
		
			[image: Cover.png]
		

	
		
			Learn WinUI 3

			Leverage WinUI and the Windows App SDK to create modern Windows applications with C# and XAML

			Alvin Ashcraft

			[image: ]

			Learn WinUI 3

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Kunal Sawant

			Publishing Product Manager: Teny Thomas

			Book Project Manager: Prajakta Naik

			Senior Editor: Ruvika Rao

			Technical Editor: Maran Fernandes

			Copy Editor: Safis Editing

			Proofreader: Safis Editing

			Indexer: Tejal Daruwale Soni

			Production Designer: Joshua Misquitta

			DevRel Marketing Coordinator: Sonia Chauhan

			First published: March 2021

			Second edition: October 2023

			Production reference: 1121023

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB, UK

			ISBN 978-1-80512-006-3

			www.packtpub.com

			To my wife, Stelene, for her love and her continued support in our life together. I’m looking forward to the journey ahead of us. To my three daughters for working hard and growing into amazing, talented young women. I can’t wait to see where life takes you all.

			– Alvin Ashcraft

			Contributors

			About the author

			Alvin Ashcraft is a senior content developer at Microsoft, working on the Windows developer documentation team on Microsoft Learn, with a focus on the Windows App SDK, .NET MAUI, Win32, and other desktop application technologies. Prior to this, Alvin spent over 25 years as a software developer and architect, most recently at Allscripts, a global healthcare software company, delivering electronic health record (EHR) software to healthcare systems across the world. He is the author of two previous books for Packt, the first edition of Learn WinUI 3 and Parallel Programming and Concurrency with C# 10 and .NET 6.

			I want to thank my family – especially my wife, Stelene, and my daughters – for supporting me in my writing journey, which has become my new career.

			About the reviewer

			Peter Foot is a Windows and IoT consultant at In The Hand Ltd, where he handcrafts apps and APIs for mobile and IoT devices. Peter has over 20 years’ experience with .NET and Windows development, from the simple Pocket PC to the rich experiences of WinUI.

			Peter has been awarded the Microsoft Most Valuable Professional (MVP) since 2003 for his involvement in the Microsoft .NET and Windows developer communities. Alongside involvement in other open source projects, Peter created and maintains the 32feet.NET library, which is a cross-platform .NET API for Bluetooth and other personal area networking technologies. Peter co-authored Microsoft Mobile Development Handbook and has written a host of technical articles and blog posts.

		

	
		
			Table of Contents

			Preface

			Part 1: Introduction to WinUI and Windows Applications

			1

			Introduction to WinUI

			Technical requirements

			Before UWP – Windows 8 XAML applications

			Windows application UI design

			Windows Runtime (WinRT)

			User backlash and the path forward to Windows 10

			Windows 10 and UWP application development

			Language choice with UWP development

			Lifting app restrictions

			UWP backward compatibility

			What is XAML?

			Creating an adaptive UI for any device

			Powerful data binding

			Styling your UI with XAML

			Separating presentation from business logic

			What is WinUI?

			The first WinUI release

			The road to WinUI 3

			What’s new in WinUI 3?

			Goodbye UWP?

			New features for WinUI 3 and the Windows App SDK

			The Windows App SDK and WinUI

			WinUI 3 compared to other Windows development frameworks

			WinUI versus UWP

			WinUI versus WPF

			WinUI versus Windows Forms (WinForms)

			Summary

			Questions

			2

			Configuring the Development Environment and Creating the Project

			Technical requirements

			Installing Visual Studio and Windows desktop development workloads

			Introducing the application idea

			Reviewing the application features

			WinUI in Desktop projects

			Creating your first WinUI project

			Anatomy of a WinUI in Desktop project

			Reviewing App.xaml

			Reviewing App.xaml.cs

			Reviewing MainWindow.xaml

			Reviewing MainWindow.xaml.cs

			Reviewing the project references

			Reviewing the project properties

			XAML basics

			Building the model

			Creating sample data

			Building the initial UI

			Completing the data-binding initialization

			Creating the DataTemplate and binding the UI

			Understanding WinUI and Windows App SDK

			Understanding the .NET app model

			Working with WinUI controls, properties, and events

			Adding a ListView header

			Creating the ComboBox filter

			Adding a new item button

			Summary

			Questions

			3

			MVVM for Maintainability and Testability

			Technical requirements

			Understanding MVVM

			MVVM – the big picture

			MVVM libraries for WinUI

			The MVVM Toolkit

			The Prism Library

			MVVMCross

			Choosing a framework for WinUI applications

			Understanding data binding in WinUI

			What are markup extensions?

			Binding markup extension

			x:Bind markup extension

			Updating View data with INotifyPropertyChanged

			Updating collection data with INotifyCollectionChanged

			Implementing MVVM in WinUI applications

			Working with events and commands

			Implementing ICommand

			Using commands in the View Model

			Updating the View

			Leveraging the MVVM Toolkit

			Summary

			Questions

			4

			Advanced MVVM Concepts

			Technical requirements

			Understanding the basics of DI

			Using DI with ViewModel classes

			Leveraging x:Bind with events

			Page navigation with MVVM and DI

			Migrating MainWindow to MainPage

			Adding ItemDetailsPage

			Adding new interfaces and services

			Creating a navigation service

			Creating a data service

			Increasing maintainability by consuming services

			Handling parameters in ItemDetailsPage

			Creating the ItemDetailsViewModel class

			Summary

			Questions

			5

			Exploring WinUI Controls

			Technical requirements

			Understanding what WinUI offers developers

			Animated visual player (Lottie)

			Navigation View

			Parallax view

			Rating control

			Exploring the WinUI 3 Gallery app for Windows

			Learning about the ScrollViewer control

			Reviewing what’s new in WinUI 3 and the Windows App SDK

			Backward compatibility

			Fluent UI and modern look and feel

			Visual Studio tooling

			The WebView2 control

			What’s new in the Windows App SDK

			Adding some new controls to the project

			Using the SplitButton control

			Adding a TeachingTip control to the Save button

			Summary

			Questions

			6

			Leveraging Data and Services

			Technical requirements

			Managing application state with app lifecycle events

			Exploring Windows application lifecycle events

			Lifecycle events of WinUI applications

			Additional lifecycle events with FrameworkElement objects

			Creating a SQLite data store

			What is SQLite?

			Adding SQLite as a data service

			Leveraging a Micro ORM to simplify data access

			Adding Dapper to the project

			Updating the data service’s initialization

			Retrieving data via services

			Summary

			Questions

			Part 2: Extending WinUI and Modernizing Applications

			7

			Fluent Design System for Windows Applications

			Technical requirements

			What is the Fluent Design System?

			Exploring Fluent Design for Windows

			Controls

			Patterns

			Layout

			Input

			Style

			Incorporating Fluent Design in WinUI applications

			Updating the title bar

			Changing the style of MainPage

			Changing the style of ItemDetailsPage

			Using the Fluent XAML Theme Editor

			Colors

			Shapes

			Acrylic material and the Fluent Design System

			Use Mica in WinUI applications

			Incorporate Mica into My Media Collection

			Design resources and toolkits for Fluent Design

			Summary

			Questions

			8

			Adding Windows Notifications to WinUI Applications

			Technical requirements

			Overview of push notifications in the Windows App SDK

			Raw push notifications

			Cloud-based app notifications

			Local app notifications

			Using raw push notifications in WinUI applications

			Adding Windows app notifications with the Windows App SDK

			Summary

			Questions

			9

			Enhancing Applications with Community Toolkits

			Technical requirements

			Introducing the WCT

			Origins of the WCT

			Reviewing recent toolkit releases

			Exploring the WCT Gallery app

			Installing and launching the app

			Controls

			Using controls from the toolkit

			Creating the WinUI project

			Referencing WCT packages

			Adding data to the DataGrid control

			Adding controls to the MainWindow control

			Exploring the toolkit’s helpers, services, and extensions

			Helpers

			Extensions

			.NET Community Toolkit features

			Summary

			Questions

			10

			Accelerating App Development with Template Studio

			Technical requirements

			Overview of Template Studio for WinUI

			Starting a new WinUI project with Template Studio

			Exploring the code generated by Template Studio

			Exploring the Core project

			Exploring the main project

			Exploring the MSTest project

			Template Studio extensions for other UI frameworks

			Template Studio for WPF

			Template Studio for Uno Platform

			Summary

			Questions

			Part 3: Build and Deploy on Windows and Beyond

			11

			Debugging WinUI Applications with Visual Studio

			Technical requirements

			Debugging in Visual Studio

			Debugging local applications

			Debugging remote applications

			Common XAML layout mistakes

			Improving your XAML with static code analysis

			Pinpointing data binding failures

			Common mistakes in data binding

			Using the XAML Binding Failures window

			Debugging live data with Live Visual Tree and Live Property Explorer

			Coding with XAML Hot Reload

			Debugging with Live Visual Tree and Live Property Explorer

			Summary

			Questions

			12

			Hosting a Blazor Application in WinUI

			Technical requirements

			Getting started with ASP.NET Core and Blazor

			A brief history of ASP.NET and ASP.NET Core

			What is Blazor?

			WebAssembly and client-side .NET development

			Creating a Blazor Wasm application

			Building a simple application for tracking tasks

			Exploring Blazor Wasm deployment options

			Deployment options for Blazor Wasm projects

			Publishing Blazor to Azure Static Web Apps hosting

			Pushing the project to GitHub

			Creating an Azure Static Web Apps resource

			Publishing an application with GitHub Actions

			Hosting your Blazor application in the WinUI WebView2

			Summary

			Questions

			13

			Take Your App Cross-Platform with Uno Platform

			Technical requirements

			An overview of Uno Platform

			Creating your first Uno Platform project

			Migrating WinUI XAML markup and code to Uno Platform

			Migrating the WinUI project code

			Migrating the WinUI XAML views

			Running on Android with WSA

			Running in the browser with WebAssembly

			Summary

			Questions

			14

			Packaging and Deploying WinUI Applications

			Technical requirements

			Discovering application packaging and MSIX basics

			MSIX

			Reviewing MSIX tools and resources

			Packaged applications and application identity

			Getting started with application packaging in Visual Studio

			Deploying applications with Windows Package Manager

			Adding a package to the community repository

			Using WinGet for package management

			Distributing applications with the Microsoft Store

			Preparing a free application for the Microsoft Store

			Uploading a package to the Store

			Sideloading WinUI applications with MSIX

			Creating an MSIX package for sideloading

			Sideloading an MSIX package

			Summary

			Questions

			Index

			Other Books You May Enjoy

		

	


		
			Preface

			WinUI 3 is the newest desktop UI framework for Windows application development. It is part of Microsoft’s Windows App SDK, providing developers with the tools to build beautiful apps with the Fluent Design System. This book will quickly get you up to speed with WinUI to build new Windows applications and to build apps across platforms with technologies such as Blazor and Uno Platform.

			The book begins by exploring the history of Windows UI development frameworks to gain an understanding of how earlier frameworks influenced WinUI as it exists today. It covers the basics of XAML-based UI development and explores the controls available in WinUI before moving on to an examination of patterns and best practices for WinUI developers. To help reinforce these concepts, the early chapters in the book build practical skills by creating an application to organize a collection of books, music, and movies. Each chapter enhances the application, with new controls and concepts discussed.

			Later chapters in the book explore how developers can leverage their WinUI knowledge to leverage open source toolkits, integrate web content in Windows apps, and migrate WinUI apps to Android, iOS, and the web. The book finishes by teaching some essential Visual Studio debugging techniques and discussing app deployment options to get your apps in the hands of consumers and enterprise users. At the end of every chapter, I've included a series of questions for you to attempt on your own, enabling you to gauge your level of understanding. Learn how WinUI can help you build and deploy modern, robust applications!

			Who this book is for

			This book is for anyone who wants to develop Windows applications with a modern user experience (UX). If you are familiar with Windows Forms, UWP, or WPF, and are looking to update your knowledge of Windows development or modernize existing apps, this book is for you. If you are just learning .NET development, you can take advantage of this book to learn the basics of XAML development in parallel with your C# and .NET journey.

			What this book covers

			Chapter 1, Introduction to WinUI, examines the history of UI frameworks in Windows and the origins of WinUI, and you will create your first WinUI 3 project in Visual Studio.

			Chapter 2, Configuring the Development Environment and Creating the Project, explains how to install and configure Visual Studio for WinUI development, the basics of XAML and C#, and kicks off the hands-on with a project that will be enhanced throughout the book.

			Chapter 3, MVVM for Maintainability and Testability, introduces the basics of Model-View-ViewModel (MVVM) pattern, one of the most important design patterns when building XAML-based applications.

			Chapter 4, Advanced MVVM Concepts, builds on the basics you learned about the MVVM pattern in WinUI apps to handle more advanced techniques. You’ll learn how to keep components loosely coupled and testable when adding new dependencies to your projects.

			Chapter 5, Exploring WinUI Controls, explores some of the many controls and APIs that WinUI offers for developers building Windows applications. This chapter explores the brand-new controls and updated controls that were previously available in WinUI 2 and UWP.

			Chapter 6, Leveraging Data and Services, looks at managing data, a core part of software development. This chapter covers some key concepts of data management, including state management and the service locator pattern.

			Chapter 7, Fluent Design System for Windows Applications, explains the tenets of Microsoft’s Fluent Design System and how to implement them in your WinUI applications.

			Chapter 8, Adding Windows Notifications to WinUI Applications, covers how to leverage the Windows App SDK to support push notifications and app notifications in your WinUI applications.

			Chapter 9, Enhancing Applications with the Windows Community Toolkits, introduces the Windows Community Toolkit and the .NET Community Toolkit – collections of open source libraries for Windows developers. You will learn how to leverage the controls and helpers from the toolkits in your WinUI projects.

			Chapter 10, Accelerating App Development with Template Studio, shows how to leverage Template Studio to create a new WinUI project, which can be a daunting task, built on the best Windows development patterns and practices.

			Chapter 11, Debugging WinUI Applications with Visual Studio, shows how to leverage the XAML debugging tools in Visual Studio to track down pesky bugs in your WinUI project – good debugging skills are essential for developers.

			Chapter 12, Hosting a Blazor Application in WinUI, looks at the WebView2 control in WinUI and using it to host a Blazor application deployed to the cloud from inside your Windows application.

			Chapter 13, Take Your App Cross-Platform with Uno Platform, explains how to migrate a WinUI project to Uno Platform, which allows developers to write XAML and C# code in a single code base and run it on any platform.

			Chapter 14, Packaging and Deploying WinUI Applications, explores some of the multiple options WinUI developers have for packaging and deploying WinUI applications, looking at deploying through the Microsoft Store, WinGet, and side-loading apps.

			To get the most out of this book

			If you are familiar with Windows Forms, .NET MAUI, UWP, or WPF and are looking to enhance your knowledge of Windows development or modernize existing apps, you will find this book useful. Hands-on experience with C# and .NET is expected but no prior knowledge of WinUI is required.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							WinUI 3

						
							
							Windows 10 version 1809 or later or Windows 11

						
					

					
							
							C#

						
							
							Windows, macOS, or Linux

						
					

					
							
							.NET 7

						
							
							Windows, macOS, or Linux

						
					

					
							
							Visual Studio 2022

						
							
							Windows 10 or 11

						
					

					
							
							Blazor

						
							
							Windows, macOS, or Linux

						
					

					
							
							Uno Platform

						
							
							Windows, macOS, or Linux

						
					

				
			

			The book covers how to get started with WinUI development, but you should have Visual Studio and .NET installed. Follow the instructions on Microsoft Learn: https://learn.microsoft.com/visualstudio/install/install-visual-studio.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			After you read this book, you can continue your Windows development journey by diving deeper into the documentation and samples on Microsoft Learn: https://learn.microsoft.com/windows/apps/.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Learn-WinUI-3-Second-Edition. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “In INavigationService, you can update the namespace to UnoMediaCollection.Interfaces and remove the using System; statement.”

			A block of code is set as follows:

			
using UnoMediaCollection.Enums;
using UnoMediaCollection.Interfaces;
using UnoMediaCollection.Model;
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
using UnoMediaCollection.Enums;
namespace UnoMediaCollection.Model
			Any command-line input or output is written as follows:

			
$ mkdir css
$ cd css
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Right-click the Enums folder and select Add | Existing Item.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share your thoughts

			Once you’ve read Automate Testing for Power Apps, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			 

			
				
					[image: ]
				

			

			https://packt.link/free-ebook/9781805120063

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	


		
			Part 1:Introduction to WinUI and Windows Applications

			WinUI 3 is Microsoft’s latest UI framework for Windows developers. This section will start by exploring the recent history of XAML and Windows UI frameworks and introduce you to WinUI. Throughout the chapters of this section, you will learn about WinUI concepts by building a simple project from scratch and adding controls and features, by following design patterns and best practices. These patterns and practices include the Model-View-ViewModel (MVVM) design pattern, building loosely coupled, testable C# classes, and using dependency injection (DI) to inject service dependencies into the application components.

			This part has the following chapters:

			
					Chapter 1, Introduction to WinUI

					Chapter 2, Configuring the Development Environment and Creating the Project

					Chapter 3, MVVM for Maintainability and Testability

					Chapter 4, Advanced MVVM Concepts

					Chapter 5, Exploring WinUI Controls

					Chapter 6, Leveraging Data and Services

			

		

		
			
			

		

		
			
			

		

	


		
			1

			Introduction to WinUI

			WinUI 3 is a set of user interface (UI) controls and libraries that Windows developers can leverage in their desktop applications. It is the UI part of the Windows App SDK, which was previously known as Project Reunion. UWP developers use the Windows Software Development Kit (Windows SDK) to build their applications and are required to select a target SDK version in a project’s properties. By extracting the UWP controls and UI components from the Windows SDK, rewriting them for use with .NET, and releasing them as a set of libraries in the Windows App SDK under the name WinUI, Microsoft has been able to release versions at a faster cadence than Windows itself (as Windows SDK versions are linked to those of Windows). This separation also enables the controls to be used on older versions of Windows 10. While building desktop applications with WinUI is the current recommendation, it is important to learn where WinUI and the Windows App SDK fit into the larger Windows development landscape.

			In this book, you will learn how to build applications for Windows with the WinUI 3 libraries. Throughout the course of the book, we will build a real-world application using the recommended patterns and practices for Windows application development.

			Before we start building our WinUI app, it’s important to have a good foundation in Windows client development, the different types of Extensible Application Markup Language (XAML) UI markup, and how WinUI compares to other Windows desktop development frameworks. Therefore, in this first chapter, you will start by learning some background on UWP and WinUI.

			In this chapter, we will learn about the following topics:

			
					What UWP is and why Microsoft created yet another application framework

					How XAML can be leveraged to create great UIs on many device sizes and families

					Why WinUI was created and how it relates to UWP

					Where WinUI fits into the Windows developer landscape

					What WinUI 3 brings to the table

			

			Don’t worry! It won’t take very long to cover the background stuff, and it will help provide some context as you start building your WinUI app. In the next chapter, you will get your hands on some code when you create your first WinUI project.

			Technical requirements

			To follow along with the examples in this chapter, the following software is required:

			
					Windows 10 version 1809 or later or Windows 11. You can find your version of Windows in Settings | About.

					Visual Studio 2022 version 17.0 or later with the following workload: .NET Desktop Development. On the Installation details tab of the Visual Studio Installer, ensure that Windows App SDK C# Templates is selected.

			

			The source code for this chapter is available on GitHub at this URL: https://github.com/PacktPublishing/Learn-WinUI-3-Second-Edition/tree/main/Chapter01.

			Note

			The Windows App SDK site on Microsoft Learn has up-to-date guidance on setting up a developer workstation for WinUI 3 development: https://learn.microsoft.com/windows/apps/windows-app-sdk/set-up-your-development-environment.

			Before UWP – Windows 8 XAML applications

			Before UWP applications were launched with Windows 10 in 2015, there were XAML applications for Windows 8 and 8.1. The XAML syntax and many of the application programming interfaces (APIs) were the same, and they were Microsoft’s next step to achieve universal app development across desktop, mobile, and other platforms (Xbox, mixed reality, and so on). A XAML app could be written for Windows 8 and Windows Phone. These projects would generate separate sets of binaries that could be installed on a PC or a Windows Phone.

			These apps had many other limitations that modern UWP apps do not. For instance, they only ran full-screen, as shown in the following screenshot:

			
				
					[image: Figure 1.1 – Windows 8 full-screen app (sourced from Stack Overflow; reproduced under CC BY-SA 4.0 – https://creativecommons.org/licenses/by-sa/4.0/)]
				

			

			Figure 1.1 – Windows 8 full-screen app (sourced from Stack Overflow; reproduced under CC BY-SA 4.0 – https://creativecommons.org/licenses/by-sa/4.0/)

			Many other early restrictions on Windows 8 apps have been lessened or completely removed in UWP app development. Figure 1.2, which follows, documents these changes:

			
				
					[image: Figure 1.2 – Windows 8 and Windows 10 app comparison table]
				

			

			Figure 1.2 – Windows 8 and Windows 10 app comparison table

			Windows application UI design

			The term Metro style was used to define the design and layout of Windows 8 apps. Metro style apps were designed to be usable with touch input, a mouse and keyboard, or a stylus. Microsoft’s introduction of the first Windows Phone was a driving factor for Metro style design. Metro style later became Modern UI design, with the introduction of Surface devices. Aspects of Metro live on today in UWP apps and Windows 10.

			Live Tiles were born with Metro Style. These tiles on the user’s Windows 8 home screen and Windows 10 Start menu can update to display live updates to users without having to open the app. Most of Microsoft’s own apps for Windows 10 supported Live Tiles. The Weather app could show live updates to current weather conditions on the tile, based on the user’s current location. Live tiles are no longer part of the operating system in Windows 11. They have been replaced by widgets, which app developers can also create. We will discuss widgets further in Chapter 5, Exploring WinUI Controls.

			Windows Runtime (WinRT)

			Another term that has its roots in Windows 8 app development is WinRT. The letters RT became a source of great confusion. WinRT was short for Windows Runtime, the underlying APIs used by Windows XAML apps. There was also a version of Windows 8 called Windows RT that supported Arm processors. The first Surface PC was the Surface RT, which ran the Windows 8 RT operating system.

			Although WinRT can still be used today to define the WinRT APIs consumed by UWP apps, you will not see the term as often. We will also avoid using WinRT in this book and instead refer to the APIs as the UWP or Windows APIs.

			User backlash and the path forward to Windows 10

			While Microsoft pushed hard to win over users with Modern UI design, a new app model, Surface PCs, and Windows 8 and 8.1, the idea of a full-screen, touch-first app experience and a deemphasized Windows desktop was never embraced by customers. It turns out that Windows users really liked the Start menu experience they had used for years with Windows XP and Windows 7.

			The next step in Windows app development was a big one—so big, in fact, that Microsoft decided to skip a number in their versioning, jumping straight from Windows 8.1 to Windows 10.

			Windows 10 and UWP application development

			While taking a leap forward with the launch of Windows 10, Microsoft also blended the best of what worked in previous versions of Windows. It brought back the start menu, but its contents look an awful lot like the Windows 8 home screen experience. In addition to an alphabetized list of all installed apps, there is a resizable area for pinned app tiles. In fact, when running Windows in Tablet mode, the start menu can transform into the Windows 8-style home screen experience for better usability on a touchscreen.

			When Microsoft launched Windows 10, it also introduced UWP applications to Windows developers. While UWP apps have their roots in the XAML apps of Windows 8, some key differences give developers some major advantages when building apps for the platform.

			A key advantage is the universal aspect of these apps. Microsoft builds versions of Windows 10 to run on different device families, listed as follows:

			
					Desktop (PC)

					Xbox

					Mobile (Windows Phone)

					HoloLens

					IoT

					IoT Headless

					Team (Surface Hub)

			

			UWP developers can build apps to target any of these devices. There is a single base set of Windows APIs shared across all these targets, and specialized SDKs available for the device-specific APIs of some families—for example, there is a Mixed Reality Toolkit and SDK for HoloLens development. With UWP, it is possible to create a single project to target many device families—for instance, you can create a project that creates apps for Desktop, Xbox, and Team families.

			Because the UWP XAML for building the app’s UI is the same, the learning curve for cross-device development is lowered and code reusability is very high. The nature of XAML provides UI flexibility to adapt to different device sizes and aspect ratios.

			Language choice with UWP development

			While the underlying UWP APIs were written in C++, UWP developers can choose from several programming languages when building apps for Windows. UWP projects can be created with any of these popular languages:

			
					C#

					C++

					F#

					Visual Basic .NET (VB.NET)

					JavaScript

			

			You may be surprised to see JavaScript on the list. During the Windows 8.x days, developers could create JavaScript apps with APIs known as WinJS apps. Today, Microsoft has created a branch of React Native for Windows developers, known as React Native for Windows. These JavaScript client apps have full access to the same Windows APIs as other UWP apps and can be packaged and deployed through the Windows Store.

			Note

			React Native for Windows is an open source project hosted by Microsoft on GitHub at https://github.com/Microsoft/react-native-windows.

			While many of the UWP apps developed for Windows 10 and Windows 11 by Microsoft are created with C++, most other developers choose C#. We will also use C# when building our applications throughout the course of this book.

			Lifting app restrictions

			As discussed earlier, apps built for Windows 8 had several restrictions that have been either removed or relaxed with UWP.

			First and foremost, modern UWP apps can run in resizable windows, just like any other Windows desktop application. The trade-off is that developers now need to test for and handle the resizing of their app to almost any size. The dynamic nature of XAML can handle a lot of the resizing very well, but below a certain minimum size, scroll bars will need to be employed.

			For end users, one of the benefits of using UWP apps is the inherent security they provide due to the limited access of apps to the PC’s filesystem. By default, each app can only access its own local storage. In 2018, the Windows developer team announced a new feature for UWP developers. By adding some app configuration declaring which additional types of access the app requires, applications can request access to additional parts of the filesystem. Among them are the following:

			
					User libraries, including documents, pictures, music, and videos

					Downloads

					Removable devices

			

			Note

			There are additional filesystem permissions that can be requested. See the Microsoft Learn documentation for an entire list: https://learn.microsoft.com/windows/uwp/files/file-access-permissions.

			Any additional permissions requested will be declared on the app’s listing on the Microsoft Store.

			Some less-common scenarios are now available to UWP apps on Windows. Developers can add some configuration and startup code to enable multiple instances of their app to launch. While many believe the hallmark of a UWP app is the XAML UI, it was also possible to create a UWP console app. The app ran at the command line and had access to Universal C runtime calls. These are no longer supported, as developers can now create .NET console apps and package them with MSIX to provide them with package identity in Windows.

			Note

			We will discuss app packaging, MSIX, and package identity in detail in Chapter 14, Packaging and Deploying WinUI Applications.

			UWP backward compatibility

			No UWP app is compatible with any version of Windows before Windows 10. Beyond this, each UWP app must declare a target version and a minimum version of Windows with which it is compatible. The target version is your recommended version, which will enable all the app’s features and functionality. The minimum version is, unsurprisingly, the minimum version of Windows that users must have to be able to install an app from the Microsoft Store.

			Visual Studio will prompt you to select these versions when creating a new UWP project. If the two are the same, it keeps things simple. You will have all the APIs of that SDK version available to the app. If the target version is greater than the minimum version, you need to add some conditional code to light up the features of any versions greater than the minimum. The app must still be useful to users running the minimum version; otherwise, it is advisable to increase the minimum. If any of the newer APIs or controls are fundamental to the app, it is also recommended that the minimum version be increased to one where those are available.

			Note

			For more information on writing the conditional or version-adaptive code, see the Microsoft Learn documentation here: https://learn.microsoft.com/windows/uwp/debug-test-perf/version-adaptive-code.

			If you are creating .NET libraries that will be referenced by your UWP project and you would like to share them across other platforms, perhaps by a .NET MAUI mobile app, a .NET Standard version should be targeted by the shared library project. The most common .NET Standard version today is .NET Standard 2.0. To reference a .NET Standard 2.0 project from a UWP project, the target version of the UWP project should be 16299 or later.

			The primary benefit of WinUI over UWP is that it lessens the dependency of Windows apps on a particular version of Windows. Instead, the controls, styles, and APIs are maintained outside of the Windows SDK. At the time of writing, the minimum and target versions required for a WinUI 3 app must be set to 17763 or higher. Check the latest WinUI 3 documentation for the current minimum requirements.

			The hope for WinUI is to bring a greater number of controls and features to more supported versions of Windows as the project matures.

			What is XAML?

			XAML is based on Extensible Markup Language (XML). This would seem like a great thing as XML is a flexible markup language familiar to most developers. It is indeed flexible and powerful, but it has some drawbacks.

			The primary problem with Microsoft’s implementations of XAML is that there have been so many variations of the XAML language created for different development platforms over the years. Currently, WinUI/UWP, Windows Presentation Foundation (WPF), and .NET MAUI (formerly Xamarin.Forms) applications all use XAML as their UI markup language, in addition to some third-party UI frameworks. However, each of these uses a different XAML implementation or schema, and the markup cannot be shared across the platforms. In the past, Windows 8, Silverlight, and Windows Phone apps also had additional.

			If you have never worked with XAML before, you’re probably ready to see an example of some UI markup. The following XAML is a fragment that defines Grid containing several other of the basic WinUI controls (you can download the code for this chapter from GitHub here: https://github.com/PacktPublishing/-Learn-WinUI-3-second-edition/tree/master/Chapter01):

			
<Grid Width="400" Height="250" Padding="2"
   HorizontalAlignment="Center"
     VerticalAlignment="Center">
    <Grid.RowDefinitions>
        <RowDefinition Height="Auto"/>
        <RowDefinition Height="*"/>
    </Grid.RowDefinitions>
    <Grid.ColumnDefinitions>
        <ColumnDefinition Width="Auto"/>
        <ColumnDefinition Width="*"/>
    </Grid.ColumnDefinitions>
    <TextBlock Grid.Row="0" Grid.Column="0"
               Text=»Name:»
               Margin=»0,0,2,0»
               VerticalAlignment="Center"/>
    <TextBox Grid.Row="0" Grid.Column="1"
             Text=»»/>
    <Button Grid.Row="1" Grid.Column="1" Margin="0,4,0,0"
            HorizontalAlignment="Right"
            VerticalAlignment="Top"
            Content=»Submit»/>
</Grid>
			Let’s break down the XAML here. The top level of a WinUI window is Window. WinUI 3 app navigation is Window-based (unlike UWP, which is Page-based), and the initial navigation happens in the App.xaml file in the project. You will learn more about navigation in Chapter 4, Advanced MVVM Concepts. A Window must contain only one child, and it will be some type of layout panel such as a Grid or StackPanel. By default, a StackPanel is inserted as that child. We will discuss other types of panels that serve as good parent containers in the next chapter. I made a few modifications and replaced the StackPanel with a Grid.

			The Height and Width properties provide a static size for the example, and the HorizontalAlignment and VerticalAlignment properties will center the Grid within the Window. Fixed sizes are uncommon at this level of the XAML and limit the flexibility of the layout, but they illustrate some of the available attributes.

			A Grid is a layout panel that allows developers to define rows and columns to arrange its elements. The rows and columns can have their sizes defined as fixed, relative to each other, or auto-sized based on their contents. For more information, you can read the Microsoft Learn article Responsive layouts with XAML: https://learn.microsoft.com/windows/uwp/design/layout/layouts-with-xaml.

			The Grid.RowDefinitions block defines the number and behavior of the grid’s rows. Our grid will have two rows. The first one has Height="Auto", which means it will resize itself to fit its contents, provided enough space is available. The second row has Height="*", which means the rest of the grid’s vertical space will be allocated to this row. If multiple rows have their height defined like this, they will evenly split the available space. We will discuss additional sizing options in the next chapter.

			The Grid.ColumnDefinitions block does for the grid’s columns what RowDefinitions did for the rows. Our grid has two columns defined. The first ColumnDefinition has Height set to Auto, and the second has Height="*".

			TextBlock defines a label in the first Grid.Row and Grid.Column. When working with XAML, all indexes are 0-based. In this case, the first Row and Column are both at position 0. The Text property conveniently defines the text to display, and the VerticalAlignment in this case will vertically center the text for us. The default VerticalAlignment for a TextBlock is Top. The Margin property adds some padding around the outside of the control. A margin with the same amount of padding on all sides can be set as a single numeric value. In our case, we only want to add a couple of pixels to the right side of the control to separate it from TextBox. The format for entering these numeric values is "<LEFT>,<TOP>,<RIGHT>,<BOTTOM>", or "0,0,2,0" here.

			TextBox is a text entry field defined in the second column of the grid’s first row.

			Finally, we’ve added a Button control to the second column of the grid’s second row. A few pixels of upper margin are added to separate it from the controls above. The VerticalAlignment is set to Top (the default is Center) and HorizontalAlignment is set to Right (the default is Center). To set the text of Button, you don’t use the Text property as we did with TextBlock, as you might think. In fact, there is no Text property. The Content property of Button is used here. Content is a special property that we will discuss in more detail in the next chapter. For now, just know that a Content property can contain any other control: text, Image, or even a Grid control containing multiple other children. The possibilities are virtually endless.

			Here is the UI that gets rendered by the preceding markup:

			
				
					[image: Figure 1.3 – WinUI XAML rendered]
				

			

			Figure 1.3 – WinUI XAML rendered

			This is a very simple example to give you a first taste of what can be created with XAML. As we move ahead, you will learn how powerful the language can be.

			Creating an adaptive UI for any device

			In the previous example, Grid had fixed Height and Width properties. I mentioned that setting fixed sizes can limit a UI’s flexibility. Let’s remove the fixed size properties and use the alignment properties to guide the UI elements to render how we want them to appear at different sizes and aspect ratios, as follows:

			
<Grid VerticalAlignment="Top" HorizontalAlignment="Stretch" Padding="2">
			The rest of the markup remains unchanged. The result is TextBox resizing to fit the width of the window, and Button remains anchored to the right of the window as it resizes. See the window resized a couple of different ways here:

			
				
					[image: Figure 1.4 – Resized windows]
				

			

			Figure 1.4 – Resized windows

			If you were using this app on a smaller PC such as the Surface Go Laptop, the contents would resize themselves to fit in the available space. That is the power of XAML’s adaptive nature. When building a UI, you will usually want to choose relative and adaptive properties such as alignment to fixed sizes and positions.

			It’s this adaptive layout that makes XAML work so well on mobile devices with .NET MAUI, and this is why WPF developers have loved using it since its launch with Windows Vista.

			Powerful data binding

			Another reason why XAML-based frameworks are so popular is the ease and power of their data-binding capabilities. Nearly all properties on WinUI controls can be data-bound. The source of the data can be an object or a list of objects on the data source. In most cases, that source will be a ViewModel class. Let’s have a very quick look at using WinUI’s Binding syntax for data-binding to a property on a ViewModel class, as follows:

			
					First, we will create a simple MainViewModel class with a Name property, like this:
public class MainViewModel : INotifyPropertyChanged
{
    public event PropertyChangedEventHandler
      PropertyChanged;
    private string _name;
    public MainViewModel()
    {
        _name = "Bob Jones";
    }
    public string Name
    {
        get
        {
            return _name;
        }
        set
        {
            if (_name == value) return;
            _name = value;
            PropertyChanged?.Invoke(this, new
              PropertyChangedEventArgs(nameof(Name)));
        }
    }
}
The MainViewModel class implements an interface called INotifyPropertyChanged. This interface is key to the UI receiving updates when data-bound properties have changed. This interface implementation is typically wrapped either by a Model-View-ViewModel (MVVM) framework, such as Prism or the MVVM Toolkit, or with your own ViewModelBase class. For now, we will directly invoke a PropertyChanged event inside the Name property’s setter. We will learn more about ViewModels and the INotifyPropertyChanged interface in Chapter 3, MVVM for Maintainability and Testability.

					The next step is to create an instance of the MainViewModel class and set it as ViewModel for our MainWindow. This happens in the code-behind file for the page, MainWindow.xaml.cs, as illustrated in the following code snippet:
public sealed partial class MainWindow : Window
{
    public MainWindow()
    {
        this.InitializeComponent();
        ViewModel = new MainViewModel();
    }
    public MainViewModel ViewModel { get; private set; }
}
We have added a ViewModel property to MainWindow and set it to a new instance of our MainViewModel class in the constructor.

			

			Tip

			Any code added to a window’s constructor that interacts with any UI elements must be added after the call to InitializeComponent().

			
					Now it’s time to add the data-binding code to the XAML markup for TextBox, as follows:
<TextBox Grid.Row="0" Grid.Column="1" Text="{x:Bind
  Path=ViewModel.Name, Mode=TwoWay}"/>
Some markup has been added to set the Text property using the x:Bind markup extension. The data-binding Path is set to the Name property on the ViewModel, which was assigned in the code-behind file in step 2. By setting the data-binding mode to TwoWay, updates in the ViewModel will display in the UI, and any updates by the user in the UI will also be persisted in the Name property of the MainViewModel class. Now, running the app will automatically populate the name that was set in the constructor of the ViewModel, as illustrated in the following screenshot:

			

			
				
					[image: Figure 1.5 – Data-binding the TextBox]
				

			

			Figure 1.5 – Data-binding the TextBox

			
					To illustrate data-binding to another property on another UI element on the page, we will first modify the grid to add a name, as follows:
<Grid x:Name="ParentGrid"
      VerticalAlignment="Top"
      HorizontalAlignment="Stretch"
      Padding="2">

					Now add another RowDefinition to the Grid to fit the new UI element on the page:
<Grid.RowDefinitions>
    <RowDefinition Height="Auto"/>
    <RowDefinition Height="Auto"/>
    <RowDefinition Height="*"/>
</Grid.RowDefinitions>

					Next, add a TextBlock element and use the Binding markup extension to bind its Text property to the ActualWidth of the ElementName set to ParentGrid. We are also adding a TextBlock to label this as Actual Width:
<TextBlock Grid.Row="1" Grid.Column="0"
           Text="Actual Width:"
           Margin="0,0,2,0"
           VerticalAlignment="Center"/>
<TextBlock Grid.Row="1" Grid.Column="1"
           Text="{Binding ElementName=ParentGrid,
                          Path=ActualWidth}"/>

					Next, update the Submit button to appear in Grid.Row 2.

					Now the new TextBlock control displays the width of ParentGrid when the page is loaded. Note that it will not update the value if you resize the window. The ActualWidth property does not raise a property change notification. This is documented in the FrameworkElement.ActualWidth documentation: https://learn.microsoft.com/windows/windows-app-sdk/api/winrt/microsoft.ui.xaml.frameworkelement.actualwidth:

			

			
				
					[image: Figure 1.6 – Data-binding to another element]
				

			

			Figure 1.6 – Data-binding to another element

			The Submit button does not function yet. You will learn how to work with Events and Commands with MVVM in Chapter 5, Exploring WinUI Controls.

			Styling your UI with XAML

			When working with XAML, styles can be defined and applied at almost any scope, global to the application in App.xaml, in the current Window inside a Window.Resources declaration, or inside any level or nested control on the page. The Style element specifies a TargetType property, which is the data type of the elements to be targeted by the style. It can optionally have a Key property defined as a unique identifier, like a class identifier in Cascading Style Sheets (CSS). That Key property can be used to apply the style to only selected elements of that type. Only one Key property can be assigned to an element, unlike with CSS classes.

			In the next example, we will modify the page to define a Style property for all buttons on the window, as follows:

			
					Start by moving the Submit button to be nested inside a StackPanel element. A StackPanel element stacks all child elements in a horizontal or vertical orientation, with vertical being the default orientation. Some of the button’s properties will need to be moved to the StackPanel element, as it is now the direct child of Grid. After adding a second button to the StackPanel element to act as a Cancel button, the code for the StackPanel and Button elements should look like this:
<StackPanel Grid.Row="2" Grid.Column="1"
            Margin="0,4,0,0"
            HorizontalAlignment="Right"
            VerticalAlignment="Top"
            Orientation="Horizontal">
    <Button Content="Submit" Margin="0,0,4,0"/>
    <Button Content="Cancel"/>
</StackPanel>
A new Margin attribute has been added to the first button to add some space between the elements.

					Next, we will add a Style block to a Grid.Resources section nested inside Grid before all its controls to style the buttons. Because no Key is assigned to the Style block, it will apply to all Button elements that do not have their styles overridden in an inner scope. This is known as an implicit style. The code for this is shown here:
<Grid.Resources>
    <Style TargetType="Button">
        <Setter Property="BorderThickness"
                Value="2" />
        <Setter Property="Foreground"
                Value="LightGray" />
        <Setter Property="BorderBrush"
                Value="GhostWhite"/>
        <Setter Property="Background"
                Value="DarkBlue" />
    </Style>
</Grid.Resources>

					Now, when you run the app, you will see that the new style has been applied to both the Submit and Cancel buttons without adding any styling directly to each control, as illustrated in the following screenshot:

			

			
				
					[image: Figure 1.7 – Styled buttons]
				

			

			Figure 1.7 – Styled buttons

			If we moved the Style block to the Application.Resources section in App.xaml, the defined style would get applied to every button in the entire app unless the developer had individually overridden some of the properties in the style. For instance, if the Submit button had a Background property set to DarkGreen, only the Cancel button would appear as dark blue.

			We will spend more time on styles and design in Chapter 7, Fluent Design System for Windows Applications.

			Separating presentation from business logic

			We looked briefly at the MVVM pattern in the earlier section on data binding. MVVM is key to the separation of presentation logic from business logic in WinUI application development. The XAML elements only need to know that there is a property with a particular name somewhere in its data context. The ViewModel classes have no knowledge of the View (our XAML file).

			This separation provides several benefits. First, ViewModels can be tested independently of the UI. If any WinUI elements are referenced by the system under test, the UI thread is needed. This will cause tests to fail when they’re running on background threads locally or on a Continuous Integration (CI) server. See this Microsoft blog post for more information on unit testing WinUI applications: https://devblogs.microsoft.com/ifdef-windows/winui-desktop-unit-tests/.

			The next benefit of View/ViewModel separation is that businesses with dedicated user experience (UX) experts will sometimes work on designing the XAML markup for an app while other developers are building the ViewModels. When it is time to sync up the two, the developer can add the necessary data-binding properties to the XAML, or perhaps the UX designer and developer have already agreed upon the names of the properties in the shared data context. Visual Studio includes another tool geared toward designers in this workflow, called Blend for Visual Studio. Blend was first released by Microsoft in 2006 as Microsoft Expression Blend, as a tool for designers to create UIs for WPF. Support was later added for other XAML languages such as Silverlight and UWP. Blend is still included with the .NET desktop development workload when installing Visual Studio.

			A final benefit we will discuss here is that a good separation of concerns between any layers of your application will always lead to better maintainability. If there are multiple components involved in a single responsibility or if logic is duplicated in multiple places, this leads to buggy code and unreliable applications. Follow good design patterns, and you will save yourself a lot of work down the road.

			Now that you have a good understanding of the history of UWP applications, it’s time to look at WinUI: what it is, and why it was created.

			What is WinUI?

			The WinUI library is a set of controls and UI components that has been extracted from the Windows SDK and included in the Windows App SDK. After this separation, many controls have been enhanced and others have been added. The Windows App SDK is being developed in the open. Its issues are tracked on GitHub and with input from Microsoft and the Windows developer community.

			So, if these WinUI libraries are based on UWP libraries in the Windows SDK, you may be wondering why you should choose WinUI as your UI framework instead of UWP. UWP has been around since the launch of Windows 10 and is quite robust and stable. There are several very good reasons to consider WinUI.

			
			
			
			
			
			
			
			
			
			
			
						
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		




















































	

OEBPS/Fonts/MinionPro-Bold.otf


OEBPS/Fonts/MyriadPro-Semibold.otf


OEBPS/image/B20908_01_07.jpg
Name: Bob Jones BoONEOY o 6 x

Actual Width: 1424






OEBPS/toc.xhtml


		

		Contents



			

						Learn WinUI 3



						Contributors



						About the author



						About the reviewer



						Preface

					

								Who this book is for



								What this book covers



								To get the most out of this book



								Download the example code files



								Conventions used



								Get in touch



								Share your thoughts



								Download a free PDF copy of this book



					



				



						Part 1:Introduction to WinUI and Windows Applications



						Chapter 1: Introduction to WinUI

					

								Technical requirements



								Before UWP – Windows 8 XAML applications

							

										Windows application UI design



										Windows Runtime (WinRT)



										User backlash and the path forward to Windows 10



							



						



								Windows 10 and UWP application development

							

										Language choice with UWP development



										Lifting app restrictions



										UWP backward compatibility



							



						



								What is XAML?

							

										Creating an adaptive UI for any device



										Powerful data binding



										Styling your UI with XAML



										Separating presentation from business logic



							



						



								What is WinUI?

							

										The first WinUI release



										The road to WinUI 3



							



						



								What’s new in WinUI 3?

							

										Goodbye UWP?



										New features for WinUI 3 and the Windows App SDK



										The Windows App SDK and WinUI



							



						



								WinUI 3 compared to other Windows development frameworks

							

										WinUI versus UWP



										WinUI versus WPF



										WinUI versus Windows Forms (WinForms)



							



						



								Summary



								Questions



					



				



						Chapter 2: Configuring the Development Environment and Creating the Project

					

								Technical requirements



								Installing Visual Studio and Windows desktop development workloads



								Introducing the application idea

							

										Reviewing the application features



										WinUI in Desktop projects



							



						



								Creating your first WinUI project



								Anatomy of a WinUI in Desktop project

							

										Reviewing App.xaml



										Reviewing App.xaml.cs



										Reviewing MainWindow.xaml



										Reviewing MainWindow.xaml.cs



										Reviewing the project references



										Reviewing the project properties



							



						



								XAML basics

							

										Building the model



										Creating sample data



										Building the initial UI



										Completing the data-binding initialization



										Creating the DataTemplate and binding the UI



							



						



								Understanding WinUI and Windows App SDK

							

										Understanding the .NET app model



							



						



								Working with WinUI controls, properties, and events

							

										Adding a ListView header



										Creating the ComboBox filter



										Adding a new item button



							



						



								Summary



								Questions



					



				



						Chapter 3: MVVM for Maintainability and Testability

					

								Technical requirements



								Understanding MVVM

							

										MVVM – the big picture



							



						



								MVVM libraries for WinUI

							

										The MVVM Toolkit



										The Prism Library



										MVVMCross



										Choosing a framework for WinUI applications



							



						



								Understanding data binding in WinUI

							

										What are markup extensions?



										Binding markup extension



										x:Bind markup extension



										Updating View data with INotifyPropertyChanged



										Updating collection data with INotifyCollectionChanged



							



						



								Implementing MVVM in WinUI applications



								Working with events and commands

							

										Implementing ICommand



										Using commands in the View Model



										Updating the View



							



						



								Leveraging the MVVM Toolkit



								Summary



								Questions



					



				



						Chapter 4: Advanced MVVM Concepts

					

								Technical requirements



								Understanding the basics of DI



								Using DI with ViewModel classes



								Leveraging x:Bind with events



								Page navigation with MVVM and DI

							

										Migrating MainWindow to MainPage



										Adding ItemDetailsPage



										Adding new interfaces and services



										Creating a navigation service



										Creating a data service



										Increasing maintainability by consuming services



										Handling parameters in ItemDetailsPage



										Creating the ItemDetailsViewModel class



							



						



								Summary



								Questions



					



				



						Chapter 5: Exploring WinUI Controls

					

								Technical requirements



								Understanding what WinUI offers developers

							

										Animated visual player (Lottie)



										Navigation View



										Parallax view



										Rating control



							



						



								Exploring the WinUI 3 Gallery app for Windows

							

										Learning about the ScrollViewer control



							



						



								Reviewing what’s new in WinUI 3 and the Windows App SDK

							

										Backward compatibility



										Fluent UI and modern look and feel



										Visual Studio tooling



										The WebView2 control



										What’s new in the Windows App SDK



							



						



								Adding some new controls to the project

							

										Using the SplitButton control



										Adding a TeachingTip control to the Save button



							



						



								Summary



								Questions



					



				



						Chapter 6: Leveraging Data and Services

					

								Technical requirements



								Managing application state with app lifecycle events

							

										Exploring Windows application lifecycle events



										Lifecycle events of WinUI applications



										Additional lifecycle events with FrameworkElement objects



							



						



								Creating a SQLite data store

							

										What is SQLite?



										Adding SQLite as a data service



										Leveraging a Micro ORM to simplify data access



										Adding Dapper to the project



										Updating the data service’s initialization



							



						



								Retrieving data via services



								Summary



								Questions



					



				



						Part 2:Extending WinUI and Modernizing Applications



						Chapter 7: Fluent Design System for Windows Applications

					

								Technical requirements



								What is the Fluent Design System?

							

										Exploring Fluent Design for Windows



										Controls



										Patterns



										Layout



										Input



										Style



							



						



								Incorporating Fluent Design in WinUI applications

							

										Updating the title bar



										Changing the style of MainPage



										Changing the style of ItemDetailsPage



							



						



								Using the Fluent XAML Theme Editor

							

										Colors



										Shapes



							



						



								Acrylic material and the Fluent Design System



								Use Mica in WinUI applications

							

										Incorporate Mica into My Media Collection



							



						



								Design resources and toolkits for Fluent Design



								Summary



								Questions



					



				



						Chapter 8: Adding Windows Notifications to WinUI Applications

					

								Technical requirements



								Overview of push notifications in the Windows App SDK

							

										Raw push notifications



										Cloud-based app notifications



										Local app notifications



							



						



								Using raw push notifications in WinUI applications



								Adding Windows app notifications with the Windows App SDK



								Summary



								Questions



					



				



						Chapter 9: Enhancing Applications with Community Toolkits

					

								Technical requirements



								Introducing the WCT

							

										Origins of the WCT



										Reviewing recent toolkit releases



							



						



								Exploring the WCT Gallery app

							

										Installing and launching the app



										Controls



							



						



								Using controls from the toolkit

							

										Creating the WinUI project



										Referencing WCT packages



										Adding data to the DataGrid control



										Adding controls to the MainWindow control



							



						



								Exploring the toolkit’s helpers, services, and extensions

							

										Helpers



										Extensions



							



						



								.NET Community Toolkit features



								Summary



								Questions



					



				



						Chapter 10: Accelerating App Development with Template Studio

					

								Technical requirements



								Overview of Template Studio for WinUI



								Starting a new WinUI project with Template Studio



								Exploring the code generated by Template Studio

							

										Exploring the Core project



										Exploring the main project



										Exploring the MSTest project



							



						



								Template Studio extensions for other UI frameworks

							

										Template Studio for WPF



										Template Studio for Uno Platform



							



						



								Summary



								Questions



					



				



						Part 3:Build and Deploy on Windows and Beyond



						Chapter 11: Debugging WinUI Applications with Visual Studio

					

								Technical requirements



								Debugging in Visual Studio

							

										Debugging local applications



										Debugging remote applications



										Common XAML layout mistakes



										Improving your XAML with static code analysis



							



						



								Pinpointing data binding failures

							

										Common mistakes in data binding



										Using the XAML Binding Failures window



							



						



								Debugging live data with Live Visual Tree and Live Property Explorer

							

										Coding with XAML Hot Reload



										Debugging with Live Visual Tree and Live Property Explorer



							



						



								Summary



								Questions



					



				



						Chapter 12: Hosting a Blazor Application in WinUI

					

								Technical requirements



								Getting started with ASP.NET Core and Blazor

							

										A brief history of ASP.NET and ASP.NET Core



										What is Blazor?



										WebAssembly and client-side .NET development



							



						



								Creating a Blazor Wasm application

							

										Building a simple application for tracking tasks



							



						



								Exploring Blazor Wasm deployment options

							

										Deployment options for Blazor Wasm projects



							



						



								Publishing Blazor to Azure Static Web Apps hosting

							

										Pushing the project to GitHub



										Creating an Azure Static Web Apps resource



										Publishing an application with GitHub Actions



							



						



								Hosting your Blazor application in the WinUI WebView2



								Summary



								Questions



					



				



						Chapter 13: Take Your App Cross-Platform with Uno Platform

					

								Technical requirements



								An overview of Uno Platform



								Creating your first Uno Platform project



								Migrating WinUI XAML markup and code to Uno Platform

							

										Migrating the WinUI project code



										Migrating the WinUI XAML views



							



						



								Running on Android with WSA



								Running in the browser with WebAssembly



								Summary



								Questions



					



				



						Chapter 14: Packaging and Deploying WinUI Applications

					

								Technical requirements



								Discovering application packaging and MSIX basics

							

										MSIX



										Reviewing MSIX tools and resources



										Packaged applications and application identity



							



						



								Getting started with application packaging in Visual Studio



								Deploying applications with Windows Package Manager

							

										Adding a package to the community repository



										Using WinGet for package management



							



						



								Distributing applications with the Microsoft Store

							

										Preparing a free application for the Microsoft Store



										Uploading a package to the Store



							



						



								Sideloading WinUI applications with MSIX

							

										Creating an MSIX package for sideloading



										Sideloading an MSIX package



							



						



								Summary



								Questions



					



				



						Index

					

								Why subscribe?



					



				



						Other Books You May Enjoy

					

								Packt is searching for authors like you



								Share your thoughts



								Download a free PDF copy of this book



					



				



			



		

		

		Landmarks



			

						Cover



						Table of Contents



						Index



			



		

	





OEBPS/Fonts/MinionPro-Regular.otf


OEBPS/image/B20908_01_03.jpg
Name: |

Submit





OEBPS/image/B20908_QR_Free_PDF.jpg





OEBPS/Fonts/MinionPro-BoldIt.otf


OEBPS/Fonts/CourierStd-Bold.otf


OEBPS/Fonts/MinionPro-It.otf


OEBPS/Fonts/MyriadPro-Light.otf


OEBPS/Fonts/MyriadPro-Regular.otf


OEBPS/image/B20908_01_02.jpg
Windows 8 XAML App Windows 10 UWP App
Window Type Full screen only Resizable window
Device Type Runs on PC only Multiple Windows 10

device types

Number of Instances

1 (default) or Multiple

Console App Supported

No

Yes

File System Access

Sandboxed - local storage
only

Sandboxed by default

App can request additional
access to user folders and
removable devices






OEBPS/Fonts/MyriadPro-SemiboldIt.otf


OEBPS/image/B20908_01_06.jpg
Name: Bob Jones BoONEOY o 6 x

Actual Width: 1424

Submit





OEBPS/image/Packt_Logo-01.png
<PACKD





OEBPS/image/B20908_01_01.jpg
Application

Group Title: 1 Group Title: 2

Item Title: 4

Item Subtitle: 4

Item Title: 1 Item Title: 1
Item Subtitle: 1 Item Subtitle: 1

Item Title: 2 Item Title: 3 Item Title: 5 Item Title: 2 Item Title: 3

Item Subtitle: 2 Item Subtitle: 3 Item Subtitle: 5 Item Subtitle: 2 Item Subtitle: 3





OEBPS/image/B20908_01_05.jpg
Name: Bob Jones BoNON & 0 =

Submit





OEBPS/Fonts/CourierStd.otf


OEBPS/image/Cover.png
2ND EDITION

Learn

WinUl 3

ALVIN ASHCRAFT





OEBPS/image/B20908_01_04.jpg
i WinUI De

Name: |

Submit

A narrower window

57 WinU
BoONOY v 6

Submit

A wider window





