
		
			[image: cover.png]
		

	
		
			Data Engineering with Scala and Spark

			Build streaming and batch pipelines that process massive amounts of data using Scala

			

			Eric Tome

			Rupam Bhattacharjee

			David Radford

			[image:]

			Data Engineering with Scala and Spark

			Copyright © 2024 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Associate Group Product Manager: Kaustubh Manglurkar

			Associate Publishing Product Manager: Arindam Majumder

			Book Project Manager: Kirti Pisat

			Senior Editor: Tiksha Lad

			Technical Editor: Kavyashree K S

			Copy Editor: Safis Editing

			Proofreader: Safis Editing

			Indexer: Subalakshmi Govindhan

			Production Designer: Alishon Mendonca

			DevRel Marketing Coordinator: Nivedita Singh

			First published: January 2024

			Production reference: 1160124

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB, UK.

			ISBN 978-1-80461-258-3

			www.packtpub.com

			Contributors

			About the authors

			Eric Tome has over 25 years of experience working with data. He has contributed to and led teams that ingested, cleansed, standardized, and prepared data used by business intelligence, data science, and operations teams. He has a background in mathematics and currently works as a senior solutions architect at Databricks, helping customers solve their data and AI challenges.

			Rupam Bhattacharjee works as a lead data engineer at IBM. He has architected and developed data pipelines, processing massive structured and unstructured data using Spark and Scala for on-premises Hadoop and K8s clusters on the public cloud. He has a degree in electrical engineering.

			David Radford has worked in big data for over 10 years, with a focus on cloud technologies. He led consulting teams for several years, completing a migration from legacy systems to modern data stacks. He holds a master’s degree in computer science and works as a senior solutions architect at Databricks.

			About the reviewers

			Bartosz Konieczny is a freelance data engineer enthusiast who has been coding for 15+ years. He has held various senior hands-on positions that helped him work on many data engineering problems in batch and stream processing, such as sessionization, data ingestion, data cleansing, ordered data processing, and data migration. He enjoys solving data challenges with public cloud services and open source technologies, especially Apache Spark, Apache Kafka, Apache Airflow, and Delta Lake. In addition, he blogs at waitingforcode.com.

			Palanivelrajan is a highly passionate data evangelist with 19.5 years of experience in the data and analytics space. He has rich experience in architecting, developing, and delivering modern data platforms, data lakes, data warehouses, business intelligence, data science, and ML solutions. For the last five years, he has worked in engineering management, and he has 12+ years of experience in data architecture (big data and the cloud). He has built data teams and data practices and has been active in presales, planning, roadmaps, and executions. He has hired, managed, and mentored data engineers, data analysts, data scientists, ML engineers, and data architects. He has worked as a data engineering manager and a data architect for Sigmoid analytics, Nike, the Data Team, and Tata Communications.

		

	
		
			Table of Contents

			Preface

			Part 1 – Introduction to Data Engineering, Scala, and an Environment Setup

			1

			Scala Essentials for Data Engineers

			Technical requirements

			Understanding functional programming

			Understanding objects, classes, and traits

			Classes

			Object

			Trait

			Working with higher-order functions (HOFs)

			Examples of HOFs from the Scala collection library

			Understanding polymorphic functions

			Variance

			Option type

			Collections

			Understanding pattern matching

			Wildcard patterns

			Constant patterns

			Variable patterns

			Constructor patterns

			Sequence patterns

			Tuple patterns

			Typed patterns

			Implicits in Scala

			Summary

			Further reading

			2

			Environment Setup

			Technical requirements

			Setting up a cloud environment

			Leveraging cloud object storage

			Using Databricks

			Local environment setup

			The build tool

			Summary

			Further reading

			Part 2 – Data Ingestion, Transformation, Cleansing, and Profiling Using Scala and Spark

			3

			An Introduction to Apache Spark and Its APIs – DataFrame, Dataset, and Spark SQL

			Technical requirements

			Working with Apache Spark

			How do Spark applications work?

			What happens on executors?

			Creating a Spark application using Scala

			Spark stages

			Shuffling

			Understanding the Spark Dataset API

			Understanding the Spark DataFrame API

			Spark SQL

			The select function

			Creating temporary views

			Summary

			4

			Working with Databases

			Technical requirements

			Understanding the Spark JDBC API

			Working with the Spark JDBC API

			Loading the database configuration

			Creating a database interface

			Creating a factory method for SparkSession

			Performing various database operations

			Working with databases

			Updating the Database API with Spark read and write

			Summary

			5

			Object Stores and Data Lakes

			Understanding distributed file systems

			Data lakes

			Object stores

			Streaming data

			Working with streaming sources

			Processing and sinks

			Aggregating streams

			Summary

			6

			Understanding Data Transformation

			Technical requirements

			Understanding the difference between transformations and actions

			Using Select and SelectExpr

			Filtering and sorting

			Learning how to aggregate, group, and join data

			Leveraging advanced window functions

			Working with complex dataset types

			Summary

			7

			Data Profiling and Data Quality

			Technical requirements

			Understanding components of Deequ

			Performing data analysis

			Leveraging automatic constraint suggestion

			Defining constraints

			Storing metrics using MetricsRepository

			Detecting anomalies

			Summary

			Part 3 – Software Engineering Best Practices for Data Engineering in Scala

			8

			Test-Driven Development, Code Health, and Maintainability

			Technical requirements

			Introducing TDD

			Creating unit tests

			Performing integration testing

			Checking code coverage

			Running static code analysis

			Installing SonarQube locally

			Creating a project

			Running SonarScanner

			Understanding linting and code style

			Linting code with WartRemover

			Formatting code using scalafmt

			Summary

			9

			CI/CD with GitHub

			Technical requirements

			Introducing CI/CD and GitHub

			Understanding Continuous Integration (CI)

			Understanding Continuous Delivery (CD)

			Understanding the big picture of CI/CD

			Working with GitHub

			Cloning a repository

			Understanding branches

			Writing, committing, and pushing code

			Creating pull requests

			Reviewing and merging pull requests

			Understanding GitHub Actions

			Workflows

			Jobs

			Steps

			Summary

			Part 4 – Productionalizing Data Engineering Pipelines – Orchestration and Tuning

			10

			Data Pipeline Orchestration

			Technical requirements

			Understanding the basics of orchestration

			Understanding core features of Apache Airflow

			Apache Airflow’s extensibility

			Extending beyond operators

			Monitoring and UI

			Hosting and deployment options

			Designing data pipelines with Airflow

			Working with Argo Workflows

			Installing Argo Workflows

			Understanding the core components of Argo Workflows

			Taking a short detour

			Creating an Argo workflow

			Using Databricks Workflows

			Leveraging Azure Data Factory

			Primary components of ADF

			Summary

			11

			Performance Tuning

			Introducing the Spark UI

			Navigating the Spark UI

			The Jobs tab – overview of job execution

			Leveraging the Spark UI for performance tuning

			Identifying performance bottlenecks

			Optimizing data shuffling

			Memory management and garbage collection

			Scaling resources

			Analyzing SQL query performance

			Right-sizing compute resources

			Understanding the basics

			Understanding data skewing, indexing, and partitioning

			Data skew

			Indexing and partitioning

			Summary

			Part 5 – End-to-End Data Pipelines

			12

			Building Batch Pipelines Using Spark and Scala

			Understanding our business use case

			What’s our marketing use case?

			Understanding the data

			Understanding the medallion architecture

			The end-to-end pipeline

			Ingesting the data

			Transforming the data

			Checking data quality

			Creating a serving layer

			Orchestrating our batch process

			Summary

			13

			Building Streaming Pipelines Using Spark and Scala

			Understanding our business use case

			What’s our IoT use case?

			Understanding the data

			The end-to-end pipeline

			Ingesting the data

			Transforming the data

			Creating a serving layer

			Orchestrating our streaming process

			Summary

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			Every company today is a data company regardless of the industry. Innovative companies use data to analyze the past, predict what will happen, and react to what is happening now. Data engineers are some of the most critical employees at companies today. They are essential for collecting, cleaning, and maintaining trusted datasets that analysts, data scientists, and reporting tools use to provide insights.

			This book will teach you to leverage the Scala programming language on the Spark framework and the latest cloud technologies to build continuous and triggered data pipelines. You will do this by setting up a data engineering environment for local development and scalable distributed cloud deployments, using data engineering best practices, test-driven development, and Continuous Integration/Continuous Delivery (CI/CD). You will also orchestrate and performance-tune your end-to-end pipelines to deliver data to your end users.

			Who this book is for

			This book is aimed at the data professional who is experienced with working with data but wants to understand how to transform raw data into a clean, trusted, and valuable source of information for their organization, using Scala, Spark, and the latest in cloud computing.

			What this book covers

			Chapter 1, Scala Essentials for Data Engineers, introduces Scala in data engineering, recognizing its importance due to type safety, adoption by major companies such as Netflix and Airbnb, native integration with Spark, fostering a software engineering mindset, and its versatility in both object-oriented and functional programming. The chapter covers concepts such as functional programming, objects, classes, higher-order functions, polymorphism, variance, option types, collections, pattern matching, and implicits in Scala.

			Chapter 2, Environment Setup, presents two data engineering pipeline development environments. The first, a cloud-based setup, offers portability and easy access but incurs costs for system maintenance. The second involves local machine utilization, requiring a setup but avoiding cloud expenses.

			Chapter 3, An Introduction to Apache Spark and Its APIs – DataFrame, Dataset, and Spark SQL, focuses on Apache Spark as a leading distributed data processing framework. It emphasizes handling large data volumes across machine clusters. Topics include working with Spark, building Spark applications with Scala, and comprehending Spark’s Dataset and DataFrame APIs for effective data processing.

			Chapter 4, Working with Databases, dives into relational databases’ utilization within data pipelines, emphasizing efficiency in reading from and writing to databases. It covers the Spark API and building a straightforward database library, exploring Spark’s JDBC API, loading configurations, creating an interface, and executing multiple database operations.

			Chapter 5, Object Stores and Data Lakes, discusses the evolution from traditional databases to the era of data lakes and lakehouses, due to surges in data volumes. The focus will be on object stores, which are fundamental for both data lakes and lake houses.

			Chapter 6, Understanding Data Transformation, goes deeper into essential Spark skills for data engineers aiming to transform data for downstream use cases. It covers advanced Spark topics such as the distinctions between transformations and actions, aggregation, grouping, joining data, utilizing window functions, and handling complex dataset types.

			Chapter 7, Data Profiling and Data Quality, stresses the importance of data quality checks in preventing issues downstream. It introduces the Deequ library, an open source tool by Amazon, for defining checks, performing analysis, suggesting constraints, and storing metrics.

			Chapter 8, Test-Driven Development, Code Health, and Maintainability discusses software development best practices applied to data engineering, defect identification, code consistency, and security. It introduces Test-Driven Development (TDD), unit tests, integration tests, code coverage checks, static code analysis, and the importance of linting and code style for development practices.

			Chapter 9, CI/CD with GitHub, introduces Continuous Integration/Continuous Delivery (CI/CD) concepts in Scala data engineering projects using GitHub. It explains CI/CD as automated testing and deployment, aiming for rapid iteration, error reduction, and consistent quality.

			Chapter 10, Data Pipeline Orchestration, focuses on data pipeline orchestration, emphasizing the need for seamless task coordination and failure notification. It introduces tools such as Apache Airflow, Argo, Databricks Workflows, and Azure Data Factory.

			Chapter 11, Performance Tuning, emphasizes the critical role of the Spark UI in optimizing performance. It covers topics such as the Spark UI basics, performance tuning, computing resource optimization, understanding data skewing, indexing, and partitioning.

			Chapter 12, Building Batch Pipelines Using Spark and Scala, combines all of your previously learned skills to construct a batch pipeline. It stresses the significance of batch processing, leveraging Apache Spark’s distributed processing and Scala’s versatility. The topics cover a typical business use case, medallion architecture, batch data ingestion, transformation, quality checks, loading into a serving layer, and pipeline orchestration.

			Chapter 13, Building Streaming Pipelines Using Spark and Scala, focuses on constructing a streaming pipeline, emphasizing real-time data ingestion using Azure Event Hubs, configured as Apache Kafka for Spark integration. It employs Spark’s Structured Streaming and Scala for efficient data handling. Topics include use case understanding, streaming data ingestion, transformation, serving layer loading, and orchestration, aiming to equip you with the skills to develop and implement similar pipelines in your organizations.

			To get the most out of this book

			Before starting the book, at a minimum, you should be familiar with databases and some programming languages. Possessing business domain knowledge is beneficial, as you will be able to approach the book with business metrics and key performance indicators in mind. Understanding SQL for data analysis and familiarity with programming languages such as Python, Java, or C# is recommended.

			All the setup required for this book and its examples are available in Chapter 2, Environment Setup, and are introduced in the appropriate chapters.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Data-Engineering-with-Scala-and-Spark. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “It specifies the structure of the data with fields such as device_id, country, event_type, and event_ts.”

			A block of code is set as follows:

			
val updateSilver: DataFrame = bronzeData
 .select(from_json(col("value"), jsonSchema).alias("value"))
 .select(
 col("value.device_id"),
 col("value.country"),
 col("value.event_type"),
 col("value.event_ts")
)
 .dropDuplicates("device_id", "country", "event_ts")

			Any command-line input or output is written as follows:

			
argo submit my-first-workflow.yaml --serviceaccount=spark -n spark-app --watch

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “You can find your policy in Shared access policies in the left-side of the Azure Event Hubs service.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Data Engineering with Scala and Spark, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781804612583

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			Part 1 – Introduction to Data Engineering, Scala, and an Environment Setup

			In this part, Chapter 1 introduces Scala’s significance in data engineering, emphasizing its type safety and native compatibility with Spark. It covers key concepts such as functional programming, objects, classes, and higher-order functions. Moving to Chapter 2, it contrasts two data engineering environments – a cloud-based setup offering portability and easy access with associated maintenance costs, and a local machine utilization option requiring setup but avoiding cloud expenses.

			This part has the following chapters:

			
					Chapter 1, Scala Essentials for Data Engineers

					Chapter 2, Environment Setup

			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

	

		
			1

			Scala Essentials for Data Engineers

			Welcome to the world of data engineering with Scala. But why Scala? The following are some of the reasons for learning Scala:

			
					Scala provides type safety

					Big corporations such as Netflix and Airbnb have a lot of data pipelines written in Scala

					Scala is native to Spark

					Scala allows data engineers to adopt a software engineering mindset

			

			Scala is a high-level general-purpose programming language that runs on a standard Java platform. It was created by Martin Odersky in 2001. The name Scala stands for scalable language, and it provides excellent support for both object-oriented and functional programming styles.

			This chapter is meant as a quick introduction to concepts that the subsequent chapters build upon. Specifically, this chapter covers the following topics:

			
					Understanding functional programming

					Understanding objects, classes, and traits

					Higher-order functions (HOFs)

					Examples of HOFs from the Scala collection library

					Understanding polymorphic functions

					Variance

					Option types

					Collections

					Pattern matching

					Implicits in Scala

			

			Technical requirements

			This chapter is long and contains lots of examples to explain the concepts that are introduced. All of the examples are self-contained, and we encourage you to try them yourself as you move through the chapter. You will need a working Scala environment to run these examples.

			You can choose to configure it by following the steps outlined in Chapter 2 or use an online Scala playground such as Scastie (https://scastie.scala-lang.org/). We will use Scala 2.12 as the language version.

			Understanding functional programming

			Functional programming is based on the principle that programs are constructed using only pure functions. A pure function does not have any side effects and only returns a result. Some examples of side effects are modifying a variable, modifying a data structure in place, and performing I/O. We can think of a pure function as just like a regular algebraic function.

			An example of a pure function is the length function on a string object. It only returns the length of the string and does nothing else, such as mutating a variable. Similarly, an integer addition function that takes two integers and returns an integer is a pure function.

			Two important aspects of functional programming are referential transparency (RT) and the substitution model. An expression is referentially transparent if all of its occurrences can be substituted by the result of the expression without altering the meaning of the program.

			In the following example, Example 1.1, we set x and then use it to set r1 and r2, both of which have the same value:

			
scala> val x: String = "hello"
x: String = hello
scala> val r1 = x + " world!"
r1: String = hello world!
scala> val r2 = x + " world!"
r2: String = hello world!

			Example 1.1

			Now, if we replace x with the expression referenced by x, r1 and r2 will be the same. In other words, the expression hello is referentially transparent.

			Example 1.2 shows the output from a Scala interpreter:

			
scala> val r1 = "hello" + " world!"
r1: String = hello world!
scala> val r2 = "hello" + " world!"
r2: String = hello world!

			Example 1.2

			Let’s now look at the following example, Example 1.3, where x is an instance of StringBuilder instead of String:

			
scala> val x = new StringBuilder("who")
x: StringBuilder = who
scala> val y = x.append(" am i?")
y: StringBuilder = who am i?
scala> val r1 = y.toString
r1: String = who am i?
scala> val r2 = y.toString
r2: String = who am i?

			Example 1.3

			If we substitute y with the expression it refers to (val y = x.append(" am i?")), r1 and r2 will no longer be equal:

			
scala> val x = new StringBuilder("who")
x: StringBuilder = who
scala> val r1 = x.append(" am i?").toString
r1: String = who am i?
scala> val r2 = x.append(" am i?").toString
r2: String = who am i? am i?

			Example 1.4

			So, the expression x.append(" am i?") is not referentially transparent.

			One of the advantages of the functional programming style is it allows you to apply local reasoning without having to worry about whether it updates any globally accessible mutable state. Also, since no variable in the global scope is updated, it considerably simplifies building a multi-threaded application.

			Another advantage is pure functions are also easier to test as they do not depend on any state apart from the inputs supplied, and they generate the same output for the same input values.

			We won’t delve deep into functional programming as it is outside of the scope of this book. Please refer to the Further reading section for additional material on functional programming. In the rest of this chapter, we will provide a high-level tour of some of the important language features that the subsequent chapters build upon.

			In this section, we looked at a very high-level introduction to functional programming. Starting with the next section, we will look at Scala language features that enable both functional and object-oriented programming styles.

			Understanding objects, classes, and traits

			In this section, we are going to look at classes, traits, and objects. If you have used Java before, then some of the topics covered in this section will look familiar. However, there are several differences too. For example, Scala provides singleton objects, which automatically create a class and a single instance of that class in one go. Another example is Scala has case classes, which provide great support for pattern matching, allow you to create instances without the new keyword, and provide a default toString implementation that is quite handy when printing to the console.

			We will first look at classes, followed by objects, and then wrap this section up with a quick tour of traits.

			Classes

			A class is a blueprint for objects, which are instances of that class. For example, we can create a Point class using the following code:

			
class Point(val x: Int, val y: Int) {
 def add(that: Point): Point = new Point(x + that.x, y + that.y)
 override def toString: String = s"($x, $y)"
}

			Example 1.5

			The Point class has four members—two immutable variables, x and y, as well as two methods, add and toString. We can create instances of the Point class as follows:

			
scala> val p1 = new Point(1,1)
p1: Point = (1, 1)
scala> val p2 = new Point(2,3)
p2: Point = (2, 3)

			Example 1.6

			We can then create a new instance, p3, by adding p1 and p2, as follows:

			
scala> val p3 = p1 add p2
p3: Point = (3, 4)

			Example 1.7

			Scala supports the infix notation, characterized by the placement of operators between operands, and automatically converts p1 add p2 to p1.add(p2). Another way to define the Point class is using a case class, as shown here:

			
case class Point(x: Int, y: Int) {
 def add(that: Point): Point = new Point(x + that.x, y + that.y)
}

			Example 1.8

			A case class automatically adds a factory method with the name of the class, which enables us to leave out the new keyword when creating an instance. A factory method is used to create instances of a class without requiring us to explicitly call the constructor method. Refer to the following example:

			
scala> val p1 = Point(1,1)
p1: Point = Point(1,1)
scala> val p2 = Point(2,3)
p2: Point = Point(2,3)

			Example 1.9

			The compiler also adds default implementations of various methods such as toString and hashCode, which the regular class definition lacks. So, we did not have to override the toString method, as was done earlier, and yet both p1 and p2 were printed neatly on the console (Example 1.9).

			All arguments in the parameter list of a case class automatically get a val prefix, which makes them parametric fields. A parametric field is a shorthand that defines a parameter and a field with the same name.

			To better understand the difference, let’s look at the following example:

			
scala> case class Point1(x: Int, y: Int) //x and y are parametric fields
defined class Point1
scala> class Point2(x: Int, y: Int) //x and y are regular parameters
defined class Point2
scala> val p1 = Point1(1, 2)
p1: Point1 = Point1(1,2)
scala> val p2 = new Point2(3, 4)
p2: Point2 = Point2@203ced18

			Example 1.10

			If we now try to access p1.x, it will work because x is a parametric field, whereas trying to access p2.x will result in an error. Example 1.11 illustrates this:

			
scala> println(p1.x)
1
scala> println(p2.x)
<console>:13: error: value x is not a member of Point2
 println(p2.x)
 ^

			Example 1.11

			Trying to access p2.x will result in a compile error, value x is not a member of Point2. Case classes also have excellent support for pattern matching, as we will see in the Understanding pattern matching section.

			Scala also provides an abstract class, which, unlike a regular class, can contain abstract methods. For example, we can define the following hierarchy:

			
abstract class Animal
abstract class Pet extends Animal {
 def name: String
}
class Dog(val name: String) extends Pet {
 override def toString = s"Dog($name)"
}
scala> val pluto = new Dog("Pluto")
pluto: Dog = Dog(Pluto)

			Example 1.12

			Animal is the base class. Pet extends Animal and declares an abstract method, name. Dog extends Pet and uses a parametric field, name (it is both a parameter as well as a field). Because Scala uses the same namespace for fields and methods, this allows the field name in the Dog class to provide a concrete implementation of the abstract method name in Pet.

			Object

			Unlike Java, Scala does not support static members in classes; instead, it has singleton objects. A singleton object is defined using the object keyword, as shown here:

			
class Point(val x: Int, val y: Int) {
 // new keyword is not required to create a Point object
 // apply method from companion object is invoked
 def add(that: Point): Point = Point(x + that.x, y + that.y)
 override def toString: String = s"($x, $y)"
}
object Point {
 def apply(x: Int, y: Int) = new Point(x, y)
}

			Example 1.13

			In this example, the Point singleton object shares the same name with the class and is called that class’s companion object. The class is called the companion class of the singleton object. For an object to qualify as a companion object of a given class, it needs to be in the same source file as the class itself.

			Please note that the add method does not use the new keyword on the right-hand side. Point(x1, y1) is de-sugared into Point.apply(x1, y1), which returns a Point instance.

			Singleton objects are also used to write an entrypoint for Scala applications. One option is to provide an explicit main method within the singleton object, as shown here:

			
object SampleScalaApplication {
 def main(args: Array[String]): Unit = {
 println(s"This is a sample Scala application")
 }
}

			Example 1.14

			The other option is to extend the App trait, which provides a main method implementation. We will cover traits in the next section. You can also refer to the Further reading section (the third point) for more information:

			
 object SampleScalaApplication extends App {
 println(s"This is a sample Scala application")
}

			Example 1.15

			Trait

			Scala also has traits, which are used to define rich interfaces as well as stackable modifications. You can read more stackable modifications in the Further reading section (the fourth point) Unlike class inheritance, where each class inherits from just one super class, a class can mix in any number of traits. A trait can have abstract as well as concrete members. Here is a simplified example of the Ordered trait from the Scala standard library:

			
trait Ordered[T] {
 // compares receiver (this) with argument of the same type
 def compare(that: T): Int
 def <(that: T): Boolean = (this compare that) < 0
 def >(that: T): Boolean = (this compare that) > 0
 def <=(that: T): Boolean = (this compare that) <= 0
 def >=(that: T): Boolean = (this compare that) >= 0
}

			Example 1.16

			The Ordered trait takes a type parameter, T, and has an abstract method, compare. All of the other methods are defined in terms of that method. A class can add the functionalities defined by <, >, and so on, just by defining the compare method. The compare method should return a negative integer if the receiver is less than the argument, positive if the receiver is greater than the argument, and 0 if both objects are the same.

			Going back to our Point example, we can define a rule to say that a point, p1, is greater than p2 if the distance of p1 from the origin is greater than that of p2:

			
case class Point(x: Int, y: Int) extends Ordered[Point] {
 def add(that: Point): Point = new Point(x + that.x, y + that.y)
 def compare(that: Point) = (x ^ 2 + y ^ 2) ^ 1 / 2 - (that.x ^ 2 + that.y ^ 2) ^ 1 / 2
}

			Example 1.17

			With the definition of compare now in place, we can perform a comparison between two arbitrary points, as follows:

			
scala> val p1 = Point(1,1)
p1: Point = Point(1,1)
scala> val p2 = Point(2,2)
p2: Point = Point(2,2)
scala> println(s"p1 is greater than p2: ${p1 > p2}")
p1 is greater than p2: false
example 1.18

			In this section, we looked at objects, classes, and traits. In the next section, we are going to look at HOFs.

			Working with higher-order functions (HOFs)

			In Scala, functions are first-class citizens, which means function values can be assigned to variables, passed to functions as arguments, or returned by a function as a value. HOFs take one or more functions as arguments or return a function as a value.

			A method can also be passed as an argument to an HOF because the Scala compiler will coerce a method into a function of the required type. For example, let’s define a function literal and a method, both of which take a pair of integers, perform an operation, and then return an integer:

			
//function literal
val add: (Int, Int) => Int = (x, y) => x + y
//a method
def multiply(x: Int, y: Int): Int = x * y

			Example 1.19

			Let’s now define a method that takes two integer arguments and performs an operation, op, on them:

			
def op(x: Int, y: Int) (f: (Int, Int) => Int): Int = f(x,y)

			Example 1.20

			We can pass any function (or method) of type (Int, Int) => Int to op, as the following example illustrates:

			
scala> op(1,2)(add)
res15: Int = 3
scala> op(2,3)(multiply)
res16: Int = 6

			Example 1.21

			This ability to pass functions as parameters is extremely powerful as it allows us to write generic code that can execute arbitrary user-supplied functions. In fact, many of the methods defined in the Scala collection library require functions as arguments, as we will see in the next section.

			Examples of HOFs from the Scala collection library

			Scala collections provide transformers that take a base collection, run some transformations over each of the collection’s elements, and return a new collection. For example, we can transform a list of integers by doubling each of its elements using the map method, which we will cover in a bit:

			
scala> List(1,2,3,4).map(_ * 2)
res17: List[Int] = List(2, 4, 6, 8)

			Example 1.22

			A traversable trait, which is a base trait for all kinds of Scala collections, implements behaviors common to all collections, in terms of a foreach method, with the following signature:

			
def foreach[U](f: A => U): Unit

			Example 1.23

			The argument f is a function of type A => U, which is shorthand for Function1[A,U], and thus foreach is an HOF. This is an abstract method that needs to be implemented by all classes that mix in Traversable. The return type is Unit, which means this method does not return any meaningful value and is primarily used for side effects.

			Here is an example that prints the elements of a List:

			
scala> /** let's start with a foreach call that prints the numbers in a list
 | * List(1,2,3,4).foreach((i: Int) => println(i))
 | * we can skip the type argument and let Scala infer it
 | * List(1,2,3,4).foreach(i => println(i))
 | * Scala provides a shorthand to replace arguments using _
 | * if the arguments are used only once on the right side
 | * List(1,2,3,4).foreach(println(_))
 | * finally Scala allows to leave the argument altogether
 | * if there is only one argument used on the right side
 | */
 | List(1,2,3,4).foreach(println)
1
2
3
4

			Example 1.24

			For the rest of the examples, we will continue to use the List collection type, but they are available for other types of collections, such as Array, Map, and Set.

			map is similar to foreach, but instead of returning a unit, it returns a collection by applying the function f to each element of the base collection. Here is the signature for List[A]:

			
final def map[B](f: (A) ⇒ B): List[B]

			Example 1.25

			Using the list from the previous example, if we want to double each of the elements in the list, but return a list of Doubles instead of Ints, it can be achieved by using the following:

			
scala> List(1,2,3,4).map(_ * 2.0)
res22: List[Double] = List(2.0, 4.0, 6.0, 8.0)

			Example 1.26

			The preceding expression returns a list of Double and can be chained with foreach to print the values contained in the list:

			
scala> List(1,2,3,4).map(_ * 2.0).foreach(println)
2.0
4.0
6.0
8.0

			Example 1.27

			A close cousin of map is flatMap, which comprises of two parts—map and flatten. Before looking into flatMap, let’s look at flatten:

			
//converts a list of traversable collections into a list
//formed by the elements of the traversable collections
def flatten[B]: List[B]

			Example 1.28

			As the name suggests, it flattens the inner collections:

			
scala> List(Set(1,2,3), Set(4,5,6)).flatten
res24: List[Int] = List(1, 2, 3, 4, 5, 6)

			Example 1.29

			Now that we have seen what flatten does, let’s go back to flatMap.

			Let’s say that for each element of List(1,2,3,4), we want to create List of elements from 0 to that number (both inclusive) and then combine all of those individual lists into a single list. Our first pass at it would look like the following:

			
scala> List(1,2,3,4).map(0 to _).flatten
res25: List[Int] = List(0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4)

			Example 1.30

			With flatMap, we can achieve the same result in one step:

			
scala> List(1,2,3,4).flatMap(0 to _)
res26: List[Int] = List(0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4)

			Example 1.31

			Scala collections also provide filter, which accepts a function that returns a Boolean as an argument, which is then used to filter elements of a given collection:

			
def filter(p: (A) ⇒ Boolean): List[A]

			Example 1.32

			For example, to filter all of the even integers from List of numbers from 1 to 100, try the following:

			
scala> List.tabulate(100)(_ + 1).filter(_ % 2 == 0)
res27: List[Int] = List(2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100)

			Example 1.33

			There is also withFilter, which provides performance benefits over filter through the lazy evaluation of intermediate collections. It is part of the TraversableLike trait, with the FilterMonadic trait providing the abstract definition:

			
trait FilterMonadic[+A, +Repr] extends Any {
 //includes map, flatMap and foreach but are skipped here
 def withFilter(p: A => Boolean): FilterMonadic[A, Repr]
}

			Example 1.34

			TraversableLike defines the withFilter method through a member class, WithFilter, that extends FilterMonadic:

			
def withFilter(p: A => Boolean): FilterMonadic[A, Repr] = new WithFilter(p)
class WithFilter(p: A => Boolean) extends FilterMonadic[A, Repr] {
 // implementation of map, flatMap and foreach skipped here
 def withFilter(q: A => Boolean): WithFilter = new WithFilter(x =>
 p(x) && q(x)
)
}

			Example 1.35

			Please note that withFilter returns an object of type FilterMonadic, which only has map, flatMap, foreach, and withFilter. These are the only methods that can be chained after a call to withFilter. For example, the following will not compile:

			
List.tabulate(50)(_ + 1).withFilter(_ % 2 == 0).forall(_ % 2 == 0)

			Example 1.36

			It is quite common to have a sequence of flatMap, filter, and map chained together and Scala provides syntactic sugar to support that through for comprehensions. To see it in action, let’s consider the following Person class and its instances:

			
case class Person(firstName: String, isFemale: Boolean, children: Person*)
val bob = Person("Bob", false)
val jennette = Person("Jennette", true)
val laura = Person("Laura", true)
val jean = Person("Jean", true, bob, laura)
val persons = List(bob, jennette, laura, jean)

			Example 1.37

			Person* represents a variable argument of type Person. A variable argument of type T needs to be the last argument in a class definition or method signature and accepts zero, one, or more instances of type T.

			Now say we want to get pairs of mother and child, which would be (Jean, Bob) and (Jean, Laura). Using flatMap, filter, and map we can write it as follows:

			
scala> persons.filter(_.isFemale).flatMap(p => p.children.map(c => (p.firstName, c.firstName)))
res32: List[(String, String)] = List((Jean,Bob), (Jean,Laura))

			Example 1.38

			The preceding expression does its job, but it is not quite easy to understand what is happening. This is where for comprehension comes to the rescue:

			
scala> for {
 | p <- persons
 | if p.isFemale
 | c <- p.children
 | } yield (p.firstName, c.firstName)
res33: List[(String, String)] = List((Jean,Bob), (Jean,Laura))

			Example 1.39

			It is much easier to understand what this snippet of code does. Behind the scenes, the Scala compiler will convert this expression into the first one (the only difference being filter will be replaced with withFilter).

			Scala also provides methods to combine the elements of a collection using the fold and reduce families of functions. The primary difference between the two can be understood by comparing the signatures of foldLeft and reduceLeft:

			
def foldLeft[B](z: B)(op: (B, A) ⇒ B): B
def reduceLeft[A1 >: A](op: (A1, A1) ⇒ A1): A1

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/image/B18992_QR_Free_PDF.jpg

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/toc.xhtml

		

		Contents

			

						Data Engineering with Scala and Spark

						Contributors

					

								About the authors

					

				

						About the reviewers

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1 – Introduction to Data Engineering, Scala, and an Environment Setup

						Chapter 1: Scala Essentials for Data Engineers

					

								Technical requirements

								Understanding functional programming

								Understanding objects, classes, and traits

							

										Classes

										Object

										Trait

							

						

								Working with higher-order functions (HOFs)

							

										Examples of HOFs from the Scala collection library

							

						

								Understanding polymorphic functions

								Variance

								Option type

							

										Collections

							

						

								Understanding pattern matching

							

										Wildcard patterns

										Constant patterns

										Variable patterns

										Constructor patterns

										Sequence patterns

										Tuple patterns

										Typed patterns

							

						

								Implicits in Scala

								Summary

								Further reading

					

				

						Chapter 2: Environment Setup

					

								Technical requirements

								Setting up a cloud environment

								Leveraging cloud object storage

							

										Using Databricks

							

						

								Local environment setup

							

										The build tool

							

						

								Summary

								Further reading

					

				

						Part 2 – Data Ingestion, Transformation, Cleansing, and Profiling Using Scala and Spark

						Chapter 3: An Introduction to Apache Spark and Its APIs – DataFrame, Dataset, and Spark SQL

					

								Technical requirements

								Working with Apache Spark

								How do Spark applications work?

							

										What happens on executors?

							

						

								Creating a Spark application using Scala

							

										Spark stages

										Shuffling

							

						

								Understanding the Spark Dataset API

								Understanding the Spark DataFrame API

							

										Spark SQL

										The select function

										Creating temporary views

							

						

								Summary

					

				

						Chapter 4: Working with Databases

					

								Technical requirements

								Understanding the Spark JDBC API

								Working with the Spark JDBC API

								Loading the database configuration

								Creating a database interface

							

										Creating a factory method for SparkSession

							

						

								Performing various database operations

							

										Working with databases

										Updating the Database API with Spark read and write

							

						

								Summary

					

				

						Chapter 5: Object Stores and Data Lakes

					

								Understanding distributed file systems

							

										Data lakes

										Object stores

							

						

								Streaming data

								Working with streaming sources

							

										Processing and sinks

										Aggregating streams

							

						

								Summary

					

				

						Chapter 6: Understanding Data Transformation

					

								Technical requirements

								Understanding the difference between transformations and actions

							

										Using Select and SelectExpr

										Filtering and sorting

							

						

								Learning how to aggregate, group, and join data

								Leveraging advanced window functions

								Working with complex dataset types

								Summary

					

				

						Chapter 7: Data Profiling and Data Quality

					

								Technical requirements

								Understanding components of Deequ

								Performing data analysis

								Leveraging automatic constraint suggestion

								Defining constraints

								Storing metrics using MetricsRepository

								Detecting anomalies

								Summary

					

				

						Part 3 – Software Engineering Best Practices for Data Engineering in Scala

						Chapter 8: Test-Driven Development, Code Health, and Maintainability

					

								Technical requirements

								Introducing TDD

							

										Creating unit tests

										Performing integration testing

										Checking code coverage

							

						

								Running static code analysis

							

										Installing SonarQube locally

										Creating a project

										Running SonarScanner

							

						

								Understanding linting and code style

							

										Linting code with WartRemover

										Formatting code using scalafmt

							

						

								Summary

					

				

						Chapter 9: CI/CD with GitHub

					

								Technical requirements

								Introducing CI/CD and GitHub

							

										Understanding Continuous Integration (CI)

										Understanding Continuous Delivery (CD)

										Understanding the big picture of CI/CD

							

						

								Working with GitHub

							

										Cloning a repository

										Understanding branches

										Writing, committing, and pushing code

										Creating pull requests

										Reviewing and merging pull requests

							

						

								Understanding GitHub Actions

							

										Workflows

										Jobs

										Steps

							

						

								Summary

					

				

						Part 4 – Productionalizing Data Engineering Pipelines – Orchestration and Tuning

						Chapter 10: Data Pipeline Orchestration

					

								Technical requirements

								Understanding the basics of orchestration

								Understanding core features of Apache Airflow

							

										Apache Airflow’s extensibility

										Extending beyond operators

										Monitoring and UI

										Hosting and deployment options

										Designing data pipelines with Airflow

							

						

								Working with Argo Workflows

							

										Installing Argo Workflows

										Understanding the core components of Argo Workflows

										Taking a short detour

										Creating an Argo workflow

							

						

								Using Databricks Workflows

								Leveraging Azure Data Factory

							

										Primary components of ADF

							

						

								Summary

					

				

						Chapter 11: Performance Tuning

					

								Introducing the Spark UI

							

										Navigating the Spark UI

										The Jobs tab – overview of job execution

							

						

								Leveraging the Spark UI for performance tuning

							

										Identifying performance bottlenecks

										Optimizing data shuffling

										Memory management and garbage collection

										Scaling resources

										Analyzing SQL query performance

							

						

								Right-sizing compute resources

							

										Understanding the basics

							

						

								Understanding data skewing, indexing, and partitioning

							

										Data skew

										Indexing and partitioning

							

						

								Summary

					

				

						Part 5 – End-to-End Data Pipelines

						Chapter 12: Building Batch Pipelines Using Spark and Scala

					

								Understanding our business use case

							

										What’s our marketing use case?

							

						

								Understanding the data

								Understanding the medallion architecture

								The end-to-end pipeline

								Ingesting the data

								Transforming the data

								Checking data quality

							

										Creating a serving layer

							

						

								Orchestrating our batch process

								Summary

					

				

						Chapter 13: Building Streaming Pipelines Using Spark and Scala

					

								Understanding our business use case

								What’s our IoT use case?

							

										Understanding the data

										The end-to-end pipeline

							

						

								Ingesting the data

								Transforming the data

								Creating a serving layer

								Orchestrating our streaming process

								Summary

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/Fonts/CourierStd.otf

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/cover.png
<packh

TR T ¥ Yo
P RRIRAIR RIS

I IATATARAT RSV
T N ASRTATA T

NAATAVATAYASATATAVATA S

Data Engineering
with Scala and Spark

Build streaming and batch pipelines that process massive
amounts of data using Scala

<> ERIC TOME | RUPAM BHATTACHARJEE | DAVID RADFORD

