installed on your machine:

			

			
				
					[image: Figure 1.1: Installing the C++ Desktop development in VS 2022]
				

			

			Figure 1.1: Installing the C++ Desktop development in VS 2022

			
					Then, under Individual components, also check the C++ CMake tools for Windows option:

			

			
				
					[image: Figure 1.2: Installing the CMake tools in VS 2022]
				

			

			Figure 1.2: Installing the CMake tools in VS 2022

			
					Finish the installation of Visual Studio, start it, and skip the initial project selection screen.

			

			Compiling and starting the example code can be done using the following steps:

			
					To open an example project, use the CMake... option, which appears after installing the CMake tools:

			

			
				
					[image: Figure 1.3: Open a CMake project in VS 2022]
				

			

			Figure 1.3: Open a CMake project in VS 2022

			
					Navigate to the folder with the example file and select the CMakeLists.txt file. This is the main configuration file for CMake:

			

			
				
					[image: Figure 1.4: Selecting the CMakeLists.txt file in the project]
				

			

			Figure 1.4: Selecting the CMakeLists.txt file in the project

			Visual Studio will automatically configure CMake for you. The last line of the output window should be as follows:

			
1> CMake generation finished.

			This confirms the successful run of the CMake file generation.

			
					Now, set the startup item by right-clicking on the CMakeLists.txt file – this step is required to build and run the project:

			

			
				
					[image: Figure 1.5: Configuring the startup item in VS 2022]
				

			

			Figure 1.5: Configuring the startup item in VS 2022

			
					After setting the startup item, we can build the current project. Right-click on the CMakeLists.txt file and choose Build:

			

			
				
					[image: Figure 1.6: Building the VS 2022 CMake project]
				

			

			Figure 1.6: Building the VS 2022 CMake project

			If the compilation succeeds, start the program using the green arrow:

			
				
					[image: Figure 1.7: The program starting without debugging in VS 2022]
				

			

			Figure 1.7: The program starting without debugging in VS 2022

			Installing a C++ compiler on your Windows PC

			If you don’t use Visual Studio, you will need a C++ compiler first. You can use the MSYS2 tools and libs here: https://www.msys2.org.

			Download the installation package, install MSYS2 in the default location but do not start MSYS2 at the end of the installation. Instead, start the MSYS2 MINWG64 environment from the start menu and update the MSYS2 system:

			
pacman -Syu

			The MSYS2 system will request to close the current console after the update. This is the normal behaviour.

			Open the MINGW64 environment again and install the gcc compiler suite, the glwf3 library, and the basic development tools in the MSYS2 console:

			
pacman –S mingw-x64-x86_64-gcc mingw-w64-x86_64-glfw base-devel

			The preceding command installs the compilation tools you need for the book. We use the glfw3 library included in MSYS2 because it is compiled with the same compiler and version we will use in Eclipse.

			You also need to include CMake and the installed compiler within the Windows PATH environment variable:

			
				
					[image: Figure 1.8: The Windows PATH settings when using MSYS2 on Windows]
				

			

			Figure 1.8: The Windows PATH settings when using MSYS2 on Windows

			Eclipse for Windows uses Ninja to build CMake packages, so you need to install Ninja too. The easiest way to do this is by using the Windows package manager named Scoop, which you can access at https://scoop.sh.

			Install Scoop in PowerShell Window:

			
> Set-ExecutionPolicy RemoteSigned -Scope CurrentUser
> irm get.scoop.sh | iex

			The preceding code will download and install Scoop on your computer. Now use it to install Ninja:

			
scoop install ninja

			Installing a C++ compiler in Linux

			Linux users can install g++ or clang with the package manager. For Ubuntu-based distributions, enter the following command in a Terminal window to install the compiler and the required libraries and tools for the book:

			
sudo apt install gcc build-essential ninja-build glslang-tools libglm-dev

			Using the example code with Eclipse on Windows or Linux

			If you prefer Eclipse instead of Visual Studio, follow these steps:

			
					Download and install Eclipse IDE for C/C++ Developers from https://www.eclipse.org/downloads/packages/.

					After installing Eclipse, head to the marketplace under Help:

			

			
				
					[image: Figure 1.9: Accessing the Eclipse marketplace]
				

			

			Figure 1.9: Accessing the Eclipse marketplace

			
					Install the cmake4eclipse and CMake Editor packages. The first one enables CMake support in Eclipse, with all the features we need, and the second one adds syntax coloring to the CMake files. This makes it more convenient to edit the files:

			

			
				
					[image: Figure 1.10: Installing the Eclipse CMake solutions]
				

			

			Figure 1.10: Installing the Eclipse CMake solutions

			Compiling and starting the example code can be done in the following steps:

			
					First, open a project from the filesystem:

			

			
				
					[image: Figure 1.11: Opening a project in Eclipse]
				

			

			Figure 1.11: Opening a project in Eclipse

			
					Choose Directory... and navigate to the folder with the source code:

			

			
				
					[image: Figure 1.12: Navigating to the folder with the Eclipse project]
				

			

			Figure 1.12: Navigating to the folder with the Eclipse project

			
					Click on Finish to open the project. Next, choose Build Project from the context menu. You can do this by clicking on the right mouse button while hovering over the project folder:

			

			
				
					[image: Figure 1.13: Building the project in Eclipse]
				

			

			Figure 1.13: Building the project in Eclipse

			
					Sometimes, Eclipse does not automatically refresh the content of the project. You must force this via the context menu. Select Refresh or press F5:

			

			
				
					[image: Figure 1.14: Refreshing the Eclipse project]
				

			

			Figure 1.14: Refreshing the Eclipse project

			
					Now the executable is visible and can be run. Choose Run As, and select the second option, Local C/C++ Application:

			

			
				
					[image: Figure 1.15: Starting the executable generated by Eclipse]
				

			

			Figure 1.15: Starting the executable generated by Eclipse

			
					In the following dialog, choose the Main.exe (Windows) or Main (Linux) binary file from the list:

			

			
				
					[image: Figure 1.16: Selecting the generated executable in Eclipse]
				

			

			Figure 1.16: Selecting the generated executable in Eclipse

			The Vulkan SDK

			For Vulkan support, you also need to have the Vulkan SDK installed. Get it here: https://vulkan.lunarg.com/sdk/home. Then, do a default installation, and make sure to add GLM and Vulkan Memory Allocator, as we will need both of them later in the book:

			
				
					[image: Figure 1.17: Adding GLM and VMA during the Vulkan SDK installation]
				

			

			Figure 1.17: Adding GLM and VMA during the Vulkan SDK installation

			Code organization in this book

			The code for every chapter is stored in the GitHub repository, in a separate folder with the relevant chapter number. The number uses two digits to get the ordering right. Inside each folder, one or more subfolders can be found. These subfolders contain the code of the chapter, depending on the progress of that specific chapter:

			
				
					[image: Figure 1.18: Folder organization with the chapters in the example code]
				

			

			Figure 1.18: Folder organization with the chapters in the example code

			For all chapters, we put the Main.cpp class and the CMake configuration file, CMakeLists.txt, into the project root folder. Inside the cmake folder, helper files for CMake are stored. These files are required to find additional header and library files. All C++ classes are located inside folders, collecting the classes of the objects we create. The Window class will be stored in the window subfolder to hold all files related to the class itself, and the same applies to the logger:

			
				
					[image: Figure 1.19: Folders and files in one example code project]
				

			

			Figure 1.19: Folders and files in one example code project

			In the other chapters, more folders will be created.

			The basic code for our application

			Our future character rendering application needs some additional code to work.

			A program can’t be started without an initial function called by the operating system. On Windows and Linux, this initial function in the code must be named main(). Inside this function, the application window will be created, and the control is moved over to the window.

			As long as a graphical output is unavailable, we must have the capability to print text within the application to update the user on its status. Instead of the std::cout call, we will use a simple logging function in a separate class. This extra output will be kept for debugging purposes even after we have completed the rendering, as this makes a programmer’s life much easier.

			The main entry point

			The main() function is embedded in a C++ class file, but as it has no class definition, it just contains the code to open and close the application window and call the main loop of our Window class.

			This is the content of the Main.cpp file, located in the project root:

			
#include <memory>
#include "Window.h"
#include "Logger.h"
int main(int argc, char *argv[]) {
 std::unique_ptr<Window> w = std::make_unique<Window>();
 if (!w->init(640, 480, "Test Window")) {
 Logger::log(1, "%s error: Window init error\n",
 __FUNCTION__);
 return -1;
 }
 w->mainLoop();
 w->cleanup();
 return 0;
}

			The preceding class includes the memory header, as we will use a unique smart pointer here. Additionally, it includes the headers for the Window and Logger classes. Inside the main() function, we create the smart pointer with the w object of the Window class. Next, we try to initialize the window using the width, height, and title text. If this initialization fails, we print out a log message and exit the program with a value of -1 to tell the OS we ran into an error. The log() call has the same verbosity level as the first parameter, followed by a C-style printf string. The __FUNCTION__ macro is recommended to print out the function where the logging call was issued.

			If the init() call was successful, we enter the mainLoop() function of the Windows class. This handles all the window events, drawings, and more. Closing the window ends the main loop. After this, we clean up the window and return the value of 0 to signal a successful termination.

			The Logger class

			Additionally, I added a small and simple Logger class to simplify the debugging process. This allows you to add logging messages with different logging levels, enabling you to control the number of logs being shown. If you encounter problems with the code, you can use the Logger class to print out the content of the variables and success/error messages. In the case of a crash, you will see which part of the code has been reached before the termination of the program.

			The following is the content of the Logger.h file:

			
#pragma once
#include <cstdio>
class Logger {
 public:
 /* log if input log level is equal or smaller to log level set */
 template <typename... Args>
 static void log(unsigned int logLevel, Args ... args) {
 if (logLevel <= mLogLevel) {
 std::printf(args ...);
 /* force output, i.e. for Eclipse */
 std::fflush(stdout);
 }
 }
 static void setLogLevel(unsigned int inLogLevel) {
 inLogLevel <= 9 ? mLogLevel = inLogLevel :
 mLogLevel = 9;
 }
 private:
 static unsigned int mLogLevel;
};

			The preceding file starts with the #pragma once directive, which is called a header guard. The header guard line is used to prevent multiple inclusions of the same header file during the compilation. Then, we include the cstdio C++ headers so that the std::printf() and std::fflush() functions are available. Here, I use the old C-style of printing as it is both easy to implement and use. The log() function is implemented as a C++ template to enable us to use a varying number of arguments to print to the screen. Inside the function, the current log level of the call is compared with the stored log level, suppressing all messages with higher log levels. If the log level fits, we use printf to output the arguments to the terminal. Forced flushing with std::fflush() is required for Eclipse; without the line, the output will be displayed after the termination of the program. The setLogLevel() function enables you to change the desired verbosity at runtime. That means you could also add UI elements to set the logging level using mGui controls, which are explained in Chapter 5. The only data member is the global log level.

			The Logger.cpp file is only two lines long:

			
#include "Logger.h"
unsigned int Logger::mLogLevel = 1;

			The first line includes the class header, while the second line is responsible for initializing the member variable holding the current log level. This initialization has to be done in the .cpp file, or else we will get a linker error during compilation.

			We will come back to debugging in Chapter 4, which discusses different ways in which to show what’s going on in your code.

			NULL versus nullptr

			As GLFW is a C library, you will see a lot of NULL values in the examples and function calls. Modern C++ has redefined NULL to nullptr, which is still compatible with the pointer type in C code. From the technical perspective, the values of NULL for a pointer and 0 as a number are the same in C, and nullptr helps to avoid ambiguous cases where a pointer was intended but a number was used (and vice versa). I will only use nullptr as there is no reason to stick with ancient definitions in 2023.

			Now that you’ve worked through the source code, let’s move on and create our first window!

			Creating your first window

			After all the necessary software products have been installed, we are ready for our first smoke test. We will create a small, non-resizable window, and its only purpose is to check your system for the correct path and configuration. You will be able to move it around, minimize and restore it, and close it… that’s mostly all at this stage.

			But believe me, seeing your first test window on the screen will make you smile. For basic window operations, we are going to use GLFW to open and close a window.

			GLFW is an open source toolkit that is used to handle the tasks around the application window, and it is available for different OSs and hardware platforms.

			GLFW will do the following tasks with a few lines of code, independent of your OS:

			
					Create and destroy the application window

					Handle the window events (such as minimize, resize, or close)

					Add an OpenGL context or Vulkan support to enable 3D rendering

					Get the input from the mouse, keyboard, and gamepads/joysticks

			

			If you want to check the source for this example, head to the chapter01 folder in the Git checkout or the extracted source for this book, and then go to the 01_simple_window folder. You can follow the explanation of the code snippets, or in case you have no questions about the intention of the code lines, you can compile the code in advance and check the code snippets only for clarification.

			For the window code, start with the Window.h header file:

			
#pragma once
#include <string>
#include <GLFW/glfw3.h>
class Window {
 public:
 bool init(unsigned int width, unsigned int height,
 std::string title);
 void mainLoop();
 void cleanup();
 private:
 GLFWwindow *mWindow = nullptr;
};

			After the include guard, we need to include the std::string header, which we will use to pass the window title to the instance, and the GLFW header for the GLFW functions.

			The Window class contains a handle for the GLFW window that we will create as a private member, along with three other public methods.The init() method is used to initialize the new window; the mainLoop() method runs the code of the main loop of the window where we do all the work; and the cleanup() method cleans up the window to shut down the application properly.

			The implementation of the three functions is done in the Window.cpp file:

			
#include "Window.h"
#include "Logger.h"

			We include our previously created header file for the Window class, plus the header file for the Logger class to ensure the console logging is available:

			
bool Window::init(unsigned int width, unsigned int height, std::string title) {
 if (!glfwInit()) {
 Logger::log(1, "%s: glfwInit() error\n",
 __FUNCTION__);
 return false;
 }
 /* set a "hint" for the NEXT window created*/
 glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
 mWindow = glfwCreateWindow(width, height,
 title.c_str(), nullptr, nullptr);
 if (!mWindow) {
 Logger::log(1, "%s: Could not create window\n",
 __FUNCTION__);
 glfwTerminate();
 return false;
 }
 Logger::log(1, "%s: Window successfully initialized\n",
 __FUNCTION__);
 return true;
}

			The init() function checks whether GLFW could be initialized at all. If something unexpected happens, it will return false in the main() function and stop the program.

			The window hint set with the glfwWindowHint() call is a special property in GLFW, which changes the settings for the creation of the next window. For example, we can disable the ability to resize our window. After this, the creation of the window itself is done, and the result is saved inside our member variable. If the window cannot be created, the process of creating a window will also be aborted and GLFW will be terminated. In a successful window creation, we output a log line to the console and return to the main() function, stating that everything went fine.

			The mainLoop() function does nothing special for the first window; it simply checks whether the user generated an event to close the window, that is, by selecting the close button. If this is not the case, it instructs GLFW to poll any events. This call is required to react to anything happening to the window itself – keyboard presses, mouse events, and window operations such as minimizing or even closing:

			
void Window::mainLoop() {
 while (!glfwWindowShouldClose(mWindow)) {
 /* poll events in a loop */
 glfwPollEvents();
 }
}

			Finally, the cleanup() function destroys the window and terminates GLFW, removing our window from the screen and ending the usage of GLFW. At this point, the destroy window operation is slightly redundant, as glfwTerminate() also kills all windows that are still onscreen. But using the explicit destroy function on the application window should remain here, in case of later additions to the termination process of the application:

			
void Window::cleanup() {
 Logger::log(1, "%s: Terminating Window\n",
 __FUNCTION__);
 glfwDestroyWindow(mWindow);
 glfwTerminate();
}

			To compile the preceding code, we also need a file named CMakeLists.txt in our project folder. This file instructs the CMake build system about the configuration of the project; it states which files to compile and how to add the required additional dependencies.

			In the following code snippet, at the top of the file, we set the minimum version of CMake to 3.19. This is the first version that provides support to find the shader compiler for Vulkan. We will need this in Chapter 3 for the Vulkan renderer:

			
cmake_minimum_required(VERSION 3.19)

			Setting C++17 as the minimum version might seem a bit overkill for the projects in this book, but as I stated earlier, I will try to get rid of the legacy features of C++ and use the newer ones instead:

			
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

			The next lines add the cmake folder inside the project folder to the list of locations CMake uses to store helper scripts for the find_package command:

			
use custom file to find libraries
if(WIN32)
 list(APPEND CMAKE_MODULE_PATH "${CMAKE_CUR
 RENT_LIST_DIR}/cmake")
endif()

			As the current version of CMake does not search for GLFW, I have added a script to search for it. This extra script requires GLFW to be stored in a fixed location on the system, and by using the location we have chosen at installation time, we are able to use the single GLFW installation for all projects in the book, instead of having a copy per project.The GLFW search script is only needed on Windows, as Linux already includes a helper script in the GLFW package. So,we instruct CMake to only add this on Windows by using a check to WIN32. This variable is only defined on Windows.

			Next, we name our project Main. You could use any arbitrary name here, and this could be used in other commands by referencing a variable. Then, we add the C++ (*.cpp) and header (.h) files in the local folder via a GLOB search and add them to the list of files to compile to our main executable, which will also be named Main. Under Windows, this will automatically get an extension, resulting in Main.exe:

			
project(Main)
file(GLOB SOURCES
 .h
 .cpp)
add_executable(Main ${SOURCES})

			Now, the CMake command called find_package is used to locate the GLFW headers in version 3.3 or higher, marking GLFW also as required for the code compilation. The corresponding CMake helper script will set a couple of variables if GLFW has been found – here, the two important ones are GWLF3_LIBRARY and GLFW3_INCLUDE_DIR. Due to the different searches on Windows and Linux, we will reuse the GLFW3_LIBRARY variable to avoid any further splits in the control structures:

			
find_package(glfw3 3.3 REQUIRED)
#variable is set by FindGLFW3.cmake, reuse for Linux
if(UNIX)
 set(GLFW3_LIBRARY glfw)
endif()

			Finally, the last two lines of the following code add the GLFW3 headers to the list of include paths for the compiler and the library to link to the final executable:

			
include_directories(${GLFW3_INCLUDE_DIR})
target_link_libraries(Main ${GLFW3_LIBRARY})

			Now you can build the project, and it should compile the code without any errors or warnings. If the compilation fails, please check the Technical requirements section for all the required tools and libraries.

			Start the executable file, Main.exe (Windows) or Main (Linux), and you will see a small window appear on the screen, as shown in the following screenshot:

			
				
					[image: Figure 1.20: Your first window]
				

			

			Figure 1.20: Your first window

			Depending on your OS, the window might be filled in black, white, or even contain some parts of the screen where it was opened. The system does a “cheap” copy when creating the window, and we don’t clear the window content. So, don’t be alarmed if you don’t get exactly the same picture as Figure 1.1. As long as your window has the proper caption and the OS-specific buttons to close and minimize, everything has worked fine.

			Now, let’s check out the available 3D-rendering APIs on the system.

			Adding support for OpenGL or Vulkan to the window

			Having a simple window is cool, but we need to go a bit further to draw our models using OpenGL or Vulkan. These changes will add the bare minimum of code to initialize the window for 3D rendering. It is a “smoke test” to see whether you have all the libraries and headers for Chapters 2 and 3, where we will create two triangle renderers, one for OpenGL and one for Vulkan.

			GLFW and OpenGL

			GLFW includes basic support for OpenGL; you only need a bunch of calls and a link to the OpenGL library. You can find the code in the 02_opengl_window folder.

			Add the following lines to the Window.cpp file:

			
bool Window::init(unsigned int width, unsigned int height, std::string title) {
 if (!glfwInit()) {
 ...
 glfwMakeContextCurrent(mWindow);
 Logger::log(1, "%s: Window successfully initialized\n",
 __FUNCTION__);
 return true;
}

			The first call is glfwMakeContextCurrent() – it gets the OpenGL context, which contains the global state of the rendering, and makes it the context of the current thread. This needs to be added to the end of the init() call.

			Having the context in place, we can use some simple OpenGL calls inside the main loop of the window. Without an extension loader, this is fairly basic (Windows may be down for OpenGL version 1.x), but for pure initialization, the following is sufficient:

			
void Window::mainLoop() {
 glfwSwapInterval(1);
 float color = 0.0f;

			Before going into the loop, we will activate the wait for the vertical sync with a call to the GLFW function, glfwSwapInterval(). Without waiting for it, the window might flicker, or tearing might occur, as the update and buffer switch will be done as fast as possible. Also, we add a color float variable, which holds our background color.

			Inside the while loop, which is, again, waiting for the window to close, the color variable is incremented in small amounts and reset to zero if it reaches a value of one. The value is set using a call to the glClearColor() function as the new color to be used when clearing the draw buffer – setting the red, green, and blue results in a gray color. The call to the glClear() function, with the value set to clear only the color buffer, gives the window a simple gray background:

			
 while (!glfwWindowShouldClose(mWindow)) {
 color >= 1.0f ? color = 0.0f : color += 0.01f;
 glClearColor(color, color, color, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT);

			By default, GLFW activates double buffering for the OpenGL window. This means we have two separate graphics buffers of the same size, a front buffer and a back buffer. All the changes to the final picture occur in the back buffer while showing the front buffer, which contains the image created by the previous rendering calls. This hides the creation process from the user. After the drawing of the back buffer has finished, glfwSwapBuffers() swaps the two buffers and displays the content of the back buffer, making the previous front buffer the new back buffer for the hidden drawing:

			
 /* swap buffers */
 glfwSwapBuffers(mWindow);

			The event polling stays at the end of the loop, enabling it to move and close the window:

			
 /* poll events in a loop */
 glfwPollEvents();
 }
}

			Note that CMakeLists.txt also needs to be extended for proper usage of OpenGL:

			
set(OpenGL_GL_PREFERENCE GLVND)
find_package(OpenGL REQUIRED)
target_link_libraries(Main ${GLFW3_LIBRARY} OpenGL::GL)

			We have to set a variable to define the type of OpenGL; here, we are using the “vendor neutral dispatch” implementation (hence the name GLVND), and we use the find_package command to locate the OpenGL library. In addition, we have to add the OpenGL library to the command to link the final executable to it.

			After compiling and starting the program, you should see a slowly flashing window. This means that your system has all the required libraries for the OpenGL renderer, which will be discussed in Chapter 2:

			
				
					[image: Figure 1.21: The filled OpenGL window]
				

			

			Figure 1.21: The filled OpenGL window

			After checking the OS for OpenGL support to draw our characters, next, we will test whether the Vulkan-rendering API is also available.

			GLFW and Vulkan

			GLFW also supports the newer Vulkan API, and compared to OpenGL, this is much closer to the GPU. You can get a lot more power out of your graphics card, but with great power comes great responsibility. As you will learn, the first basic steps to initialize the Vulkan system already require a lot of work. And even with this amount of code, we are far, far away from drawing a triangle or just clearing the screen like in the OpenGL code.

			The code for this example can be found in the 03_vulkan_window folder.

			First, the Window.h file needs to be extended:

			
#include <string>
/* include Vulkan header BEFORE GLFW */
#include <vulkan/vulkan.h>
#include <GLFW/glfw3.h>

			We need to include the Vulkan header, <vulkan/vulkan.h>. This has to be done before the GLFW, as the GLFW switches on specific features if it detects Vulkan.

			To encapsulate all of the new Vulkan-specific code, create an initVulkan() function:

			
 public:
 bool initVulkan();

			Two new member variables must be added in the private section of the class. We need a handle for the Vulkan instance and another handle for the Vulkan surface:

			
 private:
 GLFWwindow *mWindow = nullptr;
 std::string mApplicationName;
 VkInstance mInstance{};
 VkSurfaceKHR mSurface{};

			Here, VkInstance stores information about the Vulkan settings in the current application, and VkSurfaceKHR is a drawable “surface” in Vulkan. This will be enhanced in Chapter 3 when we create a Vulkan renderer.

			The application name has been stored as std::string since we need it in two positions.

			The init() function in the Window.cpp file will be extended by two additional calls:

			
 if (!glfwVulkanSupported()) {
 glfwTerminate();
 Logger::log(1, "%s: Vulkan is not supported\n",
 __FUNCTION__);
 return false;
 }

			The first call, glfwVulkanSupported(), checks whether Vulkan is available at all. If this fails, the machine might be missing the software or hardware capabilities in which to use Vulkan.

			The second call is the new initVulkan() function; the program run will also fail if something goes wrong during the initialization process:

			
 if (!initVulkan()) {
 Logger::log(1, "%s: Could not init Vulkan\n",
 __FUNCTION__);
 glfwTerminate();
 return false;
 }

			The new initVulkan() function starts with a data structure called VkApplicationInfo:

			
 VkApplicationInfo mAppInfo{};
 mAppInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
 mAppInfo.pNext = nullptr;
 ….
 mAppInfo.apiVersion = VK_MAKE_API_VERSION(0, 1, 1, 0);

			This contains basic information about the application, such as the name and the version. Most of the fields are optional, but we need at least three of them:

			
					You will see .sType in many of the Vulkan data structures. This is required for Vulkan to know what kind of struct you pass to it. The naming is always VK_STRUCTURE_TYPE_*.

					Here, .pNext will always be nullptr. It could be used to link different Vulkan structures.

					.apiVersion must be set to the minimum Vulkan API version that we want to use. Here, we generate version 1.1.0.

			

			With a call to glfwGetRequiredInstanceExtensions(), we check whether we have the required extensions to run a Vulkan application:

			
 uint32_t extensionCount = 0;
 const char** extensions =
 glfwGetRequiredInstanceExtensions(&extensionCount);
 if (extensionCount == 0) {
 Logger::log(1, "%s error: no Vulkan extensions
 found\n", __FUNCTION__);
 return false;
 }

			The preceding code block returns the number of extensions and the extension names as a C-style array. We need extension names for the Vulkan initialization, but if we get no extensions at all, then again, there is no proper support for Vulkan, and we terminate the program by returning false from the Vulkan init function.

			The next structure is VkInstanceCreateInfo:

			
 VkInstanceCreateInfo mCreateInfo{};
 mCreateInfo.sType =
 VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
 mCreateInfo.pNext = nullptr;
 mCreateInfo.pApplicationInfo = &mAppInfo;
 mCreateInfo.enabledExtensionCount = extensionCount;
 mCreateInfo.ppEnabledExtensionNames = extensions;
 mCreateInfo.enabledLayerCount = 0;
 result = vkCreateInstance(&mCreateInfo, nullptr,
 &mInstance);
 if (result != VK_SUCCESS) {
 Logger::log(1, "%s: Could not create Instance
 (%i)\n", __FUNCTION__, result);
 return false;
 }

			The VkInstanceCreateInfo struct also contains the .sType and .pNext fields, along with a link to the application info structure and the extensions we found. Having this information collected, we can call vkCreateInstance() to create a Vulkan instance. The instance includes the storage for the Vulkan state on the application level, and there is no longer a system global state (“context”) like in OpenGL.

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/image/B18196_01_09.jpg
‘?p Check for Updates
ﬁ- Install New Software...
é Eclipse Marketplace...

OEBPS/image/B18196_01_04.jpg
el » game-animations > code > chapter01 > 01_simple_window

Name Date modified
Vs .04, b

| 05.04.2023 11:06
cmake ROy .

| ke 07.01.2023 02:39
out .04.. 3

| 05.04.2023 10:50

7 tools 13.02.2023 09:17

1 window 05.02.2023 18:54

‘ B CMakelists.txt 05.04.2023 10:20

OEBPS/image/B18196_01_17.jpg
Install the Vulkan SDK
Select Components
License Agreement
Ready to Update
Updating

Finished

mponent Name
The Vulkan SDK
[] SDK 32-bit Core Components
[[] Shader Toolchain Debug Symbols - 64-bit
[] Shader Toolchain Debug Symbols - 32-bit
GLM headers.
[] sDL2 libraries and headers.
[Volk header, source, and library.
Vulkan Memory Allocator header.

The Vulkan SDK Core (Always Installed)

OEBPS/toc.xhtml

		

		Contents

			

						C++ Game Animation Programming

						Contributors

						About the authors

						About the reviewers

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1:Building a Graphics Renderer

						Chapter 1: Creating the Game Window

					

								Technical requirements

							

										Getting the source code and the basic tools

										Code organization in this book

										The basic code for our application

										NULL versus nullptr

							

						

								Creating your first window

								Adding support for OpenGL or Vulkan to the window

							

										GLFW and OpenGL

										GLFW and Vulkan

							

						

								Event handling in GLFW

							

										The GLFW event queue handling

										Mixing the C++ classes and the C callbacks

							

						

								The mouse and keyboard input for the game window

							

										Key code, scan code, and modifiers

										Different styles of mouse movement

							

						

								Summary

								Practical sessions

								Additional resources

					

				

						Chapter 2: Building an OpenGL 4 Renderer

					

								Technical requirements

								The rendering pipeline of OpenGL 4

								Basic elements of the OpenGL 4 renderer

							

										The OpenGL loader generator Glad

										Anatomy of the OpenGL renderer

										The main OpenGL class

										Buffer types for the OpenGL renderer

							

						

								Loading and compiling shaders

							

										Vertex and fragment shaders

										Creating our shader loader

										Creating the simple Model class

										Getting an image for the texture

							

						

								Summary

								Practical sessions

								Additional resources

					

				

						Chapter 3: Building a Vulkan Renderer

					

								Technical requirements

								Basic anatomy of a Vulkan application

								Differences and similarities between OpenGL 4 and Vulkan

							

										Technical similarities

										Differences

							

						

								Using helper libraries for Vulkan

							

										Initializing Vulkan via vk-bootstrap

										Memory management with VMA

							

						

								Fitting the Vulkan nuts and bolts together

							

										General considerations about classes

										Changes in the Window class

										Passing around the VkRenderData structure

										Vulkan object initialization structs

										Required changes to the shaders

										Drawing the triangles on the screen

										Differences and similarities between OpenGL and Vulkan, reprised

							

						

								Summary

								Practical sessions

								Additional resources

					

				

						Chapter 4: Working with Shaders

					

								Technical requirements

								Shader basics

								GLM, the OpenGL Mathematics library

							

										GLM data types and basic operations

										GLM transformations

							

						

								Vertex data transfer to the GPU

								Switching shaders at runtime

							

										Creating a new set of shaders

										Binding the shader switching to a key

										The shader switch in the draw call

										Shader switching in Vulkan

							

						

								Sending additional data to the GPU

							

										Using uniform buffers to upload constant data

										Creating a uniform buffer

										Shader changes to use the data in the buffer

										Preparing and uploading data

										Using uniform buffers in Vulkan

										Using push constants in Vulkan

							

						

								Summary

								Practical sessions

								Additional resources

					

				

						Chapter 5: Adding Dear ImGui to Show Valuable Information

					

								Technical requirements

								What is Dear ImGui?

								Adding ImGui to the OpenGL and Vulkan renderers

							

										Adding the headers to the OpenGL renderer

										Adding the headers to the Vulkan renderer

										CMake adjustments needed for ImGui

										Moving the shared data to the OGLRenderData header

										Creating the UserInterface class

										Adding the implementation of the UserInterface class

										Adding the UserInterface class to the OpenGL renderer

							

						

								Creating an FPS counter

							

										Using GLFW as a simple timer

										Adding the values to the user interface

							

						

								Timing sections of your code and showing the results

							

										Adding the Timer class

										Integrating the new Timer class into the renderer

							

						

								Adding UI elements to control the application

							

										Adding a checkbox

										Adding a button to switch between the shaders

										Adding a slider to control the field of view

							

						

								Summary

								Practical sessions

								Additional resources

					

				

						Part 2: Mathematics Roundup

						Chapter 6: Understanding Vector and Matrix

					

								Technical requirements

								A review of the vector and its operations

							

										Representations of vectors

										Adding and subtracting vectors

										Calculating the length of a vector

										Zero and unit vectors

										Vector normalization

										Vector multiplication

							

						

								A review of the matrix and its operations

							

										Matrix representation

										Null matrix and identity matrix

										Matrix addition and subtraction

										Matrix multiplication

										Transposed and inverse matrices

										Matrix/vector multiplication

							

						

								Adding a camera to the renderer

							

										Creating the new Camera class

										Integrating the new camera into the Renderer class

										Implementing mouse control in the Window class

										Showing the camera values in the user interface

							

						

								Adding camera movement

							

										Using new variables to change the camera position

										Moving the camera around

										Adding the camera position to the user interface

							

						

								Summary

								Practical sessions

								Additional resources

					

				

						Chapter 7: A Primer on Quaternions and Splines

					

								Technical requirements

								What are quaternions?

							

										Imaginary and complex numbers

										The discovery of the quaternion

										Creating a quaternion

										Quaternion operations and transformations

							

						

								Exploring vector rotation

							

										The Euler rotations

										The gimbal lock

										Rotating using quaternions

										Incremental rotations

							

						

								Using quaternions for smooth rotations

								A quick take on splines

								Constructing a Hermite spline

							

										Spline continuity

										Hermite polynomials

										Combining quaternions and splines

							

						

								Summary

								Practical sessions

								Additional resources

					

				

						Part 3: Working with Models and Animations

						Chapter 8: Loading Models in the glTF Format

					

								Technical requirements

								An analysis of the glTF file format

								Exploring an example glTF file

							

										Understanding the scenes element

										Finding the nodes and meshes

										Decoding the raw data in the buffers element

										Understanding the accessor element

										Translating data using the buffer views

										Checking the glTF version in the asset element

							

						

								Using a C++ glTF loader to get the model data

								Adding new glTF shaders

								Organizing the loaded data into a C++ class

							

										Learning about the design and implementation of the C++ class

										Adding the new model class to the renderer

										Adding the glTF loader and model to the Vulkan renderer

							

						

								Summary

								Practical sessions

								Additional resources

					

				

						Chapter 9: The Model Skeleton and Skin

					

								Technical requirements

								These skeletons are not spooky

							

										Why do we create a node tree of the skeleton?

										Adding the node class

										Filling the skeleton tree in the Gltf model class

										The inverse bind matrices and the binding pose

							

						

								How (not) to apply a skin to a skeleton

							

										Naive model skinning

										Vertex skinning in glTF

										Connecting joints and nodes

										Joints and weights for the vertices

										Creating the joint transformation matrices

										Applying vertex skinning

							

						

								Implementing GPU-based skinning

							

										Moving the joints and weights to the vertex shader

										Getting rid of the UBO fixed array size

							

						

								Identifying linear skinning problems

							

										The dual quaternion

										Using dual quaternions as data storage

										Dual quaternions in GLM

										Adding dual quaternions to the glTF model

										Adding a dual quaternion shader

										Adjusting the renderer

							

						

								Summary

								Practical sessions

								Additional resources

					

				

						Chapter 10: About Poses, Frames, and Clips

					

								Technical requirements

								A brief overview of animations

							

										What is a pose and how do we represent it?

										From a single frame to an entire animation clip

							

						

								Pouring the knowledge into C++ classes

							

										Storing the channel data in a class

										Adding the class for the animation clips

										Loading the animation data from the glTF model file

										Adding new control variables for the animations

										Managing the animations in the user interface

										Adding the animation replay to the renderer

							

						

								Summary

								Practical sessions

								Additional resources

					

				

						Chapter 11: Blending between Animations

					

								Technical requirements

								Does it blend?

							

										Fading animation clips in and out

										Crossfading between animation clips

										Adding multiple animation clips into one clip

							

						

								Blending between the binding pose and animation clip

							

										Enhancing the node class

										Updating the model class

										Adding the blend to the animation clip class

										Implementing animation blending in the OpenGL renderer

							

						

								Crossfading animations

							

										Upgrading the model classes

										Adjusting the OpenGL renderer

										Adding new controls to the user interface

							

						

								How to do additive blending

							

										Splitting the node skeleton â€“ part I

										Splitting the node skeleton â€“ part II

										Updating the animation clip class

										Finalizing additive blending in the OpenGL renderer

										Exposing the additive blending parameters in the user interface

							

						

								Summary

								Practical sessions

					

				

						Part 4: Advancing Your Code to the Next Level

						Chapter 12: Cleaning Up the User Interface

					

								Technical requirements

								UI controls are cool

								Creating combo boxes and radio buttons

							

										Implementing a combo box the C++ way

										Swapping the data types

										Filling the arrays for the combo boxes

										Fine-tuning selections with radio buttons

										Adjusting the renderer code

										Updating the model class

										Switching the control elements in the user interface

							

						

								Drawing time series with ImGui

							

										One ring buffer to rule them all

										Creating plots in ImGui

										Adding plots to the user interface

										Popping up a tooltip with the plot

							

						

								The sky is the limit

								Summary

								Practical sessions

								Additional resources

					

				

						Chapter 13: Implementing Inverse Kinematics

					

								Technical requirements

								What is Inverse Kinematics, and why do we need it?

							

										The two types of Kinematics

										Choosing a path to reach the target

							

						

								Building a CCD solver

							

										Understanding the CCD basics

										Updating the code of the node class

										Updating the model class

										Outlining the new solver class

										Implementing the Inverse Kinematics solver class and the CCD solver

										Adding Inverse Kinematics to the renderer

										Extending the user interface

							

						

								Building a FABRIK solver

							

										Understanding the FABRIK basics

										Adding the methods for the FABRIK algorithm

										Implementing the FABRIK solving methods

										Completing the FABRIK solver

										Updating the renderer

										Allowing the selection of FABRIK in the user interface

							

						

								Summary

								Practical sessions

								Additional resources

					

				

						Chapter 14: Creating Instanced Crowds

					

								Technical requirements

								Splitting the model class into two parts

							

										Deciding which data to keep in the model class

										Collecting the data to move

										Adding a new ModelSettings struct to store the instance data

										Adjusting the OGLRenderData struct

										Cutting the model class into two pieces

										Implementing the logic in the new instance class

										Enhancing the shader code

										Preparing the renderer class

										Changing the renderer to create and manage instances

										Displaying the instance data in the user interface

										What about Vulkan?

										The need for application speed

							

						

								Rendering instances of different models

								Using GPU instancing to reduce data transfers

							

										Changing the model class to use instanced drawing

										Firing the turbo boost in the renderer

							

						

								Textures are not just for pictures

							

										YABT â€“ Yet Another Buffer Type

										Updating the vertex shader one last time

							

						

								Summary

								Practical sessions

								Additional resources

					

				

						Chapter 15: Measuring Performance and Optimizing the Code

					

								Technical requirements

								Measure twice, cut once!

							

										Always measure before you take actions

										Three steps of code optimization

										Avoid premature optimizations

							

						

								Moving computations to different places

							

										Recalculate only when necessary

										Utilize compile time over runtime

										Convert your data as soon as possible

										Split the calculations into multiple threads

										Use compute shaders on your graphics card

							

						

								Profiling the code to find hotspots

							

										Profiling code using Visual Studio

										Profiling code using GCC or Clang on Linux

										Profiling code using Eclipse

										Analyzing the code and planning the optimizations

										Promoting the local matrices to member variables

										Moving the matrix calculations

										Fixing the getNodeMatrix() method

										Re-profiling the application

							

						

								Using RenderDoc to analyze a GPU frame

							

										Downloading and installing RenderDoc

										Analyzing frames of an application

										Comparing the results of different versions of our application

							

						

								Scale it up and do A/B tests

							

										Scale up to get better results

										Make one change at a time and profile again

							

						

								Summary

								Practical sessions

								Additional resources

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/image/B18196_01_12.jpg
el » game-animations > code » chapter01 > 01_simple_window v
Name Date modified Type

‘ cmake 07.01.2023 02:39 File folder
" tools 13.02.2023 09:17 File folder
" window 05.02.2023 18:54 File folder

OEBPS/image/B18196_01_08.jpg
C:\Program Files\CMake\bin
C:\msys64\mingw64\bin
C:\msys64\usr\bin

OEBPS/image/B18196_01_21.jpg

OEBPS/image/B18196_01_03.jpg
Open

|

2] B

Clone Repository...
Start Window

Add

|'5-vﬁ Project/Solution... Ctrl+Shift+O
ES Folder... Ctrl+Shift+Alt+O
©® Wweb Site... Shift+Alt+O
ﬂ? CMake...

A

OEBPS/image/B18196_01_11.jpg
File Edit Source Refactor Navigate Search Project Ru
New Alt+Shift+N >
Open File...

(L Open Projects from File System... I

OEBPS/image/B18196_01_16.jpg
== C Local Application

Choose a local application to run

Binaries:

35 aexe

%5 CMakeDetermineCompilerABI_C.bin

35 CMakeDetermineCompilerABI_CXX.bin
#é? Main.exe

Qualifier:

‘#@ amd64le - /01_simple_window/_build/Debug/Main.exe

@

| ‘ Cancel

OEBPS/image/B18196_QR_Free_PDF.jpg

OEBPS/image/B18196_01_07.jpg
[k

Start Without Debugging (Ctrl+F5)

OEBPS/image/B18196_01_20.jpg

OEBPS/image/B18196_01_10.jpg
Search | Recent

Popular | Favorites Installed () Giving loT an Edge

Find: ‘Pcmake

X ‘ All Markets v |All Categories ¥

89

+ 141

cmaked4eclipse 4.0.1

Automatically generates build-scripts for the Eclipse CDT managed build system from
CMake scripts.Stores your cmake commandline options with the eclipse project.
more info

by 15knots, EPL 2.0
cmake CDT c/c++ CUDA

#% Installs: 46,3K (411 last month) Install

CMake Editor 1.21.0

CMake Editor adds syntax coloring, code completion and code templates for CMake
files. more info

by 15knots, EPL
CDT c/c++ fileExtension CMakelists.txt fileExtension cmake fileExtension ctest

#% Installs: 48,9K (483 last month) Install

OEBPS/image/B18196_01_02.jpg
Workloads Individual components

|cmakel X|

Compilers, build tools, and runtimes

C++ CMake tools for Windows

OEBPS/image/B18196_01_15.jpg
© Run As > [E] 1C/C++ Container Application
% Debug As > 2 Local C/C++ Application

OEBPS/image/B18196_01_06.jpg
A Configure Tasks
Debug
iy Build

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/image/B18196_01_19.jpg
4 o1 _simple_window

4 [0 cmake

& [FindGLFW3.cmake
4 [tools

8+4 Logger.cpp

&R Loggerh

4 3 window
& +4 Window.cpp
& [R Window.h
a[l .cproject
a[l .project
a @ CMakelists.txt
&[] CMakeSettingsjson
&+4 Main.cpp

OEBPS/image/Cover.png
C++ Game Animation
Programming

Learn modern animation techniques from theory
to implementation using C++, OpenGL, and Vulkan

MICHAEL DUNSKY | GABOR SZAUER

OEBPS/image/B18196_01_14.jpg
Build Project

Clean Project
@ Refresh

Close Project

F5

OEBPS/image/B18196_01_01.jpg
b3 Desktop development with C++
Build modern C++ apps for Windows using tools of your
choice, including MSVC, Clang, CMake, or MSBuild.

OEBPS/image/B18196_01_18.jpg
v | code
v | chapter01
[01_simple_window
[02_opengl_window
" 03_vulkan_window
[04_event_handling
[05_window_with_input
v | chapter02

> | opengl_renderer

OEBPS/image/B18196_01_13.jpg
g Import...
41 Export...

Clean Project !

@ Refresh F5

OEBPS/image/B18196_01_05.jpg
A& CMake Settings for Main

|§} Set as Startup Item

