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Starten Sie hier

Es gibt drei Arten von Leuten 
auf der Welt: 
die, die zählen können, 
und die, die es nicht können.
 
Mit 14 begann ich, ein Notizbuch zu führen. Ein Mathe-Notizbuch. Und bevor Sie mich nun als hoffnungslosen Fall abschreiben, möchte ich mich beeilen hinzuzufügen, dass es kein Notizbuch für Schulmathematik war. In dieses Notizbuch schrieb ich alle die interessanten Sachen, die ich über die Mathematik finden konnte und die nicht in der Schule gelehrt wurden. Und das war, wie ich rasch herausfand, eine ganze Menge, denn ich musste mir bald das nächste Notizbuch besorgen.
Okay, nun können Sie mich wirklich abschreiben. Aber bevor Sie das tun: Haben Sie die Botschaft vernommen, die in dieser traurigen kleinen Geschichte steckt? Die Mathematik, die Sie in der Schule gelernt haben, ist nicht alles. Mehr noch: Die Mathematik, die Sie nicht in der Schule gelernt haben, ist die eigentlich interessante. Tatsächlich macht sie richtig Spaß – besonders dann, wenn Sie keinen Test darüber schreiben oder Summen richtig addieren müssen.
Meine Sammlung Notizbücher stieg auf sechs an, die ich immer noch habe – und wuchs sich dann, als ich die Vorteile des Fotokopierers entdeckte, zu einer ganzen Ordnerreihe aus. Dieses Buch präsentiert Stichproben aus meinem Kuriositätenkabinett, ein Sammelsurium aus vertrackten mathematischen Rätseln und Spielereien, Puzzles, Storys und Fakten, die manchmal vielleicht gar keine Fakten sind. Die meisten Einträge stehen für sich selbst, daher können Sie fast überall dort einsteigen, wo Sie möchten. Einige wenige bilden kurze Serien. Ich bin der Ansicht, ein Sammelsurium sollte ein Sammelsurium sein, und dies ist eines.
In den Spielereien und Puzzles finden Sie auch einige alte Favoriten, die von Zeit zu Zeit wieder auftauchen und dann oft erneut zu Aufregung führen: das Ziegenproblem zum Beispiel oder das Wiegeproblem mit den zwölf Kugeln, die beide ein großes Medienecho hervorriefen – im einen Fall in den USA, im anderen Fall in Großbritannien. Ein beträchtlicher Teil des hier vorgestellten Materials jedoch ist neu. Ich habe versucht, das Buch abwechslungsreich zu gestalten, daher gibt es logische Puzzles, geometrische Puzzles, Wahrscheinlichkeitspuzzles, seltsame Elemente aus der mathematischen Kultur, Dinge zu tun und Dinge zu machen.
Einer der Vorteile davon, ein wenig über Mathe zu wissen, besteht darin, dass Sie Ihre Freunde damit beeindrucken können. (Bleiben Sie dabei aber bescheiden, rate ich Ihnen. Sonst könnte es passieren, dass Sie Ihre Freunde damit verärgern.) Es wäre also nicht schlecht, mit den neuesten Schlagwörtern um sich werfen zu können. Daher habe ich einige kurze «Aufsätze» eingestreut, die in einem informativen, nichttechnischen Stil geschrieben sind. Sie erklären einige der in jüngster Zeit erzielten Durchbrüche, die viel Medienaufmerksamkeit erregt haben. Wie Fermats letzter Satz – erinnern Sie sich an das Medienecho? Und das Vierfarbenproblem, die Poincaré-Vermutung, die Chaostheorie, Fraktale, Komplexitätswissenschaften, Penrose-Muster. Oh, und dann gibt es noch einige ungelöste Fragen, nur um zu zeigen, dass die Mathematik noch keineswegs abgeschlossen ist. Einige sind etwas zur Entspannung, andere ernst – wie das P = NP-Problem, für dessen Lösung ein Preisgeld von einer Million Dollar ausgelobt ist. Sie haben vielleicht noch nicht von dem Problem gehört, aber Sie sollten von dem Preisgeld wissen. Kürzere, flottere Abschnitte enthüllen interessante Fakten und Entdeckungen über altvertraute, aber faszinierende Themen: π, Primzahlen, Satz des Pythagoras, Permutationen, Parkettierung. Amüsante Anekdoten über berühmte Mathematiker fügen eine historische Dimension hinzu und lassen uns alle über ihre liebenswerten Marotten schmunzeln.
Nun, ich habe gesagt, Sie könnten das Buch überall aufschlagen – und das können Sie auch, glauben Sie mir –, aber um ganz ehrlich zu sein, ist es vielleicht besser, vorn zu beginnen und der Anordnung der Geschichten in etwa zu folgen. Ein paar der Geschichten am Anfang erleichtern es nämlich, die Geschichten weiter hinten zu verstehen. Und die Geschichten vorne sind im Allgemeinen etwas einfacher, während einige der späten Geschichten wirklich – nun ja, eine Herausforderung darstellen können. Ich habe jedoch darauf geachtet, eine Menge einfacher Sachen unterzumischen, sodass Sie Ihr Gehirn nicht zu rasch verschleißen.
Es ist mein Ziel, Ihre Phantasie anzuregen, indem ich Ihnen eine Menge amüsanter und interessanter mathematischer Kabinettstücke präsentiere. Ich möchte, dass Sie Spaß haben, aber ich wäre auch hocherfreut, wenn dieses Buch Sie ermutigen würde, sich näher mit Mathematik zu beschäftigen, den Nervenkitzel des Entdeckens mitzuerleben und sich über wichtige Entdeckungen auf dem Laufenden zu halten – ob sie nun 4000 Jahre zurückliegen, aus der letzten Woche stammen oder erst morgen stattfinden werden.
 
Ian Stewart


Begegnung mit Außerirdischen

Das Raumschiff Mindermind umkreiste den Planeten Karghirne, und Captain Quirl und Mr. Speck hatten sich auf die Oberfläche gebeamt.
«Laut Rudi’s Raumführer gibt es zwei Arten von intelligenten Wesen auf diesem Planeten», meinte Quirl.
«Richtig, Captain – Penibler und Kauderwelscher. Sie sprechen beide Galaktisch, und man kann sie daran unterscheiden, wie sie auf Fragen antworten. Die Penibler sagen immer die Wahrheit, die Kauderwelscher lügen immer.»
«Aber rein physisch –»
«– sind sie ununterscheidbar, Captain.»
Quirl hörte etwas, drehte sich um und sah sich drei Außerirdischen gegenüber, die auf ihn zukrochen. Sie sahen absolut gleich aus.
«Willkommen auf Karghirne», grüßte einer der Fremdlinge.
«Besten Dank. Mein Name ist Quirl. Und Sie sind …» Quirl machte eine Kunstpause. «Ach, hat ja doch keinen Zweck, sie nach ihren Namen zu fragen», murmelte er. «Sie würden ja doch nicht stimmen.»
«Logisch, Captain», entgegnete Speck.
«Weil wir nicht gut Galaktisch sprechen», improvisierte Quirl, «werde ich euch Alf, Bett und Gemm nennen, wenn ihr nichts dagegen habt.» Während er sprach, wies er der Reihe nach mit dem Finger auf sie. Dann wandte er sich zu Speck und flüsterte: «Ob sie Männlein oder Weiblein sind, wissen wir ja auch nicht, oder?»
«Sie sind alle hermandrofemigyn», sagte Speck.
«Was auch immer. Also, Alf: Zu welcher Art gehört denn Bett?»
«Zu den Kauderwelschern.»
«Aha. Bett, gehören Alf und Gemm zu verschiedenen Arten?»
«Nein.»
«Sind ja ganz schön gesprächig, was? Hmm … Gemm, zu welcher Sorte gehört denn Bett?»
«Penibler.»
Quirl nickte wissend. «Gut, damit wäre dann alles klar.»
«Alles klar, Captain?»
«Ja, zu welcher Art sie gehören.»
«Aha, und zu welcher gehören sie?»
«Keine Ahnung, Speck! Sie sind doch hier der Logiker.»
[Lösung]



Tipp aufs Tier

Dies hier ist ein hervorragender mathematischer Trick für Kinderpartys. Zunächst suchen sich die Kinder der Reihe nach ein Tier aus dem Stern aus. Dann buchstabieren sie dessen Namen, während Sie oder ein anderes Kind auf die Punkte des zehnzackigen Sterns tippen. Beim ersten Buchstaben beginnen Sie mit dem Punkt, an dem ‹Schimpanse› steht, und folgen dann den Verbindungslinien im Uhrzeigersinn. Und, o Wunder, Sie enden mit dem letzten Buchstaben genau auf dem richtigen Tier!
[image: ]
Buchstabieren Sie den Namen und finden Sie das Tier.



Wie das funktioniert? Ganz einfach, das dritte Wort auf dem Weg durch den Stern ist «Kuh», hat also drei Buchstaben, das vierte ist «Maus» mit vier Buchstaben und so fort. Um den Trick etwas zu verschleiern, haben die Tiere vor der «Kuh» 10, 11, 12 Buchstaben. Weil man mit zehn Schritten wieder am Punkt «Schimpanse» ankommt, mit elf beim «Wildschwein» und mit zwölf bei der 12-buchstabigen «Giftschlange», passt alles bestens.
Sie können den Trick noch undurchsichtiger machen, indem Sie statt der Namen Bilder der Tiere an den Sternecken platzieren.


Seltsame Rechnungen

Ihr Taschenrechner kann zaubern.
(1) Führen Sie die folgenden Multiplikationen auf dem Rechner aus. Was fällt Ihnen auf?
 
1 × 1
11 × 11
111 × 111
1111 × 1111
11 111 × 11 111
 
(2) Geben Sie die Zahl
 
142 857
 
ein (am besten in den Speicher des Taschenrechners) und multiplizieren Sie sie jeweils mit 2, 3, 4, 5, 6 und 7. Was fällt Ihnen auf?
[Lösung]



Karten-Dreieck

Sie brauchen 15 Karten, durchnummeriert von 1 bis 15. Sie sollen in Dreieckform ausgelegt werden, wie in der Abbildung gezeigt. Die obersten drei Karten habe ich zum besseren Verständnis des Folgenden mit Zahlen versehen:
[image: ]
Karten-Dreieck



Es soll aber keine erwartbare Anordnung gelegt werden. Vielmehr möchte ich, dass jede Karte die Differenz der beiden unmittelbar darunterliegenden Karten zeigt. Zum Beispiel ist die 5 die Differenz von 9 und 4. (Man zieht immer die kleinere von der größeren Zahl ab, sodass die Differenz immer positiv herauskommt.) Nur in der untersten Reihe kann man die Regel natürlich nicht mehr anwenden.
Die obersten drei Karten liegen nun schon an ihrem korrekten Platz. Können Sie herausfinden, wie man die restlichen zwölf Karten verteilen muss?
Mathematiker kennen verschiedene solche Dreiecke, mit zwei, drei oder vier Reihen, deren Karten mit aufeinanderfolgenden ganzen Zahlen nummeriert sind, bei 1 beginnend. Man hat bewiesen, dass es keine solche Dreiecke mit mehr als sechs Reihen geben kann.
[Lösung]



Pop-up-Dodekaeder 

Ein Dodekaeder ist ein geometrischer Körper, dessen Oberfläche aus zwölf Fünfecken besteht. Er ist einer der fünf regulären Körper.
[image: ]
Die drei Schritte zur Anfertigung eines Pop-up-Dodekaeders 



Schneiden Sie aus festem Karton zwei gleiche Kopien der Figur ganz links im Diagramm. Falzen Sie in beiden Kopien die Kanten zwischen den Fünfecken so, dass sich die fünf äußeren Fünfecke leicht umbiegen lassen. Dann legen Sie die beiden Stücke aufeinander, so wie im mittleren Bild angedeutet. Dann schlingen Sie ein Gummiband abwechselnd über und unter die Fünfecke (siehe rechtes Bild, die kräftigen schwarzen Linien zeigen, wo das Band oberhalb verläuft); halten Sie dabei die beiden Pappstücke mit den Fingern flach.
Jetzt lassen Sie los!
Falls Ihr Gummiband die richtige Länge und Stärke hat, wird sich das ganze Gebilde nun mit einem Plopp zu einem dreidimensionalen Dodekaeder aufspannen.
[image: ]
Aufgespannter Dodekaeder






Abgetrennte Finger

Hier zeige ich Ihnen, wie man eine Schlinge so um die Finger legt (Ihre eigenen oder die eines «Freiwilligen»), dass sie scheinbar Ihre Finger abschneidet, wenn man die Schnur fest zieht. Der Trick verblüfft deswegen, weil wir aus Erfahrung wissen, dass die Schlinge nicht abgehen sollte, wenn sie wirklich ernsthaft um die Finger gewickelt ist. Um es präziser zu sagen: Stellen Sie sich vor, Ihre Finger würden eine feste Unterlage berühren und dadurch verhindern, dass die Schlinge über Ihre Fingerspitzen rutscht. Die Kunst besteht also darin, die Schlinge durch die Hohlräume zu bekommen, die zwischen Ihren Fingern und der Unterlage bestehen. Wenn die Schnur wirklich verschlungen wäre, könnten Sie sie gar nicht entfernen. Also muss sie nur verbunden erscheinen, obwohl sie es nicht ist.
Sollte die Schnur versehentlich echt verschlungen sein, würde sie auch tatsächlich die Finger abschnüren. Also seien Sie vorsichtig!
[image: ]
Wie man sich (nicht) die Finger der linken Hand abschneidet

 



Was das mit Mathematik zu tun hat? Es gibt ein Gebiet der Mathematik, das sich innerhalb der letzten 150 Jahre entwickelt hat und mittlerweile eine zentrale Rolle spielt – die Topologie. Darin geht es um geometrische Eigenschaften – wie Knoten und Schlingen –, die sich auch unter drastischen Verformungen nicht ändern. Zum Beispiel bleiben Knoten verknotet, auch wenn man die Schnur dreht oder dehnt.
Machen Sie sich eine Schlinge aus einer 1 Meter langen Schnur. Legen Sie die Schlinge über den kleinen Finger der linken Hand, verdrehen Sie dann die Schlinge, legen Sie sie über den nächsten Finger, drehen Sie die Schlinge wieder, und zwar in der gleichen Richtung wie zuvor und so weiter, bis Sie am Daumen angekommen sind (linkes Bild). Nun legen Sie die Schlinge vor den Daumen und wickeln die restlichen Finger genauso ein wie auf dem Hinweg. Wichtig ist, dass Sie die Schlinge dabei in die entgegengesetzte Richtung verdrehen wie auf dem Hinweg.
Lassen Sie nun die Schlinge los und drücken Sie den Daumen in die Handfläche, wobei die Schlinge über den Daumen rutscht. Dann ziehen Sie kräftig am freien Ende über dem kleinen Finger … man hört richtig, wie die Schnur durch Ihre Finger schneidet! Aber, o Wunder, nichts ist passiert.
Es sei denn, Sie haben sich irgendwo beim Verdrehen vertan.


Rüben zählen

«War ein richtig gutes Rübenjahr», meinte Bauer Saudrink zu seinem Nachbarn, Bauer Kufut.
«Jau, kann man wohl sagen», erwiderte der. «Wie viele hast du geerntet?»
«Hmm … so genau erinnere ich mich nicht mehr, aber ich weiß, dass ich auf dem Markt in der ersten Stunde sechs Siebtel der Rüben plus noch ein Siebtel einer einzelnen Rübe verkauft habe.»
«War wohl nicht einfach, die zu schneiden.»
«Nö, ich hab nur ganze verkauft. Ich schneid die doch nicht.»
«Sag bloß, Saudrink. Aber wie?»
«Ich hab sechs Siebtel von dem, was übrig war, und noch eine Siebtelrübe extra in der zweiten Stunde verkauft. Dann nochmal sechs Siebtel vom Rest und ein Siebtel extra in der dritten Stunde. Und vom Rest nochmal dasselbe in der vierten Stunde. Dann bin ich heim.»
«Wieso?»
«Weil ich alles verkauft hatte.»
Wie viele Rüben hatte Saudrink zum Markt gebracht?
[Lösung]



Der Vierfarbensatz

Probleme, die einfach zu formulieren sind, sind manchmal sehr schwierig zu lösen. Der Vierfarbensatz, auch als Vierfarbenproblem oder -vermutung bekannt, ist ein gutes Beispiel dafür. Alles begann im Jahr 1852, als Francis Guthrie, der damals am University College in London studierte, an seinen jüngeren Bruder Frederick einen Brief schrieb mit einem kleinen einfachen Rätsel – so nahm er jedenfalls an. Er hatte versucht, eine Karte der englischen Grafschaften zu kolorieren, und festgestellt, dass er dazu vier Farben brauchte, wenn er vermeiden wollte, dass zwei aneinandergrenzende Grafschaften die gleiche Farbe hatten. Er fragte sich nun, ob dies nur für die Karte von England galt oder sich verallgemeinern ließ. «Lässt sich jede zweidimensionale Karte mit vier (oder weniger) Farben so einfärben, dass keine zwei Regionen mit einer gemeinsamen Grenze dieselbe Farbe haben?», schrieb er.
Es sollte 124 Jahre dauern, bis diese Frage beantwortet werden konnte, und selbst heute basiert die Antwort auf intensiver Computerunterstützung. Bislang gibt es keinen einfachen konzeptuellen Beweis – einen Beweis, der Schritt für Schritt von einem Menschen innerhalb seiner Lebensspanne überprüft werden kann – für den Vierfarbensatz.

[image: ]
Einfärbung der englischen Landkreise mit vier Farben – eine mögliche Lösung unter vielen



Frederick Guthrie konnte die Frage seines Bruders nicht beantworten, aber er «kannte einen Mann, der es konnte» – den berühmten Mathematiker Augustus De Morgan. Wie sich jedoch rasch herausstellte, «konnte» De Morgan es auch nicht, wie er im Oktober desselben Jahres in einem Brief an seinen noch berühmteren irischen Kollegen Sir William Rowan Hamilton gestand.
Es lässt sich leicht beweisen, dass für manche Karten mindestens vier Farben nötig sind, weil es Karten mit vier Regionen gibt, bei denen jede Region an alle anderen Regionen grenzt. Vier Landkreise auf der Karte von England (hier leicht vereinfacht dargestellt) bilden eine solche Anordnung, was zeigt, dass in diesem Fall zumindest vier Farben nötig sind. Können Sie sie auf der Karte finden?
[image: ]
Eine einfache Karte, für die man vier Farben benötigt



De Morgan machte jedoch einige Fortschritte: Er bewies, dass es unmöglich ist, eine analoge Karte mit fünf Regionen zu finden, bei der jede Region an die vier anderen grenzt. Das ist jedoch kein Beweis für den Vierfarbensatz, sondern zeigt lediglich, dass die einfachste Weise, diesen Satz zu widerlegen, nicht funktioniert. Es könnte aber theoretisch eine höchst komplizierte Karte mit beispielsweise 100 Regionen geben, die sich wegen der Art und Weise, wie lange Ketten von Regionen mit ihren Nachbarn verknüpft sind, nicht mit nur vier Farben einfärben lässt. Es besteht kein Grund zu der Annahme, dass eine «schlechte» Karte nur fünf Regionen hat.
Der erste gedruckte Hinweis auf dieses Problem datiert aus dem Jahr 1878, als Arthur Cayley in einem Brief an die Zeitschrift Proceedings of the London Mathematical Society (eine von De Morgan gegründete Gesellschaft) schrieb und sich erkundigte, ob irgendjemand das Problem inzwischen gelöst habe. Das war nicht der Fall, doch im darauffolgenden Jahr publizierte Arthur Kempe, ein Rechtsanwalt, einen Beweis, und damit schien die Angelegenheit erledigt zu sein.
Kempes Beweis war raffiniert. Zunächst bewies er, dass jede Karte zumindest eine Region mit fünf oder weniger Nachbarn aufweist. Wenn eine Region drei Nachbarn hat, kann man die Region auf einen Punkt zusammenziehen und eine einfachere Karte erhalten, und wenn sich die einfachere Karte mit vier Farben einfärben lässt, gilt dies auch für die ursprüngliche Karte. Man ordnet der punktförmigen Region einfach diejenige Farbe zu, die sich von derjenigen ihrer drei Nachbarregionen unterscheidet. Kempe hatte eine aufwendigere Methode entwickelt, um eine Region mit vier oder fünf Nachbarn zu eliminieren. Nachdem er diesen Schlüsselfaktor gefunden hatte, war der Rest des Beweises ein Kinderspiel: Um eine Karte mit vier Farben zu kolorieren, ziehe man sie Region für Region auf einen Punkt zusammen, bis sie vier oder weniger Regionen hat. Man färbe diese Regionen mit unterschiedlichen Farben ein und kehre das Verfahren dann um, indem man eine Region nach der anderen wiederherstellt und sie entsprechend Kempes Regeln einfärbt. Einfach!
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Wenn die Karte rechts mit vier Farben eingefärbt werden kann, dann gilt das auch für die Karte links.



Kempes Beweis schaute zu gut aus, um wahr zu sein – und er war es auch nicht. Im Jahr 1890 entdeckte Percy Heawood, dass Kempes Regeln nicht immer funktionierten. Wenn man eine Region mit fünf Nachbarn auf einen Punkt zusammenzog und dann versuchte, sie wieder in den Originalzustand zu versetzen, konnte man in große Schwierigkeiten geraten. Im Jahr 1891 glaubte Peter Guthrie Tait, er habe diesen Fehler korrigiert, aber Julius Peterson fand auch in Taits Methode einen Fehler.
Heawood erkannte, dass sich Kempes Methode anpassen ließ und man mit ihrer Hilfe beweisen konnte, dass fünf Farben stets ausreichen, um eine beliebige Karte einzufärben. Aber niemand konnte eine Karte finden, die mehr als vier Farben brauchte. Die Lücke war quälend und wurde bald zu einer Blamage. Wenn man weiß, dass die Antwort auf ein mathematisches Problem entweder 4 oder 5 lautet, sollte man wirklich in der Lage sein zu entscheiden, welches nun die richtige Antwort ist!
Aber niemand konnte es.
Dann kam es wie üblich zu Teilfortschritten. Im Jahr 1922 bewies Philip Franklin, dass sich alle Karten mit 26 oder weniger Regionen mittels vier Farben kolorieren lassen. Das war, für sich genommen, nicht besonders erhellend, doch Franklins Methode ebnete der schließlich erfolgreichen Lösung den Weg, indem sie die Vorstellung von einer reduzierbaren Konfiguration einführte. Unter einer Konfiguration versteht man jede zusammenhängende Menge von Regionen innerhalb einer Karte plus Information darüber, wie viele Regionen an die Regionen der Konfiguration angrenzen. Ist eine bestimmte Konfiguration gegeben, kann man sie von der Karte entfernen, um eine einfachere Konfiguration zu erhalten – eine Konfiguration mit weniger Regionen. Die Konfiguration ist reduzierbar, wenn es eine Möglichkeit gibt, die ursprüngliche Karte vierfarbig zu kolorieren, vorausgesetzt, man kann die einfachere Karte entsprechend einfärben. Tatsächlich muss es eine Möglichkeit geben, die Farben in diese Konfiguration «einzufüllen», sobald alles andere vierfarbig koloriert ist.
Eine einzelne Region mit nur drei Nachbarn bildet zum Beispiel eine reduzierbare Konfiguration. Entfernen Sie sie und kolorieren Sie das, was übrig bleibt, vierfarbig – falls Sie’s können. Dann fügen Sie diese Region wieder hinzu und geben ihr eine andere Farbe als ihren drei Nachbarregionen (wie in der Abb. auf Seite 25). Kempes fehlgeschlagener Beweis zeigt in der Tat, dass eine Region mit vier Nachbarn eine reduzierbare Konfiguration bildet. Er lag aber falsch mit der Behauptung, dasselbe gelte für eine Region mit fünf Nachbarn.
Franklin entdeckte, dass dort, wo einzelne Regionen nicht funktionieren, manchmal Konfigurationen mit mehreren Regionen funktionieren. Eine große Zahl von multiregionalen Konfigurationen hat sich als reduzierbar herausgestellt.
Kempes Beweis würde funktionieren, wenn jede Region mit fünf Nachbarn reduzierbar wäre, und es ist lehrreich, sich zu überlegen, warum sein Beweis funktionieren würde. Im Grunde glaubte Kempe, zwei Dinge bewiesen zu haben: Erstens enthält jede Karte eine Region mit drei, vier oder fünf angrenzenden Regionen. Zweitens ist jede der assoziierten Konfigurationen reduzierbar. Zusammengenommen implizieren diese beiden Fakten, dass jede Karte eine reduzierbare Konfiguration enthält. Vor allem gilt: Wenn man eine reduzierbare Konfiguration entfernt, enthält die resultierende einfachere Karte ebenfalls eine reduzierbare Konfiguration. Entfernt man diese, geschieht dasselbe. Auf diese Weise kann man sich der reduzierbaren Konfigurationen Schritt für Schritt entledigen, bis das Ergebnis so einfach ist, dass es maximal vier Regionen enthält. Diese kann man einfärben, wie man es wünscht – und braucht dazu höchstens vier Farben. Dann stellt man die zuvor entfernte Konfiguration wieder her; da sie reduzierbar war, lässt sich auch die resultierende Karte mit vier Farben kolorieren … und so weiter. Auf diese Weise kann man sich zurückarbeiten und schließlich die ursprüngliche Karte vierfarbig bunt ausmalen.
Diese Argumentation funktioniert, weil jede Karte eine unserer reduzierbaren Konfigurationen enthält: Sie bilden eine «unvermeidbare Menge».
Kempes Beweisversuch schlug fehl, weil eine seiner Konfigurationen, eine Region mit fünf Nachbarn, nicht reduzierbar ist. Die Schlussfolgerung, die Franklin aus seinen Arbeiten zog, ist jedoch: Keine Sorge! Wir sollten es mit einer größeren Liste versuchen, auf der zahlreiche kompliziertere Konfigurationen stehen. Die Region mit fünf Nachbarn lassen wir außen vor und ersetzen sie durch mehrere Konfigurationen mit zwei oder drei Nachbarn. Die Liste können wir so umfangreich machen, wie wir wollen. Wenn wir irgendeine unvermeidbare Menge von reduzierbaren Konfigurationen finden können, ganz gleich, wie groß und ungeordnet, haben wir’s geschafft.
Tatsächlich – und das ist wichtig für den endgültigen Beweis – kann man auf eine schwächere Auffassung von Unvermeidbarkeit zurückgreifen, die nur für «Minimal-Störenfriede» gilt: hypothetische Karten, die fünf Farben erfordern, aber die schöne Eigenschaft besitzen, dass jedwede kleinere Karte nur vier Farben braucht. Unter dieser Bedingung ist es leichter zu beweisen, dass eine gegebene Menge unvermeidbar ist. Paradoxerweise stellte sich, als der Satz einmal bewiesen war, heraus, dass es keine «Minimal-Störenfriede» gibt. Aber das macht nichts: Das ist die Beweisstrategie!
Im Jahr 1950 vermutete Heinrich Heesch, der eine clevere Methode entwickelt hatte, um zu beweisen, dass viele Konfigurationen reduzierbar sind, der Vierfarbensatz ließe sich beweisen, wenn man eine unvermeidbare Menge an reduzierbaren Konfigurationen findet. Die einzige Schwierigkeit bestand darin, eine solche Menge zu finden – denn das würde nicht leicht sein, nachdem einige Daumenregel-Berechnungen vermuten ließen, dass eine solche Menge rund 10 000 Konfigurationen umfassen müsste.
Bis 1970 war es Wolfgang Haken gelungen, Heeschs Methode zum Nachweis der Reduzierbarkeit von Konfigurationen weiter zu verbessern, und er begann zu hoffen, ein computergestützter Beweis rücke in Reichweite. Es sollte möglich sein, ein Computerprogramm zu schreiben, mit dem sich prüfen ließ, ob jede Konfiguration in irgendeiner vorgeschlagenen Menge von Konfigurationen reduzierbar ist. Man konnte per Hand mehrere tausend Konfigurationen niederschreiben, wenn es wirklich sein musste. Zu beweisen, dass sie unvermeidbar waren, würde viel Zeit kosten, war jedoch nicht unbedingt undurchführbar. Allerdings hätte es mit den damals verfügbaren Computern rund ein Jahrhundert gedauert, um eine unvermeidbare Menge von 10 000 Konfigurationen zu bearbeiten. Moderne Rechner würden diesen Job heute in ein paar Stunden erledigen, doch Haken musst mit dem arbeiten, was er hatte, und das bedeutete, dass er die theoretischen Methoden verbessern und die Berechnungen auf einen handhabbaren Umfang herunterschrauben musste.
In Zusammenarbeit mit Kenneth Appel begann Haken ein «Zwiegespräch» mit seinem Computer. Er dachte sich neue Methoden aus, um das Problem anzugehen, und die Maschine begann zu rechnen; dabei waren die Aufgaben so ausgelegt, dass die Ergebnisse anzeigten, ob diese Methoden wahrscheinlich zum Erfolg führen würden. Bis 1975 war die Größe der unvermeidbaren Menge auf nur 2000 Elemente geschrumpft, und die beiden Mathematiker hatten weitaus schnellere Tests für Reduzierbarkeit gefunden. Nun bestand ernsthaft Anlass zu der Hoffnung, dass eine Zusammenarbeit von Mensch und Maschine zum Erfolg führen könnte. Im Jahr 1976 traten Appel und Haken in die Schlussphase ein: Es ging darum, eine geeignete unvermeidbare Menge auszuarbeiten. Sie teilten dem Computer mit, was sie sich vorstellten, und dieser testete dann jede Konfiguration, um herauszufinden, ob sie reduzierbar war. Wenn eine Konfiguration bei diesem Test durchfiel, wurde sie zurückgezogen und durch eine oder mehrere Alternativen ersetzt, und der Computer führte den Test auf Reduzierbarkeit durch. Es war ein delikater Prozess, und es gab keine Garantie, dass er jemals enden würde – aber wenn er je zu einem Halt käme, würden die beiden Wissenschaftler eine unvermeidliche Menge von reduzierbaren Konfigurationen gefunden haben.
Im Juni 1976 näherte sich der Prozess dem Ende. Der Computer gab an, dass die aktuell erreichte Menge an Konfigurationen – die damals 1936 Konfigurationen umfasste, eine Zahl, die die beiden später auf 1476 reduzierten – unvermeidlich und jede dieser 1936 Konfigurationen nicht reduzierbar war. Der Beweis war komplett.
Die Berechnungen dauerten damals rund 1000 Stunden, und der Test für Reduzierbarkeit umfasste 487 unterschiedliche Regeln. Mit unseren heutigen, schnelleren Rechnern können wir die ganze Sache in rund einer Stunde wiederholen. Andere Mathematiker haben inzwischen kleinere unvermeidbare Mengen gefunden und die Tests für Reduzierbarkeit verbessert. Aber niemandem ist es bisher gelungen, die unvermeidbare Menge so weit herunterzuschrauben, dass ein Mensch ohne Computerunterstützung nachprüfen kann, ob die Sache tatsächlich funktioniert. Und selbst wenn jemand dies tun könnte, so lieferte diese Art von Beweis keine besonders zufriedenstellende Erklärung, warum der Vierfarbensatz richtig ist. Dieser Beweis besagt lediglich: «Rechne fleißig, und das Endergebnis funktioniert.» Die Rechnerei ist raffiniert, und es sind einige sehr hübsche Ideen eingeflossen, aber die meisten Mathematiker hätten gern etwas mehr Einblick in das, was da eigentlich vor sich geht. Ein möglicher Ansatz besteht darin, sich Karten in gewisser Weise als «gekrümmt» vorzustellen und die Reduzierbarkeit als eine Art «Glättungsprozess» anzusehen. Aber bisher hat noch niemand einen geeigneten Weg gefunden, dies zu tun.
Dennoch wissen wir jetzt, dass der Vierfarbensatz richtig ist, und können damit Frank Guthries so unschuldig wirkende Frage positiv beantworten. Und das ist eine erstaunliche Leistung, auch wenn wir dazu ein wenig Hilfe von einem Computer gebraucht haben.
[Lösung]



Kaninchen im Hut

Der große Bühnenmagier Werwar stellte seinen Zylinderhut auf den Tisch. «In diesem Hut sind zwei Kaninchen. Jedes ist mit gleicher Wahrscheinlichkeit entweder weiß oder schwarz. Ich will Sie nun mit Hilfe meiner bezaubernden Assistentin Grummelina überzeugen, dass ich ihre Farbe ermitteln kann, ohne in den Hut zu schauen.» Er wandte sich seiner Assistentin zu und zauberte ein Kaninchen aus ihrem Kleid hervor. «Bitte setze es in den Hut.» Sie tat es.
[image: ]
Tu’s in den Hut und ergründe, was schon drin war.



Nun wandte sich Werwar dem Publikum zu. «Bevor Grummelina das dritte Kaninchen dazugegeben hat, gab es vier gleich wahrscheinliche Farbkombinationen.» Er schrieb eine Liste auf eine kleine Tafel: SS, SW, WS und W W. «Jede Kombination hat die gleiche Wahrscheinlichkeit: ¼. Nun habe ich aber ein schwarzes Kaninchen dazugetan. Jetzt gibt es also die Möglichkeiten SSS, SWS, WSS und W WS, wiederum jede mit Wahrscheinlichkeit ¼.»
«Nehmen wir einmal an – was ich nicht tun werde, es ist rein hypothetisch gemeint –, nehmen wir also an, ich würde ein Kaninchen aus dem Hut holen. Mit welcher Wahrscheinlichkeit zöge ich ein schwarzes? Falls die Kaninchen alle schwarz sind, also SSS, ist die Wahrscheinlichkeit 1. Für die Fälle SSW und SWS ist sie ⅔. Für W WS ist sie ⅓. Folglich ist die Gesamtwahrscheinlichkeit, ein schwarzes Kaninchen herauszuziehen:
 
[image: ] 
 
Und das ist genau ⅔.»
«Andererseits, wenn in dem Hut drei Kaninchen sind, von denen genau r viele schwarz sind und die restlichen weiß, dann ist die Wahrscheinlichkeit, ein schwarzes herauszuholen, r/3. Folglich ist r = 2, mithin sind also zwei schwarze Kaninchen im Hut.» Nun griff er in den Hut und holte ein schwarzes Kaninchen heraus. «Weil ich dieses schwarze Kaninchen auch hineingetan habe, muss das ursprüngliche Paar Kaninchen schwarz und weiß sein.»
Der Große Werwar verbeugte sich unter donnerndem Applaus. Dann zog er zwei weitere Kaninchen aus dem Hut, eines war blasslila, das andere knallviolett.
Anscheinend kann man doch nicht auf den Inhalt schließen, ohne zu untersuchen, was drin ist. Ein extra Kaninchen dazugeben und dann wieder herausholen (wobei zu fragen ist: War es tatsächlich dasselbe Kaninchen? Und ist das wichtig?) ist eine ziemlich clevere Irreführung. Aber warum ist die Rechnung falsch? 
[Lösung]



Quere den Fluss 1 – Ernte

Alkuin aus Northumbria (ein ehemaliges Kleinkönigreich auf den Britischen Inseln), auch Flaccus Albinus Alcuinus oder Ealhwine genannt, war ein Gelehrter, Geistlicher und Dichter. Er lebte im 8. Jahrhundert und stieg zu einem der wichtigsten Berater Karls des Großen auf. Das folgende Rätsel fügte er einem Brief an den Herrscher bei, als Beispiel für «Feinheiten der Arithmetick, zu Eurer Erbauung». Es hat auch heute noch Bedeutung in der Mathematik, wie ich später noch ausführen werde. Hier ist die Aufgabe:
Ein Bauer bringt einen Wolf, eine Ziege und eine Fuhre Kohlköpfe zum Markt. Dabei muss er einen Fluss überqueren, wo ihm nur ein kleines Boot zur Verfügung steht. Er kann deshalb immer nur jeweils ein Frachtstück (Wolf, Ziege oder Kohlfuhre) mit dem Boot transportieren. Aus naheliegenden Gründen kann er allerdings weder Wolf und Ziege noch Ziege und Kohl allein lassen. Zum Glück mag der Wolf keinen Kohl. Wie bringt der Bauer alle drei ans andere Ufer?
[Lösung]



Noch mehr Seltsamkeiten

Die folgenden seltsamen Rechnungen gehören alle zu einem Grundthema.
(1) Beginnen Sie mit irgendeiner Zahl, sagen wir 471. Verlängern Sie diese Zahl durch sich selbst, also 471 471. Dann teilen Sie durch 7, anschließend durch 11 und durch 13. Dann erhalten Sie
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genau die Zahl, mit der Sie gestartet sind.
Versuchen Sie es mit anderen dreistelligen Zahlen! Sie werden sehen, es klappt immer.
Nun erschöpft sich Mathematik nicht im Entdecken seltsamer Zusammenhänge – ebenso wichtig ist es herauszufinden, warum etwas funktioniert. Im Beispiel können wir das, indem wir den ganzen Rechenprozess umkehren. Die Umkehrung der Division ist die Multiplikation. Sie können sich also denken, dass der umgekehrte Prozess bei unserer dreistelligen Zahl 471 beginnt. Man erhält
 
471 × 13 = 6123
6123 × 11 = 67 353
67 353 × 7 = 471 471
 
Das ist jetzt noch nicht wirklich hilfreich. Aber immerhin sagt es uns
 
471 × 7 × 11 × 13 = 471 471
 
Also wäre es eine gute Idee, einmal nachzuschauen, was 7 × 11 × 13 ergibt. Nehmen Sie Ihren Taschenrechner und rechnen Sie es aus! Und? Erklärt das unseren Trick?
 
(2) Zu den Dingen, die Mathematiker ebenfalls gern tun, gehört das «Verallgemeinern». Sie versuchen also, ähnliche Ideen zu finden, die ähnlich funktionieren. Nehmen wir als Ausgangspunkt eine vierstellige Zahl wie 4715. Womit müssten wir sie multiplizieren, um 47 154 715 zu erhalten? Können wir das wieder in mehreren Schritten erreichen, indem wir mit einer Reihe kleinerer Zahlen multiplizieren?
 
Legen wir einmal los, indem wir 47 154 715 durch 4715 teilen.
 
(3) Falls Ihr Taschenrechner zehn Stellen anzeigt (was ja heutzutage viele Rechner können): Wie sähe der entsprechende Trick bei fünfstelligen Zahlen aus?
 
(4) Falls Ihr Rechner auch Zahlen mit mindestens zwölf Stellen anzeigt, gehen Sie noch einmal zurück zu unserer dreistelligen Zahl 471. Diesmal multiplizieren Sie nicht nur mit 7, 11 und 13, sondern danach mit 101 und 9901. Was passiert dann? Warum?
 
(5) Nehmen Sie eine dreistellige Zahl, zum Beispiel 128. Dann multiplizieren Sie diese Zahl der Reihe nach mit 3, 3, 3, 7, 11, 13 und 37. (Kein Irrtum, dreimal mit 3 multiplizieren.) Das Ergebnis ist 127 999 872 – noch nichts Besonderes. Nun addieren Sie die Ausgangszahl, 128. Aber jetzt! Was kommt heraus?
[Lösung]



Befrei die Kirsche!

Dieses Rätsel ist ein betagtes Schmuckstück mit einer ebenso einfachen wie erhellenden Lösung.
Die Cocktailkirsche befindet sich einem Glas, das aus vier Streichhölzern gebildet wird. Die Aufgabe besteht darin, nicht mehr als zwei Streichhölzer so zu verlegen, dass sich die Kirsche anschließend außerhalb des Glases befindet. Das Glas darf gedreht werden, zur Seite oder kopfüber, ganz wie Sie wollen; Hauptsache, die Form bleibt erhalten.

[image: ]
Befreien Sie die Kirsche, indem Sie zwei Streichhölzer verlegen.



[Lösung]



Verwandlung in ein Fünfeck

Wir starten mit einem langen, schmalen, rechteckigen Papierstreifen. Wenn die Aufgabe gelöst ist, haben wir ein regelmäßiges Fünfeck (also ein Gebilde mit fünf Seiten, die alle gleich lang sind und gleiche Winkel einschließen).
[image: ]
Unorthodoxe Geometrie



[Lösung]



Was ist eigentlich π? 


Die Zahl π – sie ist näherungsweise gegeben durch 3,14159 – ist die Länge des Umfangs eines Kreises, dessen Durchmesser 1 ist (in irgendeiner Maßeinheit). Allgemein gesprochen hat ein Kreis mit Durchmesser d den Umfang πd. Eine einfache Näherung für π ist 31/7 bzw. 22/7, aber das gilt nicht exakt. 31/7 ist etwa 3,14285, was schon in der dritten Nachkommastelle falsch ist. Eine bessere Näherung ist 355/113; das ist 3,1415929 bis zur siebten Stelle hinter dem Komma, wohingegen π auf sieben Stellen durch 3,1415926 gegeben ist.
Woher weiß man eigentlich, dass π keine rationale Zahl ist? Wie sehr man auch die Näherung x/y verbessert, indem man immer größere Zähler und Nenner wählt, nie bekommt man π ganz genau, immer nur zunehmend bessere Näherungen. Zahlen, die man nicht als Brüche schreiben kann, heißen irrational. Der einfachste Beweis dafür, dass π irrational ist, macht von der Infinitesimalrechnung Gebrauch; er wurde von Johann Lambert im Jahre 1768 erstmals präsentiert. Auch wenn man keine exakte Zahl für π angeben kann, so kennt man doch diverse Formeln, die π genau beschreiben, und Lamberts Beweis nutzt eine dieser Darstellungen.
Eine noch stärkere Aussage ist folgende: Die Zahl π ist transzendent, das heißt, sie erfüllt keine algebraische Gleichung, die nur rationale Zahlen enthält. Das hat erstmals Ferdinand Lindemann 1882 gezeigt, und zwar wiederum mit Hilfe der Infinitesimalrechnung. Dass π transzendent ist, macht die klassische «Quadratur des Kreises» unmöglich. Damit meint man die euklidische Konstruktion eines Quadrats, dessen Flächeninhalt mit dem eines vorgegebenen Kreises exakt übereinstimmt. (Das, so stellt sich heraus, ist gleichbedeutend damit, eine Strecke zu konstruieren, die genau dieselbe Länge wie der Kreisumfang hat.) Euklidisch nennt man eine solche Konstruktion, wenn sie sich allein mit Lineal (ohne Markierungen) und Zirkel durchführen lässt.


Gesetzgebung für π

Hartnäckig hält sich das Gerücht, der amerikanische Bundesstaaat Indiana (in manchen Versionen ist es Iowa, in anderen Idaho) habe den Wert von π per Gesetz auf 3 festgelegt – nun gut, manche sagen auch 3⅙ …
Wie dem auch sei, die Geschichte stimmt so nicht. Allerdings ist beinahe etwas unangenehm Ähnliches geschehen. Der tatsächliche Wert, um den es geht, ist unklar; denn in der besagten Gesetzesvorlage erscheinen neun verschiedene Werte, und alle sind falsch. Das Gesetz wurde nicht endgültig verabschiedet, lediglich auf unbestimmte Zeit aufgeschoben; und das ist es wohl immer noch. Das Gesetz, um das es hier geht, steht in der Vorlage 246 für das Repräsentantenhaus des Staates Indiana aus dem Jahr 1897; es ermächtigte den Staat Indiana zur alleinigen und kostenlosen Nutzung einer «neuen mathematischen Wahrheit», ohne dafür zahlen zu müssen. Die Gesetzesvorlage wurde verabschiedet, allerdings nur vom Repräsentantenhaus und nicht vom Senat – es gab keinen Grund, es nicht zu tun, denn sie verpflichtete den Staat zu nichts. Tatsächlich gab es keine Gegenstimmen.
Die «neue Wahrheit» war jedoch ein ziemlich komplizierter und obendrein verkehrter Versuch einer «Quadratur des Kreises», also einer rein geometrischen Konstruktion von π. Und eine umstrittene Angelegenheit, stand doch sogar in einer Zeitung in Indianapolis zu lesen, dass eine Quadratur des Kreises unmöglich sei. Als dann die Vorlage zur Abstimmung in den Senat ging, hatten die meisten Politiker – obwohl sie von π keine Ahnung hatten – mitbekommen, dass es da gewisse Schwierigkeiten gab. (Wahrscheinlich haben die Bemühungen von Professor C. A. Waldo, Mitglied der Akademie der Wissenschaften von Indiana und seines Zeichens Mathematiker, der zufällig anwesend war, als die Vorlage diskutiert wurde, zur Aufklärung beigetragen.) Man debattierte indessen nicht über die Richtigkeit der Mathematik, sondern entschied im Senat, dass sich die Angelegenheit nicht zur Gesetzgebung eignete. Also verschob man das Gesetz … und während ich dies schreibe, 111 Jahre später, ist das immer noch der Stand der Dinge.
Die Mathematik, um die es dabei ging, war mit ziemlicher Sicherheit eine Ausgeburt von Edwin J. Goodwin, einem Arzt, der in der Mathematik herumstümperte. Er wohnte in dem Dorf Solitude in Posey County, Indiana, und erhob verschiedentlich den Anspruch, ihm sei die Dreiteilung des Winkels und die Würfelverdopplung (auch Delisches Problem genannt) geglückt – zwei weitere berühmte Kunststücke, die ebenso unmöglich sind wie die Quadratur des Kreises. Wie auch immer, die Legislative von Indiana hat nicht bewusst versucht, einen falschen Wert für π gesetzlich festzulegen; andererseits kann man sich dem Schluss nicht entziehen, dass die Verabschiedung des Gesetzes Goodwins Ansatz «in Kraft gesetzt», also gültig gemacht hätte. Jedenfalls vor dem Gesetz, wenn auch nicht in der Mathematik. Eine ziemlich delikate juristische Angelegenheit.


Falls sie es wirklich verabschiedet hätten …

Falls die gesetzgebende Versammlung von Indiana die Vorlage 246 tatsächlich verabschiedet hätte und damit gesetzlich der schlimmste anzunehmende Unfall eingetreten wäre, dass sich nämlich der gesetzliche Wert von π vom mathematischen unterschied, dann wären die Konsequenzen ausgesprochen interessant gewesen. Nehmen wir an, der gesetzliche Wert sei p ≠ π, doch die Gesetzgebung behauptet p = π. Dann gilt rein mathematisch
 
[image: ] 
 
andererseits per Gesetz
 
[image: ] 
 
Nun sind aber mathematische Wahrheiten auch legale Wahrheiten; laut Gesetz würde dann also gelten 0 = 1. Damit hätten alle Mörder eine perfekte Verteidigung: Man gebe einen Mord zu und argumentiere dann, dass ja gesetzlich einmal keinmal sei. Und das ist noch nicht alles. Man multipliziere mit einer Milliarde, um abzuleiten, dass eine Milliarde gleich null sei. Von nun an ist jeder, der ohne Drogenbesitz verhaftet wird, plötzlich Besitzer von Drogen im Verkaufswert von einer Milliarde Dollar.
Letztlich würde durch das Gesetz jedwede Aussage beweisbar.
Mit großer Wahrscheinlichkeit wäre das Gesetz wohl nicht ganz so logisch, dass diese Art von Begründung vor Gericht Bestand hätte. Aber durchaus dümmeren Begründungen, die häufig auf dem Missbrauch statistischer Daten fußten, ist dies schon gelungen, sodass Unschuldige für lange Zeit hinter Gitter kamen. Kurz, Indianas Gesetzgeber hätten die Büchse der Pandora öffnen können.


Leere Gläser

Ich habe fünf Gläser in einer Reihe. Die ersten drei sind gefüllt, die anderen beiden leer. Wie kann ich, indem ich nur ein Glas bewege, erreichen, dass sie abwechselnd leer und voll sind?
[image: ]
Obere Reihe: Vorher …

Untere Reihe: … und nachher. Nur ein Glas darf bewegt werden.



[Lösung]



Wie viele  …


	
Möglichkeiten gibt es, die Buchstaben des Alphabets (ohne Umlaute) anzuordnen?

 




403 291 461 126 605 635 584 000 000
 

	
Möglichkeiten gibt es, 52 Spielkarten anzuordnen?

 




80 658 175 170 943 878 571 660 636 856 403
766 975 289 505 440 883 277 824 000 000 000 000
 

	
verschiedene Einstellungen hat der Zauberwürfel?

 




43 252 003 274 489 856 000
 

	
unterschiedliche Sudokus gibt es?

 




6 670 903 752 021 072 936 960
 
(Von Bertram Felgenhauer und Frazer Jarvis 2005 berechnet.)
 

	
hundertstellige Zahlen kann man mit den Ziffern 0 und 1 bilden?

 




1 267 650 600 228 229 401 496 703 205 376


Drei Kurze

(1) Was ist wahrscheinlicher, nachdem beim Bridge alle Karten ausgeteilt sind: dass Sie und Ihr Partner alle Pik-Karten haben oder dass Sie und Ihr Partner überhaupt kein Pik haben?
(2) Wenn Sie drei Bananen von einer Staude mit dreizehn Bananen nehmen, wie viele Bananen haben Sie dann?
(3) Eine Sekretärin druckt sechs Computerbriefe aus und adressiert sechs Umschläge an die jeweiligen Empfänger. Der Chef der Sekretärin mischt sich hastig ein und stopft völlig zufällig die Briefe in die Umschläge, jeweils einen Brief pro Umschlag. Wie hoch ist die Wahrscheinlichkeit, dass genau fünf Briefe im richtigen Umschlag sind?
[Lösung]



Das Springerproblem

Der Springer, eine Figur im Schachspiel, kann auf ungewöhnliche Weise gezogen werden: zwei Felder horizontal oder vertikal und noch ein weiteres Feld im rechten Winkel zur ersten Bewegungsrichtung. Schachfiguren auf Zwischenfeldern überspringt er. Diese Geometrie hat zu zahlreichen mathematischen Rätseln angeregt. Das einfachste ist das Springerproblem. Der Springer soll so über das Brett ziehen, dass er jedes Spielfeld genau einmal besucht. Im Bild unten links sieht man die Lösung für ein 5×5-Schachbrett; das Diagramm zeigt auch, welche Züge möglich sind. Bei dieser Lösung ist der Weg des Springers nicht «geschlossen», das heißt, Start- und Zielfeld liegen nicht genau einen Springerzug auseinander.
[image: ]
(Links) Ein 5x5-Springerproblem und (rechts) eine unvollständige Springerreise auf einem 4x4-Brett



Können Sie einen geschlossenen Weg auf einem 5×5-Schachbrett angeben?
Ich habe versucht, das 4×4-Problem zu lösen, aber ich bin nur 13 Felder weit gekommen. Können Sie einen Weg finden, auf dem alle 16 Felder liegen? Falls nein: Wie viele Felder kann der Springer maximal besuchen?
Es gibt ausufernd viel Literatur zu diesem Thema. Hier sind ein paar gute Webseiten:
http://www.ktn.freeuk.com/​
http://mathworld.wolfram.com/​KnightsTour.html
[Lösung]



Gordische Knoten

Für Mathematiker sind Knoten wie gewöhnliche Knoten in einer Schnur, nur dass die Enden der Schnur verschmolzen sind, sodass der Knoten nicht «rauskann». (sich nicht lösen lässt). Genauer gesagt ist ein Knoten eine Schlinge im dreidimensionalen Raum. Die einfachste Schlinge ist ein Kreis, auch Unknoten genannt. Die nächsteinfache Schlinge ist der Kleeblattknoten.
[image: ]
Unknoten und Kleeblattknoten



Für Mathematiker gelten zwei Knoten als «gleich» – fachsprachlich «topologisch äquivalent» –, wenn man sie stetig ineinander überführen kann. «Stetig» bedeutet dabei so viel wie: Die Schnur darf nicht zerschnitten werden oder sich selbst durchdringen. Die Knotentheorie wird dann richtig interessant, wenn man entdeckt, dass ein richtig komplizierter Knoten, zum Beispiel Hakens Gordischer Knoten, in Wirklichkeit nur ein Unknoten ist.
[image: ]
Hakens Gordischer Knoten



Der Kleeblattknoten ist echt – er lässt sich nicht entknoten. Der erste Beweis für diese augenscheinlich offensichtliche Tatsache wurde 1920 gefunden.
Man unterscheidet Knoten nach ihrer Komplexität, die man an der Minimalzahl der Überkreuzungen misst. Für den Kleeblattknoten ist diese Zahl 3.
Die Anzahl der Knoten, die sich topologisch unterscheiden, aber dieselbe Überkreuzungszahl haben, wächst sehr schnell mit dieser Zahl. Hier ist eine Liste für Knoten mit bis zu 16 Überkreuzungen:

[image: ]
(Für ganz Pedantische: Diese Zahlen gelten für Primknoten, die man nicht in zwei getrennte Knoten zerlegen kann; außerdem sind gespiegelte Knoten nicht gezählt.)



[image: ]
Alle Knoten mit weniger als 8 Überkreuzungen



[image: ]
Alle Knoten mit 8 Überkreuzungen 



[image: ]
Alle Knoten mit 9 Überkreuzungen 



Angewendet wird die Knotentheorie in der Molekularbiologie, um die Knoten in der DNA zu verstehen, aber auch in der Quantenphysik. Nur für den Fall, dass Sie gedacht haben, Knoten bräuchte man nur beim Verschnüren von Päckchen.
Mehr Informationen finden Sie hier:
http://katlas.math.toronto.edu/​wiki/​The_Rolfsen_Knot_Table 


Weiße Schwänze

«Oh, Sie haben ja eine Katze!», sagte Frau Meyer zu Frau Schmitz. «Die hat ja einen süßen weißen Schwanz! Wie viele Katzen haben Sie denn?»
«Nicht so viele», entgegnete Frau Schmitz. «Frau Vogel von nebenan hat zwanzig, viel mehr als ich.»
«Jetzt haben Sie mir aber noch nicht gesagt, wie viele Katzen Sie haben!»
«Lassen Sie mich mal so sagen: Wenn Sie unter meinen Katzen zwei zufällig herausgreifen, dann ist die Chance, dass beide einen weißen Schwanz haben, fifty-fifty.»
«Das verrät mir aber nicht, wie viele es sind.»
«O doch!»
Wie viele Katzen hat Frau Schmitz, und wie viele haben einen weißen Schwanz?
[Lösung]



Falschmünzer entlarven

Im Februar 2003 schrieb Harold Hopwood aus Gravesend dem Daily Telegraph einen kurzen Leserbrief. Darin stand, seit 1937 habe er das Kreuzworträtsel der Zeitung jeden Tag gelöst, aber ein Rätsel gehe ihm seit seiner Schulzeit nicht aus dem Kopf und nun, im Alter von 82 Jahren, habe er sich endlich entschlossen, um Hilfe zu bitten.
Das Rätsel ging so: Man gibt Ihnen zwölf Münzen. Bis auf eine haben alle dasselbe Gewicht; diese eine kann leichter oder schwerer sein als die übrigen. Durch Wiegen sollen Sie herausfinden, welche Münze sich von den anderen unterscheidet, insbesondere, ob sie leichter oder schwerer ist. Es steht aber nur eine einfache Balkenwaage ohne Maßangaben zur Verfügung, und Sie müssen mit drei Wägungen auskommen.
[image: ]
Genau eine Münze ist zu leicht oder zu schwer. Finden Sie mit dreimal Wiegen heraus, welche.



Probieren Sie es, bevor Sie weiterlesen! Es macht ganz schön süchtig.
Innerhalb weniger Tage gingen 362 Briefe in der Redaktion ein, die fast alle nach der Lösung fragten. Daraufhin rief man bei mir an. Ich erkannte das Rätsel als eines der klassischen Wiegerätsel wieder, aber ich hatte den Lösungsweg vergessen. Aber mein Freund Marty, der zufällig anwesend war, als ich den Anruf bekam, identifizierte es. Es hatte ihn schon als Jugendlichen gepackt, und weil er es damals lösen konnte, war er Mathematiker geworden.
Natürlich hatte auch er vergessen, wie es ging, aber wir fanden eine Lösungsmethode, bei der wir verschiedene Münzhäufchen auf der Waage verglichen, und faxten die Lösung an die Zeitung.
Tatsächlich gibt es viele Lösungswege, und an einen besonders cleveren konnte ich mich genau an dem Tag erinnern, als die Zeitung unsere weniger elegante Lösung druckte. Ich hatte ihn zwanzig Jahre zuvor im New Scientist gesehen, und er war in Thomas H. O’Beirnes «Puzzles and Paradoxes», das bei mir im Bücherschrank stand, nachgedruckt worden.
Rätsel wie dieses tauchen offenbar alle zwanzig Jahre wieder auf, wahrscheinlich weil eine neue Generation damit in Berührung kommt; es ist so ähnlich wie eine Epidemie, die wieder aufflammt, wenn die Bevölkerung ihre Immunität verliert. O’Beirne schrieb es Howard Grossman im Jahr 1945 zu, aber höchstwahrscheinlich ist es viel älter und geht auf das 17. Jahrhundert zurück. Mich würde es nicht überraschen, wenn wir es eines Tages auf einer babylonischen Schrifttafel fänden.
O’Beirne präsentierte eine «Entscheidungsbaum»-Lösung, in der Art, wie Marty und ich eine gebastelt hatten. Er erinnerte auch an die elegante Lösung aus dem Jahr 1950, die von «Blanche Descartes» in Eureka veröffentlicht worden war, der Hauszeitschrift der Archimedeans, einer Studentenvereinigung der Universität Cambridge. In Wirklichkeit hieß Frau Descartes Cedric A. B. Smith; seine Lösung ist ein Meisterstück an Einfallsreichtum. Sie wird in Form eines Gedichts über einen gewissen Professor Felix Fiddlesticks dargeboten, und die wesentliche Idee geht so: Der Professor beschriftet die Münzen mit Buchstaben, sodass er sie unterscheiden, sich aber trotzdem den Lösungsweg leicht merken kann (weswegen er sie nicht nummeriert), zum Beispiel mit
 
FRAU GELD POST
 
Dann schreibt er die drei Wägungen, die man vornehmen muss, um die falsche Münze zu finden, in Form von Wortpaaren zu jeweils vier Buchstaben auf:
 
GELD POST
GOLF DART
ROSE LAUT
 
Dabei kommt jeweils das linke «Wort» auf die linke Waagschale, das rechte auf die rechte. Anhand der folgenden Liste können Sie sich überzeugen, dass man, wenn man die Münzen in dieser Weise miteinander vergleicht, immer die Lösung findet. In der Liste meint «R», dass die rechte Waagschale sich absenkt, «L» die linke; der Strich steht, wenn beide im Gleichgewicht bleiben.
[image: ] 

[image: ] 


Sie können leicht nachprüfen, dass keine zwei Möglichkeiten zum selben Resultat führen.
Mit der Veröffentlichung im Daily Telegraph war die Sache aber nicht ausgestanden. Leser äußerten sich aus den verschiedensten Gründen kritisch über unsere Lösung. Sie machten (nicht immer brauchbare) Verbesserungsvorschläge; sie schrieben E-Mails, um auf die Lösung von Frau Descartes oder ähnliche hinzuweisen; sie informierten uns über andere Wiegeprobleme; sie bedankten sich dafür, dass wir ihren Bemühungen ein Ende gesetzt hatten; sie verwünschten uns dafür, dass wir Salz in eine alte Wunde gestreut hatten. Es war, als hätten sich die Schleusen eines riesigen geheimen Reservoirs an Volksweisheit geöffnet. Ein Leserbriefschreiber erinnerte sich daran, dass das Rätsel in einer BBC-Fernsehsendung in den 1960ern Thema gewesen war; die Auflösung gab es erst am folgenden Abend. Bezeichnenderweise hieß es weiter in dem Brief: «Ich weiß nicht mehr, warum das Rätsel überhaupt aufkam oder ob das meine erste Begegnung mit ihm war; ich glaube eher nicht.»


Ewiger Kalender

Im Jahr 1957 ließ sich John Singleton einen Schreibtischkalender patentieren, der jedes Datum zwischen 01 und 31 mit Hilfe von zwei Würfeln darstellen konnte; aber er ließ das Patent 1965 verfallen. Jeder Würfel trägt sechs Ziffern, auf jeder Seite eine.

[image: ]
Zwei-Würfel-Kalender und zwei der Daten, die er anzeigen kann



Im Bild sieht man, wie der Kalender den 5. und den 25. Tag im Monat anzeigt. Die Ziffern auf den anderen Seiten der Würfel habe ich mit Absicht weggelassen. Man darf die Würfel mit jeder Seite nach vorn drehen, und man darf auch den grauen nach links und den weißen nach rechts stellen.
Welche Ziffern stehen auf den beiden Würfeln?
[Lösung]
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