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 Er ist Autor des viel verkauften Buches Python Machine Learning, das 2016 mit dem Preis ACM Computing Reviews Best of ausgezeichnet und in viele Sprachen übersetzt wurde, unter anderem Deutsch, Koreanisch, Chinesisch, Japanisch, Russisch, Polnisch und Italienisch.

 In seiner Freizeit leistet Sebastian aktiv Beiträge zu Open-Source-Projekten und die von ihm implementierten Verfahren werden erfolgreich in Mustererkennungswettbewerben wie z.B. Kaggle eingesetzt.

 Ich möchte diese Gelegenheit nutzen, der großartigen Python-Community und den Entwicklern der Open-Source-Pakete meinen Dank auszusprechen, die mir dabei geholfen haben, die perfekte Umgebung für wissenschaftliche Forschung und Data Science einzurichten. Außerdem möchte ich meinen Eltern danken, die mich bei all meinen beruflichen Zielen, die ich so leidenschaftlich verfolgt habe, stets ermutigt und unterstützt haben.

Mein besonderer Dank gilt den Hauptentwicklern von scikit-learn und TensorFlow. Als jemand, der selbst aktiv an diesem Projekt beteiligt war, hatte ich das Vergnügen, mit tollen Leuten zusammenarbeiten zu dürfen, die sich nicht nur mit Machine Learning und Deep Learning auskennen, sondern auch hervorragende Programmierer sind.





 Vahid Mirjalili erlangte seinen Doktortitel als Maschinenbauingenieur an der Michigan State University mit einer Arbeit über neue Verfahren für Computersimulationen molekularer Strukturen. Er interessiert sich leidenschaftlich für Machine Learning und trat dem iProBe-Lab der Michigan State University bei, wo er Anwendungen des Machine Learnings in verschiedenen Computer-Vision-Projekten (»maschinelles Sehen«) erforschte. Nach mehreren produktiven Jahren am iProBe-Lab und in der Forschung ist Vahid Mirjalili seit Kurzem beim Unternehmen 3M als Forscher tätig, wo er seine Kenntnisse einsetzen kann, um moderne Machine-Learning- und Deep-Learning-Verfahren auf Aufgabenstellungen aus der Praxis anzuwenden.

 Ich möchte meiner Frau Taban Eslami danken, die mich während meiner Laufbahn stets unterstützt und ermutigt hat. Besonderer Dank gebührt meinen Mentoren Nikolai Priezjev, Michael Feig und Arun Ross, die mich während des Doktorats unterstützt haben, sowie meinen Professoren Vishnu Boddeti, Leslie Kuhn und Xiaoming Liu, die mich so vieles gelehrt haben und mich ermutigten, meiner Leidenschaft zu folgen.






 Über die Korrektoren

 Raghav Bali ist als leitender Data Scientist bei einem der weltweit größten Unternehmen im Gesundheitswesen tätig. Er erforscht und entwickelt für im Gesundheits- oder Versicherungswesen tätige Unternehmen Lösungen, die auf Machine Learning, Deep Learning und der Verarbeitung natürlicher Sprache beruhen. Davor hat er sich bei Intel damit befasst, datengetriebene IT-Lösungen zu ermöglichen, die Deep Learning, die Verarbeitung natürlicher Sprache und klassische statistische Verfahren nutzen. Bei American Express war er auch im Finanzwesen tätig und hat digitale Lösungen für die Kundenbindung entwickelt.

 Raghav Bali hat mehrere Bücher bei bedeutenden Verlagen veröffentlicht. Das letzte befasst sich mit den in der Erforschung des Transfer Learnings jüngst erzielten Fortschritten.

 Raghav Bali verfügt über einen Master in Informationstechnologie des International Institute of Information Technology (Bangalore). Er liest gerne und ist ein Fotonarr, wenn er nicht gerade damit beschäftigt ist, Aufgaben zu lösen.

 Motaz Saad hat einen Doktor in Informatik der University of Lorraine. Er liebt Daten und mag es sehr, mit ihnen zu experimentieren. Er beschäftigt sich seit mehr als zehn Jahren mit der Verarbeitung natürlicher Sprache, Computerlinguistik, Data Science und Machine Learning. Derzeit ist er als Assistant Professor am Fachbereich Informationstechnologie der Islamischen Universität Gaza tätig.


 Über den Fachkorrektor der deutschen Ausgabe

 Friedhelm Schwenker ist Privatdozent für Informatik (Fachgebiet: Machine Learning) an der Universität Ulm. Er hat im Bereich der Angewandten Mathematik promoviert und ist seit vielen Jahren im Bereich Machine Learning in Forschung und Lehre tätig. Seine Forschungsgebiete sind Pattern Recognition, Data Mining und Machine Learning mit Schwerpunkt Neuronale Netze. In jüngster Zeit befasst er sich auch mit Anwendungen des Machine Learning im Affective Computing. Er ist Editor von 19 Proceedingsbänden und Special Issues sowie Autor von 200+ Journal- und Konferenzartikeln.


 Einleitung

 Aus den Nachrichten und den sozialen Medien ist Ihnen vermutlich bekannt, dass das Machine Learning zu einer der spannendsten Technologien der heutigen Zeit geworden ist. Große Unternehmen wie Google, Facebook, Apple, Amazon, IBM und viele andere investieren aus gutem Grund kräftig in die Erforschung des Machine Learnings und dessen Anwendung. Auch wenn man manchmal den Eindruck bekommt, dass »Machine Learning« als leeres Schlagwort gebraucht wird, handelt es sich doch zweifellos nicht um eine Modeerscheinung. Dieses spannende Fachgebiet eröffnet viele neue Möglichkeiten und ist im Alltag schon nicht mehr wegzudenken. Denken Sie an die virtuellen Assistenten von Smartphones, Produktempfehlungen für Kunden in Onlineshops, das Verhindern von Kreditkartenbetrug, Spamfilter in E-Mail-Programmen oder die Erkennung und Diagnose von Krankheitssymptomen – die Liste ließe sich beliebig lang fortsetzen.

 Einstieg in Machine Learning

 Wenn Sie zu einem Praktiker des Machine Learnings und einem besseren Problemlöser werden möchten oder vielleicht sogar eine Laufbahn in der Erforschung des Machine Learnings anstreben, dann ist dies das richtige Buch für Sie. Für einen Neuling können die dem Machine Learning zugrunde liegenden theoretischen Konzepte zunächst einmal erdrückend wirken. In den vergangenen Jahren sind aber viele praxisorientierte Bücher mit leistungsfähigen Lernalgorithmen erschienen, die Ihnen den Start erleichtern.

 Theorie und Praxis

 Die Verwendung praxisorientierter Codebeispiele dient einem wichtigen Zweck: Konkrete Beispiele verdeutlichen die allgemeinen Konzepte, indem das Erlernte unmittelbar in die Tat umgesetzt wird. Allerdings darf man dabei nicht vergessen, dass mit großer Macht auch immer große Verantwortung einhergeht! Neben der unmittelbaren Erfahrung, Machine Learning mithilfe der Programmiersprache Python und auf Python beruhenden Lernbibliotheken in die Tat umzusetzen, stellt das Buch auch die den Machine-Learning-Algorithmen zugrunde liegenden mathematischen Konzepte vor, die für den erfolgreichen Einsatz von Machine Learning unverzichtbar sind. Das Buch ist also kein rein praktisch orientiertes Werk, sondern ein Buch, das die erforderlichen Details der Konzepte des Machine Learnings erörtert, die Funktionsweise von Lernalgorithmen und ihre Verwendung verständlich, aber dennoch informativ erklärt und – was noch wichtiger ist – das zeigt, wie man die häufigsten Fehler vermeidet.



 Warum Python?

 Bevor wir uns eingehender mit Machine Learning befassen, müssen wir die wichtigste Frage beantworten: Warum Python? Die Antwort ist ganz einfach: Python ist leistungsfähig, aber dennoch sehr leicht erlernbar. Python ist auf dem Gebiet der Data Science zur verbreitetsten Programmiersprache geworden, weil sie es uns ermöglicht, die lästigen Aspekte des Programmierens zu vergessen, und eine Umgebung bereitstellt, in der wir unsere Ideen schnell umsetzen und Konzepte direkt zur Anwendung bringen können.



 Erkundung des Fachgebiets Machine Learning

 Wenn Sie bei Google Scholar den Suchbegriff machine learning eingeben, erhalten Sie als Resultat eine riesige Zahl (ca. 3.250.000) von Treffern. Nun können wir in diesem Buch natürlich nicht sämtliche Einzelheiten der in den letzten 60 Jahren entwickelten Algorithmen und Anwendungen erörtern. Wir werden uns jedoch auf eine spannende Tour begeben, die alle wichtigen Themen und Konzepte umfasst, damit Sie eine gründliche Einführung erhalten. Sollte Ihr Wissensdurst auch nach der Lektüre noch nicht gestillt sein, steht Ihnen eine Vielzahl weiterer hilfreicher Ressourcen zur Verfügung, die Sie nutzen können, um die entscheidenden Fortschritte auf diesem Fachgebiet zu verfolgen.

 Wir, die Autoren, können aus eigener Erfahrung sagen, dass wir durch die Beschäftigung mit dem Machine Learning zu besseren Wissenschaftlern, Denkern und Problemlösern geworden sind. In diesem Buch möchten wir unsere diesbezüglichen Erkenntnisse mit Ihnen teilen. Wissen wird durch Lernen erworben, das wiederum einen gewissen Eifer erfordert, und erst Übung macht den sprichwörtlichen Meister.

 Der vor Ihnen liegende Weg ist manchmal nicht ganz einfach, und einige der Themenbereiche sind deutlich schwieriger als andere, aber wir hoffen dennoch, dass Sie die Gelegenheit nutzen und sich auf den Lohn der Mühe konzentrieren. Im weiteren Verlauf des Buches werden Sie Ihrem Repertoire eine ganze Reihe leistungsfähiger Techniken hinzufügen können, die dabei helfen, auch die schwierigsten Aufgaben auf datengesteuerte Weise zu bewältigen.



 An wen richtet sich das Buch?

 Falls Sie sich schon ausführlich mit der Theorie des Machine Learnings beschäftigt haben, zeigt Ihnen dieses Buch, wie Sie Ihre Kenntnisse in die Praxis umsetzen können. Wenn Sie bereits entsprechende Techniken eingesetzt haben, aber deren Funktionsweise besser verstehen möchten, kommen Sie hier ebenfalls auf Ihre Kosten.

 Und wenn Ihnen das Thema Machine Learning noch völlig neu ist, haben Sie umso mehr Grund, sich zu freuen, denn ich kann Ihnen versprechen, dass dieses Verfahren Ihre Denkweise über Ihre in Zukunft zu lösenden Aufgaben verändern wird – und ich möchte Ihnen zeigen, wie Sie Problemstellungen in Angriff nehmen, indem Sie die den Daten innewohnende Kraft freisetzen. Wenn Sie herausfinden möchten, wie Sie Python verwenden können, um die entscheidenden Fragen zu Ihren Daten zu beantworten, greifen Sie einfach zu diesem Buch. Ob Sie völliger Neuling sind oder Ihre Kenntnisse der Data Science vertiefen möchten: Dieses Buch ist eine unentbehrliche Informationsquelle und unbedingt lesenswert.





 Zum Inhalt des Buches

 Kapitel 1, Wie Computer aus Daten lernen können, führt Sie in die wichtigsten Teilbereiche des Machine Learnings ein, mit denen sich verschiedene Probleme in Angriff nehmen lassen. Darüber hinaus werden die grundlegenden Schritte beim Entwurf eines typischen Machine-Learning-Modells erörtert, auf die wir in den nachfolgenden Kapiteln zurückgreifen.

 Kapitel 2, Lernalgorithmen für die Klassifikation trainieren, geht zurück zu den Anfängen des Machine Learnings und stellt binäre Perzeptron-Klassifizierer und adaptive lineare Neuronen vor. Dieses Kapitel ist eine behutsame Einführung in die Grundlagen der Klassifikation von Mustern und konzentriert sich auf das Zusammenspiel von Optimierungsalgorithmen und Machine Learning.

 Kapitel 3, Machine-Learning-Klassifikatoren mit scikit-learn verwenden, beschreibt die wichtigsten Klassifikationsalgorithmen des Machine Learnings und stellt praktische Beispiele vor. Dabei kommt eine der beliebtesten und verständlichsten Open-Source-Bibliotheken für Machine Learning zum Einsatz: scikit-learn.

 Kapitel 4, Gut geeignete Trainingsdatenmengen: Datenvorverarbeitung, erläutert die Handhabung der gängigsten Probleme unverarbeiteter Datenmengen, wie z.B. fehlende Daten. Außerdem werden verschiedene Ansätze zur Ermittlung der informativsten Merkmale einer Datenmenge vorgestellt. Des Weiteren erfahren Sie, wie sich Variablen unterschiedlichen Typs als geeignete Eingabe für Lernalgorithmen einsetzen lassen.

 Kapitel 5, Datenkomprimierung durch Dimensionsreduktion, beschreibt ein wichtiges Verfahren zur Reduzierung der Merkmalsanzahl eines Datenbestands durch Aufteilung in kleinere Mengen unter Beibehaltung eines Großteils der nützlichsten und charakteristischsten Informationen. Hier wird der Standardansatz zur Dimensionsreduktion durch die Analyse der Hauptkomponenten erläutert und mit überwachten und nichtlinearen Transformationsverfahren verglichen.

 Kapitel 6, Bewährte Verfahren zur Modellbewertung und Hyperparameter-Optimierung, erörtert die Einschätzung der Aussagekraft von Vorhersagemodellen. Darüber hinaus kommen verschiedene Bewertungskriterien der Modelle sowie Verfahren zur Feinabstimmung der Lernalgorithmen zur Sprache.

 Kapitel 7, Kombination verschiedener Modelle für das Ensemble Learning, führt Sie in die verschiedenen Konzepte zur effektiven Kombination diverser Lernalgorithmen ein. Sie erfahren, wie Sie Ensembles einrichten, um die Schwächen einzelner Klassifizierer zu überwinden, was genauere und verlässlichere Vorhersagen liefert.

 Kapitel 8, Machine Learning zur Analyse von Stimmungslagen nutzen, erläutert die grundlegenden Schritte zur Transformierung von Textdaten in eine für Lernalgorithmen sinnvolle Form, um so die Meinung von Menschen anhand der von ihnen verfassten Texte vorherzusagen.

 Kapitel 9, Einbettung eines Machine-Learning-Modells in eine Webanwendung, führt vor, wie Sie das Lernmodell des vorangehenden Kapitels Schritt für Schritt in eine Webanwendung einbetten können.

 Kapitel 10, Vorhersage stetiger Zielvariablen durch Regressionsanalyse, erörtert grundlegende Verfahren zur Modellierung linearer Beziehungen zwischen Zielvariablen und Regressanden, um auch stetige Werte vorhersagen zu können. Nach der Vorstellung der linearen Modelle kommen auch Polynom-Regression und baumbasierte Ansätze zur Sprache.

 Kapitel 11, Verwendung von Daten ohne Label: Clusteranalyse, konzentriert sich auf einen anderen Teilbereich des Machine Learnings, nämlich auf das unüberwachte Lernen. Wir werden drei unterschiedlichen Familien von Clustering-Algorithmen zugehörige Verfahren anwenden, um Objektgruppen aufzuspüren, die einen gewissen Ähnlichkeitsgrad aufweisen.

 Kapitel 12, Implementierung eines künstlichen neuronalen Netzes, erweitert das in Kapitel 2 vorgestellte Konzept der Gradient-basierten Optimierung, um leistungsfähige, mehrschichtige neuronale Netze in Python zu erstellen, die auf dem verbreiteten Backpropagation-Algorithmus beruhen.

 Kapitel 13, Parallelisierung des Trainings neuronaler Netze mit TensorFlow, baut auf den in den vorausgehenden Kapiteln erworbenen Kenntnissen auf, um Ihnen einen praxisorientierten Leitfaden für ein effizienteres Training neuronaler Netze (NN) an die Hand zu geben. Der Schwerpunkt dieses Kapitels liegt dabei auf TensorFlow 2.0, einer quelloffenen Python-Bibliothek, die die Verwendung mehrerer Kerne moderner Grafikprozessoren (GPUs) ermöglicht und die es gestattet, mithilfe von Bausteinen der benutzerfreundlichen Keras-API tiefe NN zu erstellen.

 Kapitel 14, Die Funktionsweise von TensorFlow im Detail, stellt die fortgeschritteneren Konzepte und Funktionalitäten von TensorFlow 2.0 vor. TensorFlow ist eine äußert umfassende und ausgeklügelte Bibliothek. Dieses Kapitel betrachtet die grundlegenden Konzepte des Kompilierens von Code zu statischen Graphen zwecks schnellerer Berechnung und der Definition trainierbarer Modellparameter. Darüber hinaus kommen Themen wie das Trainieren tiefer NN mithilfe von TensorFlows Keras-API sowie die vorgefertigten Schätzer zur Sprache.

 Kapitel 15, Bildklassifikation mit Deep Convolutional Neural Networks, stellt neuronale Netzarchitekturen vor, die bei maschinellem Sehen und der Bilderkennung aufgrund der gegenüber klassischen Ansätzen überlegenen Leistung zu einem neuen Standard geworden sind, nämlich konvolutionale neuronale Netze (Convolutional Neural Networks, CNN). Dieses Kapitel zeigt, wie man Faltungsschichten als Merkmalsextraktoren zur Klassifikation von Bildern verwenden kann.

 Kapitel 16, Modellierung sequenzieller Daten durch rekurrente neuronale Netze, stellt eine weitere verbreitete neuronale Netzarchitektur für Deep Learning vor, die besonders gut für die Verarbeitung von Text, anderen sequenziellen Daten und Zeitreihen geeignet ist. In diesem Kapitel werden wir verschiedene rekurrente neuronale Netzarchitekturen auf Textdaten anwenden. Als Aufwärmübung betrachten wir zunächst eine Stimmungsanalyse von Filmbewertungen. Anschließend wird erörtert, wie ein rekurrentes NN anhand der Informationen aus Büchern völlig neue Texte erzeugen kann.

 Kapitel 17, Synthetisieren neuer Daten mit Generative Adversarial Networks, stellt eine verbreitete Form eines NN vor, das dazu verwendet werden kann, neue, realistisch wirkende Bilder zu erzeugen. Das Kapitel enthält zunächst eine kurze Einführung in Autoencoder, einen bestimmten Typ eines NN, das zur Datenkomprimierung verwendet werden kann. Anschließend wird erläutert, wie man den Decoder-Teil eines Autoencoders mit einem zweiten NN kombiniert, das zwischen echten und erzeugten Bildern unterscheiden kann. Indem Sie zwei NN miteinander wetteifern lassen, werden Sie ein GAN (Generative Adversarial Networ‌k) implementieren, das neue Bilder von scheinbar handgeschriebenen Ziffern erzeugen kann. Nachdem die grundlegenden Konzepte von GAN vorgestellt wurden, endet das Kapitel mit einer Beschreibung von Verfahren, die das Training von GAN stabilisieren können, wie beispielsweise die Verwendung der Wasserstein-Metrik als Distanzmaß.

 Kapitel 18, Entscheidungsfindung in komplexen Umgebungen per Reinforcement Learning, beschreibt ein Teilgebiet des Machine Learnings, das typischerweise beim Trainieren von Robotern und anderen autonomen System zum Einsatz kommt. Das Kapitel enthält zunächst eine Einführung in Reinforcement Learning (RL), damit Ihnen die Interaktionen von Agenten und Umgebungen, Belohnungssysteme und das Konzept, aus Erfahrungen zu lernen, vertraut sind. Das Kapitel stellt die beiden Hauptkategorien des RL vor, nämlich modellbasierte und modellfreie RL-Systeme. Nachdem Sie grundlegende Ansätze für Algorithmen kennengelernt haben, wie Monte-Carlo-Verfahren und Temporal-Difference-Algorithmen, werden Sie einen Agenten implementieren und trainieren, der sich mithilfe eines Q-Learning-Algorithmus in einer Grid-World-Umgebung bewegt. Abschließend wird ein Deep-Q-Learning-Algorithmus vorgestellt, der eine Variante des Q-Learnings unter Verwendung tiefer NN ist.



 Was Sie benötigen

 Zum Ausführen der Codebeispiele ist die Python-Version 3.7.0 oder neuer auf macOS, Linux oder Microsoft Windows erforderlich. Wir werden häufig von Python-Bibliotheken Gebrauch machen, die für wissenschaftliche Berechnungen unverzichtbar sind, z.B. von SciPy, NumPy, scikit-learn, Matplotlib und pandas.

 Im ersten Kapitel finden Sie Hinweise und Tipps zur Einrichtung Ihrer Python-Umgebung und dieser elementaren Bibliotheken. In den verschiedenen Kapiteln werden wir dann der Python-Umgebung weitere Bibliotheken hinzufügen: die NLTK-Bibliothek für die Verarbeitung natürlicher Sprache (Kapitel 8), das Web-Framework Flask (Kapitel 9) und schließlich TensorFlow, um neuronale Netze effizient auf GPUs zu trainieren (Kapitel 13 bis 18).



 Codebeispiele herunterladen

 Die Codebeispiele können Sie auf GitHub unter https://github.com/rasbt/python-machine-learningbook-3rd-edition oder über die Verlagsseite http://www.mitp.de/0213 herunterladen. Dort sind auch farbige Abbildungen zu finden.



 Konventionen im Buch

 In diesem Buch werden verschiedene Textarten verwendet, um zwischen Informationen unterschiedlicher Art zu unterscheiden. Nachstehend finden Sie einige Beispiele und deren Bedeutungen.

 Schlüsselwörter oder Code werden im Fließtext wie folgt dargestellt:

 »Ein bereits installiertes Paket kann mit der Option --upgrade aktualisiert werden.«

 Codeblöcke sehen so aus:

 >>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> y = df.iloc[0:100, 4].values
>>> y = np.where(y == 'Iris-setosa', -1, 1)
>>> X = df.iloc[0:100, [0, 2]].values
>>> plt.scatter(X[:50, 0], X[:50, 1],
...             color='red', marker='x', label='setosa')
>>> plt.scatter(X[50:100, 0], X[50:100, 1],
...             color='blue', marker='o', label='versicolor')
>>> plt.xlabel('Länge des Kelchblatts')
>>> plt.ylabel('Länge des Blütenblatts')
>>> plt.legend(loc='upper left')
>>> plt.show()

                       

 Benutzereingaben oder Ausgaben auf der Kommandozeile werden in nicht proportionaler Schrift gedruckt:

 > dot -Tpng tree.dot -o tree.png



 Neue Ausdrücke und wichtige Begriffe werden kursiv gedruckt. Auf dem Bildschirm auswählbare oder anklickbare Bezeichnungen, wie z.B. Menüpunkte oder Schaltflächen, werden in der Schriftart Kapitälchen gedruckt: »Nach einem Klick auf die Schaltfläche Abbrechen in der unteren rechten Ecke wird der Vorgang abgebrochen.«

 Hinweis



Warnungen oder Hinweise erscheinen in einem Kasten wie diesem.





 Tipp



Und so werden Tipps und Tricks dargestellt.









 Kapitel 1: 
Wie Computer aus Daten lernen können

 Unserer Ansicht nach ist das Machine Learning (maschinelles Lernen), die Anwendung und Wissenschaft von Algorithmen, die den Sinn von Daten erkennen können, das spannendste Forschungsfeld der Informatik! Wir leben in einem Zeitalter, in dem Daten im Überfluss vorhanden sind – und mit den selbstlernenden Algorithmen des Machine Learnings können wir diese Daten in Wissen verwandeln. Dank der vielen in den letzten Jahren entwickelten Open-Source-Bibliotheken ist jetzt der richtige Zeitpunkt gekommen, um sich eingehend mit dem Thema Machine Learning zu befassen und zu erfahren, wie leistungsfähige Algorithmen dafür eingesetzt werden können, Muster in den Daten zu erkennen und Vorhersagen über zukünftige Ereignisse zu treffen.

 In diesem Kapitel werden wir die grundlegenden Konzepte und verschiedene Arten des Machine Learnings erörtern. Mit einer Einführung in die relevante Terminologie schaffen wir die Grundlage dafür, Verfahren des Machine Learnings erfolgreich zum Lösen von Aufgaben in der Praxis einzusetzen.

 Dieses Kapitel hat folgende Themen zum Inhalt:

 	Allgemeine Konzepte des Machine Learnings


 	Die drei Arten des Machine Learnings und grundlegende Begriffe


 	Die Bausteine des erfolgreichen Designs von Lernsystemen


 	Installation von Python und Einrichtung einer für die Analyse von Daten und Machine Learning geeigneten Umgebung




 1.1  Intelligente Maschinen, die Daten in Wissen verwandeln

 In diesem Zeitalter der modernen Technologie steht eine Ressource im Überfluss zur Verfügung: große Mengen von strukturierten und unstrukturierten Daten. In der zweiten Hälfte des 20. Jahrhunderts hat sich das Machine Learning als eine Teildisziplin der Artificial Intelligence (künstliche Intelligenz, KI) herausgebildet, bei der es um die Entwicklung selbstlernender Algorithmen geht, die Erkenntnisse aus Daten extrahieren, um bestimmte Vorhersagen treffen zu können. Das Erfordernis menschlichen Eingreifens zur manuellen Ableitung von Regeln und der Entwicklung von Modellen anhand der Analyse großer Datenmengen erübrigt sich damit mehr und mehr, denn das Machine-Learning-Verfahren bietet eine effiziente Alternative zur Erfassung des in den Daten enthaltenen Wissens – die zudem die auf diesen Daten basierende Entscheidungsfindung sowie die Aussagekraft von Vorhersagemodellen zusehends verbessert.

 Dieses Verfahren wird nicht nur in der Forschung immer wichtiger, es spielt auch im Alltag eine zunehmend größere Rolle: Dank des Machine Learnings erfreuen wir uns stabiler E-Mail-Spamfilter, praktischer Text- und Spracherkennungssoftware, verlässlicher Suchmaschinen, kaum zu schlagender Schachcomputer und hoffentlich bald auch sicherer selbstfahrender Autos.‌ Auch bei medizinischen Anwendungen hat es bemerkenswerte Fortschritte gegeben. So haben Forscher beispielsweise demonstriert, dass Deep-Learning-Modelle Hautkrebs fast so gut wie Menschen erkennen können (https://www.nature.com/articles/nature21056). Bei DeepMind haben Forscher kürzlich einen weiteren Meilenstein erreicht. Sie konnten mithilfe von Deep Learning die dreidimensionale Struktur von Proteinen vorhersagen und haben dabei erstmals bessere Ergebnisse als mit physikalischen Ansätzen erzielt (https://deepmind.com/blog/alphafold/).



 1.2  Die drei Arten des Machine Learnings

 In diesem Abschnitt werden wir die drei verschiedenen Gattungen des Machine Learnings betrachten: überwachtes Lernen, unüberwachtes Lernen und Reinforcement Learning.‌‌‌‌‌‌ Sie werden erfahren, welche grundlegenden Unterschiede es zwischen diesen drei Varianten gibt und anhand von Beispielen allmählich ein Gespür dafür entwickeln, auf welche praktischen Aufgabenstellungen sie sich anwenden lassen:
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 1.2.1  Mit überwachtem Lernen Vorhersagen treffen

 Das Hauptziel des überwachten Lernens ist, ein Modell anhand mit Labels gekennzeichneter Trainingsdaten zu erlernen,‌ um so Voraussagen über unbekannte oder zukünftige Daten treffen zu können. Der Begriff »überwacht« bezieht sich hier auf Trainingsdaten (Eingabedaten), die bereits mit den bekannten erwünschten Ausgabewerten (Bezeichnungen/Labels) gekennzeichnet sind.

  [image: [Bild]]



 Betrachten wir als Beispiel das Filtern von E-Mail-Spam. Wir können einen überwachten Lernalgorithmus mit einer Sammlung von als Spam oder Nicht-Spam gekennzeichneten E-Mails »trainieren«, um dann vorherzusagen, zu welcher dieser Klassen eine neue E-Mail gehört. Eine solche Einteilung in bestimmte Klassen wird als Klassifikation bezeichnet.‌ Eine weitere Unterkategorie des überwachten Lernens ist die Regression,‌ bei der die Ausgabewerte im Gegensatz zur Klassifikation stetig sind.

 Klassifikation: Vorhersage der Klassenbezeichnungen

 ‌Die Klassifikation ist eine Unterkategorie des überwachten Lernens, die es zum Ziel hat, anhand vorhergehender Beobachtungen die kategorialen Klassen neuer Instanzen vorherzusagen. Die Bezeichnungen dieser Klassen sind eindeutige, ungeordnete Werte, die als Gruppenzugehörigkeit der Instanzen aufgefasst werden können. Die soeben erwähnte E-Mail-Spamerkennung stellt ein typisches Beispiel für eine binäre Klassifikation dar,‌‌ denn der Algorithmus erlernt Regeln, um zwischen zwei möglichen Klassen zu unterscheiden: Spam oder Nicht-Spam.

 Die folgende Abbildung illustriert das Konzept einer binären Klassifikation, die mit 30 Beispielen trainiert wird, von denen 15 als negative Klasse‌‌ (Minuszeichen) und weitere 15 als positive Klasse‌ (Pluszeichen) gekennzeichnet sind. Die Datenmenge ist in diesem Szenario zweidimensional: Jedem Beispiel sind die beiden Werte x1 und x2 zugeordnet. Nun können wir dem überwachten Lernalgorithmus eine Regel beibringen: Die durch eine gestrichelte Linie dargestellte Grenze trennt die beiden Klassen voneinander und ermöglicht es, neue Daten anhand der Werte von x1 und x2 einer der beiden Klassen zuzuordnen.
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 Die Anzahl der Klassenbezeichnungen muss allerdings nicht auf zwei beschränkt sein. Das von einem überwachten Lernalgorithmus erlernte Vorhersagemodell kann einer neuen, noch nicht mit Label gekennzeichneten Instanz jede Bezeichnung zuordnen, die in den Trainingsdaten vorkommt.

 Ein typisches Beispiel für solch eine Multiklassen-Klassifikation‌ ist die Handschrifterkennung. Hier könnten wir eine Trainingsdatenmenge zusammenstellen, die aus mehreren handgeschriebenen Beispielen aller Buchstaben des Alphabets besteht. Die Buchstaben (»A«, »B«, »C« usw.) repräsentieren die verschiedenen Kategorien oder Klassenbezeichnungen, die wir vorhersagen möchten. Wenn dann ein Anwender über ein Eingabegerät einen neuen Buchstaben angibt, wäre unser Vorhersagemodell in der Lage, diesen mit einer gewissen Zuverlässigkeit zu erkennen. Das System wäre allerdings nicht imstande, irgendeine der Ziffern von null bis neun zu erkennen, sofern diese nicht ebenfalls Bestandteil der Trainingsdaten waren.



 Regression: Vorhersage stetiger Ergebnisse

 Im vorangegangenen Abschnitt haben wir festgestellt, dass es die Aufgabe einer Klassifikation ist, Instanzen kategoriale, ungeordnete Klassenbezeichnungen zuzuordnen. Ein zweiter Typ des überwachten Lernens ist die Vorhersage stetiger Ergebnisse, die auch als Regressionsanalyse‌ bezeichnet wird. Hierbei sind verschiedene unabhängige oder erklärende Variablen‌ sowie eine stetige Zielvariable (Ergebnis)‌ vorgegeben und wir versuchen, eine Beziehung zwischen diesen Variablen zu finden, um Ergebnisse vorhersagen zu können.

 Beachten Sie hier, dass die erklärenden Variablen beim Machine Learning oft als »Merkmale« oder »Features« und die Ergebnisse als »Zielvariablen« bezeichnet werden. Wir werden diese Begriffe ebenfalls verwenden.

 Nehmen wir beispielsweise an, dass wir die von Schülern bei einer Matheprüfung erreichten Punktzahlen prognostizieren möchten. Sofern es einen Zusammenhang zwischen der mit dem Üben für die Prüfung verbrachten Zeit und den erzielten Punktzahlen gibt, könnten wir daraus Trainingsdaten für ein Modell herleiten, das anhand der aufgewendeten Übungszeit die Punktzahlen von Schülern voraussagt, die die Prüfung in Zukunft ebenfalls abzulegen beabsichtigen.

 Tipp: Regression zur Mitte



Der Begriff Regression wurde schon 1886 von Francis Galton‌ in einem Artikel mit dem Titel Regression Towards Mediocrity in Hereditary Stature geprägt. Galton beschrieb darin das Phänomen, dass sich bei der Bevölkerung die mittlere Abweichung von der durchschnittlichen Körpergröße im Laufe der Zeit nicht vergrößert.

Er beobachtete, dass die Körpergröße der Eltern nicht an die Kinder vererbt wird, vielmehr nähert sich die Größe der Kinder dem Durchschnittswert an.





 Die folgende Abbildung illustriert das Konzept der linearen Regression‌‌. Bei vorgegebener unabhängiger Variablen x und abhängiger Variablen y passen wir eine Gerade so an die Daten an, dass ein Maß für den Abstand der Geraden von den Beispielwerten (üblicherweise der Mittelwert der quadrierten Differenzen) minimal wird. Nun können wir den aus den Daten ermittelten Schnittpunkt mit der y-Achse sowie die Steigung der Geraden verwenden, um das Ergebnis für neue Werte vorherzusagen.
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 1.2.2  Interaktive Aufgaben durch Reinforcement Learning lösen

 Die dritte Variante des Machine Learnings ist das Reinforcement Learning. Hier besteht die Zielsetzung darin, ein System zu entwickeln (den Agenten)‌, das seine Leistung durch Interaktionen mit seiner Umgebung verbessert.‌ Zu den Informationen über den aktuellen Zustand der Umgebung gehört typischerweise ein sogenanntes Belohnungssignal‌, daher ist das Reinforcement Learning in gewisser Weise mit dem überwachten Lernen verwandt. Allerdings handelt es sich bei diesem Feedback nicht um die korrekte Klassenbezeichnung oder den richtigen Wert, sondern um eine Bewertung dafür, wie gut die Aktion war, dies wird durch eine Belohnungsfunktion‌ festgelegt. Der Agent kann so über Interaktionen mit seiner Umgebung durch Reinforcement Learning erkennen, welche Aktionen besonders gut belohnt werden. Das kann durch schlichtes Ausprobieren (Versuch und Irrtum) oder durch bewusste Planung geschehen.

 Ein schönes Beispiel für Reinforcement Learning ist ein Schachcomputer. Hier bewertet der Agent nach einer Reihe von Zügen die Stellung auf dem Schachbrett (die Umgebung), und die Belohnung kann am Ende des Spiels als Sieg oder Niederlage definiert werden.
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 Es gibt eine Vielzahl verschiedener Unterarten des Reinforcement Learnings. Im Allgemeinen versucht der Agent jedoch, die Belohnung durch eine Reihe von Interaktionen mit der Umgebung zu maximieren. Jedem Zustand kann eine positive (oder negative) Belohnung zugeordnet werden, und diese Belohnung kann dadurch definiert werden, dass ein Gesamtziel erreicht wird, wie z.B. das Gewinnen oder das Verlieren einer Schachpartie. Beim Schachspiel kann etwa das Ergebnis eines jeden Spielzugs als ein anderer Zustand der Umgebung aufgefasst werden.

 Um beim Schach zu bleiben: Stellen Sie sich das Erreichen bestimmter Stellungen auf dem Schachbrett als positives Ereignis vor, das es wahrscheinlicher macht, das Spiel zu gewinnen – beispielsweise das Schlagen einer gegnerischen Spielfigur oder das Bedrohen der Dame. Andere Stellungen wiederum werden als negativ erachtet, beispielsweise wenn eine der eigenen Spielfiguren beim nächsten Zug geschlagen werden kann. Nun erfolgt die Belohnung (positive beim Gewinnen und negative beim Verlieren) beim Schach natürlich erst am Ende des Spiels. Darüber hinaus hängt die Belohnung auch davon ab, wie der Gegner spielt. Er könnte beispielsweise die Dame opfern, das Spiel aber trotzdem gewinnen. Das Reinforcement Learning versucht, eine Reihe von Aktionen zu erlernen, die die Belohnung insgesamt maximieren – entweder durch eine sofortige Belohnung nach einem Zug, oder aber durch eine verzögerte Belohnung.



 1.2.3  Durch unüberwachtes Lernen verborgene Strukturen erkennen

 Beim überwachten Lernen ist die richtige Antwort beim Trainieren des Modells bereits im Vorhinein bekannt, und beim Reinforcement Learning definieren wir eine Bewertung oder Belohnung für bestimmte Aktionen des Agenten. Beim unüberwachten Lernen‌ hingegen haben wir es mit nicht mit Label gekennzeichneten Daten oder mit Daten unbekannter Struktur zu tun. Durch die beim unüberwachten Lernen eingesetzten Verfahren sind wir in der Lage, die Struktur der Daten zu erkunden, um sinnvolle Informationen daraus zu extrahieren, ohne dass es Hinweise auf eine Zielvariable oder eine Belohnungsfunktion gibt.

 Bestimmung von Untergruppen durch Clustering

 Clustering‌ ist ein exploratives Datenanalyseverfahren, das es uns gestattet, Informationen in sinnvolle Untergruppen (Cluster) aufzuteilen, ohne vorherige Kenntnisse über die Gruppenzugehörigkeit dieser Informationen zu besitzen. Jeder bei der Analyse auftretende Cluster definiert eine Gruppe von Objekten, die bestimmte Eigenschaften gemeinsam haben, sich aber von Objekten in anderen Gruppen hinreichend unterscheiden. Deshalb wird das Clustering manchmal auch als unüberwachte Klassifikation‌ bezeichnet. Es ist ausgezeichnet geeignet, um Informationen zu strukturieren und sinnvolle Beziehungen zwischen den Daten abzuleiten. Beispielsweise ermöglicht es Marketingfachleuten, Kunden anhand ihrer Interessen in Gruppen einzuordnen, um gezielte Kampagnen zu entwickeln.

 Die folgende Abbildung illustriert, wie man das Clustering-Verfahren zur Organisation nicht mit Label gekennzeichneter Daten in drei verschiedene Gruppen verwenden kann, die jeweils ähnliche Merkmale x1 und x2 aufweisen.
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 Datenkomprimierung durch Dimensionsreduktion

 ‌‌Die Dimensionsreduktion ist eine weitere Teildisziplin des unüberwachten Lernens. Wir haben es des Öfteren mit Daten hoher Dimensionalität zu tun (jede Beobachtung besteht aus einer Vielzahl von Messwerten), was aufgrund der für die Lernalgorithmen geltenden Beschränkungen von Speicherplatz und Rechenleistung eine Herausforderung darstellen kann. Bei der Vorverarbeitung von Merkmalen wird häufig eine unüberwachte Dimensionsreduktion eingesetzt, um die Daten von sogenanntem »Rauschen« zu befreien. Dies kann allerdings zu einer Abschwächung der Aussagekraft bestimmter Vorhersagealgorithmen führen. Die Daten werden in kleinere Unterräume geringerer Dimensionalität aufgeteilt, wobei der Großteil der relevanten Informationen erhalten bleibt.

 In manchen Fällen ist die Dimensionsreduktion auch für die Visualisierung der Daten nützlich. Beispielsweise können hochdimensionale Merkmalsmengen auf ein-, zwei- oder dreidimensionale Merkmalsräume projiziert werden, um sie als 3-D- oder 2-D-Streudiagramme bzw. -Histogramme darzustellen. Die Abbildung zeigt ein Beispiel, in dem eine nichtlineare Dimensionsreduktion auf eine 3-D-Punktmenge in Form einer Biskuitrolle angewendet wurde, um sie in einen zweidimensionalen Merkmalsraum zu transformieren.
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 1.3  Grundlegende Terminologie und Notation

 Nachdem wir nun die drei Arten des Machine Learnings – überwachtes und unüberwachtes Lernen sowie Reinforcement Learning – erörtert haben, werden wir als Nächstes die grundlegenden Begriffe klären, die in den folgenden Kapiteln Verwendung finden. Der folgende Abschnitt erläutert die Begriffe, die für die Beschreibung der verschiedenen Aspekte einer Datenmenge verwendet werden, sowie die mathematische Notation, die zur präzisen Beschreibung zum Einsatz kommt.

 Da Machine Learning ein so umfassendes und interdisziplinäres Fachgebiet ist, werden Sie früher oder später mit Sicherheit vielen verschiedenen Begriffen begegnen, die ein und dasselbe Konzept beschreiben. Im zweiten der nachfolgenden Abschnitte sind die am häufigsten verwendeten Begriffe aufgeführt, die sich in der Literatur zum Thema Machine Learning finden. Sie erweisen sich bei der weiteren Lektüre vielleicht als nützlich.

 1.3.1  Im Buch verwendete Notation und Konventionen

 Die folgende Abbildung zeigt einen Auszug der Iris-Datensammlung,‌ einem klassischen Beispiel für den Bereich des Machine Learnings. Dabei handelt es sich um Messdaten von 150 Schwertlilien dreier verschiedener Arten: Iris setosa, Iris versicolor und Iris virginica. Jedes der Blumenexemplare wird in dieser Datensammlung durch eine Zeile repräsentiert. In den einzelnen Spalten stehen die in Zentimetern angegebenen Messdaten, die wir auch als Merkmale der Datenmenge bezeichnen.‌
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 Um die Notation und Implementierung einfach, aber dennoch effizient zu halten, nutzen wir die Grundlagen der linearen Algebra. In den nachfolgenden Kapiteln verwenden wir die Matrizen- und Vektornotation zur Beschreibung der Daten. Wir folgen der üblichen Konvention, dass jedes Objekt durch eine Zeile in der Merkmalsmatrix X repräsentiert und jedes Merkmal als eigene Spalte gespeichert wird.

 Die Iris-Datensammlung besteht aus 150 Datensätzen mit jeweils vier Merkmalen und kann somit als 150×4-Matrix [image: [Bild]] geschrieben werden:

 [image: [Bild]]

 Ab jetzt verwenden wir ein hochgestelltes i und ein tiefgestelltes j, um auf das i-te Trainingsobjekt bzw. die j-te Dimension der Trainingsdatenmenge zu verweisen.

 Wir notieren Vektoren  [image: [Bild]] als fett gedruckte Kleinbuchstaben und Matrizen  [image: [Bild]] als fett gedruckte Großbuchstaben. Um auf einzelne Elemente eines Vektors oder einer Matrix zu verweisen, werden kursive Buchstaben benutzt ([image: [Bild]] bzw. [image: [Bild]]).

 Beispielsweise verweist  [image: [Bild]] auf die erste Dimension des Blumenexemplars 150, die Länge des Kelchblatts. Jede Zeile der Merkmalsmatrix repräsentiert ein Blumenexemplar und kann als vierdimensionaler Zeilenvektor  [image: [Bild]] geschrieben werden, z.B.:

 [image: [Bild]]

 Jede Merkmalsdimension ist ein 150-dimensionaler Spaltenvektor [image: [Bild]]:

 [image: [Bild]]

 Die Zielvariablen (hier die Klassenbezeichnungen) werden ebenfalls als 150-dimensionale Spaltenvektoren notiert:

 [image: [Bild]]



 1.3.2  Terminologie

 Wie erwähnt ist Machine Learning ein weites Feld und ausgeprägt interdisziplinär, denn es bringt Forscher aus den verschiedensten Fachgebieten zusammen. Viele Konzepte und Begriffe wurden neu entdeckt oder umdefiniert oder sind Ihnen vielleicht schon unter einem anderen Namen bekannt. In der folgenden Liste finden Sie eine Auswahl gebräuchlicher Begriffe und ihrer Synonyme, die sich bei der Lektüre dieses Buches oder anderer Bücher über Machine Learning vielleicht als nützlich erweisen.

 	Trainingsbeispiel‌: Eine Zeile in einer Tabelle, die eine Datenmenge repräsentiert. Der Begriff ist gleichbedeutend mit Beobachtung, Datensatz, Instanz oder Stichprobe (mit einer Stichprobe sind für gewöhnlich mehrere Trainingsbeispiele gemeint).


 	Training‌: Anpassung des Modells; bei parametrischen Modellen entspricht das einer Parameterschätzung.


 	Merkmal‌, kurz x: Eine Spalte in einer Datentabelle oder einer Datenmatrix. Synonyme: Feature, unabhängige Variable, Eingabe, Attribut oder Kovariate.


 	Ziel‌, kurz y: Synonyme: Ergebnis, Ausgabe, Antwort-/Ausgabevariable, abhängige Variable oder (Klassen-)Label oder (Klassen-)Bezeichnung


 	Verlustfunktion‌: Kurz Verlust, wird manchmal als Synonym für Kostenfunktion bzw. Straffunktion gebraucht. Mitunter wird sie auch als Error- oder Fehlerfunktion bezeichnet (nicht zu verwechseln mit der gaußschen Fehlerfunktion). Der Begriff »Verlust« bezieht sich auf den Verlust, der für einen einzelnen Datenpunkt ermittelt wird. Die Kosten hingegen sind ein Maß für den Verlust der gesamten Datenmenge (gemittelt oder summiert).








 1.4  Entwicklung eines Systems für das Machine Learning

 In den vorangegangenen Abschnitten haben wir die grundlegenden Konzepte des Machine Learnings und die drei verschiedenen Arten des Lernens erörtert. In diesem Abschnitt befassen wir uns mit weiteren wichtigen Bestandteilen eines Systems für dieses Verfahren, die den Lernalgorithmus begleiten. Das folgende Diagramm zeigt den typischen Ablauf, der beim Machine Learning in Vorhersagemodellen zum Einsatz kommt, die wir in den folgenden Abschnitten betrachten werden.
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 1.4.1  Vorverarbeitung: Daten in Form bringen

 Rohdaten liegen nur selten in einer für die optimale Leistung eines Lernalgorithmus erforderlichen Form vor, deshalb ist die Vorverarbeitung‌ der Daten‌ bei jedem Lernalgorithmus von entscheidender Bedeutung.

 Im Fall der Iris-Datensammlung aus dem vorangegangenen Abschnitt könnten die Rohdaten beispielsweise als eine Reihe von Fotos der Blumenexemplare vorliegen, denen wir sinnvolle Merkmale entnehmen möchten. Das könnten etwa Grundfarbe und Tönung sowie Höhe, Länge und Breite der Pflanzen sein.

 Bei vielen Lernalgorithmen ist es außerdem erforderlich, dass die ausgewählten Merkmale irgendwie normiert‌ sind (hier müssten die Pflanzen im selben Maßstab dargestellt sein), um ein optimales Ergebnis zu erzielen. Dies wird oftmals dadurch erreicht, dass die ausgewählten Merkmale auf ein Intervall [0,1] oder eine Standardnormalverteilung (Mittelwert 0 und Standardabweichung 1) abgebildet werden, wie Sie in den nachfolgenden Kapiteln noch sehen werden.

 Manche der ausgewählten Merkmale könnten hochgradig korreliert und daher in gewissem Maße redundant sein. In diesen Fällen sind Verfahren zur Dimensionsreduktion nützlich, um die Merkmale auf einen Merkmalsraum geringer Dimensionalität abzubilden. Die Dimensionsreduktion des Merkmalraums hat die Vorteile, dass weniger Speicherplatz benötigt wird und der Lernalgorithmus erheblich schneller arbeitet. In manchen Fällen kann eine Dimensionsreduktion auch die Vorhersagekraft eines Modells verbessern, nämlich wenn die Datenmenge eine große Anzahl irrelevanter Merkmale (Rauschen) aufweist, das heißt, dass sie ein niedriges Signal-zu-Rausch-Verhältnis besitzt.

 Um festzustellen, ob ein Lernalgorithmus nicht nur die Trainingsdaten ordentlich verarbeitet, sondern auch mit neuen Daten gut zurechtkommt, ist es sinnvoll, den Datenbestand nach dem Zufallsprinzip in separate Trainings- und Testdatenmengen aufzuteilen: Zum Trainieren und Optimieren des Lernmodells verwenden wir die Trainingsdatenmenge, während wir die Testdatenmenge bis zum Schluss zurückhalten, um das endgültige Modell bewerten zu können.



 1.4.2  Trainieren und Auswählen eines Vorhersagemodells

 ‌Wie Sie in den nachfolgenden Kapiteln noch sehen werden, sind viele verschiedene Lernalgorithmen entwickelt worden, mit denen die unterschiedlichsten Aufgabenstellungen erledigt werden können. An dieser Stelle ist es allerdings wichtig festzuhalten, dass das Lernen nicht umsonst zu haben ist – so in etwa könnte man David Wolperts‌ berühmte »No Free Lunch«-Theoreme zusammenfassen (The Lack of A Priori Distinctions Between Learning Algorithms, D.H. Wolpert 1996; No Free Lunch Theorems for Optimization, D.H. Wolpert und W.G. Macready, 1997). Noch besser lässt sich dieses Konzept anhand eines berühmten Zitats veranschaulichen: »Wenn das einzige verfügbare Werkzeug ein Hammer ist, dürfte es verlockend sein, alles wie einen Nagel zu behandeln.« (Abraham Maslow, 1966).‌ Beispielsweise sind alle Klassifikationsalgorithmen in irgendeiner Weise voreingenommen und kein Klassifikationsmodell ist anderen überlegen, wenn man nicht bestimmte Annahmen über die Aufgabenstellung macht. In der Praxis ist es daher von entscheidender Bedeutung, wenigstens eine Handvoll verschiedener Algorithmen zu vergleichen, um das am besten funktionierende Modell zu trainieren und auszuwählen. Aber um Vergleiche zwischen verschiedenen Modellen anstellen zu können, müssen zunächst einmal Bewertungskriterien festgelegt werden. Ein gebräuchliches Kriterium ist die Korrektklassifikationsrate (kurz: Klassifikationsrate, engl. accuracy, ACC)‌ des Modells, die als Anteil der korrekten Klassifikationen definiert ist.

 Nun stellt sich natürlich die Frage: Wie kann man wissen, welches Modell mit den Testdaten und den »echten« Daten gut funktioniert, wenn man sie nicht bei der Auswahl des Modells verwendet, sondern bis zur Bewertung des endgültigen Modells zurückhält? Um das mit dieser Frage verbundene Problem zu lösen, können verschiedene Kreuzvalidierungsverfahren eingesetzt werden, bei denen die Trainingsdatenmenge weiter in Trainings- und Validierungsteilmengen aufgeteilt wird,‌ um die Generalisierungsfähigkeit des Modells abzuschätzen. Und schließlich dürfen wir auch nicht erwarten, dass die Standardparameter der Lernalgorithmen verschiedener Softwarebibliotheken für unsere spezielle Aufgabenstellung optimiert sind. Daher werden wir in den noch folgenden Kapiteln häufig Gebrauch von Verfahren zur Hyperparameter-Optimierung machen, um die Leistung unseres Modells feiner abzustimmen.

 Man kann sich diese Hyperparameter‌ als Parameter vorstellen, die nicht anhand der Daten ermittelt werden, sondern als Einstellungsmöglichkeiten zur Verbesserung der Leistung, was sehr viel klarer werden wird, wenn wir uns in den folgenden Kapiteln einige dazu passende Beispiele ansehen.



 1.4.3  Bewertung von Modellen und Vorhersage anhand unbekannter Dateninstanzen

 Nach der Auswahl eines an die Trainingsdaten angepassten Modells können wir die Testdatenmenge verwenden, um zu ermitteln, wie gut es mit diesen unbekannten Daten bei der Schätzung des Generalisierungsfehlers zurechtkommt. Sofern die Leistung des Modells zufriedenstellend ausfällt, können wir es verwenden, um anhand neuer, zukünftiger Daten Vorhersagen zu treffen. Hier muss angemerkt werden, dass die Parameter der vorhin erwähnten Verfahren (wie die Skalierung der Merkmalsdarstellungen oder die Dimensionsreduktion) ausschließlich anhand der Trainingsdatenmenge ermittelt werden. Dieselben Parameter werden später auch auf die Testdatenmenge und neue Daten angewendet – ansonsten könnte die bei den Testdaten gemessene Leistung zu optimistisch sein.





 1.5  Machine Learning mit Python

 Im Bereich Data Science ist Python eine der beliebtesten Programmiersprachen, daher gibt es eine Vielzahl nützlicher Bibliotheken, die von der sehr aktiven Python-Community entwickelt wurden.

 Die Performance von Interpretersprachen wie Python ist derjenigen von kompilierten Programmiersprachen zwar unterlegen, es gibt allerdings Erweiterungsbibliotheken wie NumPy und SciPy, die auf maschinennahen Fortran- und C-Implementierungen beruhen, um schnelle vektorisierte Berechnungen mit mehrdimensionalen Arrays auszuführen.

 Bei Aufgabenstellungen des Machine Learnings werden wir zumeist auf scikit-learn zurückgreifen, eine weitverbreitete und leicht verständliche Open-Source-Bibliothek für Machine Learning. In den nachfolgenden Kapiteln, in denen wir uns auf ein Teilgebiet des Machine Learnings namens Deep Learning konzentrieren, werden wir die neueste Version der TensorFlow-Bibliothek verwenden, die darauf spezialisiert ist, sogenannte tiefe neuronale Netze zu trainieren, indem sie die Rechenleistung von Grafikprozessoren nutzt.

 1.5.1  Python und Python-Pakete installieren

 ‌Python ist für die drei wichtigsten Betriebssysteme Microsoft Windows, macOS und Linux verfügbar. Das Installationsprogramm und die Dokumentation stehen auf der offiziellen Website unter https://www.python.org zum Herunterladen bereit.

 Dieses Buch setzt mindestens die Python-Version 3.7.0 voraus, es empfiehlt sich jedoch, immer die neueste verfügbare Python-3-Version zu verwenden. Einige der Codebeispiele sind möglicherweise auch mit Python-Versionen ab 2.7.0 kompatibel, aber da Python 2.7 seit 2019 offiziell nicht mehr unterstützt wird, was auch für die meisten Open-Source-Bibliotheken zutrifft (https://python3statement.org), raten wir dringend dazu, Python 3.7 oder neuer zu verwenden.

 Die zusätzlichen Pakete, die wir im Buch benutzen werden, können mit pip‌ installiert werden. Dieses Installationsprogramm gehört seit der Python-Version 3.3 zur Standardbibliothek. Weitere Informationen über pip finden Sie unter https://docs.python.org/3/installing/index.html.

 Nach erfolgreicher Python-Installation können Sie mit pip wie folgt weitere Python-Pakete installieren:

 pip install Paketname



 Bereits installierte Pakete können mit der Option --upgrade aktualisiert werden:

 pip install Paketname --upgrade





 1.5.2  Verwendung der Python-Distribution Anaconda

 Von Continuum Analytics gibt es eine sehr empfehlenswerte alternative Python-Distribution für wissenschaftliches Rechnen namens Anaconda‌. Hierbei handelt es sich um eine – auch für den kommerziellen Gebrauch – kostenlose Python-Distribution, die alle wichtigen Python-Pakete für Data Science, Mathematik und Engineering in einem einzigen, benutzerfreundlichen und plattformunabhängigen Paket bündelt. Das Installationsprogramm können Sie unter https://docs.anaconda.com/anaconda/install/ herunterladen. Eine Kurzanleitung ist unter https://docs.anaconda.com/anaconda/user-guide/getting-started/ verfügbar.

 Nach der Installation von Anaconda können Python-Pakete mit dem folgenden Befehl installiert werden:

 conda install Paketname



 Bereits vorhandene Pakete werden so aktualisiert:

 conda update Paketname





 1.5.3  Pakete für wissenschaftliches Rechnen, Data Science und Machine Learning

 Im weiteren Verlauf des Buches werden wir vornehmlich mehrdimensionale Arrays von NumPy verwenden, um Daten zu speichern und zu verarbeiten. Gelegentlich kommt auch pandas‌ zum Einsatz, eine auf NumPy beruhende Bibliothek, die erweiterte Funktionen für die noch komfortablere Verarbeitung von Tabellendaten bereitstellt. Zur Ergänzung des Lernerlebnisses werden wir darüber hinaus die sehr anpassungsfähige Matplotlib-Bibliothek‌ einsetzen, die für die Visualisierung und das intuitive Verständnis quantitativer Daten oft äußerst nützlich ist.

 Die Versionsnummern der im Buch verwendeten Python-Pakete sind nachstehend aufgeführt. Vergewissern Sie sich, dass Ihre installierten Pakete mindestens diesen Versionsnummern entsprechen, damit gewährleistet ist, dass die Codebeispiele korrekt ausgeführt werden.

 	NumPy 1.17.4


 	SciPy 1.3.1


 	scikit-learn 0.22.0


 	matplotlib 3.1.0


 	pandas 0.25.3








 1.6  Zusammenfassung

 In diesem Kapitel haben wir einen ganz allgemeinen Blick auf das Thema Machine Learning geworfen und uns mit dem Gesamtbild sowie den grundlegenden Konzepten vertraut gemacht, die wir in den folgenden Kapiteln eingehender betrachten werden. Sie haben erfahren, dass überwachtes Lernen aus zwei wichtigen Teilgebieten besteht: Klassifikation und Regression. Klassifikationsmodelle ermöglichen es, Objekte bekannten Klassen zuzuordnen und wir können die Regressionsanalyse nutzen, um stetige Werte einer Zielvariablen vorherzusagen. Das unüberwachte Lernen bietet nicht nur praktische Verfahren zum Auffinden von Strukturen in nicht mit Label gekennzeichneten Daten, es kann darüber hinaus bei der Vorverarbeitung auch zur Datenkomprimierung eingesetzt werden.

 Wir haben uns kurz die typische Vorgehensweise bei der Anwendung des Machine Learnings auf Problemstellungen angesehen, die bei der weiteren Erörterung und für praktische Beispiele in den folgenden Kapiteln als Grundlage dient. Darüber hinaus haben wir unsere Python-Umgebung eingerichtet und die erforderlichen Pakete aktualisiert und sind nun bereit, uns Machine Learning in Aktion anzusehen.

 Im weiteren Verlauf des Buches werden wir neben dem Machine Learning selbst verschiedene Verfahren zur Vorverarbeitung von Daten vorstellen, die dabei helfen, mit verschiedenen Lernalgorithmen die beste Leistung zu erzielen. Wir werden uns im gesamten Buch ziemlich ausführlich mit Klassifikationsalgorithmen befassen, aber auch einige Verfahren der Regressionsanalyse und des Clusterings betrachten.

 Vor uns liegt eine interessante Tour, auf der viele leistungsfähige Verfahren des weiten Felds des Machine Learning zur Sprache kommen. Wir gehen jedoch schrittweise vor und bauen auf das in den einzelnen Kapiteln allmählich erworbene Wissen auf. Im nächsten Kapitel beginnt diese Tour mit der Implementierung einer der ersten Lernalgorithmen zum Zweck der Klassifikation, die uns auf das Kapitel 3 (Machine-Learning-Klassifikatoren mit scikit-learn verwenden) vorbereitet, in dem wir die scikit-learn-Bibliothek nutzen werden, um erweiterte Lernalgorithmen zu erörtern.





 Kapitel 2: 
Lernalgorithmen für die Klassifikation trainieren

 In diesem Kapitel werden wir einen der ersten in der Literatur beschriebenen Klassifikationsalgorithmen verwenden: das Perzeptron‌ und die damit einhergehenden adaptiven linearen Neuronen.‌ Zunächst werden wir Schritt für Schritt ein Perzeptron in Python implementieren und darauf trainieren, die verschiedenen Blumenarten in der Iris-Datensammlung zu klassifizieren. Das wird uns dabei helfen, das Konzept eines Lernalgorithmus zur Klassifikation und die effiziente Implementierung solch eines Algorithmus in Python zu verstehen.

 Anschließend werden wir die Grundlagen der Optimierung unter Verwendung adaptiver linearer Neuronen erörtern, die ihrerseits als Vorbereitung dazu dient, in Kapitel 3 leistungsfähigere Klassifikatoren der scikit-learn-Bibliothek einzusetzen.

 Die Themen in diesem Kapitel sind:

 	Ein Verständnis für Machine-Learning-Algorithmen entwickeln


 	Die Verwendung von pandas, NumPy und Matplotlib zum Einlesen, Verarbeiten und Visualisieren von Daten


 	Implementierung linearer Klassifikationsalgorithmen in Python




 2.1  Künstliche Neuronen: Ein kurzer Blick auf die Anfänge des Machine Learnings

 Bevor wir uns das Perzeptron und ähnliche Algorithmen genauer ansehen, wollen wir einen kurzen Ausflug zu den Anfängen des Machine Learnings unternehmen. Warren McCulloch‌ und Walter Pitts‌ hatten sich zum Ziel gesetzt, die Funktionsweise des Gehirns zu ergründen, um eine künstliche Intelligenz zu entwickeln, und veröffentlichten 1943 das erste Konzept einer vereinfachten Hirnzelle, das sogenannte MCP-Neuron (McCulloch-Pitts-Neuron, W. S. McCulloch und W. Pitts. A Logical Calculus of the Ideas Immanent in Nervous Activity. The bulletin of mathematical biophysics, 5(4): Seiten 115–133, 1943). Bei biologischen Neuronen‌ handelt es sich um miteinander verknüpfte Nervenzellen des Gehirns, die an der Verarbeitung und Weiterleitung chemischer und elektrischer Signale beteiligt sind, wie die folgende Abbildung illustriert.

  [image: [Bild]]



 McCulloch und Pitts beschrieben diese Nervenzelle als ein einfaches logisches Gatter mit binärer Ausgabe. Mehrere Eingabesignale erreichen die Dendriten‌ und laufen im Zellkörper zusammen. Wenn ein bestimmter Schwellenwert erreicht ist, erzeugt die Zelle ein Ausgabesignal, das an das Axon‌ weitergeleitet wir.

 Nur wenige Jahre später veröffentlichte Frank Rosenblatt‌ das erste Konzept einer Perzeptron-Lernregel, die auf dem MCP-Neuronenmodell beruhte (F. Rosenblatt, The Perceptron, a Perceiving and Recognizing Automaton, Cornell Aeronautical Laboratory, 1957). Hiermit stellte er einen Algorithmus vor, der automatisch die optimalen Koeffizienten der Gewichte ermittelt, die mit den Eingabemerkmalen multipliziert werden, um zu entscheiden, ob ein Neuron feuert oder nicht. Im Zusammenspiel mit dem überwachten Lernen und der Klassifikation könnte solch ein Algorithmus eingesetzt werden, um zu prognostizieren, zu welcher von zwei Klassen ein Objekt gehört.

 2.1.1  Formale Definition eines künstlichen Neurons

 Formal kann diese Aufgabe als binäre Klassifikation‌ betrachtet werden, in der wir die beiden Klassen der Einfachheit halber als 1 (positive Klasse) und -1 (negative Klasse) bezeichnen. Wir können dann eine Entscheidungssfunktion‌ [image: [Bild]] definieren, die eine Linearkombination bestimmter Eingabewerte x und einen entsprechenden Gewichtungsvektor w entgegennimmt, wobei z die sogenannte Netzeingabe‌ ([image: [Bild]]) ist:

 [image: [Bild]]

 Wenn nun die Netzeingabe z eines bestimmten Objekts [image: [Bild]] einen bestimmten ‌Schwellenwert θ übertrifft, wird die Klasse 1 vorhergesagt, anderenfalls die Klasse -1. Beim Perzeptron-Algorithmus ist die Entscheidungsfunktion  [image: [Bild]] eine einfache Sprungfunktion,‌ die auch als Heaviside-Funktion‌ bezeichnet wird:

 [image: [Bild]]

 Der Einfachheit halber bringen wir den Schwellenwert θ auf die linke Seite der Gleichung und definieren ein zusätzliches Gewicht als  [image: [Bild]] sowie [image: [Bild]], sodass wir z kompakter schreiben können:

 [image: [Bild]] und [image: [Bild]].

 In der Literatur wird der negative Schwellenwert oder die Gewichtung [image: [Bild]] für gewöhnlich als Bias-Einheit‌ bezeichnet.

 In den folgenden Abschnitten werden wir des Öfteren von der grundlegenden Notation der linearen Algebra Gebrauch machen. Beispielsweise kürzen wir die Summe der Produkte der Werte von x und w als Skalarprodukt zweier Vektoren ab, wobei das hochgestellte T für das Transponieren‌ steht. Beim Transponieren werden Spaltenvektoren in Zeilenvektoren (und umgekehrt) transformiert:

 [image: [Bild]]

 Zum Beispiel:  [image: [Bild]]

 Darüber hinaus kann die Transposition (also das Transformieren von Zeilen in Spalten und umgekehrt) auch auf eine Matrix angewendet werden:

 [image: [Bild]]

 Beachten Sie hier, dass die Transposition nur für Matrizen streng mathematisch definiert ist; beim Machine Learning sind mit dem Begriff »Vektor« allerdings n x 1- oder 1 x n- Matrizen gemeint.

 In diesem Buch werden wir nur grundlegende Konzepte der linearen Algebra verwenden. Wenn Sie Ihre Kenntnisse auffrischen möchten, sollten Sie sich Zico Kolters ausgezeichnete und kostenlose Zusammenfassung der linearen Algebra ansehen, die unter http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_notes.pdf verfügbar ist.

 Die folgende Abbildung veranschaulicht, wie die Netzeingabe [image: [Bild]] durch die Entscheidungsfunktion des Perzeptrons (in der Abbildung links) in eine binäre Ausgabe (-1 oder 1) umgewandelt wird und wie sie dazu verwendet werden kann, zwei linear trennbare Klassen zu unterscheiden (in der Abbildung rechts).

  [image: [Bild]]





 2.1.2  Die Perzeptron-Lernregel

 ‌Die dem MCP-Neuron und Rosenblatts mit einem Schwellenwert versehenen Perzeptron-Modell zugrunde liegende Idee besteht darin, einen reduzierten Ansatz zu verwenden, um zu simulieren, wie ein einzelnes Neuron im Gehirn funktioniert – entweder es feuert oder es feuert nicht. Rosenblatts ursprüngliche Perzeptron-Regel ist daher ziemlich einfach und kann durch die folgenden Schritte zusammengefasst werden:

 	Die Gewichte werden mit 0 oder kleinen zufälligen Werten initialisiert.


 	Mit jedem zum Training eingesetzten Objekt [image: [Bild]] werden folgende Schritte durchgeführt:
 	Berechnung des Ausgabewertes [image: [Bild]]


 	Aktualisierung der Gewichte







 Der Ausgabewert ist hier die von der vorhin definierten Sprungfunktion vorhergesagte Klassenbezeichnung. Die gleichzeitige Aktualisierung der Gewichte  [image: [Bild]] im Gewichtungsvektor w kann formal folgendermaßen geschrieben werden:

 [image: [Bild]]

 Der Wert von  [image: [Bild]], der zur Aktualisierung der Gewichte  [image: [Bild]] verwendet wird, lässt sich anhand der Perzeptron-Lernregel berechnen:

 [image: [Bild]]

 Dabei ist η die Lernrate‌ (typischerweise eine Konstante zwischen 0,0 und 1,0),  [image: [Bild]] ist die tatsächliche Klassenbezeichnung des i-ten Trainingsobjekts und  [image: [Bild]] ist die vorhergesagte Klassenbezeichnung. Hier ist es wichtig anzumerken, dass alle Gewichte im Gewichtungsvektor‌ gleichzeitig aktualisiert werden, was bedeutet, dass  [image: [Bild]] nicht erneut berechnet werden muss, bevor alle Gewichte  [image: [Bild]] aktualisiert wurden. Im konkreten Fall einer 2-D-Datensammlung würden wir die Aktualisierung wie folgt schreiben:

 [image: [Bild]]

 [image: [Bild]]

 [image: [Bild]]

 Bevor wir die Perzeptron-Regel in Python implementieren, wollen wir ein einfaches Gedankenexperiment anstellen, um zu illustrieren, wie wunderbar einfach diese Lernregel tatsächlich ist. In den beiden Szenarien, in denen das Perzeptron die Klassenbezeichnung korrekt vorhersagt, bleiben die Gewichte unverändert, denn die Aktualisierungswerte sind 0:

 [image: [Bild]]

 Im Fall einer falschen Vorhersage hingegen werden die Gewichte in Richtung der positiven bzw. negativen Zielklasse verschoben:

 [image: [Bild]]

 Um ein besseres Gespür für den multiplikativen Faktor [image: [Bild]] zu bekommen, sehen wir uns ein weiteres einfaches Beispiel an, für das gilt:

 [image: [Bild]]

 Nehmen wir an, dass  [image: [Bild]] ist und wir dieses Objekt irrtümlich als -1 klassifizieren. In diesem Fall würden wir das zugehörige Gewicht um 1 erhöhen, damit die Netzeingabe  [image: [Bild]] positiver ist, wenn wir das nächste Mal auf dieses Objekt treffen – denn dadurch wird die Wahrscheinlichkeit erhöht, dass der Schwellenwert der Sprungfunktion überschritten und das Objekt somit als +1 klassifiziert wird:

 [image: [Bild]]

 Die Aktualisierung der Gewichte ist proportional zum Wert von [image: [Bild]]. Wenn wir beispielsweise ein weiteres Objekt mit [image: [Bild]] irrtümlich als -1 klassifizieren, würden wir die Entscheidungsgrenze zur korrekten Klassifikation dieses Objekts beim nächsten Versuch sogar noch weiter verschieben:

 [image: [Bild]]

 Beachten Sie hier, dass die Konvergenz des Perzeptrons nur dann garantiert ist, wenn die beiden Klassen linear trennbar‌ sind (siehe Abbildung). (Interessierte Leser finden den mathematischen Beweis im Vorlesungsskript unter https://sebastianraschka.com/pdf/lecture-notes/stat479ss19/L03_perceptron_slides.pdf.) Lassen sich die beiden Klassen nicht durch eine lineare Entscheidungsgrenze trennen, können wir eine maximale Anzahl von Durchläufen der Trainingsdaten (Epochen)‌ und/oder einen Schwellenwert für die Anzahl der tolerierbaren Fehlklassifikationen festlegen – das Perzeptron würde anderenfalls endlos mit Anpassung der Gewichte fortfahren.

  [image: [Bild]]



 Tipp



Die Codebeispiele können Sie unter www.mitp.de/0213 herunterladen.





 Lassen Sie uns das Ganze in einer einfachen Abbildung zusammenfassen, die das allgemeine Konzept des Perzeptrons‌ veranschaulicht, bevor wir uns im nächsten Abschnitt der Implementierung zuwenden.

  [image: [Bild]]



 Die Abbildung illustriert, wie das Perzeptron die Eingabe x entgegennimmt und sie mit den Gewichten w kombiniert, um die Netzeingabefunktion zu berechnen. Die Netzeingabe wird dann der Aktivierungsfunktion (hier der Heaviside-Funktion) übergeben, die eine binäre Ausgabe erzeugt, nämlich -1 oder +1 – die Vorhersage für die Klassenbezeichnung des Objekts. Während der Lernphase wird diese Ausgabe genutzt, um Fehler zu ermitteln und die Gewichte zu aktualisieren.





 2.2  Implementierung eines Perzeptron-Lernalgorithmus in Python

 Im vorangegangenen Abschnitt haben Sie erfahren, wie Rosenblatts Perzeptron-Regel funktioniert. Diese wollen wir nun in Python implementieren und auf die Iris-Datensammlung anwenden, die in Kapitel 1 vorgestellt wurde.

 2.2.1  Eine objektorientierte Perzeptron-API

 Wir werden einen objektorientierten Ansatz verfolgen und die Perzeptron-Schnittstelle als eine Python-Klasse definieren, die es erlaubt, neue Perzeptron-Objekte zu initialisieren, die anhand einer fit-Methode aus Daten lernen und mittels einer predict-Methode Vorhersagen treffen können. Hierbei verwenden wir die Konvention,‌ einen Unterstrich (_) an Attribute anzuhängen, die nicht bei der Objektinitialisierung, sondern durch den Aufruf anderer Methoden des Objekts erzeugt werden,‌ z.B. in der Form self.w_.

 Tipp



Wenn Ihnen die wissenschaftlichen Python-Bibliotheken‌ noch nicht vertraut sind oder Sie Ihre Kenntnisse auffrischen möchten, sollten Sie sich die folgenden Informationsquellen näher ansehen:

NumPy: https://sebastianraschka.com/pdf/books/dlb/appendix_f_numpy-intro.pdf

pandas: https://pandas.pydata.org/pandas-docs/stable/10min.html

Matplotlib: https://matplotlib.org/tutorials/introductory/usage.html





 Nachstehend die Implementierung eines Perzeptrons in Python:

 import numpy as np
class Perceptron(object):
    """Perzeptron-Klassifikator

    Parameter
    ---------
    eta : float
        Lernrate (zwischen 0.0 und 1.0)
    n_iter : int
        Durchläufe der Trainingsdatenmenge
    random_state : int
      Zufallszahlengenerator für Initialisierung 
      mit zufälligen Gewichten

    Attribute
    ---------
    w_ : 1d-Array
        Gewichtungen nach Anpassung
    errors_ : list
        Anzahl der Fehlklassifikationen (Updates) pro Epoche

    """
    def __init__(self, eta=0.01, n_iter=50, random_state=1):
        self.eta = eta
        self.n_iter = n_iter
        self.random_state = random_state

    def fit(self, X, y):
        """Anpassen an die Trainingsdaten

        Parameter
        ---------
        X : {array-like}, shape = [n_samples, n_features]
            Trainingvektoren, n_samples ist
            die Anzahl der Objekte und
            n_features ist die Anzahl der Merkmale
        y : array-like, shape = [n_samples]
            Zielwerte

        Rückgabewert
        ------------
        self : object

        """
        rgen = np.random.RandomState(self.random_state)
        self.w_ = rgen.normal(loc=0.0, scale=0.01,
                              size=1 + X.shape[1])
        self.errors_ = []

        for _ in range(self.n_iter):
            errors = 0
            for xi, target in zip(X, y):
                update = self.eta * (target - \
                                     self.predict(xi))
                self.w_[1:] += update * xi
                self.w_[0] += update
                errors += int(update != 0.0)
            self.errors_.append(errors)
        return self

    def net_input(self, X):
        """Netzeingabe berechnen"""
        return np.dot(X, self.w_[1:]) + self.w_[0]
    def predict(self, X):
        """Klassenbezeichnung zurückgeben"""
        return np.where(self.net_input(X) >= 0.0, 1, -1)

                                                                                                                                 

 Mit dieser Implementierung können wir jetzt neue Perceptron-Objekte mit einer gegebenen Lernrate eta und der Anzahl der Epochen n_iter (Durchläufe der Trainingsdaten) initialisieren. In der fit-Methode werden die Gewichte in self.w_ mit einem Vektor  [image: [Bild]] initialisiert, wobei m die Anzahl der Dimensionen (Merkmale) in der Datensammlung angibt und dem ersten Element dieses Vektors, das die Bias-Einheit repräsentiert, 1 hinzufügt wird. Wie Sie wissen, repräsentiert das erste Element dieses Vektors, self.w[0], die vorhin erwähnte sogenannte Bias-Einheit.

 Beachten Sie außerdem, dass dieser Vektor kleine Zufallszahlen enthält, die via rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1]) einer Normalverteilung mit der Standardabweichung 0,01 entnommen werden. rgen ist hier ein NumPy-Zufallszahlengenerator, der mit einem benutzerdefinierten Wert initialisiert wird, sodass bei Bedarf vorhergehende Ergebnisse reproduzierbar sind.

 Die Gewichte werden nicht mit null initialisiert, weil sich die Lernrate η (eta) nur dann auf das Ergebnis der Klassifikation auswirkt, wenn die Gewichte von null verschiedene Werte besitzen. Wären alle Gewichte null, würde die Lernrate eta nur die Größe des Gewichtungsvektors beeinflussen, nicht aber die Richtung. Wenn Ihnen die Trigonometrie geläufig ist, betrachten Sie die Vektoren v1=[1 2 3] und v2= 0.5×v1. Der Winkel zwischen v1 und v2 wäre genau null, wie der folgende Code zeigt:

 >>> v1 = np.array([1, 2, 3])
>>> v2 = 0.5 * v1
>>> np.arccos(v1.dot(v2) / (np.linalg.norm(v1) *
...           np.linalg.norm(v2)))
0.0

       

 Hier ist np.arccos die Umkehrfunktion der Cosinusfunktion und np.linalg.norm berechnet die Länge eines Vektors. (Dass wir die Zufallszahlen einer Normalverteilung – und nicht etwa einer Gleichverteilung – entnehmen und eine Standardabweichung von 0.01 verwenden, ist willkürlich; wir sind lediglich an kleinen zufälligen Werten interessiert, um die eben erwähnten Eigenschaften von Vektoren zu umgehen, deren Komponenten alle null sind.)

 Tipp



Die Indizierung eindimensionaler NumPy-Arrays erfolgt auf dieselbe Weise wie bei Python-Listen – mit eckigen Klammern ([]). Bei zweidimensionalen Arrays verweist der erste Index auf die Zeilennummer und der zweite auf die Spaltennummer. Um das Element in der dritten Zeile der vierten Spalte eines 2-D-Arrays X auszuwählen, würde man X[2, 3] verwenden.





 Nach der Initialisierung der Gewichte durchläuft die fit-Methode alle in der Trainingsdatenmenge enthaltenen Objekte und aktualisiert die Gewichte gemäß der im vorangegangenen Abschnitt erörterten Perzeptron-Lernregel.

 Die Klassenbezeichnungen werden von der predict-Methode‌ vorausgesagt, die in der fit-Methode‌ aufgerufen wird, um die Klassenbezeichnung für die Aktualisierung eines Gewichts vorherzusagen. Die predict-Methode kann aber auch zur Prognostizierung der Klassenbezeichnungen neuer Daten verwendet werden, nachdem unser Modell trainiert wurde. Außerdem sammeln wir in der Liste self.errors_ die in jeder Epoche auftretenden Fehlklassifikationen, um später analysieren zu können, wie gut das Perzeptron während des Trainings funktioniert hat. Die in der net_input-Methode aufgerufene Funktion np.dot berechnet einfach nur das Skalarprodu‌kt [image: [Bild]].

 Tipp



Anstatt NumPy zur Berechnung des Skalarprodukts zweier Arrays via a.dot(b) oder np.dot(a,b) zu verwenden, könnten wir die Berechnung auch in reinem Python als sum([i*j for i,j in zip(a,b)]) ausführen. NumPy hat gegenüber normalem Python jedoch den Vorteil, dass arithmetische Operationen vektorisiert sind. Vektorisierung‌ bedeutet, dass einfache arithmetische Operationen automatisch auf alle Elemente eines Arrays angewendet werden. Indem wir arithmetische Operationen als eine Reihe von Array-Rechenanweisungen formulieren, statt die Berechnungen mit den einzelnen Elementen auszuführen, können wir die Fähigkeiten moderner CPUs mit SIMD-Architektur (Single Instruction, Multiple Data) besser nutzen. Darüber hinaus verwendet NumPy hochoptimierte Bibliotheken für lineare Algebra, wie BLAS (Basic Linear Algebra Subprograms) und LAPACK (Linear Algebra Package), die in C oder Fortran programmiert sind. Und schließlich ermöglicht NumPy es außerdem, unseren Code kompakter und intuitiver mit der in der linearen Algebra üblichen Notation zu formulieren, wie etwa Produkte von Vektoren und Matrizen.







 2.2.2  Trainieren eines Perzeptron-Modells mit der Iris-Datensammlung

 Zum Testen unserer Perzeptron-Implementierung werden wir die beiden Klassen Setosa und Versicolor aus der Iris-Datensammlung einlesen. Die Perzeptron-Regel ist zwar nicht auf zwei Dimensionen beschränkt, wir werden bei der Visualisierung jedoch nur die beiden Merkmale »Länge des Kelchblatts« und »Länge des Blütenblatts« betrachten. Aus praktischen Gründen haben wir auch lediglich die beiden Klassen Setosa und Versicolor ausgewählt. Der Perzeptron-Algorithmus kann allerdings erweitert werden, um eine Mehrklassen-Klassifikation vorzunehmen, beispielsweise durch ein OvA-Verfahren (siehe Kasten).

 Tipp



One-vs.-All (OvA)‌, oder auch One-vs.-Rest (OvR), ist ein Verfahren, um binäre Klassifikationen zu Mehrklassen-Klassifikationen zu erweitern. Dabei wird pro Klasse ein Klassifikator trainiert und die jeweilige Klasse wird als positive Klasse behandelt, während alle übrigen Klassen als negative Klassen betrachtet werden. Bei der Klassifikation einer neuen Datensammlung würden wir unsere n Klassifikatoren (n gibt die Anzahl der Klassenbezeichnungen an) verwenden und der betreffenden Klasse die Bezeichnung zuordnen, die am verlässlichsten klassifiziert wird. Im Fall des Perzeptrons würden wir OvA verwenden, um die Klassenbezeichnung auszuwählen, dessen Netzeingabe den größten Absolutwert besitzt.





 Zunächst importieren wir die pandas-Bibliothek, lesen die Iris-Datensammlung vom UCI Machine Learning Repository direkt in ein DataFrame-Objekt‌ ein und geben mit der tail-Methode die letzten fünf Zeilen aus, um zu überprüfen, ob die Daten korrekt geladen wurden:

 >>> import os
>>> import pandas as pd
>>> s = os.path.join('https://archive.ics.uci.edu', 'ml',
...                  'machine-learning-databases',
...                  'iris','iris.data')
>>> print('URL:', s)
URL: https://archive.ics.uci.edu/ml/
machine-learning-databases/iris/iris.data
>>> df = pd.read_csv(s,
...                  header=None,
...                  encoding='utf-8')
>>> df.tail()

                     

  [image: [Bild]]



 Tipp: Einlesen der Iris-Datensammlung



Die Iris-Datensammlung (und alle anderen in diesem Buch verwendeten Datenmengen) sind Bestandteil der das Buch ergänzenden Dateien. Sie können sie verwenden, wenn Sie offline arbeiten oder der UCI-Server unter https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data vorübergehend nicht verfügbar ist. Um beispielsweise die Iris-Datensammlung in einem lokalen Verzeichnis zu verwenden, können Sie den Code

df = pd.read_csv(
     'https://archive.ics.uci.edu/ml/'
     'machine-learning-
     databases/iris/iris.data',
     header=None, encoding='utf-8')

       

durch den folgenden ersetzen:

df = pd.read_csv(
     'Ihr/lokaler/Pfad/zu/iris.data',
     header=None, encoding='utf-8')

   





 Nun lesen wir die ersten 100 Klassenbezeichnungen aus, die zu den 50 Iris setosa und den 50 Iris versicolor gehören und konvertieren sie in die beiden ganzzahligen Klassenbezeichnungen 1 (Versicolor) und -1 (Setosa), die wir einem Vektor y zuweisen. Die values-Methode eines panda-DataFrame-Objekts liefert die entsprechende NumPy-Repräsentation zurück. Auf ähnliche Weise extrahieren wir die erste (Länge des Kelchblatts) und die dritte (Länge des Blütenblatts) Merkmalsspalte der 100 Trainingsdatensätze und weisen sie einer Merkmalsmatrix X zu, die wir als zweidimensionales Streudiagramm visualisieren:

 >>> import matplotlib.pyplot as plt
>>> import numpy as np

>>> # Auswahl von setosa und versicolor
>>> y = df.iloc[0:100, 4].values
>>> y = np.where(y == 'Iris-setosa', -1, 1)

>>> Auswahl von Kelch- und Blütenblattlänge
>>> X = df.iloc[0:100, [0, 2]].values

>>> # Diagramm ausgeben
>>> plt.scatter(X[:50, 0], X[:50, 1],
...             color='red', marker='o', label='setosa')
>>> plt.scatter(X[50:100, 0], X[50:100, 1],
...             color='blue', marker='x', label='versicolor')
>>> plt.xlabel('Länge des Kelchblatts [cm]')
>>> plt.ylabel('Länge des Blütenblatts [cm]')
>>> plt.legend(loc='upper left')
>>> plt.show()

                                   

 Nach Ausführung des obigen Codes wird folgendes Diagramm angezeigt:

  [image: [Bild]]



 Das Diagramm zeigt die Verteilung der Blumenexemplare der Iris-Datensammlung entlang der beiden Merkmalsachsen Länge des Blütenblatts und Länge des Kelchblatts. Hier ist erkennbar, dass in diesem zweidimensionalen Merkmalsraum eine lineare Entscheidungsgrenze ausreichen sollte, um Setosa und Versicolor vollständig voneinander zu trennen.

 Ein linearer Klassifikator wie das Perzeptron sollte also in der Lage sein, die Blumen in dieser Datensammlung vollständig zu klassifizieren.

 Nun ist es an der Zeit, den Perzeptron-Algorithmus mit der Teilmenge der Iris-Datensammlung zu trainieren, die wir soeben ausgelesen haben. Außerdem geben wir die Anzahl der Fehlklassifikationen jeder Epoche aus, um zu prüfen, ob der Algorithmus konvergiert und eine Entscheidungsgrenze findet, die beide Blumenarten voneinander trennt.

 >>> ppn = Perceptron(eta=0.1, n_iter=10)
>>> ppn.fit(X, y)
>>> plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_,
...         marker='o')
>>> plt.xlabel('Epochen')
>>> plt.ylabel('Anzahl der Fehlklassifikationen')
>>> plt.show()

           

 Nach der Ausführung des Codes wird ein Diagramm angezeigt, in dem die Anzahl der Fehlklassifikationen‌ gegen die Anzahl der Epochen aufgetragen ist.

  [image: [Bild]]



 Wie Sie dem Diagramm entnehmen können, konvergiert das Perzeptron bereits nach der sechsten Epoche und sollte nun in der Lage sein, die Trainingsdatenmenge vollständig korrekt zu klassifizieren. Wir implementieren noch eine kleine Hilfsfunktion zur komfortablen Visualisierung der Entscheidungsgrenzen zweidimensionaler Datenmengen.

 from matplotlib.colors import ListedColormap

def plot_decision_regions(X, y, classifier, resolution=0.02):

    # Markierungen und Farben einstellen
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])

    # Plotten der Entscheidungsgrenze
    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, \
         resolution), np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), \
                                            xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    # Plotten aller Objekte
    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
                    alpha=0.8, c=colors(idx),
                    marker=markers[idx], label=cl,
                    edgecolor='black')

                                                   

 Zunächst definieren wir eine Reihe von Farben und Markierungen sowie eine Farbtabelle via ListedColormap. Dann ermitteln wir die Minimal- und Maximalwerte der beiden Merkmale und verwenden die Merkmalsvektoren, um mit der NumPy-Funktion meshgrid die beiden Gitternetz-Arrays xx1 und xx2 zu erzeugen. Da der Perzeptron-Klassifikator nur mit zwei Merkmalen trainiert wurde, müssen wir die Arrays anpassen und eine Matrix mit derselben Spaltenzahl wie in der Iris-Trainingsteilmenge erzeugen, damit wird die predict-Methode verwenden können, um die Klassenbezeichnungen z den jeweiligen Gitternetzpunkten zuzuordnen.

 Wenn die vorhergesagten Klassenbezeichnungen in einem Gitternetz mit denselben Dimensionen wie xx1 und xx2 gespeichert sind, können wir mit der matplotlib-Funktion contourf ein Diagramm ausgeben, in dem den Entscheidungsbereichen‌ der in den Gitternetz-Arrays gespeicherten Klassenbezeichnungen verschiedene Farben zugeordnet sind:

 >>> plot_decision_regions(X, y, classifier=ppn)
>>> plt.xlabel('Länge des Kelchblatts [cm]')
>>> plt.ylabel('Länge des Blütenblatts [cm]')
>>> plt.legend(loc='upper left')
>>> plt.show()

       

 Die Ausführung des Codes liefert folgendes Ergebnis:

  [image: [Bild]]



 Wie Sie sehen, hat das Perzeptron eine Entscheidungsgrenze ermittelt, durch die alle Objekte in der Iris-Trainingsteilmenge richtig klassifiziert werden.

 Tipp



Hier wurden zwar alle Blumen richtig klassifiziert, dennoch stellt die Konvergenz eins der größten Probleme des Perzeptrons dar. Frank Rosenblatt hat den mathematischen Beweis geführt, dass die Perzeptron-Lernregel konvergiert, wenn die beiden Klassen durch eine lineare Hyperebene trennbar sind.‌‌ Wenn sich die Klassen allerdings nicht vollständig durch solch eine lineare Entscheidungsgrenze trennen lassen, fährt das Perzeptron, sofern man die Anzahl der Epochen nicht begrenzt, endlos mit Aktualisierungen der Gewichte fort. Interessierte Leser finden eine Zusammenfassung des Beweises in meinem Vorlesungsskript unter https://sebastianraschka.com/pdf/lecture-notes/stat479ss19/L03_perceptron_slides.pdf.









 2.3  Adaptive lineare Neuronen und die Konvergenz des Lernens

 In diesem Abschnitt werden wir uns mit einem weiteren neuronalen Netzwerk (NN) befassen, das lediglich aus einer einzigen Schicht besteht: ADAptive LInear NEuron (Adaline). Adaline‌ wurde nur wenige Jahre nach Frank Rosenblatts Perzeptron-Algorithmus von Bernard Widrow und‌ seinem Doktoranden Tedd Hoff‌ veröffentlicht und kann als Verbesserung des Letzteren aufgefasst werden (B. Widrow et al., An Adaptive "Adaline" Neuron Using Chemical "Memistors". Technical Report Number 1553-2, Stanford Electron Labs, Stanford, CA, Oktober 1960).

 Der Adaline-Algorithmus ist besonders interessant, weil er das entscheidende Konzept der Definition und Minimierung von Straffunktionen illustriert, die ihrerseits die Grundlage dafür schaffen, fortgeschrittenere Lernalgorithmen für die Klassifikation zu verstehen, wie etwa die logistische Regression, Support Vector Machines (SVM) und Regressionsmodelle, zu denen wir in nachfolgenden Kapiteln noch kommen werden.

 Der wesentliche Unterschied zwischen der Adaline-Regel (die auch als Widrow-Hoff-Regel ‌bezeichnet wird) und Rosenblatts Perzeptron ist, dass die Aktualisierung der Gewichte nicht wie beim Perzeptron auf einer einfachen Sprungfunktion, sondern auf einer linearen Aktivierungsfunktion beruht. Bei Adaline ist diese Funktion  [image: [Bild]] einfach die identische Abbildung der Netzeingabefunktion, sodass [image: [Bild]] gilt.

 Die lineare Aktivierungsfunktion wird dazu benutzt, die Gewichte zu erlernen. Anschließend kann man eine Schwellenwertfunktion verwenden, die Ähnlichkeit mit der bekannten Sprungfunktion besitzt, um die Klassenbezeichnungen vorherzusagen.

 Die folgende Abbildung soll die entscheidenden Unterschiede zwischen dem Perzeptron und dem Adaline-Algorithmus verdeutlichen.

  [image: [Bild]]



 Die Abbildung zeigt, dass der Adaline-Algorithmus die tatsächlichen Klassenbezeichnungen mit den stetigen Ausgaben der linearen Aktivierungsfunktion vergleicht, um Fehler des Modells zu berechnen und die Gewichte zu aktualisieren. Im Gegensatz dazu vergleicht das Perzeptron die tatsächlichen mit den vorhergesagten Klassenbezeichnungen.

 2.3.1  Straffunktionen mit dem Gradientenabstiegsverfahren minimieren

 ‌‌Bei der Entwicklung eines überwachten Lernalgorithmus ist es notwendig, eine Zielfunktion‌ zu definieren, die während des Lernvorgangs optimiert werden muss. Oftmals handelt es sich bei dieser Zielfunktion um eine Straffunktion, die minimiert werden soll.‌ Im Fall von Adaline definieren wir die Straffunktion J als Summe der quadrierten Abweichungen zwischen den berechneten Ergebnissen und den tatsächlichen Klassenbezeichnungen:

 [image: [Bild]]

 Der Faktor  [image: [Bild]] ist hier nur der Bequemlichkeit halber vorhanden – wie Sie in Kürze sehen werden, vereinfacht er die Berechnung des Gradienten der Straf- oder Verlustfunktion bezüglich der Gewichte. Der Hauptvorteil dieser stetigen linearen Aktivierungsfunktion besteht darin, dass die Straffunktion im Gegensatz zur Sprungfunktion differenzierbar ist.‌ Die Straffunktion hat außerdem die angenehme Eigenschaft, konvex‌‌ zu sein, daher können wir einen einfachen, aber dennoch leistungsfähigen Optimierungsalgorithmus einsetzen, der als Gradientenabstiegsverfahren bezeichnet wird, um die Gewichte zu berechnen, die unsere Straffunktion zur Klassifikation der Objekte in der Iris-Datensammlung minimiert.

 Wie die nächste Abbildung zeigt, kann man sich das dem Gradientenabstiegsverfahren zugrunde liegende Prinzip folgendermaßen vorstellen: Man steigt einen Hügel hinab, bis man auf ein lokales oder globales Minimum der Straffunktion stößt. Bei jedem Durchgang entfernt man sich einen Schritt vom Gradienten, wobei die Größe dieses Schrittes sowohl vom Wert der Lernrate als auch von der Steigung des Gradienten abhängt:

  [image: [Bild]]



 Mit dem Gradientenabstiegsverfahren können wir nun die Gewichte aktualisieren, indem wir uns einen Schritt vom Gradienten [image: [Bild]] der Straffunktion  [image: [Bild]] fortbewegen:

 [image: [Bild]]

 Die Änderung des Gewichts Δw ist definiert als der negative Gradient multipliziert mit der Lernrate η:

 [image: [Bild]]

 Zur Berechnung des Gradienten der Straffunktion benötigen wir die partiellen Ableitungen der Straffunktion nach den Gewichten:

 [image: [Bild]], sodass wir die Aktualisierung des Gewichts  [image: [Bild]] als

 [image: [Bild]]

 schreiben können. Da wir alle Gewichte gleichzeitig aktualisieren, wird die Adaline-Lernregel zu  [image: [Bild]].

 Tipp



Die partielle Ableitung der Straffunktion nach dem j-ten Gewicht kann wie folgt berechnet werden:

[image: [Bild]]

[image: [Bild]]

[image: [Bild]]

[image: [Bild]]

[image: [Bild]]

[image: [Bild]]





 Die Adaline-Lernregel sieht zwar genauso aus wie die Perzeptron-Lernregel, allerdings ist  [image: [Bild]] mit [image: [Bild]] eine reelle Zahl und keine ganzzahlige Klassenbezeichnung. Darüber hinaus beruht die Berechnung der Gewichtungsaktualisierung auf allen in der Trainingsdatenmenge enthaltenen Objekten, anstatt die Gewichte nach jedem Objekt inkrementell zu aktualisieren. Man spricht daher auch von einem Batch-Gradientenabstiegsverfahren.‌



 2.3.2  Implementierung eines adaptiven linearen Neurons in Python

 Da die Perzeptron- und Adaline-Regeln einander sehr ähneln, verwenden wir die eingangs dieses Kapitels definierte Perzeptron-Implementierung und ändern hier die fit-Methode, sodass die Aktualisierung der Gewichte stattfindet, indem die Straffunktion mit dem Gradientenabstiegsverfahren minimiert wird:

 class AdalineGD(object):
    """Adaline-Klassifikator

    Parameter
    ---------
    eta : float
        Lernrate (zwischen 0.0 und 1.0)
    n_iter : int
        Durchläufe der Trainingsdatenmenge
    random_state : int
        Zufallszahlgenerator für zufällige Gewichtungen
        initialisieren

    Attribute
    ---------
    w_ : 1d-array
        Gewichte nach Anpassung
    cost_ : list
        Summe der quadrierten Werte der
        Straffunktion pro Epoche

    """
    def __init__(self, eta=0.01, n_iter=50, random_state=1):
        self.eta = eta
        self.n_iter = n_iter
        self.random_state = random_state

    def fit(self, X, y):
        """ Fit-Trainingsdaten

        Parameter
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Trainingsvektoren, n_samples ist
            die Anzahl der Exemplare und
            n_features ist die Anzahl der Merkmale
        y : array-like, shape = [n_samples]
            Zielwerte

        Rückgabewert
        ------------
        self : object

        """
        rgen = np.random.RandomState(self.random_state)
        self.w_ = rgen.normal(loc=0.0, scale=0.01,
                              size=1 + X.shape[1])
        self.cost_ = []

        for i in range(self.n_iter):
            net_input = self.net_input(X)
            output = self.activation(net_input)
            errors = (y - output)
            self.w_[1:] += self.eta * X.T.dot(errors)
            self.w_[0] += self.eta * errors.sum()
            cost = (errors**2).sum() / 2.0
            self.cost_.append(cost)
        return self

    def net_input(self, X):
        """Netzeingabe berechnen"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def activation(self, X):
        """Lineare Aktivierungsfunktion berechnen"""
        return X

    def predict(self, X):
        """Rückgabe der Klassenbezeichnung"""
        return np.where(self.activation(self.net_input(X))
                        >= 0.0, 1, -1)

                                                                                                                                           

 Anstatt wie beim Perzeptron die Gewichte nach der Bewertung jedes einzelnen Trainingsexemplars zu aktualisieren, berechnen wir den Gradienten anhand der gesamten Trainingsdatenmenge mittels self.eta * errors_sum() für die Bias-Einheit (Gewicht 0) und self.eta * X.T.dot(errors) für die Gewichte 1 bis m. Dabei ist X.T.dot(errors) eine Matrix-Vektor-Multiplikation‌ von Merkmalsmatrix und Fehlervektor.

 Beachten Sie hier, dass die activation-Methode im Code nichts bewirkt, denn es handelt sich einfach nur um eine Identitätsfunktion. Wir addieren die (durch die activation-Methode berechnete) Aktivierungsfunktion, um zu demonstrieren, wie Informationen durch ein einschichtiges neuronales Netzwerk fließen: Merkmale der Eingabedaten, Netzeingabe, Aktivierungsfunktion und Ausgabe.

 Im nächsten Kapitel werden wir uns mit auf logistischer Regression beruhenden Klassifikatoren befassen und feststellen, dass diese eng mit Adaline verwandt sind, denn sie unterscheiden sich nur durch die Aktivierungs- und Straffunktion.

 Wie beim Perzeptron sammeln wir in einer Liste self.cost_ die auftretenden Werte der Straffunktion, um zu prüfen, ob der Algorithmus nach dem Training konvergiert.

 Tipp



Die Multiplikation einer Matrix mit einem Vektor funktioniert auf ähnliche Weise wie die Berechnung eines Skalarprodukts, bei der mit jeder Zeile der Matrix wie mit einem einzelnen Zeilenvektor verfahren wird. Dieser vektorisierte Ansatz ermöglicht eine kompaktere Schreibweise und führt bei der Verwendung von NumPy zu effizienteren Berechnungen. Ein Beispiel:

[image: [Bild]]

Hier ist zu beachten, dass in dieser Gleichung eine Matrix mit einem Vektor multipliziert wird, was mathematisch nicht definiert ist. Wir verwenden jedoch die Konvention, dass dieser Vektor als 3 x 1-Matrix betrachtet wird.





 In der Praxis ist oft ein wenig Experimentieren notwendig, um einen guten Wert für die ‌Lernrate η zu finden, der zu optimaler Konvergenz führt. Wir wählen daher für den Anfang zwei verschiedene Lernraten η = 0.01 und η = 0.0001 aus und tragen die Werte der Straffunktion gegen die Anzahl der Epochen auf, um zu sehen, wie gut die Adaline-Implementierung aus den Trainingsdaten lernt.

 Tipp



Die Lernrate η und die Anzahl der Epochen n_iter sind sogenannte Hyperparameter‌ der Perzeptron- und Adaline-Lernalgorithmen. In Kapitel 6, Bewährte Verfahren zur Modellbewertung und Hyperparameter-Optimierung, werden wir uns einige Verfahren ansehen, um automatisch die Werte verschiedener Hyperparameter zu finden, die zu einer optimalen Leistung des Klassifikationsmodells führen.





 Nun tragen wir für beide Lernraten die Werte der Straffunktion gegen die Anzahl der Epochen auf:

 >>> fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
>>> ada1 = AdalineGD(n_iter=10, eta=0.01).fit(X, y)
>>> ax[0].plot(range(1, len(ada1.cost_) + 1),
...            np.log10(ada1.cost_), marker='o')
>>> ax[0].set_xlabel('Epochen')
>>> ax[0].set_ylabel('log(Summe quadrierter Abweichungen)')
>>> ax[0].set_title('Adaline - Lernrate 0.01')

>>> ada2 = AdalineGD(n_iter=10, eta=0.0001).fit(X, y)
>>> ax[1].plot(range(1, len(ada2.cost_) + 1),
...            ada2.cost_, marker='o')
>>> ax[1].set_xlabel('Epochen')
>>> ax[1].set_ylabel('Summe quadrierter Abweichungen')
>>> ax[1].set_title('Adaline - Lernrate 0.0001')
>>> plt.show()

                           

 Wie Sie den Diagrammen entnehmen können, werden wir mit zwei verschiedenen Arten von Problemen konfrontiert. Das linke Diagramm zeigt, was passieren kann, wenn die Lernrate zu groß ist – die Werte der Straffunktion werden nicht minimiert, sondern wachsen sogar mit jeder Epoche weiter an, weil wir über das globale Minimum hinausgeschossen sind.

  [image: [Bild]]



 Beim rechten Diagramm ist zwar erkennbar, dass die Werte der Straffunktion sinken, allerdings ist die ausgewählte Lernrate η = 0.0001 so klein, dass der Algorithmus sehr viele Epochen benötigen würde, um zu konvergieren.

 Die nachstehende Abbildung illustriert, wie man den Wert eines bestimmten Gewichtungsparameters variieren kann, um die Straffunktion J zu minimieren. Auf der linken Seite der Abbildung wurde eine geeignete Lernrate ausgewählt: Die Straffunktion wird allmählich kleiner und bewegt sich in Richtung des globalen Minimums. Die rechte Seite der Abbildung demonstriert, was geschieht, wenn man die Lernrate zu groß wählt und über das Minimum hinausschießt.

  [image: [Bild]]





 2.3.3  Verbesserung des Gradientenabstiegsverfahrens durch Merkmalstandardisierung

 Viele der Lernalgorithmen, denen Sie im weiteren Verlauf des Buches noch begegnen werden, machen es erforderlich, die Merkmale irgendwie zu normieren, um eine optimale Leistung zu erzielen. Mehr dazu in Kapitel 3, Machine-Learning-Klassifikatoren mit scikit-learn verwenden und Kapitel 4, Gut geeignete Trainingsdatenmengen: Datenvorverarbeitung.

 Das Gradientenabstiegsverfahren gehört zu den vielen Algorithmen, die von solch einer Anpassung profitieren. Wir werden nun eine als Standardisierung‌ bezeichnete Methode verwenden, die den Daten die Eigenschaften einer Standardnormalverteilung verleiht. Der Mittelwert jedes Merkmals liegt bei 0 und die Standardabweichung jeder Spalte beträgt 1. Um beispielsweise das Merkmal j zu standardisieren, müssen wir nur den Mittelwert  [image: [Bild]] von der jeweiligen Stichprobe abziehen und das Ergebnis durch die Standardabweichung [image: [Bild]] teilen:

 [image: [Bild]]

 [image: [Bild]] ist hier ein Vektor, dessen Elemente die j-ten Merkmalswerte aller Trainingsobjekte n sind. Dieses Standardisierungsverfahren wird auf alle Merkmale der Datenmenge angewendet.

 Die Standardisierung verbessert das Gradientenabstiegsverfahren unter anderem, weil zum Auffinden einer guten oder optimalen Lösung (das globale Minimum der Straffunktion) weniger Schritte erforderlich sind, wie die nachstehende Abbildung verdeutlicht. Beide Diagramme stellen die Straf-»Fläche« einer zweidimensionalen Klassifikationsaufgabe als Funktion der Gewichte dar.

  [image: [Bild]]



 Mit den NumPy-Methoden mean‌ und std‌ kann diese Standardisierung leicht erzielt werden:

 >>> X_std = np.copy(X)
>>> X_std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()
>>> X_std[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std()

   

 Nach der Standardisierung trainieren wir den Adaline-Algorithmus erneut und stellen fest, dass er nun mit einer Lernrate von η = 0.01 nach wenigen Epochen konvergiert:

 >>> ada_gd = AdalineGD(n_iter=15, eta=0.01)
>>> ada_gd.fit(X_std, y)

>>> plot_decision_regions(X_std, y, classifier=ada_gd)
>>> plt.title('Adaline - Gradientenabstiegsverfahren')
>>> plt.xlabel('Länge des Kelchblatts [standardisiert]')
>>> plt.ylabel('Länge des Blütenblatts [standardisiert]')
>>> plt.legend(loc='upper left')
>>> plt.show()

>>> plt.plot(range(1, len(ada_gd.cost_) + 1),
...          ada_gd.cost_, marker='o')
>>> plt.xlabel('Epochen')
>>> plt.ylabel('Summe quadrierter Abweichungen')
>>> plt.show()

                           

 Nach der Ausführung des Codes sollten die Entscheidungsbereiche sowie die sinkenden Werte der Straffunktion in zwei Diagrammen angezeigt werden:

  [image: [Bild]]



 Den Diagrammen ist zu entnehmen, dass der Adaline-Algorithmus nach dem Training mit den standardisierten Merkmalen und einer Lernrate von η = 0.01 konvergiert. Beachten Sie jedoch, dass die Summe der quadrierten Abweichungen von null verschieden ist, obwohl alle Objekte korrekt klassifiziert wurden.



 2.3.4  Large Scale Machine Learning und stochastisches Gradientenabstiegsverfahren

 Im vorangegangenen Abschnitt haben Sie erfahren, wie man die Straffunktion minimiert, indem man sich einen Schritt in die entgegengesetzte Richtung des Gradienten basierend auf der gesamten Trainingsdatenmenge begibt (Batch-Gradientenabstiegsverfahren). Nehmen wir nun an, wir hätten es mit einer sehr großen Datenmenge mit Millionen von Datensätzen zu tun – bei vielen Anwendungen des Machine Learnings ist das nicht ungewöhnlich. In solchen Fällen kann das Batch-Gradientenabstiegsverfahren ziemlich rechenaufwendig werden, weil die gesamte Trainingsdatenmenge bei jedem Schritt in Richtung des globalen Minimums erneut ausgewertet werden muss.

 Als Alternative bietet sich ein stochastisches Gradientenabstiegsverfahren‌ an, das manchmal auch als iteratives oder Online-Gradientenabstiegsverfahren bezeichnet wird. Normalerweise werden die Gewichte anhand der Summe aller Abweichungen sämtlicher Beispiele  [image: [Bild]] aktualisiert:
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