
		
			[image: Cover.png]
		

	
		
			Robotics at Home with Raspberry Pi Pico

			Build autonomous robots with the versatile low-cost Raspberry Pi Pico controller and Python

			Danny Staple

			[image:]

			BIRMINGHAM—MUMBAI

			Robotics at Home with Raspberry Pi Pico

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Rahul Nair

			Publishing Product Manager: Rahul Nair

			Content Development Editor: Sujata Tripathi

			Technical Editor: Rajat Sharma

			Copy Editor: Safis Editing

			Project Coordinator: Sean Lobo

			Proofreader: Safis Editing

			Indexer: Pratik Shirodkar

			Production Designer: Nilesh Mohite

			Senior Marketing Coordinator: Nimisha Dua

			Marketing Coordinator: Gaurav Christian

			First published: March 2023

			Production reference: 1170223

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-80324-607-9

			www.packtpub.com

			To my amazing wife, Carol, who has supported all my robotics experiments with love, inspiration, and tolerance of a living room filled with robots. To my children, Helena and Jonathan, for all their ideas and enthusiasm and for encouraging me to take a break and play with them sometimes!

			– Danny Staple

			Contributors

			About the author

			Danny Staple is a robot builder and programmer. He has been a professional software engineer since 2000, uses Python professionally, and regularly contributes to open source projects.

			Danny has been building robots at home since 2004 and has a cupboard full of projects, including robots with wheels, cameras, tank tracks, legs, and arms, made from plastic, cardboard, metal, kits, lunchboxes, and modified toys.

			Danny authored Learn Robotics Programming, published in 2021 by Packt Publishing, and has written magazine articles for The MagPi. He runs the robotics YouTube channel Orionrobots and brings his robots to events such as Pi Wars and Arduino Day. Danny also mentors at CoderDojo KU, where he shows kids how to program in Python and has run Lego robotics clubs.

			I would like to thank the Pi Wars and Adafruit communities for answering my tricky questions, Mike Moncrieffe for checking diagrams for me, and my review team for the great feedback throughout this book.

			About the reviewer

			Leo White is a professional software engineer and a graduate of the University of Kent. His interests include electronics, 3D printing, and robotics. He first started programming on the Commodore 64 and later wrote several applications for the Acorn Archimedes. He currently programs set-top boxes for his day job. Utilizing the Raspberry Pi as a foundation, he has mechanized children’s toys and driven robot arms, blogging about his experiences and processes along the way. He has given presentations at Raspberry Jams and entered a variety of robots in the Pi Wars competition.

		

	
		
			Table of Contents

			Preface

			Part 1: The Basics – Preparing for Robotics with Raspberry Pi Pico

			1

			Planning a Robot with Raspberry Pi Pico

			Technical requirements

			What is Raspberry Pi Pico, and why is it suitable for robotics?

			A microcontroller that runs Python

			Raspberry Pi Pico’s interfaces for sensors and devices

			What is CircuitPython?

			Planning a Raspberry Pi Pico robot

			An overview of robot planning

			A note on trade-offs

			Choosing a robot chassis

			Choosing the power systems

			Pin usage

			Test fitting a Raspberry Pi Pico robot

			Creating your first test-fit part

			Motors

			Power systems

			Creating a rough chassis

			Arranging the test-fit parts

			A recommended shopping list for robot basics

			Robot parts and where to find them

			The robot workshop and makerspaces

			Summary

			Exercises

			Further reading

			2

			Preparing Raspberry Pi Pico

			Technical requirements

			Getting CircuitPython onto Raspberry Pi Pico

			Preparing the CircuitPython library for Pico

			Coding on Pico – first steps

			Downloading the Mu editor

			Lighting the Pico LED with CircuitPython

			Blinking the LED with code

			Soldering headers to Raspberry Pi Pico

			Summary

			Exercises

			Further reading

			3

			Designing a Robot Chassis in FreeCAD

			Technical requirements

			Introducing FreeCAD

			The FreeCAD screen

			Selecting workbenches

			FreeCAD settings

			Making robot chassis sketches in FreeCAD

			Preparing the document

			Sketching the chassis outline

			Creating the upper parts main sketch

			Sketching the motor holes

			Designing the caster placement

			Modeling chassis parts from sketches

			Modeling the chassis plate

			Modeling the other parts

			Troubleshooting the model

			Modeling the caster in 3D

			Making FreeCAD technical drawings

			Setting up the page

			Adding parts to the drawing

			Preparing the drawing for print

			Summary

			Exercises

			Further reading

			4

			Building a Robot around Pico

			Technical requirements

			Cutting styrene parts

			Transferring CAD measurements to a plastic sheet

			Cutting the plastic sheet

			Finishing and sanding the chassis plate

			Assembling a robot chassis

			Attaching the caster and battery box

			Attaching the motors and wheels

			Wiring a Raspberry Pi Pico robot

			Wiring Pico and the motor controller into the breadboard

			Adding the batteries

			Wiring in the motors and encoders

			Powering the robot up

			Summary

			Exercises

			Further reading

			5

			Driving Motors with Raspberry Pi Pico

			Technical requirements

			Driving forward and back

			Testing each motor with CircuitPython

			Driving wheels in a straight line

			Steering with two motors

			An introduction to pulse width modulation speed control

			Driving fast and slow

			Turning while moving

			Driving along a planned path

			Putting line and turn moves together

			The flaw with driving this way

			Summary

			Exercises

			Further reading

			Part 2: Interfacing Raspberry Pi Pico with Simple Sensors and Outputs

			6

			Measuring Movement with Encoders on Raspberry Pi Pico

			Technical requirements

			About encoders and odometry

			Absolute and relative sensing

			Types of encoders

			Encoder pulse data

			Wiring in encoders on a Raspberry Pi Pico robot

			Examining the motors

			Examining the wiring

			Programming Raspberry Pi Pico PIO

			Introduction to PIO programming

			Introducing PIOASM

			Detecting input with PIO

			PIO instructions and registers

			Making a counter with PIO

			Measuring encoder count for movement

			Making a simple PIO change detection loop

			Making a bidirectional counter with PIO

			Making reusable encoder code

			Measure counts for a known time

			Summary

			Exercises

			Further reading

			7

			Planning and Shopping for More Devices

			Technical requirements

			Introducing sensors

			Analog sensor types

			Timed pulses

			Data bus sensors

			The robot block diagram

			Choosing device types

			Distance sensors

			Inertial measurement unit

			Bluetooth devices

			Device pin usage summary

			Planning what to add and where

			Bluetooth and IMU mounting plan

			Distance sensor mounting plan

			Shopping list – parts and where to find them

			Preparing the robot

			Designing the shelf

			Cutting the shelf

			Designing the front sensor brackets

			Cutting the sensor brackets

			Preparing the chassis plate

			Assembling the robot

			Summary

			Exercises

			Further reading

			8

			Sensing Distances to Detect Objects with Pico

			Technical requirements

			How distance sensing works

			Soldering headers and attaching them to the robot

			Soldering headers

			Mounting the sensors

			Introduction to I2C communication

			Communicating with a single distance sensor

			Wiring the distance sensors

			VL53LX theory of operation

			Reading a single distance sensor in CircuitPython

			Troubleshooting

			Connecting two distance sensors

			Troubleshooting

			Building a wall avoider with Raspberry Pi Pico

			Preparing the robot library

			Wall-avoiding theory of operation

			Distance sensor wall avoider code

			Troubleshooting

			Summary

			Exercises

			Additional reading

			9

			Teleoperating a Raspberry Pi Pico Robot with Bluetooth LE

			Technical requirements

			Wireless robot connection options

			Connecting Bluetooth LE to Raspberry Pi Pico

			Attaching the Bluetooth module to the robot

			Wiring the Bluetooth breakout to Raspberry Pi Pico

			Connecting to the Bluefruit LE device with UART

			Connecting a smartphone

			Troubleshooting the Bluefruit module

			Getting sensor data over Bluetooth LE on Raspberry Pi Pico

			Graphing the data

			Controlling the robot with Bluetooth LE

			Printing what we got

			Button control mode

			Decoding button control packets to drive the robot

			Troubleshooting

			Summary

			Exercises

			Further reading

			Part 3: Adding More Robotic Behaviors to Raspberry Pi Pico

			10

			Using the PID Algorithm to Follow Walls

			Technical requirements

			Introducing the PID algorithm

			Control and feedback

			Bang-bang control

			Distance sensing with proportional control

			Troubleshooting

			Using the integral to handle small distances

			Dealing with oscillations using the derivative

			Using PID to follow a wall

			Changing the sensor’s placement

			Wall-following code

			Troubleshooting

			PID tuning – using graphs to tune the PID

			Controlling motor speed

			The proportional component

			Adjusting the derivative gain

			Tuning the integral

			Closing notes on tuning

			Summary

			Exercises

			Further reading

			11

			Controlling Motion with Encoders on Raspberry Pi Pico

			Technical requirements

			Converting an encoder count into a speed

			Loose bolts and nuts

			Robot wheel geometry

			Encoder geometry

			Measuring the speed of each wheel

			Fixing the encoder glitches

			Using PID to maintain speed and a straight line

			The speed control system

			Speed control code

			Speed controller PID tuning

			Driving a known distance

			Theory of operation

			Code to control distance and speed

			Summary

			Exercises

			Further reading

			12

			Detecting Orientation with an IMU on Raspberry Pi Pico

			Technical requirements

			What is an IMU and how to choose one

			Components of an IMU

			Choosing an IMU module

			Connecting the IMU to the robot

			Preparing the BNO055

			Attaching the BNO055

			Wiring the BNO055 to Raspberry Pi Pico

			Setting up the software and connecting

			Troubleshooting

			Calibrating and getting readings

			Calibration code

			The calibration process

			Always face North behavior

			CircuitPython code for the face North behavior

			Troubleshooting

			Making a known turn behavior

			Summary

			Exercises

			Further reading

			13

			Determining Position Using Monte Carlo Localization

			Technical requirements

			Creating a training area for our robot

			What we will make

			How we will make the arena

			Tips for cutting

			Modeling the space

			Representing the arena and robot position as numbers

			Serving the arena from the robot

			The Bleak library

			Creating a Bluetooth LE wrapper library

			Showing the robot’s data on the computer screen

			Using sensors to track relative pose

			Setting up poses

			Displaying poses

			Moving with collision avoidance

			Moving poses with the encoders

			Pose movement probabilities

			Monte Carlo localization

			Generating pose weights from a position

			Resampling the poses

			Incorporating distance sensors

			Tuning and improving the Monte Carlo model

			Summary

			Exercises

			Further reading

			14

			Continuing Your Journey – Your Next Robot

			Technical requirements

			A summary of what you have learned in this book

			Basic robotics with Raspberry Pi Pico

			Extending a Raspberry Pi Pico robot with sensors

			Writing CircuitPython behavior code for Raspberry Pi Pico

			Planning to extend this robot

			Sensors you could add

			Interacting with the robot

			Chassis and form enhancements

			Electronics enhancements

			Outputs you could add

			Extending the code and behaviors

			Planning your next robot

			Form, shape, and chassis

			Electronics and sensors

			Code and behavior

			Further suggested areas to learn about

			Electronics

			Design and manufacturing

			Robotic competitions and communities

			Robotics systems and code

			Summary

			Exercises

			Further reading

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			Robotics is an emerging field with applications in every walk of life. Robotics, and the associated technology, appear to be confined to the well-equipped laboratories of universities and high-tech companies. However, many of the aspects of robotics – building them and programming them – can be learned and practiced in your own home.

			The main areas of robotics are as follows:

			
					Structure – the design and building of a mechanical platform

					Electronics – sensors, motors, and control circuits

					Software – the code for libraries, sensor interactions, and behaviors

			

			This book aims to cover a little of each area, looking at basic CAD design, part fabrication, and assembly of hardware. It introduces some starting digital electronics, such as connections and data buses. It aims to dig a little deeper into the sensors and the code needed to make interesting behaviors using them.

			There are robotics books that offer a theoretical robotics introduction; however, the aim of this book is to take you on a journey of practice, fun, and experimentation. This book provides step-by-step applied explanations and images to aid understanding.

			Building your own robots in your home is a great way to learn technology skills. This is an experience of technology that replaces impenetrable magic with real-world experience and confidence to build more – anyone with practice can become a robotics wizard too.

			Who this book is for

			The book is intended for those who would like a practical and step-by-step hands-on introduction to designing, building, and programming robots, using the popular Python programming language. It is also for those who would like to gain an introduction to 3D CAD, robotics sensors, robotics hardware, and robotics behaviors that make use of the sensors and hardware.

			This book will be valuable to makers, learners, and developers who want to build robots in their homes or workshops. The book does not require a specialist workshop, and any skills and tools needed will be explained throughout the book.

			Those who have written a little code before will find this book useful. You do not need to have any experience with electronics or making things, but you can expect to gain initial experiences while practicing the techniques in this book.

			We expect you to have a keen interest in learning more and a little fearlessness in trying robotics experiments. Practical application of the examples within is essential. Getting the most out of this book means being willing to make a real robot and test it.

			What this book covers

			Chapter 1, Planning a Robot with Raspberry Pi Pico, introduces Raspberry Pi Pico in relation to other robotics main controllers. It shows the advantages of the CircuitPython programming environment and takes you through making an overview plan for a robot build built around Pico. The chapter provides a robot hardware shopping list for the first half of the book, discussing the parts and trade-offs in choosing them.

			Chapter 2, Preparing Raspberry Pi Pico, takes you through getting CircuitPython onto Pico, then taking your first steps in writing code with it. It will also cover soldering headers onto Raspberry Pi Pico so it can connect to robot parts.

			Chapter 3, Designing a Robot Chassis in FreeCAD, introduces FreeCAD while turning the overview plan into 3D CAD designs. It shows you how to make drawings from the design for building the robot parts.

			Chapter 4, Building a Robot around Pico, shows how you can use CAD drawings with hand tools to craft robot parts by cutting and drilling sheet plastic. It guides you in assembling the parts then wiring and connecting the electronics. This chapter is where the robot is first powered on!

			Chapter 5, Driving Motors with Raspberry Pi Pico, introduces you to controlling motors with CircuitPython and Raspberry Pi Pico, showing how motors can be used to make line motions and turns and how speed can be controlled. The chapter then shows you how to pull these together into programmed motion sequences.

			Chapter 6, Measuring Movement with Encoders on Raspberry Pi Pico, introduces the first robotic sensor in the book with wheel encoders, showing you how to detect wheel movement in code. The chapter covers the Raspberry Pi Pico PIO peripheral as a powerful way to manage these sensors.

			Chapter 7, Planning and Shopping for More Devices, prepares you for the next section of the book with distance sensors, Bluetooth LE, and an inertial measurement unit (IMU), with further advice on choosing the devices and how they will be attached. The chapter provides a shopping list for the latter part of the book. You will revisit FreeCAD part design to make sensor mounts, and then use tools to cut them.

			Chapter 8, Sensing Distances to Detect Objects with Pico, takes you through attaching and wiring two distance sensors into the robot. The chapter provides information on I2C communication and then shows you how to program the robot to communicate with the sensors. You will then build code for the robot to autonomously avoid walls.

			Chapter 9, Teleoperating Raspberry Pi Pico Robot with Bluetooth LE, makes a comparison of wireless connection options, showing why Bluetooth LE was a suitable design choice. You will connect a Bluetooth LE module to the robot, then extend existing code to output sensor data through this connection, and display the output on a smartphone. You will also see how to drive the robot from a smartphone.

			Chapter 10, Using the PID Algorithm to Follow Walls, provides an introduction to the PID algorithm, a fundamental building block for sensor/output control behaviors in robotics. We build a wall-following demonstration using a distance sensor, then show you how to tune the PID with smartphone plots via Bluetooth LE.

			Chapter 11, Controlling Motion with Encoders on Raspberry Pi Pico, revisits encoders, showing you how to convert their output into units understandable by humans. You will learn how to combine these sensors with the PID algorithm to control motor speeds and drive in a straight line. You will then program the robot to drive a specified distance in a straight line at a specified speed.

			Chapter 12, Detecting Orientation with an IMU on Raspberry Pi Pico, introduces the IMU, a sensor that lets you determine the orientation of the robot. The chapter provides a guide on connecting the sensor and calibrating it. You will use the IMU with the PID algorithm for a behavior that makes a robot always face north. Finally, the chapter shows you how to program the robot to make a specified turn using the IMU.

			Chapter 13, Determining Location with Monte Carlo, will show you how to program a robot to determine where it is likely to be in an arena. You’ll use plans in the chapter to build a foam board arena and model this arena in code. You are shown how to visualize this space on a computer using Bluetooth LE with Matplotlib. You will then learn about moving robot poses based on sensor input. The chapter shows how multiple robot behaviors can cooperate in the same application. You will be introduced to using probability algorithms in robot motion, making predictions, and refining them.

			Chapter 14, Continuing Your Journey – Your Next Robot, provides a summary of the topics learned in the book, with information on digging deeper into each of them. The chapter provides ideas and research areas for you to extend all the aspects of the robot, and then further suggestions to build more ambitious robots and grow your skills. The chapter also recommends robotics communities you could participate in.

			To get the most out of this book

			You will need to have knowledge of a few Python basics, such as variables, looping, conditionals, and functions. A well-lit and ventilated desk space is recommended for the robot-building aspects of the book. Access to hand tools will help, although you will be shown which tools to shop for. The robot code examples have been tested on CircuitPython 7.2.0 on Raspberry Pi Pico but should work with later versions. The computer code examples were tested on Python 3.9.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							Thonny > 3.3 or Mu Editor > 1.1

						
							
							macOS, Linux, or Windows

						
					

					
							
							Python 3.7 or later

						
							
							macOS, Linux, or Windows

						
					

					
							
							Matplotlib 3.6.1 or later

						
							
							macOS, Linux, or Windows

						
					

					
							
							NumPy 1.23.4 or later

						
							
							macOS, Linux, or Windows

						
					

					
							
							Bleak (Python BLE library) 0.19.0 or above

						
							
							macOS, Linux, or Windows

						
					

					
							
							Free USB port

						
							
							macOS, Linux, or Windows

						
					

					
							
							Smartphone/tablet with Bluetooth LE (Bluetooth > 4.0)

						
							
							iOS or Android

						
					

					
							
							Adafruit Bluefruit LE Connect > 3.3.2

						
							
							iOS or Android

						
					

					
							
							Bluetooth LE-enabled laptop (or BLE dongle)

						
							
							macOS, Linux, or Windows

						
					

					
							
							FreeCAD

						
							
							macOS, Linux, or Windows

						
					

					
							
							Raspberry Pi Pico

						
							
					

					
							
							CircuitPython > 7.2.0

						
							
							Raspberry Pi Pico

						
					

				
			

			Thonny comes with a built-in Python 3.x installation. The Tools | Open System shell menu can be used to install packages in Thonny’s Python.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Help for this book can be found by:

			
					Raising a bug on the book’s GitHub repository at https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico

					Asking via Discord at https://discord.gg/2VHYY3FkXV

			

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Robotics-at-Home-with-Raspberry-Pi-Pico. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://packt.link/7x3ku.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “To run this code, be sure to send the pio_encoders.py library, the updated robot.py file, and then measure_fixed_time.py.”

			A block of code is set as follows:

			
import time
import board
import digitalio
led = digitalio.DigitalInOut(board.LED)
led.direction = digitalio.Direction.OUTPUT
while True:
 led.value = True
 time.sleep(0.5)
 led.value = False
 time.sleep(0.5)

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
>>> print("Hello, world!")
Hello, World!
>>>

			Any command-line input or output is written as follows:

			
code.py output:
4443 4522

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Launch Mu Editor, and when it is running, click on the Mode button. From this, select CircuitPython.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Robotics at Home with Raspberry Pi Pico, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781803246079

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			Part 1: The Basics – Preparing for Robotics with Raspberry Pi Pico

			In this part, you will take your first steps in learning about Raspberry Pi Pico, then plan and build a robot around it, and get the initial robot code to make the robot move.

			This part contains the following chapters:

			
					Chapter 1, Planning a Robot with Raspberry Pi Pico

					Chapter 2, Preparing Raspberry Pi Pico

					Chapter 3, Designing a Robot Chassis in FreeCAD

					Chapter 4, Building a Robot around Pico

					Chapter 5, Driving Motors with Raspberry Pi Pico

			

		

	

		
			1

			Planning a Robot with Raspberry Pi Pico

			When you plan, you create the best chance for a mission’s success. We want to build robots in an achievable way. Let’s start with a plan in mind! We’ll use this plan to explore why Raspberry Pi Pico is a great fit for this and make a shopping list!

			In this chapter, you’ll learn about Raspberry Pi Pico’s capabilities. You’ll discover CircuitPython and understand why it is a great language for Raspberry Pi Pico. Additionally, we’ll plan a robot design and understand the trade-offs to make choices about the robot early in the project. We’ll check that our robot fits together, working out the parts and tools you’ll need with suggestions on how to get them.

			At the end of the chapter, you’ll have both a plan and parts arriving so that you are ready to build a robot. Additionally, you’ll have a starting process for making other robots and setting yourself up for success with them.

			In this chapter, we’ll cover the following main topics:

			
					What is Raspberry Pi Pico, and why is it suitable for robotics?

					What is CircuitPython?

					Planning a Raspberry Pi Pico robot

					Test fitting a Raspberry Pi Pico robot

					A recommended shopping list for robot basics

			

			Technical requirements

			We’ll go into the necessary hardware and shopping list as we progress further in this chapter. So, in this section, we’ll just focus on what you will need physically and on your computer to get started.

			You will require the following:

			
					Some thin cardboard

					A ruler, pencil, and scissors

					A good web browser with internet access

			

			What is Raspberry Pi Pico, and why is it suitable for robotics?

			At the heart of every robot is a controller. Usually, this is a computing device that is responsible for running the code for the robot to perform its tasks and behaviors. Choosing a controller is a key choice in robot design. You can either come from the I have this controller, what can I do with it? perspective or the which controllers have the capabilities I’ll want for a particular robot? perspective.

			In this section, we’ll take a closer look at what Raspberry Pi Pico offers as a controller and the trade-offs it’s made. We’ll explore why it is good for robotics and why it could be part of a larger, more interesting system, too.

			Additionally, we’ll delve into the details of its interfaces and how they’ll be useful to us.

			A microcontroller that runs Python

			Let’s start by taking a look at Raspberry Pi Pico, and discover what it has. The following photograph shows Raspberry Pi Pico:

			
				
					[image: Figure 1.1 – Raspberry Pi Pico]
				

			

			Figure 1.1 – Raspberry Pi Pico

			Raspberry Pi Pico, as shown in Figure 1.1, is an RP2040 microcontroller on a Raspberry Pi-designed board. This microcontroller is a small computing device that has been designed to interface closely with hardware. It has a USB connection on the right-hand side for power or programming on a computer. The LED is useful for debugging. Also, there are many input/output (IO) pins around the edges to connect things. It is with these IO pins that the magic happens when it comes to controlling robots!

			Controllers use IO pins to write and read from attached hardware. They can group pins into buses (which we’ll cover in more detail later) to exchange data with other devices. Additionally, they can create waveforms on outputs for controlling motors and LEDs.

			This sounds a lot like the other Raspberry Pi models. However, this is a different class of computer. Raspberry Pi Pico has more in common with an Arduino board. Let’s take a closer look at what that difference means with the following diagram:

			
				
					[image: Figure 1.2 – Microcontroller boards versus single-board computers]
				

			

			Figure 1.2 – Microcontroller boards versus single-board computers

			Figure 1.2 shows that while microcontroller boards such as Raspberry Pi Pico and Arduino might look similar to single-board computers (SBCs) such as Raspberry Pi 4 or BeagleBone, they have different key areas. For instance, they differ in storage, CPU speed, cost size, the complexity of software, and how closely your software runs to the hardware.

			While Raspberry Pi Pico is brilliantly suited to controlling hardware, such as robots, it isn’t as suited to high-memory or CPU tasks such as AI or visual recognition. There’s a kind of robot system known as horse-and-rider, which combines an SBC (for example, Raspberry Pi 4) for complex processing with a microcontroller (for example, Pico) for controlling hardware.

			The low complexity means that code on a microcontroller has nearly no boot time, which means your code doesn’t have to coexist with other software in an operating system. Take a look at the following block diagram:

			
				
					[image: Figure 1.3 – Running your code on Raspberry Pi versus Pico]
				

			

			Figure 1.3 – Running your code on Raspberry Pi versus Pico

			This preceding diagram represents the software architecture on Raspberry Pi versus Raspberry Pi Pico. It shows how a Linux computer, such as Raspberry Pi, has additional layers of software along with competing apps running alongside your code.

			In addition to this, controllers have interrupts. They can notify the code that something has changed, such as the state of an IO pin. You’ll find this on the other Raspberry Pi models, but they are controlled by that pesky operating system again. In Pico and other microcontrollers, you get more control over what happens or when something changes on an IO pin, allowing responsive code with predictable timing.

			So, how does Raspberry Pi Pico compare with the Arduino Uno? The following table shows details from their specifications and datasheets:

			
				
					[image: Table 1.1 – Comparing the Pico with the Arduino Uno]
				

			

			Table 1.1 – Comparing the Pico with the Arduino Uno

			The preceding table shows that Raspberry Pi Pico has a faster multicore processor, along with more storage and digital IO pins. Additionally, Raspberry Pi Pico has a unique Programmable IO (PIO) system for extreme flexibility in organizing data to and from these pins. Official Pico boards are also cheaper than official Arduino boards.

			Another place that Raspberry Pi Pico compares favorably with Arduino is in its use of Python (CircuitPython or MicroPython). Many microcontrollers, such as Arduino, require C/C++ to program, which can be difficult for beginners. Python is easier to understand, allows for complex and interesting data structures, and has access to many libraries of code, too.

			In short, the key features of Raspberry Pi Pico are as follows:

			
					A microcontroller—this offers low power and is small compared with SBCs.

					It has responsible and flexible IO options.

					It is low cost compared to many microcontroller boards and most SBCs.

					It is programmable in Python.

			

			A number of the features I attribute to Raspberry Pi Pico are due to the RP2040—the chip that powers Pico and is available in forms other than Raspberry Pi Pico.

			IO flexibility is Raspberry Pi Pico’s most interesting feature, so let’s take a look at that next.

			Raspberry Pi Pico’s interfaces for sensors and devices

			Raspberry Pi Pico has many interfaces for connecting to hardware, along with its unique PIO system. In this section, we’ll look at each type of interface.

			A digital IO pin is the basic IO system for Raspberry Pi Pico. An output can be on or off, which is great for turning LEDs on or off, but you are unable to control their brightness. Similarly, an input can also detect on or off states. Raspberry Pi Pico has 26 of these pins.

			Pulse-Width Modulation (PWM) is a waveform for controlling outputs such as LEDs and motors—including DC motors, stepper motors, and servo motors. PWM pins output square wave pulses, with a changing (modulating) on-off ratio (pulse widths). Changing pulse width results in changes to the brightness of an LED, the speed of a motor, or a servo motor’s position. Raspberry Pi Pico has 16 PWM channels, making it capable of controlling many such devices at once. These PWM pins still require a power control device to drive the motors.

			Analog input pins detect levels of voltage between ground (GND) and 3.3V. This is good for interfacing with simple sensors, such as light sensors, joysticks, slider/knob controls, temperature sensors, and measuring currents (using a bit of additional circuitry). Raspberry Pi Pico has three of these inputs.

			A universal asynchronous receiver-transmitter (UART) controls a serial port. It can send streams of data to and from devices using two pins: a TX transmit pin and an RX receive pin. With this, it is capable of sending/receiving data that is more complicated than just a varying level. Raspberry Pi Pico has two independent UART interfaces.

			Pico has two Serial Peripheral Interface (SPI) bus controllers. SPI uses four pins, as shown in the following diagram:

			
				
					[image: Figure 1.4 – Raspberry Pi Pico SPI bus usage]
				

			

			Figure 1.4 – Raspberry Pi Pico SPI bus usage

			The preceding diagram shows Raspberry Pi Pico using an SPI bus to connect to two devices—for example, displays or sensors. The bus has transmit (TX), also known as Controller Out/ Peripheral In (COPI) or Microcontroller Out/Sensor In (MOSI) for transmitting data from the controller, receive (RX) also known as Controller In/ Peripheral Out (CIPO) or Microcontroller In/Sensor Out (MISO) for receiving data back to the controller, SCK (a clock for timing the signal), and Chip Select (CSEL/CS) a chip selection pin for each peripheral. SPI uses chip selections to enable communication with multiple devices, as shown by the dashed lines of Device 1 CS and Device 2 CS. See https://makezine.com/article/maker-news/mosi-miso-and-140-years-of-wrong/ for details on the current SPI acronyms.

			The Inter-Integrated Circuit (I2C) is a data bus designed for communicating between integrated circuits such as sensors, memory devices, and output devices. An I2C bus has a data pin (which is often called SDA – Serial Data) and a clock pin (which is often called SCL – Serial Clock) keeping things synchronized. Multiple devices share an I2C bus by sending/receiving data with addresses, such as those in the following diagram:

			
				
					[image: Figure 1.5 – I2C buses on Raspberry Pi Pico]
				

			

			Figure 1.5 – I2C buses on Raspberry Pi Pico

			Figure 1.5 shows Pico and then some child peripherals connected via two independent I2C buses, assignable to different pin configurations, with some devices having the same address but different I2C connections. Additionally, I2C can address registers (such as memory locations) within devices. We’ll use I2C later to communicate with sensors.

			Finally, Raspberry Pi Pico has PIO. PIO is a feature that is unique to Pico. PIO consists of two blocks with four state machines. Each can run simple code independently of the main CPU and control one or more pins to send data to or from them. A single-state machine can control all the pins if that was useful for the code. Additionally, each state machine comes with buffers to hold data until it can be transferred. The following is an example block diagram of the PIO system:

			
				
					[image: Figure 1.6 – The Raspberry Pi Pico PIO system]
				

			

			Figure 1.6 – The Raspberry Pi Pico PIO system

			The preceding diagram shows two PIO devices inside the Pico. Each has code storage memory, so you can have two independent functions. In each PIO device, there are state machines that can independently run the code from that local memory.

			Since PIO state machines run independently, and their instructions are about shifting data to/from pins, they can create interfaces for many kinds of hardware. For example, is there a weird protocol device? Use PIO. Do you need rapid counting independent of the main CPU? Use PIO. People have made Video Graphics Array (VGA) outputs with PIO, so it’s capable of fast and complex data handling. Additionally, you can also get interrupts from PIOs to tell you when something has happened.

			That was quite a lot of IO systems. Let’s summarize them in a table, as follows:

			
				
					[image: Table 1.2 – The Raspberry Pi Pico IO systems]
				

			

			Table 1.2 – The Raspberry Pi Pico IO systems

			These protocols share pins, so using an I2C bus consumes 2 pins from the 26-pin pool.

			Now that we’ve had a tour of Raspberry Pi Pico’s features and interfaces, let’s take a look at how we’ll program it in this book, using CircuitPython.

			What is CircuitPython?

			Many microcontrollers require C/C++ or Assembler to program—for example, the popular Arduino ecosystem. However, in robotics, Python is rapidly becoming a de facto language. It is used for AI and data science and is great for rapidly trying out new ideas. Let’s examine why it is handy and, specifically, why I’ve chosen CircuitPython for this book.

			Python does not require a compile step. Getting you quick feedback on your code and Python’s read-eval-print loop (REPL) allow you to start typing and experimenting with code instantly. The REPL allows you to see what works before using ideas in code that you’ll keep. Here’s a REPL session with CircuitPython:

			
Adafruit CircuitPython 6.2.0 on 2021-04-05; Raspberry Pi Pico with rp2040
>>> print("Hello, world!")
Hello, world!

			The preceding session shows a print running in a REPL on Raspberry Pi Pico. We’ll explore how to use the REPL for some Pico experiments. It even comes with built-in assistance; however, on Pico, not all of the help is left in, for size reasons.

			Python has other things that help, such as being able to directly return multiple values from a function. Python has function calls and classes like C++, but functions can be used as data, and references to them can be stored in variables. Additionally, Python has functional programming elements that allow programmers to chain tools together for processing streams of data.

			Python uses exceptions to handle errors, allowing you to choose how to respond to them or observe their output, leading you directly to a problem.

			MicroPython is the original port of the Python language to run on small memory devices such as microcontrollers. It has a community working on it, and CircuitPython builds on it.

			In CircuitPython, Raspberry Pi Pico mounts as a USB storage device, so you can copy your code and the libraries your code uses, directly onto the Pico. This makes composing code from multiple libraries or using third parties simple. Copying code over with the correct name is enough to run that code when Raspberry Pi Pico is powered up again.

			CircuitPython has a huge library of device support for Neopixel LEDs, Bluetooth, many sensors, displays, and other devices. This library not only works with Pico but runs across many CircuitPython controllers, so familiarity with these library components will be useful when you are working with other controllers.

			Now that we’ve chosen a language and the controller that we will build robots with in this book, it’s time to start planning a robot!

			Planning a Raspberry Pi Pico robot

			We’ve been fact-finding for our robot-building mission. Before we start our robot-building journey, we’ll make a rough plan of what we want to do, then refine it. We’ll make important decisions, which we can examine further as we start to build the robot.

			An overview of robot planning

			When planning the robot, there are several things we need to consider:

			
					What do we want this robot to do? What is it for?

					What style of robot is suitable?

					What kinds of sensors or outputs will we need?

					What rough shape and size will it have?

			

			Once we’ve answered these questions, we can make further decisions about what we build. These don’t require much detail. Robotics is full of interesting diversions, making it tempting to jump between ideas. By having a constrained plan and working to it, you can keep your pace on getting a robot built, saving distractions and cool ideas for the next robot or three!

			What do we want this robot to do? What is it for?

			Will the robot solve a problem, clean your kitchen, explore a space, deliver packages, impress guests at a conference, or compete in a robot competition?

			The robot we’ll build in this book has several purposes:

			
					Exploring Raspberry Pi Pico and its capabilities

					Trying out sensors

					Writing algorithms guided a little by challenges in robot competitions

					Navigating a known space

					Building a custom chassis, adaptable for future ideas

					Keeping it simple enough to get started

			

			With these goals in mind, we can look at the specific details.

			What style of robot is suitable?

			There are many robot styles. We should choose one, probably the simplest possible for our goal. Take a look at the following diagram for a selection of different robot styles:

			
				
					[image: Figure 1.7 – Different robot styles]
				

			

			Figure 1.7 – Different robot styles

			The first robot style is a robot arm used in industry. These are fascinating and fun to build. However, they do not satisfy our goals of building a robot chassis to try out sensors.

			The next panel shows a quadcopter drone—an unmanned aerial vehicle (UAV). These are complicated to build and program, so they do not meet our goal of keeping it simple.

			The third panel shows a walking robot—a hexapod. These require controlling many servo motors. Their power usage and complexity make them an unsuitable but exciting option for a follow-up robot!

			The fourth panel shows a wheeled robot. Wheeled robots can be simple two-wheel-drive (2WD) robots with a roller, such as this one. 2WD rover platforms such as this satisfy our goals of building a chassis and getting to know sensors and algorithms. They can later be made more interesting, with tracks, mecanum wheels, rocker bogies, or individually steered wheels, allowing them to also meet the adaptable goal.

			I recommend that we go ahead with a 2WD rover throughout this book but keep the other variations in mind for further robot builds!

			What kinds of sensors or outputs will we need?

			One of our goals is to try out different sensors. A robot made to navigate spaces will influence the sensors we’ll use. They all contribute to locating the robot.

			Good sensors for this include the following:

			
					Distance sensors: What is in front of the robot? How far are the nearest objects? We might want more than one of these devices.

					Encoders: How has the robot moved? How far did it go?

					Inertial Measurement Unit (IMU): Has the robot turned? What is its position relative to north?

			

			Along with these sensors, we can have simple outputs—the motors that we drive wheels with. As a later extension, we could also add Bluetooth to give us some feedback on our robot’s status. We don’t need to plan all of this yet but leave space for it so that we can extend the robot later.

			What rough shape and size will it have?

			Now, we have a firm idea of a 2WD robot. We know it probably needs to support the following:

			
					Raspberry Pi Pico

					A pair of motors with wheels and a caster

					Many sensors and, later, Bluetooth

					Power for the system, including batteries plus voltage conversion

					A breadboard for wiring all of this together

			

			Although we don’t want the robot to be too big, we are going to need some real estate to play with. Let’s start with a rough estimate of 150 mm x 200 mm.

			So, we’ve answered some questions about what we want. We will use the next few sections to dive deeper into the planning of this robot, looking at the different aspects of the planning and the choices we’ll make. The first of those is to consider trade-offs.

			A note on trade-offs

			All designs make trade-offs. The truth is that no design fits all cases, and usually, no design is perfect but will be good enough in the right aspects where it works. We will need to make decisions and read datasheets for parts to also assist us.

			One example is size and weight—we already mentioned that we don’t want a large robot. After all, we have a limited workbench size, and larger robots require more power, larger motors, and larger batteries. Additionally, we’d need to work with tougher and—likely—harder-to-cut materials. For a different context and goal, perhaps a large, heavier robot would be more suitable. So, the first trade-off is to keep the robot small but not too small—that is, to keep it simple.

			We’ve suggested Raspberry Pi Pico, and the trade-offs from Raspberry Pi there, for example lighter weight, reduced cost, and power.

			But what of sensor trade-offs? Every sensor has multiple types, which we will dive into in their respective chapters. They differ in price, features, and complexity.

			In many aspects, we can trade having more complexity for reduced weight or cost or more features for a higher cost.

			Choosing a robot chassis

			We have many options for our 2WD robot chassis. Again, this depends on what we want to learn or achieve. We have stated our goal of building a flexible chassis. Some good options for doing this are as follows:

			
					Buying a chassis kit

					Adapting a lunchbox or toy

					Doing a scratch build by hand

					3D printing or laser cutting a chassis

			

			Chassis kits are an easy option but have limited flexibility. Many come with motors, wheels, batteries, and even a motor driver designed for a specific main controller. In this way, they can save time and money, allowing you to focus entirely on the code and sensors, but they offer less opportunity to learn design aspects. It’s often tricky to find a chassis kit with the right shape and size, and as they get larger, they quickly become more expensive.

			You could also adapt a lunchbox into a robot chassis—cutting mounting holes for motors, sensors, boards, and other parts can be a good place to learn design skills. However, you’d need to fit your robot electronics and hardware in a constrained space. Note that the curved sides of lunchboxes can complicate things.

			Scratch-building a chassis gives you great flexibility. You can learn how to design in CAD and how to use hand tools. Additionally, you need to make choices about the type and thickness of the material, and in doing so, you’ll be able to understand more about making strong robots. You’ll learn how to fit sensors and expand your robot if things get a bit tight. This requires more time and patience than the kits, but the rewards are great.

			3D printing and laser cutting require precise designs, along with expensive and specialist tools or services. As you dive further into robotics, and progress beyond a simple 2WD robot, creating more interesting shapes and sensor mounts, it is likely to be an important area of exploration. If you are not confident with hand tools, finding a laser-cutting service for the same parts will achieve good results, but it can be costly.

			In this book, so that you can get exposure to the design and hand tools while still giving us lots of flexibility, we will take the scratch-building option. We will learn CAD skills that are transferable to 3D printing. We’ll learn how to cut and drill parts, looking at some premade parts to save time. Additionally, we’ll size our design at approximately 150 mm x 200 mm and modify this if needed. But what about the motors?

			Choosing motors

			This 2WD motor requires two main drive motors. We could consider stepper motors, which move a little each time they are pulsed, although these bring a little extra complexity—perhaps an idea to keep for later. DC motors, which rotate continuously when powered, seem like the right choice. They will need to be geared so that they have enough power to move the robot, without being too quick and hard to control.

			We should keep these motors small and at a low voltage. As we are unlikely to want to build an additional gearbox, geared motors are sensible. There are some options here in terms of the size we are working with. First is the yellow TT motor with plastic gears— however, these motors are not of great quality and take up a fair amount of space. Another option is to use servomotors that are adapted for continuous rotation—however, these can be a little expensive.

			A small, common, high-quality but inexpensive option is N20 or micro-metal gear motors. To save space and effort, there are models of these that have encoders pre-fitted. We can use similarly common plastic brackets to attach them to our robot. That makes them convenient to use, too.

			Robot wheels

			For a 2WD robot, there are a few ways in which to lay the wheels out. One possibility is to have two driving wheels with two idler wheels (that is, unpowered). However, those wheels can drag, making it harder to turn the robot. A common way is to have a third wheel as a caster—either a ball that can roll in any direction or a swivel wheel such as a shopping trolley. Because of the size of the robot, a ball caster seems like a good idea.

			The wheels themselves should have a hub that is compatible with the motors that we’ve chosen. A pair of N20 wheels with a diameter of 60-100 mm should be suitable.

			So, we have a rough size for our robot, and we know the controllers, motors, and some of the sensors. The next item to choose is the power systems.

			Choosing the power systems

			A robot isn’t much fun without independent power—by which I mean its own source of power without needing to be plugged into a wall. Usually, this means batteries. It then needs ways to provide power to the control electronics, sensors, external boards, and motors. Take a look at the following diagram for an outline of power distribution in a 2WD robot:

			
				
					[image: Figure 1.8 – Power distribution in a 2WD robot]
				

			

			Figure 1.8 – Power distribution in a 2WD robot

			In Figure 1.8, the thicker lines show raw battery power connections. A 2WD chassis will need to drive at least two motors, which are power-hungry devices that require a battery connection.

			This robot needs to power Raspberry Pi Pico and other sensors. Since we intend to add Bluetooth, we should leave power aside for that. So, the other thick line goes to a regulator for these, making more palatable power for these systems—the raw battery voltage would likely destroy them. The thinner solid lines show regulated power.

			The Pico will be sending/receiving electronic control signals, designated by the thin dashed lines in the preceding diagram. These also go to the motor controller. The motor controller will provide PWM-controlled power from the batteries to the motor, modulated by the signals the Pico sends to them. The motor power is shown by the thick dashed lines to the motors on the left-hand side.

			Here, we have a few considerations to bear in mind. We require an input voltage that is suitable for the motors and to drive a regulator. We need a regulator that can handle the power capacity requirements for the Pico, sensors, and Bluetooth, and we need batteries that can supply enough current to drive them.

			Calculating power requirements

			Let’s start with what we know—5V is a good output voltage for a regulator, and where needed, the Pico can further regulate down to 3.3V. A regulator for 5V likely requires 7V or more.

			Important note

			Voltage measures electrical pressure. A current measures how fast electrical energy flows. Combining both of them shows system power usage. A current in amps or milliamps can be used as a stand-in for power in watts when the voltage is known.

			Let’s look up the specifications for the N20 gear motors. Perform an online search for the N20 motor datasheet. You’ll be looking for a PDF document. Usually, these have a picture or diagram of the product, followed by the specification and feature tables. If you look for Rated Voltage, they say 6V; however, further down the sheet, there is usually a table relating to the voltage of the motor speed. Based on the motors and regulator basics, an input voltage of 7V-12V would make sense.

			Our electronics don’t operate on voltage alone and require a current to operate. So, a regulator will need to handle the minimum current requirements. We’ll need to look at some datasheets and specifications for the other parts. We will include sensors. For Bluetooth, we will include a low-power Bluetooth Low Energy (BLE) board using the highest current measurements from https://learn.adafruit.com/introducing-the-adafruit-bluefruit-le-uart-friend/current-measurements.

			We’ll base it on worst-case values so that we can handle them. Let’s start by looking at datasheets and gathering numbers into a table, as follows:

			
				
					[image: Table 1.3 – Device power requirements]
				

			

			Table 1.3 – Device power requirements

			Chapter 3 of the datasheet for Raspberry Pi Pico (which can be found at https://datasheets.raspberrypi.com/pico/pico-datasheet.pdf) shows the electrical specification, with peak currents at a little under 92 mA (milliamps—a measure of current). We’ll round this up to 100 mA as a margin.

			The Adafruit Bluetooth board uses only 15.2 mA when fully active, but we can round it up to 20 mA to be generous. The sensors need maybe 50 mA of extra room to accommodate them.

			We can add these estimates together to suggest a minimum current specification. Based on these datasheets and estimates, any regulator capable of over 400 mA will be plenty.

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/image/Figure_1.05_B18001.jpg
12C0
Device 1

12C0
Device .. n

12C1
Device 1

12C1
Device .. n

12Co

12C1

Raspberry
Pi Pico

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/image/B18001_01_Table_02.jpg
Name Direction | Number usable | Typical uses

Digital In/out 26 Turning LEDs on/oft. Detecting button presses.

IO pin

PWM Out 16 Controlling varying outputs, such as motor speeds.
Analog In 3 Reading varying voltages on sensors.

input pin

UART In/out 2 Sending/receiving complex data packets.

SPI In/out 2 Sending/receiving complex data packets.

12C In/out 2 Sending/receiving complex data packets.

PIO In/out 2x4 Complex control of digital pins—including data

packets, pulse counting, and shifting in clocked
data. Protocols are not covered by the other data
buses. Independent timed control of output pins.

OEBPS/image/B18001_QR_Free_PDF.jpg

OEBPS/image/Figure_1.02_B18001.jpg
Dinrirrzrsasrsdsssrtgfl, - Y ppsstrrrsisbrrsissrtdoistss.
/#///////

=

Raspberry Pi Pico, LOU Power HigUh Power Raspberry Pi,
Arduino LN A Beaglebone black
E Simple Software Complex Software I
Tiny Memory & Vourcode Youreode s mierreter+ 05 Large Memory &
Storage interpreter Storage
RAM: 2- 320 Kb RAM: 512Mb - 8Gb
Flash: 32 Kb - 4 Mb SD:4-64Gb

Low Cost
£3.60 -£20

Direct |O Control
Few software layers

Low Speed
4-200 Mhz

High Cost
£5-£200

o

Indirect IO Control
Many software layers

High Speed
1-1.5Ghz

OEBPS/image/Figure_1.08_B18001.jpg
o)]

Motors

ol

!

Motor
controller Regulator
' A
. 1
1
1
N v !
Pico €= ===~ WiFi
Sensors
0 A

OEBPS/image/Packt_Logo_SuperSite_2022_Orange.png
<PACKD

OEBPS/toc.xhtml

		

		Contents

			

						Robotics at Home with Raspberry Pi Pico

						Contributors

						About the author

						About the reviewer

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Download the color images

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1: The Basics – Preparing for Robotics with Raspberry Pi Pico

						Chapter 1: Planning a Robot with Raspberry Pi Pico

					

								Technical requirements

								What is Raspberry Pi Pico, and why is it suitable for robotics?

							

										A microcontroller that runs Python

										Raspberry Pi Pico’s interfaces for sensors and devices

							

						

								What is CircuitPython?

								Planning a Raspberry Pi Pico robot

							

										An overview of robot planning

										A note on trade-offs

										Choosing a robot chassis

										Choosing the power systems

										Pin usage

							

						

								Test fitting a Raspberry Pi Pico robot

							

										Creating your first test-fit part

										Motors

										Power systems

										Creating a rough chassis

										Arranging the test-fit parts

							

						

								A recommended shopping list for robot basics

							

										Robot parts and where to find them

										The robot workshop and makerspaces

							

						

								Summary

								Exercises

								Further reading

					

				

						Chapter 2: Preparing Raspberry Pi Pico

					

								Technical requirements

								Getting CircuitPython onto Raspberry Pi Pico

								Preparing the CircuitPython library for Pico

								Coding on Pico – first steps

							

										Downloading the Mu editor

										Lighting the Pico LED with CircuitPython

										Blinking the LED with code

							

						

								Soldering headers to Raspberry Pi Pico

								Summary

								Exercises

								Further reading

					

				

						Chapter 3: Designing a Robot Chassis in FreeCAD

					

								Technical requirements

								Introducing FreeCAD

							

										The FreeCAD screen

										Selecting workbenches

										FreeCAD settings

							

						

								Making robot chassis sketches in FreeCAD

							

										Preparing the document

										Sketching the chassis outline

										Creating the upper parts main sketch

										Sketching the motor holes

							

						

								Designing the caster placement

								Modeling chassis parts from sketches

							

										Modeling the chassis plate

										Modeling the other parts

										Troubleshooting the model

										Modeling the caster in 3D

							

						

								Making FreeCAD technical drawings

							

										Setting up the page

										Adding parts to the drawing

										Preparing the drawing for print

							

						

								Summary

								Exercises

								Further reading

					

				

						Chapter 4: Building a Robot around Pico

					

								Technical requirements

								Cutting styrene parts

							

										Transferring CAD measurements to a plastic sheet

										Cutting the plastic sheet

										Finishing and sanding the chassis plate

							

						

								Assembling a robot chassis

							

										Attaching the caster and battery box

										Attaching the motors and wheels

							

						

								Wiring a Raspberry Pi Pico robot

							

										Wiring Pico and the motor controller into the breadboard

										Adding the batteries

										Wiring in the motors and encoders

										Powering the robot up

							

						

								Summary

								Exercises

								Further reading

					

				

						Chapter 5: Driving Motors with Raspberry Pi Pico

					

								Technical requirements

								Driving forward and back

							

										Testing each motor with CircuitPython

										Driving wheels in a straight line

							

						

								Steering with two motors

								An introduction to pulse width modulation speed control

							

										Driving fast and slow

										Turning while moving

							

						

								Driving along a planned path

							

										Putting line and turn moves together

										The flaw with driving this way

							

						

								Summary

								Exercises

								Further reading

					

				

						Part 2: Interfacing Raspberry Pi Pico with Simple Sensors and Outputs

						Chapter 6: Measuring Movement with Encoders on Raspberry Pi Pico

					

								Technical requirements

								About encoders and odometry

							

										Absolute and relative sensing

										Types of encoders

										Encoder pulse data

							

						

								Wiring in encoders on a Raspberry Pi Pico robot

							

										Examining the motors

										Examining the wiring

							

						

								Programming Raspberry Pi Pico PIO

							

										Introduction to PIO programming

										Introducing PIOASM

										Detecting input with PIO

										PIO instructions and registers

										Making a counter with PIO

							

						

								Measuring encoder count for movement

							

										Making a simple PIO change detection loop

										Making a bidirectional counter with PIO

										Making reusable encoder code

										Measure counts for a known time

							

						

								Summary

								Exercises

								Further reading

					

				

						Chapter 7: Planning and Shopping for More Devices

					

								Technical requirements

								Introducing sensors

							

										Analog sensor types

										Timed pulses

										Data bus sensors

										The robot block diagram

							

						

								Choosing device types

							

										Distance sensors

										Inertial measurement unit

										Bluetooth devices

										Device pin usage summary

							

						

								Planning what to add and where

							

										Bluetooth and IMU mounting plan

										Distance sensor mounting plan

							

						

								Shopping list – parts and where to find them

								Preparing the robot

							

										Designing the shelf

										Cutting the shelf

										Designing the front sensor brackets

										Cutting the sensor brackets

										Preparing the chassis plate

										Assembling the robot

							

						

								Summary

								Exercises

								Further reading

					

				

						Chapter 8: Sensing Distances to Detect Objects with Pico

					

								Technical requirements

								How distance sensing works

								Soldering headers and attaching them to the robot

							

										Soldering headers

										Mounting the sensors

							

						

								Introduction to I2C communication

								Communicating with a single distance sensor

							

										Wiring the distance sensors

										VL53LX theory of operation

										Reading a single distance sensor in CircuitPython

										Troubleshooting

							

						

								Connecting two distance sensors

							

										Troubleshooting

							

						

								Building a wall avoider with Raspberry Pi Pico

							

										Preparing the robot library

										Wall-avoiding theory of operation

										Distance sensor wall avoider code

							

						

								Troubleshooting

								Summary

								Exercises

								Additional reading

					

				

						Chapter 9: Teleoperating a Raspberry Pi Pico Robot with Bluetooth LE

					

								Technical requirements

								Wireless robot connection options

								Connecting Bluetooth LE to Raspberry Pi Pico

							

										Attaching the Bluetooth module to the robot

										Wiring the Bluetooth breakout to Raspberry Pi Pico

										Connecting to the Bluefruit LE device with UART

										Connecting a smartphone

										Troubleshooting the Bluefruit module

							

						

								Getting sensor data over Bluetooth LE on Raspberry Pi Pico

							

										Graphing the data

							

						

								Controlling the robot with Bluetooth LE

							

										Printing what we got

										Button control mode

										Decoding button control packets to drive the robot

										Troubleshooting

							

						

								Summary

								Exercises

								Further reading

					

				

						Part 3: Adding More Robotic Behaviors to Raspberry Pi Pico

						Chapter 10: Using the PID Algorithm to Follow Walls

					

								Technical requirements

								Introducing the PID algorithm

							

										Control and feedback

										Bang-bang control

										Distance sensing with proportional control

										Troubleshooting

										Using the integral to handle small distances

										Dealing with oscillations using the derivative

							

						

								Using PID to follow a wall

							

										Changing the sensor’s placement

										Wall-following code

										Troubleshooting

							

						

								PID tuning – using graphs to tune the PID

							

										Controlling motor speed

										The proportional component

										Adjusting the derivative gain

										Tuning the integral

										Closing notes on tuning

							

						

								Summary

								Exercises

								Further reading

					

				

						Chapter 11: Controlling Motion with Encoders on Raspberry Pi Pico

					

								Technical requirements

								Converting an encoder count into a speed

							

										Loose bolts and nuts

										Robot wheel geometry

										Encoder geometry

										Measuring the speed of each wheel

										Fixing the encoder glitches

							

						

								Using PID to maintain speed and a straight line

							

										The speed control system

										Speed control code

										Speed controller PID tuning

							

						

								Driving a known distance

							

										Theory of operation

										Code to control distance and speed

							

						

								Summary

								Exercises

								Further reading

					

				

						Chapter 12: Detecting Orientation with an IMU on Raspberry Pi Pico

					

								Technical requirements

								What is an IMU and how to choose one

							

										Components of an IMU

										Choosing an IMU module

							

						

								Connecting the IMU to the robot

							

										Preparing the BNO055

										Attaching the BNO055

										Wiring the BNO055 to Raspberry Pi Pico

										Setting up the software and connecting

										Troubleshooting

							

						

								Calibrating and getting readings

							

										Calibration code

										The calibration process

							

						

								Always face North behavior

							

										CircuitPython code for the face North behavior

										Troubleshooting

							

						

								Making a known turn behavior

								Summary

								Exercises

								Further reading

					

				

						Chapter 13: Determining Position Using Monte Carlo Localization

					

								Technical requirements

								Creating a training area for our robot

							

										What we will make

										How we will make the arena

										Tips for cutting

							

						

								Modeling the space

							

										Representing the arena and robot position as numbers

										Serving the arena from the robot

										The Bleak library

										Creating a Bluetooth LE wrapper library

										Showing the robot’s data on the computer screen

							

						

								Using sensors to track relative pose

							

										Setting up poses

										Displaying poses

										Moving with collision avoidance

										Moving poses with the encoders

										Pose movement probabilities

							

						

								Monte Carlo localization

							

										Generating pose weights from a position

										Resampling the poses

										Incorporating distance sensors

										Tuning and improving the Monte Carlo model

							

						

								Summary

								Exercises

								Further reading

					

				

						Chapter 14: Continuing Your Journey – Your Next Robot

					

								Technical requirements

								A summary of what you have learned in this book

							

										Basic robotics with Raspberry Pi Pico

										Extending a Raspberry Pi Pico robot with sensors

										Writing CircuitPython behavior code for Raspberry Pi Pico

							

						

								Planning to extend this robot

							

										Sensors you could add

										Interacting with the robot

										Chassis and form enhancements

										Electronics enhancements

										Outputs you could add

										Extending the code and behaviors

							

						

								Planning your next robot

							

										Form, shape, and chassis

										Electronics and sensors

										Code and behavior

							

						

								Further suggested areas to learn about

							

										Electronics

										Design and manufacturing

										Robotic competitions and communities

										Robotics systems and code

							

						

								Summary

								Exercises

								Further reading

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/Figure_1.04_B18001.jpg
> SPI D1evice SPI I32evice -

AL LA A

Device 1 Device 2

Ccs Cs

RX TX scCk

Raspberry
Pi Pico

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/Figure_1.07_B18001.jpg

OEBPS/image/B18001_01_Table_03.jpg
Device Current requirement

Raspberry Pi Pico Up to 100 mA

Adafruit Bluefruit LE UART Friend Up to 15.2 mA (Bluetooth active)

Sensors—distance, IMU, and encoders Estimate up 50 mA peak

OEBPS/image/Figure_1.03_B18001.jpg
The Linux Computer Raspberry Pi Pico

YYour Code
1
Other apps and
Python Sariices Your Code
Linux/Raspberry Pi OS CircuitPython

Raspberry Pi Raspberry Pi Pico

OEBPS/Fonts/CourierStd.otf

OEBPS/image/Cover.png
bAoA /

TS

(2

Robotics at Home

with Raspberry Pi Pico

S

Build autonomous robots with the versatile low-cost

Raspberry Pi Pico controller and Python

DANNY STAPLE

OEBPS/image/Figure_1.06_B18001.jpg
10 Pins

H

m

m

H

H

H

i

H

State
machine

State

State

machine| [machine

State
machine

State
machine

State
machine

State
machine

State
machine

PIO

PIO

Raspberry Pi Pico

OEBPS/image/Figure_1.01_B18001.jpg
o SN - & & gl

Raspberry Pi Pico (©)2020— _, . Bnmsrl

OEBPS/image/B18001_01_Table_01.jpg
Specification Raspberry Pi Pico Arduino Uno

Digital IO pins 26 14

Analog IO pins 4 6

Processor Dual Core RP2040 at Single-core ATmega328 at
133 MHz 16 MHz

Flash (storing code) 2 MB 32 KB (plus 1 KB EPROM)

RAM (running memory) | 264 KB 2KB

