
		
			[image: Cover.png]
		

	
		
			Azure for Developers

			Second Edition

			Implement rich Azure PaaS ecosystems using containers, serverless services, and storage solutions

			Kamil Mrzygłód

			[image:]

			BIRMINGHAM—MUMBAI

			Azure for Developers
Second Edition

			Copyright © 2022 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Rahul Nair

			Publishing Product Manager: Meeta Rajani

			Senior Content Development Editor: Sayali Pingale

			Technical Editor: Arjun Varma

			Copy Editor: Safis Editing

			Book Project Manager: Aishwarya Mohan

			Proofreader: Safis Editing

			Indexer: Tejal Daruwale Soni

			Production Designer: Sinhayna Bais

			Marketing Co-ordinator: Nimisha Dua

			Senior Marketing Co-ordinator: Sanjana Gupta

			First published: November 2018

			Second edition: August 2022

			Production reference: 1260822

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			978-1-80324-009-1

			www.packt.com

			To Klaudia – for putting confidence in me.

			Contributors

			About the author

			Kamil Mrzygłód is a skilled software developer, architect, and Microsoft Azure MVP. He is focused on delivering fast, reliable, and flexible cloud solutions based on the Microsoft Azure platform. He has spoken at multiple conferences and meetups, working on open source software (OSS) projects and driving workshops for different people and companies. In recent years, he has developed an interest in Azure serverless architectures, data analysis, and big data components. Currently, he works as an independent cloud consultant for various clients. His current goal is to make the world of cloud computing as accessible as it can be so that it’s possible to lower the learning curve of this technology and help others start using it.

			“I would like to take an opportunity and thank the whole team working on the new edition of this book for their professionalism and constant feedback. You made the book as good as it is now.”

			About the reviewer

			Jay Freeman has worked in the IT industry for over 25 years and has been helping organizations to transform the way they work by adding value and helping to deliver on time development practices, software and cloud architecture, and agile practices.

			He has worked for some of the largest organizations in retail, finance, Formula One, automotive, education, transport, and specialist security firms, which gives him a great breadth of knowledge across many areas.

			These days, Jay focuses mainly on helping organizations either migrate their on-premises infrastructure and data to the cloud or with the architecting and designing of existing cloud deployments to achieve maximum security and performance, while keeping costs to a minimum.

			“I have been extremely fortunate over many years to have been able to work with some of the most experienced people and largest companies, which has helped me progress. I have spent many late nights learning new technologies, which I have always had a real passion for, from the age of 11 when I wrote my first program on a Commodore C64. Families of IT professionals don’t always get as much time with us as they would like, so I want to thank my wife for really supporting me on my late nights and early mornings and both my boys for understanding that daddy can’t always play.”

		

	
		
			Table of Contents

			Preface

			Part 1: PaaS and Containers

			1

			Web Applications in Azure – Azure App Service

			Technical requirements

			Creating and deploying an Azure App Service resource

			Creating an Azure App Service resource using the Azure portal

			Creating an Azure App Service resource using Visual Studio

			Deploying Azure App Service resources using the Azure CLI

			Creating Azure App Service resources using VS Code

			Working with different operating systems and platforms

			Selecting an operating system

			Selecting different platforms

			Choosing the right App Service plan and exploring what its features are

			Dev / Test App Service plans

			Production App Service plans

			Isolated App Service plans

			Isolated V2 plan

			Securing App Service resources using different security providers

			Configuring authentication in the Azure portal

			Configuring networking for Azure App Service

			The Networking blade

			Access Restrictions

			Private endpoints

			VNet integration

			Summary

			Questions

			Further reading

			2

			Using Azure Container Registry for Storing and Managing Images

			Technical requirements

			Different hosting options for Azure Container Registry

			Deploying ACR with the Azure portal

			Deploying ACR using the Azure CLI

			Registries, repositories, and images

			Working with repositories and images

			Granting permissions for pulling/pushing images

			Tagging and versioning

			Zone redundancy and geo-replication

			ACR Tasks

			Summary

			Questions

			Further reading

			3

			Deploying Web Applications as Containers

			Technical requirements

			Different ways of hosting containerized applications

			Azure App Service – a web app for containers

			Preparing an application

			Using a container image in an Azure App Service plan

			Azure Kubernetes Service – a managed Kubernetes service

			Kubernetes and managed cluster basics

			Azure Kubernetes Service deployment

			Application deployment

			Summary

			Questions

			Further reading

			4

			Using Azure Container Instances for Ad Hoc Application Hosting

			Technical requirements

			Provisioning and configuring a service

			Container groups as the main unit of work

			Security baseline and considerations

			Summary

			Questions

			Further reading

			5

			Building a Search Engine with Azure Cognitive Search

			Technical requirements

			Creating an Azure Cognitive Search instance

			Using the Azure portal

			A full-text search in Azure Cognitive Search

			Sending a request

			Linguistic analysis in a full-text search

			Analyzers in Azure Cognitive Search

			Indexing in Azure Cognitive Search

			Importing more data

			Cognitive Search – adding AI to the indexing workload

			Configuring cognitive skills

			Summary

			Questions

			Further reading

			6

			Mobile Notifications with Notification Hubs

			Technical requirements

			Reasons to use Notification Hubs

			Challenges for application design

			Push notification architecture

			Direct connection

			Queued communication

			Triggered communication

			Registering a device within Notification Hubs

			Notification Hubs device registration

			Sending notifications to multiple vendors

			Sending a test notification

			Using the SDK to send a notification

			Sending a rich content notification through Notification Hubs

			Creating and sending a rich content notification

			Summary

			Questions

			Further reading

			Part 2: Serverless and Reactive Architecture

			7

			Serverless and Azure Functions

			Technical requirements

			Understanding Azure Functions

			Being "serverless"

			The concepts of Azure Functions

			Scaling

			Configuring the local environment for developing Azure Functions

			Starting with Azure Functions locally

			Creating a function

			Using Visual Studio Code

			Using the Azure portal

			The features of Azure Functions

			Platform features

			Security

			Monitor

			host.json

			Publish

			Integrating functions with other services

			The Function file

			Input/output bindings

			Summary

			Questions

			Further reading

			8

			Durable Functions

			Technical requirements

			What is Durable Functions?

			Orchestrations and activities

			Orchestration client

			Orchestration history

			Working with orchestrations

			Sub-orchestrations

			Timers, external events, and error handling

			Timers

			External events

			Error handling

			Eternal and singleton orchestrations, stateful entities, and task hubs

			Eternal orchestrations

			Singleton orchestrations

			Stateful entities

			Task hubs

			Advanced features – instance management, versioning, and high availability

			Instance management

			Versioning

			High availability

			Summary

			Questions

			Further reading

			9

			Integrating Different Components with Logic Apps

			Technical requirements

			What is Azure Logic Apps?

			Azure logic apps – how they work

			Azure Logic Apps – advantages

			Connectors for logic apps

			Connector types

			Creating logic apps and integrating services

			Creating logic apps in the Azure portal

			Working with Azure logic apps in Visual Studio Code

			B2B integration

			Starting B2B integration in Azure Logic Apps

			Integrating with virtual networks

			Summary

			Questions

			Further reading

			10

			Swiss Army Knife – Azure Cosmos DB

			Technical requirements

			Understanding Cosmos DB

			Creating a Cosmos DB instance in the portal

			Pricing in Azure Cosmos DB

			Partitioning, throughput, and consistency

			Partitions in Azure Cosmos DB

			Throughput in Azure Cosmos DB

			Consistency in Azure Cosmos DB

			Azure Cosmos DB models and APIs

			SQL

			MongoDB

			Graph

			Table

			Cassandra

			Capacity, autoscale, and optimization

			Container throughput

			Database level throughput

			Firewall and virtual networks

			Azure Functions

			Stored procedures

			User-defined functions and triggers

			Autoscale in Azure Cosmos DB

			Using change feed for change tracking

			Summary

			Questions

			Further reading

			11

			Reactive Architecture with Event Grid

			Technical requirements

			Azure Event Grid and reactive architecture

			Reactive architecture

			Topics and event subscriptions

			Connecting services through Azure Event Grid

			Creating Azure Event Grid in the Azure Portal

			Azure Event Grid security

			Creating a subscription

			Using different schemas in Event Grid

			Event Grid schema

			The CloudEvents schema

			Custom schema

			Receiving and filtering events

			EventGridTrigger in Azure Functions

			Testing Azure Event Grid and Azure Functions

			Summary

			Questions

			Further reading

			Part 3: Storage, Messaging, and Monitoring

			12

			Using Azure Storage – Tables, Queues, Files, and Blobs

			Technical requirements

			Using Azure Storage in a solution

			Different Azure Storage services

			Different types of storage accounts

			Securing Azure Storage

			Replication

			Storing structured data with Azure Storage tables

			Creating an Azure Storage service

			Managing Table storage

			Storing data in Table storage

			Querying data in Table storage

			Table API in Azure Cosmos DB

			Implementing fully managed file shares with Azure Files

			Azure Files concepts

			Working with Azure Files

			Blob storage versus Azure Files

			Using queues with Azure Queue Storage

			Queue Storage features

			Developing an application using Queue Storage

			Using Azure Storage blobs for object storage

			Blob storage concepts

			Inserting data into Blob Storage

			Containers and permissions

			Blob storage – additional features

			Summary

			Questions

			Further reading

			13

			Big Data Pipeline – Azure Event Hubs

			Technical requirements

			Azure Event Hubss service and concepts

			Azure Event Hubss concepts

			Azure Event Hubss durability

			Working with Azure Event Hubss

			Creating an Azure Event Hubss instance in the Azure portal

			Working with Azure Event Hubss in the portal

			Developing applications with Azure Event Hubs

			Federation – events replication

			Azure Event Hubs security

			Private Link

			Resource isolation

			IP filters and networking

			Azure Event Hubs Capture feature

			What is an Azure Event Hubs Capture?

			Enabling Event Hub Capture

			Summary

			Questions

			Further reading

			14

			Real-Time Data Analysis – Azure Stream Analytics

			Technical requirements

			Introducing Azure Stream Analytics

			Stream ingestions versus stream analysis

			Azure Stream Analytics concepts

			Defining available input and output types

			Creating an Azure Stream Analytics instance in the Azure portal

			Querying data using theAzure Stream Analytics query language

			Writing a query

			Event ordering, checkpoints, and replays

			Event ordering

			Checkpoints and replays

			Common query patterns

			Multiple outputs

			Data aggregation over time

			Counting unique values

			Summary

			Questions

			Further reading

			15

			Enterprise Integration – Azure Service Bus

			Technical requirements

			Azure Service Bus fundamentals

			Azure Service Bus versus other messaging services

			Azure Service Bus and Azure Queue Storage

			Azure Service Bus in the Azure portal

			Queues, topics, and relays

			Azure Service Bus design patterns

			Developing solutions with the Azure Service Bus SDK

			Azure Service Bus security

			MI

			RBAC

			Advanced features of Azure Service Bus

			Dead lettering

			Sessions

			Transactions

			Handling outages and disasters

			DR

			Handling outages

			Summary

			Questions

			Further reading

			16

			Using Application Insights to Monitor Your Applications

			Technical requirements

			Using the Azure Application Insights service

			Logging data in the cloud

			Azure Application Insights fundamentals

			Creating an Azure Application Insights instance in the portal

			Monitoring different platforms

			.NET

			Node.js

			Azure Functions

			Using the Logs module

			Accessing the Logs module

			Automating Azure Application Insights

			Alerts

			Summary

			Questions

			Further reading

			17

			SQL in Azure – Azure SQL

			Technical requirements

			Differences between Microsoft SQL Server and Azure SQL

			Azure SQL fundamentals

			Advanced Azure SQL features

			SQL Server on VMs

			Creating and configuring an Azure SQL Database instance

			Creating an Azure SQL Database instance

			Azure SQL features in the portal

			Security features of Azure SQL

			Firewall

			Microsoft Defender for SQL

			Data classification

			Auditing

			Dynamic Data Masking

			Scaling Azure SQL

			Single database

			Elastic pool

			Read scale-out

			Sharding

			Monitoring and tuning

			Monitoring

			Tuning

			Summary

			Questions

			Further reading

			18

			Big Data Storage – Azure Data Lake

			Technical requirements

			Understanding ADLS

			ADLS fundamentals

			Creating an ADLS instance

			Storing data in ADLS Gen2

			Using the Azure portal for navigation

			Using SDKs

			Security features of ADLS Gen2

			Authentication and authorization

			Network isolation

			Best practices for working with ADLS

			Performance

			Security

			Resiliency

			Data structure

			Summary

			Questions

			Further reading

			Part 4: Performance, Scalability, and Maintainability

			19

			Scaling Azure Applications

			Technical requirements

			Autoscaling, scaling up, scaling out

			Autoscaling

			Scaling up and scaling out

			Scaling Azure App Service

			Manual scaling

			Autoscaling

			Scaling Azure Functions

			Scaling serverless applications

			Azure Functions scaling behavior

			Scaling Azure Cosmos DB

			Autoscaling for provisioned throughput

			Scaling Azure Event Hubs

			Summary

			Questions

			Further reading

			20

			Serving Static Content Using Azure CDN

			Technical requirements

			Azure CDN fundamentals

			Working with CDNs

			Creating an Azure CDN in the portal

			Optimization and caching

			Configuring an endpoint

			Developing applications using Azure CDN

			Configuring Azure App Service with Azure CDN

			Summary

			Questions

			Further reading

			21

			Managing APIs with Azure API Management

			Technical requirements

			The main concepts of Azure API Management

			API gateway

			Management plane

			Developer portal

			Guidelines for designing APIs

			Basics of Azure API Management policies with examples

			Policy schema

			Provisioning the Azure API Management service

			Automated management of the service

			Summary

			Questions

			Further reading

			22

			Building a Scalable Entry Point for Your Service with Azure Front Door

			Technical requirements

			When to use Azure Front Door

			Load balancing with Azure Front Door

			Implementing URL rewrites and redirects

			Summary

			Questions

			Further reading

			23

			Azure Application Gateway as a Web Traffic Load Balancer

			Technical requirements

			Azure Application Gateway features

			WAF

			Load balancing

			Multiple-site hosting

			Rewriting URLs and headers

			Configuring routing

			Integrating with web applications

			URL rewriting and redirects

			Summary

			Questions

			Further reading

			24

			Distributing Load with Azure Traffic Manager

			Technical requirements

			Using Azure Traffic Manager

			Functions of Azure Traffic Manager

			Creating Azure Traffic Manager in the Azure portal

			Working with Azure Traffic Manager in the Azure portal

			Endpoint monitoring

			nslookup

			Traffic view

			Summary

			Questions

			Further reading

			25

			Tips and Tricks in Azure

			Technical requirements

			Using the Azure CLI

			Using Cloud Shell

			Automating infrastructure deployments with ARM templates and Azure Bicep

			A word from the reviewer

			Using continuous deployment for automated deployments to Azure

			Summary

			Questions

			Further reading

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			Microsoft Azure is one of the most popular cloud computing platforms that are available publicly. As more and more companies decide to migrate their on-premises workloads and modernize them, expertise in at least one cloud vendor becomes critical when planning your next career steps.

			The goal of this book is to help you to understand how Microsoft Azure works and what can be achieved when choosing cloud products over a traditional model of hosting. It focuses on presenting managed services such as Azure App Service, Azure SQL Database, and Azure Container Registry, addressing the current direction of modern architectures and the plans of many companies.

			Who this book is for

			This book is targeted at developers who are familiar with concepts of programming, architecture, and deployment to a desired hosting environment. As Microsoft Azure is a technology closely related to the .NET platform, prior knowledge of that technology stack will help you get the most out of this book.

			However, as the cloud is a technology-agnostic platform, there are also examples addressing other programming languages that are supported.

			What this book covers

			Chapter 1, Web Applications in Azure – Azure App Service, shows you how to build and host web apps in Azure.

			Chapter 2, Using Azure Container Registry for Storing and Managing Images, discusses building and hosting Docker images with application code and dependencies.

			Chapter 3, Deploying Web Applications as Containers, examines using Docker images as artifacts and running them using Azure services.

			Chapter 4, Using Azure Container Instances for Ad Hoc Application Hosting, covers running containers in Azure without provisioning additional infrastructure.

			Chapter 5, Building a Search Engine with Azure Cognitive Search, delves into using Azure Search as a managed search engine.

			Chapter 6, Mobile Notifications with Notification Hub, discusses enriching applications with notifications.

			Chapter 7, Serverless and Azure Functions, shows you how to build serverless applications with a function-as-a-service approach.

			Chapter 8, Durable Functions, examines enhancing serverless architecture with a controlled model of data processing.

			Chapter 9, Integrating Different Components with Logic Apps, delves into using Azure Logic Apps as a managed service for building low-code solutions.

			Chapter 10, Swiss Army Knife – Azure CosmosDB, provides an introduction to Azure Cosmos DB.

			Chapter 11, Reactive Architecture with Event Grid, examines using Azure Event Grid with topics and subscriptions.

			Chapter 12, Using Azure Storage – Tables, Queues, Files, and Blobs, discusses leveraging the Azure Storage service as a flexible solution for storing data.

			Chapter 13, Big Data Pipeline – Azure Event Hubs, explores implementing a streaming solution for events.

			Chapter 14, Real-Time Data Analysis – Azure Stream Analytics, covers the analysis of data streams with the in-built functionalities of Azure Stream Analytics.

			Chapter 15, Enterprise Integration – Azure Service Bus, focuses on advanced messaging scenarios based on Azure Service Bus.

			Chapter 16, Using Application Insights to Monitor Your Applications, delves into a managed monitoring solution based on Azure Application Insights.

			Chapter 17, SQL in Azure – Azure SQL, covers hosting SQL Server in Azure.

			Chapter 18, Big Data Storage – Azure Data Lake, examines building a data lake in Azure.

			Chapter 19, Scaling Azure Applications, discusses how to scale Azure services depending on the requirements and available features.

			Chapter 20, Serving Static Content Using Azure CDN, delves into using Azure CDN for integration with applications and improving performance.

			Chapter 21, Managing APIs with Azure API Management, focuses on managing APIs and their schemas.

			Chapter 22, Building a Scalable Entry Point for Your Service with Azure Front Door, covers load balancing using a global Azure service.

			Chapter 23, Azure Application Gateway as a Web Traffic Load Balancer, delves into controlling traffic in your system using a managed load balancer.

			Chapter 24, Distributing Load with Azure Traffic Manager, explores implementing DNS-based load balancing.

			Chapter 25, Tips and Tricks in Azure, examines various tricks to improve your Azure skills.

			To get the most out of this book

			Depending on the technology stack you’re using, the required software will be different. As most of the examples are presented using .NET 6, basic knowledge of that technology will help you to quickly understand the details of the described topics. There are also multiple samples presented in other technologies such as Java or JavaScript to give you a better perspective of the differences between available runtimes.

			
				
					[image:]
				

			

			All the exercises and examples assume that you’re able to install VS Code as an IDE. You may work with other IDEs as well, although the book won’t address them directly.

			Some exercises describe a development process with Visual Studio. It’s perfectly fine to use the free Community edition if you don’t have access to the commercial license.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Azure-for-Developers-Second-Edition. If there’s an update to the code, it will be updated on the existing GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/IPgBV.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “If your input contains a property named Date, you can use SELECT date to push it to your output.”

			A block of code is set as follows:

			
SELECT
 COUNT(DISTINCT Column1) AS Count_column1,
 System.TIMESTAMP() AS Time
FROM Input TIMESTAMP BY TIME
GROUP BY
 TumblingWindow(second, 2)

			Code output or a command-line entry is set as follows:

			npm install applicationinsights

			Bold: Indicates a new term, an important word, or words that you see onscreen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: “When you click the Review + create button and confirm creation, an alert rule will be created.”

			Tips or Important Notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

			Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Azure for Developers, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

		

	

		
			Part 1: PaaS and Containers

			The objective of Part 1 is to present the most common Azure services. Components such as Azure App Service, WebJobs, and Azure Search are widely used and offer a great number of different features, starting from different deployment options, runtimes, and even slots for multiple application versions. With different containers also available, the whole journey can start to get complicated – we’re here to help you understand PaaS and the flexibility it offers.

			This part of the book comprises the following chapters:

			
					Chapter 1, Web Applications in Azure – Azure App Service

					Chapter 2, Using Azure Container Registry for Storing and Managing Images

					Chapter 3, Deploying Web Applications as Containers

					Chapter 4, Using Azure Container Instances for Ad Hoc Application Hosting

					Chapter 5, Building a Search Engine with Azure Cognitive Search

					Chapter 6, Mobile Notifications with Notification Hubs

			

		

	

		
			1

			Web Applications in Azure – Azure App Service

			Azure App Service is one of the biggest and most used services available in the Azure cloud. It allows the easy development of web applications with multiple features available (such as support for different platforms, including .NET, PHP: Hypertext Preprocessor (PHP), and Java), manual and automated scaling, and different performance options. It's a general platform and runtime that fuels other services, such as WebJobs and Azure Functions. This chapter is designed to get you familiar with the basics of web development in Microsoft Azure.

			In this chapter, you will learn about the following topics:

			
					Creating and deploying an Azure App Service resource

					Working with different operating systems and platforms

					Choosing the right App Service plan and exploring what its features are

					Securing App Service resources using different security providers

					Configuring networking for Azure App Service

			

			Technical requirements

			To perform the exercises in this chapter, you will need the following:

			
					Access to an Azure subscription.

					Visual Studio 2022 with the Azure development workload installed. All editions would suffice (Community/Professional/Enterprise).

					Visual Studio Code (VS Code) installed (available at https://code.visualstudio.com/).

					The Azure command-line interface (Azure CLI) (https://docs.microsoft.com/en-us/cli/azure/).

			

			Creating and deploying an Azure App
Service resource

			To get started with Azure App Service, you must learn how to create that service and deploy your code. Throughout the chapter, you will see how many ways Azure provides for doing so. Depending on your current needs and the specification of your application, each path can be easier or harder; still, the strength of a cloud and Platform-as-a-Service (PaaS) offering lies in the straightforward and intuitive process of provisioning new components of your system.

			Note

			PaaS is one of the several cloud infrastructure models available. In general, it stands between Infrastructure-as-a-Service (IaaS) and Software-as-a-Service (SaaS), offering a balance between the ability to manage underlying infrastructure and abstraction over used components.

			Let's now check the different ways to deploy your very first Azure App Service resource.

			Creating an Azure App Service resource using the Azure portal

			To begin, you will deploy your service using the Azure portal. All you will need is a browser with access to the internet. Enter https://portal.azure.com to get started.

			Selecting Azure Web Apps from the available services

			To create an Azure App Service resource in the Azure portal, you must first find the option to do so in the list of available services. The easiest way to do so is to click on the + Create a resource button and then click on Web App, as shown in the following screenshot:

			
				
					[image: Figure 1.1 – Create a resource screen]
				

			

			Figure 1.1 – Create a resource screen

			Alternatively, you can utilize the search box at the top of the screen to quickly access any service, as shown in the following screenshot:

			
				
					[image: Figure 1.2 – Searching for a resource via the search box]
				

			

			Figure 1.2 – Searching for a resource via the search box

			As you can see, the Azure portal already displays the most popular services. If for some reason the Web App/App Service resource is not displayed, use the search box by entering the name of a service you are looking for.

			When you click on the Web App item, you will see the first step of a resource creator, which will guide you through the process of provisioning your application. Now, we will go through all the steps and describe in detail the different parameters that are available to you.

			Tip

			Here, we are using the raw version of Azure App Service, which comes without any additional tools installed. When you gain more experience and become more familiar with the available services, you will see that Azure offers many useful preconfigured setups (such as an integrated Web Apps and Structured Query Language (SQL) Database instance), which can be used to shorten development and configure all services in one place.

			Configuring an Azure web app

			Provisioning any Azure service requires going through creators consisting of different steps. In general, not all fields will be required. It is worth remembering that all the mandatory parameters are marked with an * (asterisk) symbol.

			The first tab available is the Basics tab, which is divided into three different sections: Project Details, Instance Details, and App Service Plan. The very first thing is entering a combination of Subscription and Resource Group details. Remember that in Azure, resources cannot exist in a vacuum—they require a container for logical separation. Here, you can use any combination you have access to (or you were asked to choose). The process is illustrated in the following screenshot:

			
				
					[image: Figure 1.3 – Project Details section]
				

			

			Figure 1.3 – Project Details section

			Next, we have the Instance Details section, which requires a few more details to be provided. Here, we need to enter the name of our web application (it has to be globally unique), the method used to publish it (Code versus Docker Container), and Runtime stack, Operating System, and Region details, as illustrated in the following screenshot. While the Publish/Runtime stack/Operating System parameters seem self-explanatory and depend on your technology stack, let's talk a little bit about regions next:

			
				
					[image: Figure 1.4 – Instance details section]
				

			

			Figure 1.4 – Instance details section

			In Azure, each region represents a co-located set of data centers and directly affects the geographic location of your cloud resources. That also has some legal implications (if you are about to process users' data, it is often forbidden to store it outside the user's origin). Each instance of an Azure service must be deployed to one of the available regions.

			Tip

			One of Azure's best practices is to deploy resources to the same region as the resource group they are in. This allows for the best performance and reliability.

			The last section of the Basics tab is App Service Plan. Since you are just starting with Azure, you probably do not have any App Service plans created. As we cannot create an App Service resource without an App Service plan, we will sort this now. Note that if you have an existing App Service plan, the Azure portal may automatically choose it here based on the chosen region. It will also generate a random name if there is no App Service plan available.

			Creating an App Service plan

			When you click on Create new, you will see a popup allowing you to enter the plan name. Click on it, enter the name of your new plan, and then click the OK button. It should look like this:

			
				
					[image: Figure 1.5 – Configuring an App Service plan]
				

			

			Figure 1.5 – Configuring an App Service plan

			The last thing required here is to select the Sku and size option. This parameter will directly affect the features available for your web application, its performance, and finally, the price. To make a choice, click on Change size. Now, the Spec Picker screen should appear, presenting you with the options available, as illustrated in the following screenshot:

			
				
					[image: Figure 1.6 – Spec Picker for App Service plan]
				

			

			Figure 1.6 – Spec Picker for App Service plan

			As you can see in the preceding screenshot, we have three categories of App Service plans, as follows:

			
					Dev / Test: This contains F, D, and B tiers (which stand for free, shared, and basic). They are designed for simple development/test (dev/test) scenarios and lightweight web applications that do not need features such as autoscaling or backups. Note that the shared tier is unavailable for Linux.

					Production: This offers powerful machines and advanced features that are useful in many day-to-day scenarios, such as application programming interfaces (APIs), e-commerce, and popular portals.

					Isolated: This uses the same hardware as the Production tier, but with even more features and possibilities to isolate your web apps on the hardware level. This is the most expensive category but can be helpful when creating systems that cannot be made available publicly.

			

			Tip

			It is important to remember that tiers F and D have a limited amount of computing time per day. That means that once you exceed the limit (60 minutes for the F tier, and 240 minutes for the D tier) of your processing time, your application will become unavailable and be suspended until the next day.

			For this exercise, let's select any tier from the Dev / Test category. Once you are satisfied with the option you've selected, you can click the Apply button. My configuration, for example, looks like this:

			
				
					[image: Figure 1.7 – Configure App Service plan with a free tier]
				

			

			Figure 1.7 – Configure App Service plan with a free tier

			Tip

			Remember that you can always upgrade (or scale up) the instance of your App Service plan. For example, if you need a specific feature, or the popularity of your application has grown, revisit the Spec Picker screen and choose the options that suit you the most. This is one of the biggest advantages of cloud over on-premises, where you would have to buy and set up new machines on your own.

			Now, you can click Next: Deployment (Preview), which will bring us to the next tab in our creator, as follows:

			
				
					[image: Figure 1.8 – Deployment tab]
				

			

			Figure 1.8 – Deployment tab

			This tab allows us to configure the Continuous deployment setting for our application using GitHub Actions. Unfortunately, that kind of automated deployment is beyond the scope of this book. If you want to learn more, you can read about it here: https://docs.microsoft.com/en-us/azure/app-service/deploy-github-actions?tabs=applevel. For now, we can skip this and click the Next: Monitoring button to enable monitoring of our Web Apps resource using Azure Application Insights, as illustrated in the following screenshot:

			
				
					[image: Figure 1.9 – Monitoring tab]
				

			

			Figure 1.9 – Monitoring tab

			Here, depending on the platform we chose, we can decide whether we want to enable monitoring by choosing the Yes option. Unfortunately, because my choice was Linux, the creator disables that for me (although it will be available to you if you selected Windows). Azure Application Insights will be described in detail further in this book, so to keep things simple, let's choose No.

			We will skip the last tab, Tags, for now, so the only thing left is to click on the Review + create button and, after confirming all the details are correct, click on Create. If Azure detects that something is wrong with your input, it will highlight all the invalid fields and block the process of provisioning a resource.

			Now, wait several seconds for the creation of a new resource. During this time, Azure will validate the template and parameters, and orchestrate multiple underlying controllers to create a service. Once a new resource is created, you should see a notification and be able to see your resources. To quickly validate this, click on the All resources button on the left and filter all of them using, for example, the name of the App Service resource you have created. The process is illustrated in the following screenshot:

			
				
					[image: Figure 1.10 – Created App Service plan visible in the Azure portal]
				

			

			Figure 1.10 – Created App Service plan visible in the Azure portal

			Let's now switch our focus to creating an Azure App Service resource using a different toolset.

			Creating an Azure App Service resource using Visual Studio

			If you do not want to create your web apps using the Azure portal, you can use Microsoft Visual Studio, which has built-in integration for many different Azure services. As Visual Studio is an integrated development environment (IDE) designed mostly for .NET application development, all the exercises will use .NET as a development platform. For a more generic approach, please look at the next section, where we will describe working with VS Code as an alternative.

			Note

			This exercise was created using Microsoft Visual Studio Community 2019 (16.8.4) with Azure workloads installed. If you want to configure your instance and ensure everything is set up correctly, please follow the short tutorial available at https://docs.microsoft.com/en-us/dotnet/azure/configure-visual-studio.

			In Visual Studio, click on File | New | Project. This will display a Create a new project window, where you can find plenty of different templates for starting with a new application. Because we are aiming at deploying a web application, let's choose a template for ASP.NET Core Web Application, as illustrated in the following screenshot:

			
				
					[image: Figure 1.11 – Creating a new project in Visual Studio]
				

			

			Figure 1.11 – Creating a new project in Visual Studio

			When a template is selected, click on the Next button in the bottom-right corner of the window. All that's left to do now is enter a project name and its location on our hard drive, as follows:

			
				
					[image: Figure 1.12 – Configuring a new project]
				

			

			Figure 1.12 – Configuring a new project

			Enter any name you feel works for you and select a location where the files will be created. When everything is ready, click the Create button. The last step is choosing a template for this application. To make things easier, we will go for Web Application as this will give us some content to work with. You can see the available templates in the following screenshot:

			
				
					[image: Figure 1.13 – Creating an ASP.NET application]
				

			

			Figure 1.13 – Creating an ASP.NET application

			Tip

			You have probably noticed an Authentication section, which I have not described. It allows you to select the method used for authenticating access to your web application. We will cover that feature in the Securing App Service resources using different security providers section.

			Let's leave all other options with their default values and click Create. After several seconds, Visual Studio should generate your new application, which is ready to work. To ensure that everything is correct, press the F5 button to run your website locally. After a few seconds, you should see a screen like mine here:

			
				
					[image: Figure 1.14 – Locally working application]
				

			

			Figure 1.14 – Locally working application

			If everything works as expected, there is one question remaining: how can we deploy it to Azure to have our website working in the cloud? Let's go back to Visual Studio for a moment and close the debugger. When you right-click on a project in Solution Explorer, you will see a context menu. There, between various menu options, click on Publish..., as illustrated in the following screenshot:

			
				
					[image: Figure 1.15 – Context menu of a project]
				

			

			Figure 1.15 – Context menu of a project

			As we are building a web application hosted in a cloud environment, our choice for the publish location will be Azure, as illustrated in the following screenshot:

			
				
					[image: Figure 1.16 – Selecting a publish target]
				

			

			Figure 1.16 – Selecting a publish target

			Now, click the Next button to select a particular Azure service used for our deployment. Currently, we are getting started with Azure App Service, so options for containerization will be a no-go. You will learn more about them in the next chapters. However, depending on your desired platform, you can choose between Linux and Windows machines. If you do not have specific requirements related to your hosting environment, I recommend using Linux for our deployment. The Linux service is shown in the following screenshot:

			
				
					[image: Figure 1.17 – Publish]
				

			

			Figure 1.17 – Publish

			Let's click Next one more time. The last step is selecting an actual Azure App Service resource for the application. If you do not have one, look at the beginning of this chapter, where we went through the process of creating one in detail. After selecting the desired instance, use the Finish button to complete deployment. The process is illustrated in the following screenshot:

			
				
					[image: Figure 1.18 – Specifying a publish target]
				

			

			Figure 1.18 – Specifying a publish target

			Note

			If you do not see any Azure subscription, you may need to authenticate first to your cloud environment. Use the dropdown in the top right of the Publish window to select an alternative account or sign in to a new one.

			Before Visual Studio sends our files, it will display a summary of the whole process. This is the last moment to reconfigure things such as target framework, deployment mode, or runtime. If everything seems fine, use the Publish button, as illustrated in the following screenshot, to publish the site to the selected Azure App Service resource:

			
				
					[image: Figure 1.19 – Publish screen summary]
				

			

			Figure 1.19 – Publish screen summary

			Once deployment is completed, you should see your web application open automatically on your default browser, as follows:

			
				
					[image: Figure 1.20 – Working application in Microsoft Azure]
				

			

			Figure 1.20 – Working application in Microsoft Azure

			Congratulations! You have just created and deployed your very first App Service resource. If you look at the Uniform Resource Locator (URL), you'll see that it contains the name you set in the Visual Studio wizard. All web apps in Azure can be accessed using the following URL format: http(s)://{appservicename}.azurewebsites.net.

			This also explains why a name must be unique: since, by default, all web applications hosted as Azure Web Apps resources are available publicly, you must select a name that is not already in use in another URL. In the next section, we will use the Azure CLI to deploy our application, as an alternative to using Visual Studio.

			Deploying Azure App Service resources using the Azure CLI

			Using Visual Studio for deployments is a good idea for testing things and for development, but for sure, it cannot be used for deploying production environments. An alternative, which can be also used on our build agents (if you are using a continuous integration/continuous deployment (CI/CD) approach), is to leverage the Azure CLI. As you will see, it allows for a variety of different deployment options that should satisfy most setups.

			Deploying Azure App Service resources with a ZIP file

			One of the easiest options for deployment is archiving your application package as a ZIP file and sending it to Azure. To use it, you will have to prepare your application using the following structure (this is just an example; in reality, your structure will be more specific to your project):

			Root

			|---- Dir1

			|---- Dir2

			| entry_file (index.html / index.php / app.js / …)

			| package_management_file (project.json / bower.json / package.json / …)

			Tip

			Consider using build automation instead of packaging all the dependencies into an archive. This will save both time and bandwidth when deploying an application and will make the process much safer. See the rest of this section for more details.

			Once you have described the structure, you can package it using any kind of archiving tool (this can be a desktop application or a CLI command)—the important thing is to have a <filename>.zip archive that we can send using the Azure CLI. To do so, we will need to execute the following command:

			az webapp deployment source config-zip --resource-group <group-name> --name <app-name> --src <filename>.zip

			You will have to provide the name of your Azure App Service resource, its resource group, and the path to the archive you created. The following screenshot shows the result of running that command:

			
				
					[image: Figure 1.21 – Result of publishing a web app via Azure CLI]
				

			

			Figure 1.21 – Result of publishing a web app via Azure CLI

			Once your code is pushed and extracted, a new version of your application should be available and ready to serve the newest content.

			Enabling build automation

			A caveat of the preceding method of deployment is the need to prepare all the build artifacts upfront and send them to Azure. There are pros and cons to that approach, as outlined here:

			
					You are sending the final structure of your application and there are no additional steps needed, so any kind of process debugging should be minimal.

					Your application artifacts may be big, which can make the whole process slower as you need to pass all the files and wait until they are uploaded.

			

			As an alternative, you can enable a feature called build automation. This instructs Azure to use your project/package files and run commands such as npm install or dotnet build before running an application. To enable automation, use the following command:

			az webapp config appsettings set --resource-group <group-name> --name <app-name> --settings SCM_DO_BUILD_DURING_DEPLOYMENT=true

			If you enable automation, remember not to build your application on your side to avoid duplicated work.

			Running from the package

			There are some caveats of deploying your application as a ZIP file and then extracting files. As it is running, the extraction and overwriting of files may cause some undesired side effects such as locking or partial updates of the content. To avoid such artifacts, you can use a feature called Run from Package. First, you will have to enable the feature using the Azure CLI, like this:

			az webapp config appsettings set --resource-group <group-name> --name <app-name> --settings WEBSITE_RUN_FROM_PACKAGE="1"

			Then, we can once again use the command you are already familiar with, as shown here:

			az webapp deployment source config-zip --resource-group <group-name> --name <app-name> --src <filename>.zip

			Because Run from Package is enabled, instead of extracting your files, Azure App Service will mount the whole package as a read-only directory and run your application from it. As the application will be restarted, all the side effects should be mitigated.

			Creating Azure App Service resources using VS Code

			Microsoft Visual Studio is not the only available IDE that allows you to work with Azure App Service resources. Because this Azure service supports different technology stacks, including .NET, JavaScript (JS), PHP, Java, and so on, you can easily leverage its capabilities to host different websites using different runtimes. For instance, let's assume that we have the following PHP code that displays a Hello World message:

			
<?php
echo('Hello world from Azure App Service - PHP here!');
?>

			Such a simple PHP application can be easily created in any available IDE that supports the PHP language. For this exercise, I chose VS Code, an open source editor, as it can easily be extended using many different plugins. As you can see in the following screenshot, all you need is a single file within your project directory:

			
				
					[image: Figure 1.22 – PHP project structure]
				

			

			Figure 1.22 – PHP project structure

			To make things easier, you can install the following extensions:

			
				
					[image: Figure 1.23 – Extensions screen in VS Code]
				

			

			Figure 1.23 – Extensions screen in VS Code

			With the Azure App Service plugin installed, you will be able to easily deploy your applications from within the IDE, without the need to go to the portal or use other methods.

			Note

			Before the first use of these extensions, you may need to authenticate them. Follow the displayed instructions, and VS Code will connect to your subscriptions.

			Before we deploy our simple PHP application, we must create an Azure App Service resource. Go to the AZURE tab (you can also use the Ctrl + Shift + A shortcut) and find the APP SERVICE section. After that, click on the Create New Web App... button, as illustrated in the following screenshot:

			
				
					[image: Figure 1.24 – AZURE extension tab with app services]
				

			

			Figure 1.24 – AZURE extension tab with app services

			The wizard is a little bit different than in Microsoft Visual Studio, as it acts similarly to a command line, where you provide all fields and information one after another. In VS Code, you will have to enter the following:

			
					Subscription where an app should be deployed

					The Azure App Service resource name

					Runtime stack (.NET/Node.js/Python/PHP/Ruby/Java)

					App Service plan tier

			

			Note

			Using the creator described previously will not give the option to select a resource group and other, more advanced settings. If you want to have full control over the provisioning process, use Command Palette (Ctrl + Shift + P) and search for the Azure App Service: Create New Web App (advanced) option.

			In this example, I specified the following:

			
					Name: handsonchapter01-code

					PHP 8.0

					Free tier

			

			Once the provisioning is complete, VS Code will ask you whether to deploy the application. Select Deploy, and then choose a folder to deploy from, as illustrated in the following screenshot:

			
				
					[image: Figure 1.25 – Selecting a folder to deploy from]
				

			

			Figure 1.25 – Selecting a folder to deploy from

			Next, you will have to select a subscription and the exact instance of the web application in Azure (VS Code may not ask you for that input if it saved your previous choices). The following screenshot illustrates this:

			
				
					[image: Figure 1.26 – Selecting a web app as a deployment target]
				

			

			Figure 1.26 – Selecting a web app as a deployment target

			Select the instance and confirm the new deployment. Once everything is set and ready, you will see a notification informing you that you are now able to browse the website, as illustrated in the following screenshot:

			
				
					[image: Figure 1.27 – Deployment confirmation]
				

			

			Figure 1.27 – Deployment confirmation

			When you click on the Browse Website button, you will be forwarded to the web application you have just deployed. Here, you can see a working example:

			
				
					[image: Figure 1.28 – Working application in Azure]
				

			

			Figure 1.28 – Working application in Azure

			Note that this extension allows you to directly manage the service from within the IDE and gives you access to different features, including application settings, deployment slots, and even streaming logs.

			The important thing here is that by using the same path, you will be able to host a variety of different runtimes inside different Azure App Service resources. It doesn't matter whether it is a Java application, a Python script, or a Node.js backend—they are all supported and can be easily developed using IDEs such as VS Code.

			Working with different operating systems
and platforms

			Currently, App Service supports a couple of different configurations when it comes to selecting the operating system, runtime, and platform. Here are some of the possible options for running your website using App Service:

			
					.NET Core 2/3

					.NET 5/6

					ASP.NET 3.5/4.8

					Node.js 12/14

					PHP 7/8

					Java 8/11

					Python 3

					Static HyperText Markup Language (HTML) website

			

			Additionally, you can select a platform (32-bit or 64-bit), the HyperText Transfer Protocol (HTTP) version (1.1 or 2.0), an underlying operating system (Windows, Linux, or container), or even a Java web server powering your website. Let's start by selecting a proper operating system for our application.

			Selecting an operating system

			To select an operating system to run your web app, we must create a new application in Azure. Currently, there is no possibility to change this setting after an App Service resource is created.

			Note

			Be careful when planning to deploy web applications using different operating systems to the same resource group because of some hardware limitations—for example, once a Linux Azure App Service plan is deployed, you cannot create a Windows one next to it. You will need an additional resource group for that.

			To create a new website, go to the beginning of this chapter, where we discussed the way to deploy a web application using the Azure portal. Once you see the creator, look at the Basics tab. The Instance Details section presents the information we are interested in, as follows:

			
					Publish: This offers a way to deploy code or a Docker container. Choosing the Docker Container option will hide the Runtime stack parameter as it is no longer valid.

					Operating System: You can select either Windows (which is the most common option for .NET applications, suitable for running .NET Framework, Java, Node.js, or PHP sites) or Linux, which can be used for running an application written in .NET Core. Additionally, you can run Java, Node.js, PHP, and Python applications as well.

					Runtime stack: Depending on your technology stack, here, you can select exactly what you need to get started with your application.

			

			The choice is yours. Each operating system has different characteristics: Linux is perfect for running Python applications, as Windows has some performance issues regarding this language; on the other hand, you may have many websites written in .NET Framework, which is optimized for Windows systems. Each of the operating system options also has different pricing. Let's compare Windows and Linux here, assuming the West Europe region is chosen:

			
				
					[image: Figure 1.29 – App Service plan pricing comparison]
				

			

			Figure 1.29 – App Service plan pricing comparison

			As you can see, there are some differences between these two operating systems. More importantly, Linux does not currently support the Shared tier. The Isolated tier is something you should consider if in need of hardware isolation or strict network connectivity requirements. When you have considered all the pros and cons, you can create an App Service resource powered by the operating system of your choice.

			Selecting different platforms

			In the previous section, you learned how to choose a proper operating system for your application. This is, of course, not everything needed to run a website—you must also enable a specific language if you want to deploy (for example, PHP code). To do so, go to your App Service resource (you have many options by which to do this: either choose App Service from the Azure portal menu on the left and select your Web App resource or go to the resource group you created by choosing it from the Resource Groups blade) and then select the Configuration blade, as illustrated in the following screenshot:

			
				
					[image: Figure 1.30 – Configuration blade]
				

			

			Figure 1.30 – Configuration blade

			Initially, you could feel a bit overwhelmed by all those options available, but soon, as you gain more and more experience, all will become clear. You might have noticed the Click here to upgrade... notification here—some features, such as Scaling out or Always on, are only available from the B1 tier upward.

			Tip

			Remember that the Always on feature could become crucial in some specific scenarios, as it defines whether your application is always running or not (so it can become idle when no one uses it). As you will learn in the coming sections, enabling Always on is recommended when running, for example, continuous WebJobs or Azure Functions.

			Currently, we are interested in all options mentioning a programming language. These options are available in the General settings tab and include the following:

			
					.NET version

					PHP version

					Python version

					Java version

					Node version

					Ruby version

			

			As opposed to selecting the operating system, which cannot be changed later, you are free to change the stack powering your website anytime. This is unlikely in most cases, but if you ever need to do that, you will not have to recreate the whole App Service instance.

			Tip

			As mentioned earlier, always select the correct operating system powering your App Service instance, depending on the language that you chose for your application. While it is possible to run PHP or Python on Windows, selecting Linux is recommended as many libraries and packages can run only under this particular operating system.

			Let's now check how we can work with web application settings.

			Working with application settings

			The Configuration blade offers more than simply enabling or disabling available features. As you can see, you have three different tabs giving access to various features, as follows:

			
					Application settings: This tab contains settings used by your application while running. It allows you to set parameters available as environment variables and connection strings transmitted over an encrypted channel.

					General settings: This tab contains settings for controlling technology stack and platform settings such as WebSocket, HTTP version, or File Transfer Protocol (FTP) access.

					Path mapping: This is used so you can mount Azure files/blobs and access them from within your application without additional configuration.

			

			Tip

			Remember that Application settings features for .NET applications are injected at runtime and will override existing settings stored in your web.config file. When it comes to other platforms (.NET, Java, Node.js), settings from this section will be injected as environment variables to which you can refer. This is also true for Connection strings features.

			Application settings features in Azure are always hidden when stored. What is more, you can easily secure them by disallowing all users from accessing them or even integrating them with Azure Key Vault for further protection.

			Tip

			Connection strings features for platforms other than .NET are always prefixed with the appropriate connection type. There are four possibilities: SQLCONNSTR_, MYSQLCONNSTR_, SQLAZURECONNSTR_, and CUSTOMCONNSTR_.

			Now, as we learned a bit about various configuration settings, we can focus our attention on additional basic functionalities App Service offers.

			Choosing the right App Service plan and exploring what its features are

			We touched on this topic at the beginning of this chapter, so you should have an idea of what we are going to cover now. As you remember, when an App Service resource is created, you must select (or create) an App Service plan, which defines both available performance and additional features. Let's cover all three categories, this time focusing on the differences between each tier. To see your options without going to an Azure App Service creation screen, go to the Scale up (App Service plan) blade, as illustrated in the following screenshot:

			
				
					[image: Figure 1.31 – Scale up blade]
				

			

			Figure 1.31 – Scale up blade

			You will see a screen where all available tiers for the App Service plan will be displayed.

			Dev / Test App Service plans

			App Service plans designed for development and testing environments can be found in the Dev / Test category, as illustrated in the following screenshot:

			
				
					[image: Figure 1.32 – Selecting a tier]
				

			

			Figure 1.32 – Selecting a tier

			We have three different tiers available, as follows:

			
					Free (F1): The most basic option, with shared infrastructure, 1 gigabyte (GB) of memory available, and 60 minutes of compute per day. When using shared tiers, some features of App Service are unavailable (such as Always on). F1 is perfect for quick-testing or deploying an application for a presentation or demonstration. You will not be charged for using this App Service plan.

					Shared (D1): Like F1, but this also allows for setting a custom domain for your App Service resource. What is more, you can run your application four times longer than when using the Free tier. Still, this is a shared infrastructure, so some features cannot be used, and there will be other Azure customers on the same machine. Unfortunately, it's not available for Linux.

					Basic (B1): This is the first tier that can be considered for running production workloads. It guarantees dedicated A-series machines, and more memory and storage. It is also the first tier that you can scale—though only manually. The Basic tier comes with additional versions (B2 and B3), which provide more compute power.

			

			Note

			If you are obligated to run your application in Azure in services defined by a service-level agreement (SLA), remember that you cannot use the Free or Shared tiers, as they do not support this.

			Production App Service plans

			In this category, there are many more options when it comes to choosing different features available. Remember that, in terms of hardware, the Basic tier offers the very same performance as the Standard tier. You can see a list of the Production category tiers here:

			
				
					[image: Figure 1.33 – List of production tiers]
				

			

			Figure 1.33 – List of production tiers

			Here, we can choose between the following:

			
					Standard (S1): The same A-series as B1. What we are getting here is autoscaling, staging slots, backups, and the possibility to use Traffic Manager (which will be described in the coming chapters). This used to be the best tier for most production applications, as it supports blue-green deployment scenarios and can handle a bigger load (thanks to integration with Traffic Manager). Currently, the price/value ratio is in favor of Premium tiers.

					Premium (P1v2): Offers better performance and higher limits when it comes to scaling (a maximum of 20 instances, compared to 10 in Standard) and staging slots. You also have the option to choose P2 or P3. If you need the best price/value ratio, this is the tier you are looking for.

			

			Tip

			Remember that the maximum number of instances when scaling out in particular tiers is subject to availability. In most cases, these are only soft limits that can be raised after contacting support.

			In general, Standard should meet most requirements when it comes to performance, reliability, and automation possibilities. However, if you are going to run a very popular website in Azure, you may need Premium, as this offers more flexibility and better scalability.

			Note

			One of the most important things to remember is how scaling affects pricing. In general, you have two options: either you scale up (changing tier to a higher one) or scale out (by deploying multiple instances of the same application). If you are paying, for example, $40 for an S1 instance, when you scale out to 10 instances, you will pay $400 in total—$40 for each instance running.

			Isolated App Service plans

			Sometimes, you need even more than the Premium tier has to offer. Maybe you must isolate your application from an external network. Maybe you would like to isolate it on a hardware level. Maybe 20 instances are still not enough. Therefore, Microsoft introduced the Isolated category, which is a slightly different tier as it requires you to deploy the Azure App Service environment first and then provision isolated instances that will use it. This category is shown in the following screenshot:

			
				
					[image: Figure 1.34 – Isolated tiers for App Service plan]
				

			

			Figure 1.34 – Isolated tiers for App Service plan

			In this category, we have only one tier divided into three versions, as follows:

			
					Isolated (I1V2/I2V2/I3V2): It has the same virtual machines (VMs) as in the Premium tier (DV2). It also includes huge storage to store your files (1 terabyte (TB)), private app access, an integrated virtual network (so that you can access, for example, internal applications), and a more stable environment. This is the most expensive tier but offers the most when it comes to functionality and the range of features provided.

			

			Tip

			In general, the Isolated tier is the most stable one when it comes to handling a huge load. While Standard or Premium tiers become unresponsive quickly when utilization hits 100%, Isolated App Service resources need more time to return the HTTP 503 Service Unavailable response. Take this into account if you need a reliable service that cannot be broken easily.

			However, there is one thing worth remembering here—besides paying for each isolated instance, purchasing an Isolated plan will also require paying a stamp fee. A stamp fee is a price for isolating your hardware from other Azure customers. As of now, the cost is ~$1,071/month.

			Isolated V2 plan

			To avoid paying the stamp fee, you can buy an upgraded Isolated V2 plan. This eliminates additional costs due to the redesign of the underlying infrastructure. As for now, the cost for an I1 instance of the upgraded plan is ~$412.45/month.

			After describing details of different tiers of Azure App Service plans, we can now switch our attention to security providers that web apps offer and how they can integrate with your application.

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/image/B18017_Figure_1.24.jpg
> RESOURCE GROUPS

> HELP AND FEEDBACK

v APP SERVICE
> € MVP Sponsorship
> € Pay-As-You-Go - Private
> ¢ visual Studio Enterprise

OEBPS/image/B18017_Figure_1.7.jpg
App Service Plan

App Service plan pricing tier determines the location, features, cost and compute
Learn more &7

Linux Plan (West Europe) * @ (New) handsonbook-appserviceplan

Create new

Sku and size * Free F1
1 GB memory
Change size

OEBPS/image/B18017_Figure_1.32.jpg
Dev / Test Production Isolated
For less dem,émg workloads For most production workloads Advanced networking and scal

Recommended pricing tiers

100 total ACU
175 GB memory

Shared infrastructure
1 GB memory

A-Series compute equivalent
46.17 EUR/Month (Estimated)

60 minutes/day compute
Free

Included features Included hardware

Every app hosted on this App Service plan will have access to these features: Every instance of your App Service plan will include the following
configuration:

Custom domains

Memor.
Configure and purchase custom domain names. Y

Memory available to run applications deployed and runni
App Service plan.

OEBPS/image/B18017_Figure_1.15.jpg
©-5 38 [

Search Solution Explorer (Ctrl+)

[l
i & Build
Rebuild
Clean
View
Analyze and Code Cleanup
Pack
@& Publish...

Overview

OEBPS/image/B18017_Figure_1.23.jpg
% File Edit Selecton View Go Run Terminal Help Extension: Azure App Service - HandsOnAzure2.0 - Visual Studio Code = o X

Extension: Azure App Service X (00} s EXTENSIONS: MARKETPLACE

Azure App Service ms-auretoolsyscode-azreappsenvice
Microsoft | @ 689,660 | * %%k % | Repository | License | v0.22

An Azure App Service management extension for Visual Studio Code.

m £ This extension is enabled globally.

Details ~Feature Contributions Changelog ~ Dependencies

Azure App Service for Visual Studio Code (Preview) a V<;>

Azure App Service

Azure App Service
An Azure App Service management ext.
Microsoft

Angular Langua... 1220 ®25M X35
Editor services for Angular templates

Angular
Azure Account 032 @23M k25

A common Sign-In and Subscription m...
Microsoft

Azure Functions 14.1 DI3K K4
An Azure Functions extension for Visua..

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/image/B18017_Figure_1.31.jpg
“3 Networking
{4 Scale up (App Service plan)
B, Scale out (App Service plan)

@ WebJobs

OEBPS/image/B18017_Figure_1.8.jpg
Create Web App
Basis Deployment (Preview) ~Monitoring ~ Tags Review + create

GitHub Actions is an automation framework that can build, test, and deploy your app whenever a new commit is made in
your repository. If your code is in GitHub, choose your repository here and we will add a workflow file to automatically
deploy your app to App Service. If your code is not in GitHub, go to the Deployment Center once the web app is created
to set up your deployment. Learn more &'

Deployment settings
Continuous deployment (® Disable () Enable
A\ Configuring deployment with GitHub Actions during app creation isn't supported with your selections of operating

system and App Service plan. If you want to keep these selections, you can configure deployment with GitHub Actions
after the web app is created.

OEBPS/image/B18017_Figure_1.14.jpg
https://localhost

(u] HandsOnChapter01 Home Privacy

- Welcome

Learn about building Web apps with ASP.NET Core.

OEBPS/image/B18017_Figure_1.9.jpg
Create Web App

Basics Deployment (Preview) ~ Monitoring Tags ~ Review + create

Azure Monitor application insights is an Application Performance Management (APM) service for developers and
DevOps professionals. Enable it below to automatically monitor your application. It will detect performance anomalies,
and includes powerful analytics tools to help you diagnose issues and to understand what users actually do with your
app. Learn more &'

Enable Application Insights * ® No () ves

Application Insights code-less monitoring isn't supported with your selections of subscription, runtime stack, &'
operating system, publish type, region, or resource group. If you want to keep these selections, you can use the
Application Insights SDK to monitor your app.

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/B18017_Figure_1.18.jpg
Publish

Select existing or create a new Azure App Service

Target

Specific target

App Service

Subscription

MVP Sponsorship

View

Resource group

Search
hands

App Service instances

Microsoft account
kamil@thecloudtheory.com

4 W handsonbook-rg

b Wl Deployment Slots

OEBPS/image/B18017_Figure_1.22.jpg
= indecphp U X
Chapterot-code > ® indexphp.
1 app

2 echo(Hello world from Azure App Service - PP herel’);
F

OEBPS/image/B18017_Figure_1.5.jpg
App Service Plan

App Service plan pricing tier determines the location, features, cost and compute
Learn more &7

Linux Plan (West Europe) * @ (New) handsonbook-appserviceplan

Create new

Sku and size *

New App Service Plan

Name *

handsonbook-appservicepla

Review + create < Previous

OEBPS/image/Packt_Logo_New.png
<packb

OEBPS/image/B18017_Figure_1.17.jpg
Publish

Which Azure service would you like to use to host your application?

Target

Specific target

) [Cg)
@ & ®

Azure App Service (Windows)
Publish your application code to a managed infrastructure that is easy to scale

Azure App Service (Linux)
Publish your application code to a managed infrastructure that is easy to scale

Azure App Service Container
Publish your application as a Docker image to Azure Container Registry and run
Service

OEBPS/image/Cover.png
<packh

Azure
for Developers

Implement rich Azure Paa$S ecosystems using
containers, serverless services, and storage solutions

<> KAMIL MRZYGtOD

OEBPS/image/B18017_Figure_1.34.jpg
X

Dev / Test
For less demanding workloads
Recommended pricing tiers

210 total ACU
GB memory

Dv2-Series compute equivalent
246.24 EUR/Month (Estimated)

-

Production
For most production workloads

420 total ACU
7 GB memory

Dv2-Series compute equivalent
492.49 EUR/Month (Estimated)

Isolated
Advanced networking and scale

840 total ACU
14 GB memory

Dv2-Series compute equivalent
984.97 EUR/Month (Estimated)

OEBPS/image/B18017_Figure_1.20.jpg
Home page - HandsOnChapter01

G & Notseaure | handsonbookazur... @

HandsOnChapter01 Home Privacy

Welcome

Learn about

OEBPS/image/B18017_Figure_1.6.jpg
Spec Picker

Dev / Test Production Isolated
Erien dema,{,mg Ty For most production workloads Advanced networking and scale
0 The first Basic (B1) core for Linux is free for the first 30 days!
Recommended pricing tiers
210 total ACU 420 total ACU 840 total ACU
3.5 GB memory 7 GB memory 14 GB memory
Dv2-Series compute equivalent Dv2-Series compute equivalent Dv2-Series compute equivalent
70.80 EUR/Month (Estimatcd) 142.21 EUR/Month (Estimatcd) 284.41 EUR/Month (Estimatcd)
195 minimum ACUNCPU 195 minimum ACUNCPU 195 minimum ACUNCPU
8 GB memory 16 GB memory 32 GB memory
pAe) 4vCPU 8vCPU
109.58 EUR/Month (Estimated) 219.16 EUR/Month (Estimated) 438.31 EUR/Month (Estimated)
additional options
Included features Included hardware
Every app hosted on this App Service plan will have access to these Every instance of your App Service plan will include the following hardware
features: configuration:
‘Custom domains / SSL Azure Compute Units (ACU)
Configure and purchase custom domains with SNI and IP SSL B Dedicated compute resources used to run applications deployed

bindings

in the App Service Plan. Leam more

OEBPS/image/B18017_Figure_1.21.jpg
D:\TheCloudTheory\HandsOnAzure2.@\Chaptere1\bin\Debug\net5.@\publish>az webapp deployment
src Chapterel.zip

Getting scm site credentials for zip deployment

Starting zip deployment. This operation can take a while to complete ...

Deployment endpoint responded with status code 202

{

“author_email®: "N/A",

true,

"Push-Deployer”,
"2021-08-04T13:12:05.2636585Z",
"6d609790-fc25-42fa-9aae-a35b65e56352",
is_readonly": true,
is_temp": false,
“last_success_end_tim
“log_url
"message

'2021-08-84T13:12:05.2636585Z",
fttps://handsonbook . scm. azurewebsites. net/api/deployments/latest/log",
eated via a push deployment”,

"progress” S
"received time": "2021-08-04T13:12:00.7216981Z",
“site_name’ ndsonbook™,

"start_time": "2021-08-04T13:12:02.1029746Z",

OEBPS/image/B18017_Figure_1.33.jpg
X

Dev / Test
For less demanding workloads

Recommended pricing tiers

100 total ACU
175 GB memory

A-Series compute equivalent
61.56 EUR/Month (Estimated)

840 total ACU
14 GB memory

Dv2-Series compute equivalent
492.49 EUR/Month (Estimated)

195 minimum ACUACPU
32 GB memory

8vCPU

812.60 EUR/Month (Estimated)

™
-

Production
For most production workloads

210 total ACU
35 GB memory

Dv2-Series compute equivalent
123.12 EUR/Month (Estimated)

195 minimum ACUACPU
8GB memory

2vePU

203.15 EUR/Month (Estimated)

Isolated
Advanced networking and scale

420 total ACU
7 GB memory

Dv2-Series compute equivalent
246.24 EUR/Month (Estimated)

195 minimum ACUACPU
16 GB memory

4vcPu

406.30 EUR/Month (Estimated)

OEBPS/image/B18017_Figure_1.16.jpg
Publish

Where are you publishing today?

Target

A Azure

Publish your application to the Microsoft cloud

MT, Docker Container Registry
@ pubiisn your application to any supported Container

OEBPS/image/B18017_Preface_new.jpg
Software/Hardware covered in the book

OS requirements

.NET 6

*Windows, macOS, or Linux

Docker

*Windows, macOS, or Linux

VS Code

*Windows, macOS, or Linux

Visual Studio 2022 Community edition

Windows

OEBPS/image/B18017_Figure_1.29.jpg
BASIC STANDARD | PREMIUM |ISOLATED
Price per hour United States dollars
(Linux) (USD) $0.018 $0.095 $0.115 $0.285
Price per hour 1 ¢, 55 $0.10 $0.20 $0.30

(Windows)

OEBPS/image/B18017_Figure_1.11.jpg
Create a new project

Recent project templates

B Console App (NET Core)

c#
B NuUnit Test Project (NET Core) c#
Mobile App (Xamarin.Forms) c#

Search for templates (Alt+S)

Al languages

Al platforms

ﬂ.‘» AASP.NET Core Web Application

"DV project templates for creating ASP.NET Core web apps and web APls for
Windows, Linux and macOS using .NET Core or NET Framework. Create web
apps with Razor Pages, MVC, or Single Page Apps (SPA) using Angular, React,

or React + Redux.

C# | Linux

a5k Biazor Aop

macos

Windows

Cloud

Service

Al project types

Web.

OEBPS/image/B18017_Figure_1.2.jpg
Microsoft Azure £ Web App

Services —Seeall

—+ create a resource
(@ Web Application Firewall policies (WAF)

A rome @ App Services

Dashboard <> Function App

= All services A static web Apps

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/toc.xhtml

		

		Contents

			

						Second Edition

						Azure for Developers

Second Edition

						Contributors

						About the author

						About the reviewer

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Download the color images

								Conventions used

								Get in touch

								Share Your Thoughts

					

				

						Part 1: PaaS and Containers

						Chapter 1: Web Applications in Azure – Azure App Service

					

								Technical requirements

								Creating and deploying an Azure App

Service resource

							

										Creating an Azure App Service resource using the Azure portal

										Creating an Azure App Service resource using Visual Studio

										Deploying Azure App Service resources using the Azure CLI

										Creating Azure App Service resources using VS Code

							

						

								Working with different operating systems

and platforms

							

										Selecting an operating system

										Selecting different platforms

							

						

								Choosing the right App Service plan and exploring what its features are

							

										Dev / Test App Service plans

										Production App Service plans

										Isolated App Service plans

										Isolated V2 plan

							

						

								Securing App Service resources using different security providers

							

										Configuring authentication in the Azure portal

							

						

								Configuring networking for Azure App Service

							

										The Networking blade

										Access Restrictions

										Private endpoints

										VNet integration

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 2: Using Azure Container Registry for Storing and Managing Images

					

								Technical requirements

								Different hosting options for Azure Container Registry

							

										Deploying ACR with the Azure portal

										Deploying ACR using the Azure CLI

							

						

								Registries, repositories, and images

							

										Working with repositories and images

										Granting permissions for pulling/pushing images

										Tagging and versioning

										Zone redundancy and geo-replication

										ACR Tasks

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 3: Deploying Web Applications as Containers

					

								Technical requirements

								Different ways of hosting containerized applications

								Azure App Service – a web app for containers

							

										Preparing an application

										Using a container image in an Azure App Service plan

							

						

								Azure Kubernetes Service – a managed Kubernetes service

							

										Kubernetes and managed cluster basics

										Azure Kubernetes Service deployment

										Application deployment

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 4: Using Azure Container Instances for Ad Hoc Application Hosting

					

								Technical requirements

								Provisioning and configuring a service

								Container groups as the main unit of work

								Security baseline and considerations

								Summary

								Questions

								Further reading

					

				

						Chapter 5: Building a Search Engine with Azure Cognitive Search

					

								Technical requirements

								Creating an Azure Cognitive Search instance

							

										Using the Azure portal

							

						

								A full-text search in Azure Cognitive Search

							

										Sending a request

							

						

								Linguistic analysis in a full-text search

							

										Analyzers in Azure Cognitive Search

							

						

								Indexing in Azure Cognitive Search

							

										Importing more data

							

						

								Cognitive Search – adding AI to the indexing workload

							

										Configuring cognitive skills

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 6: Mobile Notifications with Notification Hubs

					

								Technical requirements

								Reasons to use Notification Hubs

							

										Challenges for application design

							

						

								Push notification architecture

							

										Direct connection

										Queued communication

										Triggered communication

							

						

								Registering a device within Notification Hubs

							

										Notification Hubs device registration

							

						

								Sending notifications to multiple vendors

							

										Sending a test notification

										Using the SDK to send a notification

							

						

								Sending a rich content notification through Notification Hubs

							

										Creating and sending a rich content notification

							

						

								Summary

								Questions

								Further reading

					

				

						Part 2: Serverless and Reactive Architecture

						Chapter 7: Serverless and Azure Functions

					

								Technical requirements

								Understanding Azure Functions

							

										Being "serverless"

										The concepts of Azure Functions

										Scaling

							

						

								Configuring the local environment for developing Azure Functions

							

										Starting with Azure Functions locally

							

						

								Creating a function

							

										Using Visual Studio Code

										Using the Azure portal

							

						

								The features of Azure Functions

							

										Platform features

										Security

										Monitor

										host.json

										Publish

							

						

								Integrating functions with other services

							

										The Function file

										Input/output bindings

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 8: Durable Functions

					

								Technical requirements

								What is Durable Functions?

							

										Orchestrations and activities

										Orchestration client

										Orchestration history

							

						

								Working with orchestrations

							

										Sub-orchestrations

							

						

								Timers, external events, and error handling

							

										Timers

										External events

										Error handling

							

						

								Eternal and singleton orchestrations, stateful entities, and task hubs

							

										Eternal orchestrations

										Singleton orchestrations

										Stateful entities

										Task hubs

							

						

								Advanced features – instance management, versioning, and high availability

							

										Instance management

										Versioning

										High availability

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 9: Integrating Different Components with Logic Apps

					

								Technical requirements

								What is Azure Logic Apps?

							

										Azure logic apps – how they work

										Azure Logic Apps – advantages

							

						

								Connectors for logic apps

							

										Connector types

							

						

								Creating logic apps and integrating services

							

										Creating logic apps in the Azure portal

										Working with Azure logic apps in Visual Studio Code

							

						

								B2B integration

							

										Starting B2B integration in Azure Logic Apps

							

						

								Integrating with virtual networks

								Summary

								Questions

								Further reading

					

				

						Chapter 10: Swiss Army Knife – Azure Cosmos DB

					

								Technical requirements

								Understanding Cosmos DB

							

										Creating a Cosmos DB instance in the portal

										Pricing in Azure Cosmos DB

							

						

								Partitioning, throughput, and consistency

							

										Partitions in Azure Cosmos DB

										Throughput in Azure Cosmos DB

										Consistency in Azure Cosmos DB

							

						

								Azure Cosmos DB models and APIs

							

										SQL

										MongoDB

										Graph

										Table

										Cassandra

							

						

								Capacity, autoscale, and optimization

							

										Container throughput

										Database level throughput

										Firewall and virtual networks

										Azure Functions

										Stored procedures

										User-defined functions and triggers

										Autoscale in Azure Cosmos DB

							

						

								Using change feed for change tracking

								Summary

								Questions

								Further reading

					

				

						Chapter 11: Reactive Architecture with Event Grid

					

								Technical requirements

								Azure Event Grid and reactive architecture

							

										Reactive architecture

										Topics and event subscriptions

							

						

								Connecting services through Azure Event Grid

							

										Creating Azure Event Grid in the Azure Portal

										Azure Event Grid security

										Creating a subscription

							

						

								Using different schemas in Event Grid

							

										Event Grid schema

										The CloudEvents schema

										Custom schema

							

						

								Receiving and filtering events

							

										EventGridTrigger in Azure Functions

										Testing Azure Event Grid and Azure Functions

							

						

								Summary

								Questions

								Further reading

					

				

						Part 3: Storage, Messaging, and Monitoring

						Chapter 12: Using Azure Storage – Tables, Queues, Files, and Blobs

					

								Technical requirements

								Using Azure Storage in a solution

							

										Different Azure Storage services

										Different types of storage accounts

										Securing Azure Storage

										Replication

							

						

								Storing structured data with Azure Storage tables

							

										Creating an Azure Storage service

										Managing Table storage

										Storing data in Table storage

										Querying data in Table storage

										Table API in Azure Cosmos DB

							

						

								Implementing fully managed file shares with Azure Files

							

										Azure Files concepts

										Working with Azure Files

										Blob storage versus Azure Files

							

						

								Using queues with Azure Queue Storage

							

										Queue Storage features

										Developing an application using Queue Storage

							

						

								Using Azure Storage blobs for object storage

							

										Blob storage concepts

										Inserting data into Blob Storage

										Containers and permissions

										Blob storage – additional features

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 13: Big Data Pipeline – Azure Event Hubs

					

								Technical requirements

							

										Azure Event Hubss service and concepts

										Azure Event Hubss concepts

										Azure Event Hubss durability

							

						

								Working with Azure Event Hubss

							

										Creating an Azure Event Hubss instance in the Azure portal

										Working with Azure Event Hubss in the portal

										Developing applications with Azure Event Hubs

							

						

								Federation – events replication

								Azure Event Hubs security

							

										Private Link

										Resource isolation

										IP filters and networking

							

						

								Azure Event Hubs Capture feature

							

										What is an Azure Event Hubs Capture?

										Enabling Event Hub Capture

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 14: Real-Time Data Analysis – Azure Stream Analytics

					

								Technical requirements

								Introducing Azure Stream Analytics

							

										Stream ingestions versus stream analysis

										Azure Stream Analytics concepts

							

						

								Defining available input and output types

							

										Creating an Azure Stream Analytics instance in the Azure portal

							

						

								Querying data using theAzure Stream Analytics query language

							

										Writing a query

							

						

								Event ordering, checkpoints, and replays

							

										Event ordering

										Checkpoints and replays

							

						

								Common query patterns

							

										Multiple outputs

										Data aggregation over time

										Counting unique values

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 15: Enterprise Integration – Azure Service Bus

					

								Technical requirements

								Azure Service Bus fundamentals

							

										Azure Service Bus versus other messaging services

										Azure Service Bus and Azure Queue Storage

										Azure Service Bus in the Azure portal

										Queues, topics, and relays

										Azure Service Bus design patterns

										Developing solutions with the Azure Service Bus SDK

							

						

								Azure Service Bus security

							

										MI

										RBAC

							

						

								Advanced features of Azure Service Bus

							

										Dead lettering

										Sessions

										Transactions

							

						

								Handling outages and disasters

							

										DR

										Handling outages

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 16: Using Application Insights to Monitor Your Applications

					

								Technical requirements

								Using the Azure Application Insights service

							

										Logging data in the cloud

										Azure Application Insights fundamentals

										Creating an Azure Application Insights instance in the portal

							

						

								Monitoring different platforms

							

										.NET

										Node.js

										Azure Functions

							

						

								Using the Logs module

							

										Accessing the Logs module

							

						

								Automating Azure Application Insights

							

										Alerts

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 17: SQL in Azure – Azure SQL

					

								Technical requirements

								Differences between Microsoft SQL Server and Azure SQL

							

										Azure SQL fundamentals

										Advanced Azure SQL features

										SQL Server on VMs

							

						

								Creating and configuring an Azure SQL Database instance

							

										Creating an Azure SQL Database instance

										Azure SQL features in the portal

							

						

								Security features of Azure SQL

							

										Firewall

										Microsoft Defender for SQL

										Data classification

										Auditing

										Dynamic Data Masking

							

						

								Scaling Azure SQL

							

										Single database

										Elastic pool

										Read scale-out

										Sharding

							

						

								Monitoring and tuning

							

										Monitoring

										Tuning

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 18: Big Data Storage – Azure Data Lake

					

								Technical requirements

								Understanding ADLS

							

										ADLS fundamentals

										Creating an ADLS instance

							

						

								Storing data in ADLS Gen2

							

										Using the Azure portal for navigation

										Using SDKs

							

						

								Security features of ADLS Gen2

							

										Authentication and authorization

										Network isolation

							

						

								Best practices for working with ADLS

							

										Performance

										Security

										Resiliency

										Data structure

							

						

								Summary

								Questions

								Further reading

					

				

						Part 4: Performance, Scalability, and Maintainability

						Chapter 19: Scaling Azure Applications

					

								Technical requirements

								Autoscaling, scaling up, scaling out

							

										Autoscaling

										Scaling up and scaling out

							

						

								Scaling Azure App Service

							

										Manual scaling

										Autoscaling

							

						

								Scaling Azure Functions

							

										Scaling serverless applications

										Azure Functions scaling behavior

							

						

								Scaling Azure Cosmos DB

							

										Autoscaling for provisioned throughput

							

						

								Scaling Azure Event Hubs

								Summary

								Questions

								Further reading

					

				

						Chapter 20: Serving Static Content Using Azure CDN

					

								Technical requirements

								Azure CDN fundamentals

							

										Working with CDNs

										Creating an Azure CDN in the portal

							

						

								Optimization and caching

							

										Configuring an endpoint

							

						

								Developing applications using Azure CDN

							

										Configuring Azure App Service with Azure CDN

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 21: Managing APIs with Azure API Management

					

								Technical requirements

								The main concepts of Azure API Management

							

										API gateway

										Management plane

										Developer portal

							

						

								Guidelines for designing APIs

								Basics of Azure API Management policies with examples

							

										Policy schema

										Provisioning the Azure API Management service

							

						

								Automated management of the service

								Summary

								Questions

								Further reading

					

				

						Chapter 22: Building a Scalable Entry Point for Your Service with Azure Front Door

					

								Technical requirements

								When to use Azure Front Door

								Load balancing with Azure Front Door

								Implementing URL rewrites and redirects

								Summary

								Questions

								Further reading

					

				

						Chapter 23: Azure Application Gateway as a Web Traffic Load Balancer

					

								Technical requirements

								Azure Application Gateway features

							

										WAF

										Load balancing

										Multiple-site hosting

										Rewriting URLs and headers

							

						

								Configuring routing

								Integrating with web applications

								URL rewriting and redirects

								Summary

								Questions

								Further reading

					

				

						Chapter 24: Distributing Load with Azure Traffic Manager

					

								Technical requirements

								Using Azure Traffic Manager

							

										Functions of Azure Traffic Manager

										Creating Azure Traffic Manager in the Azure portal

										Working with Azure Traffic Manager in the Azure portal

							

						

								Endpoint monitoring

							

										nslookup

										Traffic view

							

						

								Summary

								Questions

								Further reading

					

				

						Chapter 25: Tips and Tricks in Azure

					

								Technical requirements

								Using the Azure CLI

								Using Cloud Shell

								Automating infrastructure deployments with ARM templates and Azure Bicep

							

										A word from the reviewer

							

						

								Using continuous deployment for automated deployments to Azure

								Summary

								Questions

								Further reading

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/image/B18017_Figure_1.3.jpg
Create Web App

Deployment (Preview) ~ Monitoring ~ Tags ~ Review + create

App Service Web Apps lets you quickly build, deploy, and scale enterprise-grade web, mobile, and API apps running on
any platform. Meet rigorous performance, scalability, security and compliance requirements while using a fully managed
platform to perform infrastructure maintenance. Learn more &

Project Details

Select a subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage
all your resources.

Subscription * @ [MvP sponsorship V]

Resource Group * @ [handsonbook-rg <]
Create new

OEBPS/image/B18017_Figure_1.28.jpg
(@ @ https//handsonchapter01-code.azurewebsites.net

OEBPS/image/B18017_Figure_1.1.jpg
_ crosoft Azure R Search resources, services, and docs (G+/)

« Dashboard >

Create a resource

Get started [, Bearch services and marketplace
Allservices
Recently created Sopularoffers []
% FAVORITES opular offers See more in Marketplace
Allresources &) Categories Windows Server 2019 Datacenter
Create | Learn more
() Resource groups Al + Machine Learning

Create | Learn more

@ App Services Analytics E Ubuntu Server 20.04 LTS

B SQL databases Blockchain

& Azure Cosmos DB Compute

Create | Docs | MS Learn

K3 virtual machines Containers

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/image/B18017_Figure_1.10.jpg
Microsoft Azure

- Create a resource

A Home

Dashboard

All services

% FAVORITES
(4] Resource groups
@ App Services

B SQL databases

£ Search resources, services, and docs (G+/)

Dashboard >

All resources =
Katalog domysiny

+ Create £ Manageview v () Refresh ¥

handg Subscription == all

Showing 1to 1 of 1 records. [Show hidden types ©

[J Name 1

[J B handsonbook-appserviceplan

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/B18017_Figure_1.4.jpg
Instance Details

Need a database? Try the new Web + Database experience. &'

Name *

Publish *

Runtime stack *

Operating System *

Region *

[handsonbook

v

.azurewebsites.net

(® code (O Docker Container

[NETS

]
® tinux O Windows
[West Europe v]

@ Not finding your App Service Plan? Try a different region.

OEBPS/image/B18017_Figure_1.27.jpg
Deployment to *handsonchapter01-code” completed

Source: Azure App .

&

OEBPS/image/B18017_Figure_1.30.jpg
1 handsonchapter01-code | Configuration
BT o senvice

« O Refresh B save X Discard Q Lea

¢ Tos * ' Click here to upgrade to a higher SKU and

2 Diagnose and solve problems Application settings ~ General settings

@ Ssecurity L)
Application settings

£ Events (preview)
Application settings are encrypted at rest and
Deployment using the controls below. Application Settings

& Quickstart o .
—+ New application setting < Show value

=5 Depl t slot:
¥ Deployment slots - — -
\ Y Filter application settings

@ Deployment Center

Name
Settings
APPINSIGHTS_INSTRUMENTATIONKEY @

I} Configuration
g
APPLICATIONINSIGHTSAGENT_EXTENSION.E @

& Authentication
WEBSITE_HTTPLOGGING_RETENTION_DAYS @

OEBPS/image/B18017_Figure_1.19.jpg
“ovme T publish

Connected Services Deploy your app to a folder, lIS, Azure, or another destination. More info

_ [8 handsonbook - Web Deploy . ‘ Publish
New Edit Rename Delete Restore
Summary Actions
Site URL http://handsonbookazurewebsitesnet [T Preview changes
Resource group handsonbook-rg Manage in Cloud Explorer
Configuration Release # Manage Azure App Service settings

Target framework netcoreapp3.1 #* Manage in Azure portal

OEBPS/image/B18017_Figure_1.26.jpg
index.php - HandsOnAzure2.0 - Visual Studio Code

Select Web App

+ Create new Web App...
+ Create new Web App... Advanced

OEBPS/image/B18017_Figure_1.13.jpg
Create a new ASP.NET Core web application

NET Core ~ | ASPNET Core 3.1 -
\1 Empty Authentication
D
An empty project template for creating an ASP.NET Core application. This template does not have any content in No Authentication
it
g Change
E API
A project template for creating an ASPNET Core application with an example Controller for a RESTrul HTTP
service. This template can also be used for ASP.NET Core MVC Views and Controllers. Advanced

Web Application Configure for HTTPS

A project template for creating an ASP.NET Core application with example ASP.NET Razor Pages content. [[] Enable Docker Support

(Requires Docker Desktop)
Web Application (Model-

jew-Controller)

&

Linux
A project template for creating an ASPNET Core application with example ASP.NET Core MVC Views and

Controllers. This template can also be used for RESTful HTTP services.] Enable Razor runtime complation

OEBPS/Fonts/CourierStd.otf

OEBPS/image/B18017_Figure_1.12.jpg
Configure your new project

ASP.NET Core Web Application ¢ Lnux macOS Windows Cloud Service

Project name

Location

DATheCloudTheory\HandsOnAzure2.0 - =

Solution name @

Place solution and project in the same directory

OEBPS/image/B18017_Figure_1.25.jpg
index.php - HandsOnAzure2.0 - Visual Studio Code

Kelect the folder to deploy

Brow ntly use

HandsOnAzure2.0 d:\TheCloudTheory\HandsOnAzure2.0

