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PREFACE




What is the Value Proposition for This Book?


This book is primarily for data scientists and machine learning engineers who want to expand their current knowledge of SQL using MySQL as the primary RDBMS. While this book does contain relevant information for novices in other fields, the structure of this book differs from typical database books.

In addition, this book attempts to balance depth and breadth, along with a decent number of SQL statements to illustrate the important features of SQL. Although it’s not possible to describe the exact set of features that constitute basic, intermediate, and advanced SQL queries (i.e., opinions will differ), this book contains SQL examples that belong to each of those three groups.

At the same time, remember that some topics in the final chapter are presented in a cursory manner, which is for two main reasons. First, although you don’t need an in-depth understanding of every facet of SQL and RDBMSs, it’s important that you be aware of these concepts if you plan to become highly proficient in managing database data. In addition, you will be in a better position to plan an itinerary for the set of topics that you will learn at some point in the future.

Second, a full treatment of every topic in this book would significantly increase the page count, and it’s debatable whether all the additional details would be beneficial to you as a machine learning engineer or a data scientist.




The Target Audience


As you read in the previous section, this book is meant primarily for machine learning engineers and data scientists who already have a basic understanding of SQL, which means that they have executed some SQL statements in a database such as MySQL. As such, they will learn more details about SQL and MySQL so they can manage data in database tables. Moreover, the knowledge that they gain while working with MySQL can easily transfer to other RDBMSs such as ORACLE.

In addition, this book is intended to reach an international audience of readers, so this book uses standard English rather than colloquial expressions. As you know, many people learn by different types of imitation, which includes reading, writing, or hearing new material. This book takes these points into consideration in order to provide a comfortable and meaningful learning experience for the intended readers.




What’s Different About This SQL Book?


Before delving into the differences, it’s worth noting that this book covers many topics that you will find in database books of comparable length. At a minimum, any RDBMS book needs to include SQL, along with examples of how to select, delete, update, and insert data into a database table. Other mandatory topics include an explanation of views, indexes, joining tables, subqueries, normalization, and database schemas.

However, this book differs from generic database books because there are topics that are relevant to this target audience, which are not necessary for readers of generic database books. Some of those additional topics are discussed in chapter 6 (miscellaneous topics).

Another difference is a portion of Chapter 5, which contains Python-based code samples to access data from a MySQL table in a Pandas data frame. A third difference is the inclusion of the appendix that contains an introduction to probability and statistics, and a discussion of of entropy, cross-entropy, and KL divergence. Thus, it’s the collective set of differences that differentiate this book from generic SQL books.




What Will I Learn From This Book?


The first chapter contains a short introduction to RDBMSs and MySQL, along with information about installing MySQL. In addition, you will see SQL statements for creating, dropping, and exporting a database. Although other books sometimes defer these operations to later chapters, they are easy to perform with empty or very small databases that do not contain any critical data. Therefore, you don’t have to worry about making costly mistakes because of a blunder in a SQL query.

The second chapter delves into creating database tables and various ways to populate them with data. This chapter also describes various ways of deleting data from database tables, followed by a discussion of indexes on tables and why they are important.

The third chapter explains the concept of “joining” database tables, followed by a discussion of views: what they are, what advantages they provide, and how to create them over a single table or multiple tables. You will also learn how to work with subqueries in SQL. In addition, this chapter introduces you to the notion of normalization, along with a clear and compelling reason for adopting database normalization.

The fourth chapter is primarily about SQL functions, which involves numeric functions such as ceil(), floor(), and random(). Aggregate functions are also discussed, followed by string-oriented SQL functions such as the substring() function. This chapter contains an assortment of SQL statements, some of which involve various combinations of GROUP BY, HAVING, and ORDER BY.

The fifth chapter introduces NoSQL, followed by an overview of MongoDB, which is a popular NoSQL database. Next you will learn about SQLite, which is an open-source RDBMS that is available on mobile devices.

Chapter six contains a diverse set of miscellaneous topics, such as normalization, schemas, database optimization, and performance. Then you will be introduced to EXPLAIN plans, SQL tuning, managing users, roles, stored procedures, and triggers.




A Simple Way to Create the Entire mytools Database


As a convenience, Chapter 6 contains the SQL file mytools.sql that contains all the tables that are defined in this book. Moreover, the SQL file also contains the data for all the database tables. Of course, you can launch the individual SQL files for each of the tables if you prefer to do so the “long way”.

You can import the complete mytools database by starting MySQL and then issuing the following command from the command line in the directory that contains mytools.sql:


mysql -u root -p mytools < mytools.sql



NOTE If you encounter issues when you launch the preceding command, read the section in Chapter 6 regarding MySQL Workbench that enables you to import databases and export databases.




What Do I Need to Know for This Book?


Although this is an introductory book with minimal prerequisites, obviously you will benefit from having existing knowledge of various topics. Specifically, some knowledge of SQL will facilitate learning the SQL-related concepts more quickly. In addition, knowledge of Java is helpful for Appendix A, as well as some familiarity with XML and JSON. Familiarity with normalization will help you understand the relationships among the tables in the fictitious application that is discussed in Chapter 1 and Chapter 2.

If you want to be sure that you can grasp the material in this book, glance through some of the code samples to get an idea of how much is familiar to you and how much is new for you.




Do the Companion Files Obviate the Need for This Book?


The companion files contains all the code samples to save you time and effort from the error-prone process of manually typing code into a text file. Furthermore, there are situations in which you might not have easy access to the companion files. In addition, the code samples in the book provide explanations that are not available on the companion files.




Does This Book Contain Production-Level Code Samples?


The primary purpose of the code samples in this book is to provide a variety of SQL statements that enable you to perform common and useful tasks in MySQL. Clarity has higher priority than writing more compact code that is more difficult to understand (and possibly more prone to bugs). If you decide to use any of the code in this book in a production website, you ought to subject that code to the same rigorous analysis as the other parts of your code base.




What Are the Non-Technical Prerequisites for This Book?


Although the answer to this question is more difficult to quantify, it’s very important to have strong desire to learn about data analytics, along with the motivation and discipline to read and understand the code samples.




How Do I Set Up a Command Shell?


If you are a Mac user, there are three ways to do so. The first method is to use Finder to navigate to Applications > Utilities and then double click on the Utilities application. Next, if you already have a command shell available, you can launch a new command shell by typing the following command:


open /Applications/Utilities/Terminal.app



A second method for Mac users is to open a new command shell on a MacBook from a command shell that is already visible simply by clicking command+n in that command shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (open source https://cywin.com) which simulates bash commands, or use another toolkit such as MKS (a commercial product). Please read the online documentation that describes the download and installation process. Note that custom aliases are not automatically set if they are defined in a file other than the main start-up file (such as .bash_login).




Companion Files


All of the code samples and figures in this book may be obtained by writing to the publisher at info@merclearning.com.




What Are the “Next Steps” After Finishing This Book?


The answer to this question varies, mainly because the answer depends heavily on your objectives. If you are interested primarily in working with structured data, then you can look for online resources that delve into more advanced topics.

If you are primarily interested in machine learning, then you have several options: NLP (natural language processing), deep learning, and reinforcement learning (and also deep reinforcement learning).

Fortunately, you can perform an Internet search to find many resources. One other point: the aspects of machine learning for you to learn depend on who you are: the needs of a machine learning engineer, data scientist, manager, student or software developer are all different.






CHAPTER 1

INTRODUCTION TO RDBMSs AND MYSQL

This chapter introduces you to RDBMSs and various SQL concepts, along with a quick introduction to MySQL. MySQL is used in most of this book because it is a robust RDBMS that is available as a free download from an ORACLE website. Current trends suggest that MySQL will continue its dominant role for the foreseeable future. Moreover, virtually everything that you learn about MySQL in this chapter transfers to other RDBMSs, such as PostgreSQL and ORACLE.

This chapter describes a fictitious website that enables users to register themselves for the purpose of purchasing various home improvement tools (hammers, wrenches, and so forth). Instead of SQL statements, you will learn about the tables that are required, their relationships, and the structure of those tables. You will also see some SQL INSERT statements for inserting data into database tables. Although we have yet to create any database tables, these SQL statements are intuitive and easy to grasp. Then, in Chapter 2, you will see the SQL statements that create the tables that are discussed in this chapter.

The first part of this chapter introduces the concept of an RDBMS, and the rationale for using an RDBMS. In particular, you will see an example of an RDBMS with a single table, two tables, and four tables (and much larger RDBMSs exist). This section also introduces the notion of database normalization, and how it assists you in maintaining data integrity (“single source of truth”) in an RDBMS.

The second part of this chapter describes the structure of the tables in a four-table database that keeps track of customer purchases of home improvement tools that consumers can purchase through the associated Web page. You will also see the different relationships among pairs of tables, and how a one-to-many relationship enables you to find all the line items that belong to a given purchase order.

The third portion of this chapter contains a brief introduction to SQL and some basic examples of SQL queries (more details are in Chapter 2). You will also learn about the terminology for various types of SQL statements that can be classified as DCL (Data Control Language, DDL (Data Definition Language), DQL (Data Query Language), or DML (Data Manipulation Language).

The fourth portion of this chapter discusses SQL data types, and the fifth portion discusses database operations, such as creating, dropping, and renaming a database in MySQL. The final portion discusses two useful built-in tables that enable you to find the columns of a given table and the status of SQL statements.

There are several points to keep in mind before reading this chapter. First, the style for this chapter (and also the next chapter) is a “top-down” approach whereby high-level details are described and then hands-on coding details are discussed. However, you are free to reverse the order in which you read the first two chapters, if you prefer a “bottom-up” approach whereby you first learn more details regarding SQL statements and then learn about a use case in this chapter.

Second, there is an important detail that is mentioned in the preface that is worth repeating here: this book is primarily for data scientists who want to increase their knowledge of SQL to manage data in a database. Although this book can be useful for any motivated beginner, its primary purpose is different from books that prepare readers to become database administrators (DBAs).

Third, there is a section in the middle of this chapter that shows you the SQL statements that create several tables, along with details of purchase orders. This section is a preview of what you will learn in subsequent chapters, and it’s intended primarily for readers who already have a good understanding of SQL statements. However, if you are unfamiliar with the syntax of the SQL statements in that section, there’s no need to worry: you can return to this section after reading subsequent chapters that explain the details of the SQL syntax and functionality.



WHAT IS MYSQL?


MySQL is an open source database that is portable and provides many features that are available in commercial databases. Oracle is the steward of the MySQL database, and you can download MySQL 8.0 from the following site:

https://www.mysql.com/downloads/

MySQL is a highly popular database that is used by many companies, including Amazon, Google, LinkedIn, Netflix, and Twitter. MySQL is written in C++, whereas the user-level interaction is through SQL. Other add-ons for MySQL can be purchased from Oracle, as well as free third-party tools are available for monitoring and managing MySQL databases.

If you prefer, MySQL also provides a GUI interface for performing database-related operations. The code samples in this book have been written for MySQL 8, which provides the following new features beyond earlier versions:


	A transactional data dictionary

	Improved support for BLOB, TEXT, GEOMETRY, and JSON data types

	Support for CTEs (common table expressions)

	Support for window functions



As you will see in Chapter 6, MySQL supports pluggable storage engines, such as InnoDB (the most commonly used MySQL storage engine). In addition, Facebook developed an open source storage engine called MyRocks that has better compression and performance, so it might be worth while to explore the advantage of MyRocks over the other storage engines for MySQL.



What about MariaDB?


MySQL began as an open source project, and retained its name after the Oracle acquisition. Shortly thereafter, the MariaDB database was created, which is a “fork” of the MySQL database. Although MariaDB supports all the features of MySQL, there are important differences between MySQL and MariaDB that you can read about online:

https://mariadb.com/kb/en/mariadb-vs-mysql-compatibility/




Installing MySQL


Download the MySQL distribution for your machine and perform the installation procedure. After you complete the installation, log into MySQL as root with the following command, which will prompt you for the root password:


$ mysql -u root -p



If you installed MySQL via a DMG file, then the root password is the same as the password for your machine.




Useful Links for MySQL


This section contains various links that may be useful as you read the chapters of this book. Although SQL is not discussed in detail until the next chapter, the SQL links are included here for your convenience.

MySQL won the DBMS of the Year award in 2019:

https://db-engines.com/en/blog_post/83

The following link contains the list of platforms that support MySQL:

https://www.mysql.com/de/support/supportedplatforms/database.html

The following link contains a comparison between SQL and MySQL:

https://www.softwaretestinghelp.com/sql-vs-mysql-vs-sql-server/

A comparison of MySQL, Microsoft SQL Server, and PostgreSQL is available online:

https://db-engines.com/en/system/Microsoft+SQL+Server%3BMySQL%3BPostgreSQL

The latest version of SQL is SQL:2016:

https://en.wikipedia.org/wiki/SQL:2016

The following website contains details regarding MySQL Standards Compliance:

https://dev.mysql.com/doc/refman/8.0/en/compatibility.html

The following website describes MySQL Extensions to Standard SQL:

https://dev.mysql.com/doc/refman/8.0/en/extensions-to-ansi.html

The following website is a FAQ for MySQL 8.0, along with download links for the MySQL manual in multiple formats:

https://dev.mysql.com/doc/refman/8.0/en/faqs.html





WHAT IS AN RDBMS?


RDBMS is an initialism for Relational DataBase Management System. RDBMSs store data in tables that contain labeled attributes (sometimes called columns) that have a specific data type. Examples of an RDBMS include MySQL, ORACLE, and IBM DB2. While an RDBMS is software that manages data, a DBMS is the underlying “store” where the data resides.

Although relational databases often provide a very good solution for managing data, speed and scalability might be an issue in some cases. Chapter 5 discusses NoSQL databases, such as MongoDB, that might be more suitable for speed and scalability.



What Relationships Do Tables Have in an RDBMS?


While an RDBMS can consist of a single table, it often comprises multiple tables that can have various types of associations with each other. For example, when you buy various items at a food store, your receipt consists of one purchase order that contains one or more “line items,” where each line item indicates the details of a particular item that you purchased. This is called a one-to-many relationship between a purchase order (which is stored in a purchase_orders table) and the line items (stored in a line_items table) for each item that you purchased.

Another example involves students and courses: each student is enrolled in one or more courses, which is a one-to-many relationship from students to courses. Moreover, each course contains one or more students, so there is a one-to-many relationship from courses to students. Hence, the students and course tables have a many-to-many relationship.

A third example is an employees table, where each row contains information about one employee. If each row includes the id of the manager of the given employee, then the employees table is a self-referential table because finding the manager of the employee involves searching the employees table with the manager’s id that is stored in the given employee record. However, if the rows in an employees table do not contain information about an employee’s manager, then the table is not self-referential.

In addition to table definitions, a database frequently contains indexes, primary keys, and foreign keys that facilitate searching for data in tables and also connecting a row in a given table with its logically related row (or rows) in another table. For example, if we have the id value for a particular purchase order in the purchase_orders table, we can find all the line items (i.e., the items that were purchased) in the line_items table that contain the same purchase order id.




Features of an RDBMS


An RDBMS provides a convenient way to store data, often associated with some type of application. For example, later you will see the details of a four-table RDBMS that keeps track of tools that are purchased via a Web-based application. From a high-level perspective, an RDBMS provides the following characteristics:


	a database contains one or more tables

	data is stored in tables

	data records have the same structure

	well-suited for vertical scaling

	support for ACID (explained below)



Another useful concept is a logical schema that consists of the collection of tables and their relationships (along with indexes, views, triggers, and so forth) in an RDBMS. The schema is used for generating a physical schema, which consists of all the SQL statements that are required to create the specified tables and their relationships.

For example, Chapter 6 contains a SQL file mytools.sql that contains the definition of every entity in the mytools database, as well as the directory mytools-sql-files-20211120 that contains a SQL file for every table in the mytools database. Moreover, Chapter 6 describes two techniques for exporting a MySQL database. After the tables have been generated, you can begin inserting data and then managing the consistency of the data.




What is ACID?


ACID is an acronym for Atomicity, Consistency, Isolation, and Durability, which refers to properties of RDBMS transactions, as summarized below.


	Atomicity means that each transaction is all-or-nothing, so if a transaction fails, the system is rolled back to its previous state.

	Consistency means that successful transactions always result in a valid database state.

	Isolation means that executing transactions concurrently or serially will result in the state.

	Durability means that a committed transaction will remain in the same state.



RDBMSs support ACID, whereas NoSQL databases usually do not support ACID.





WHEN DO WE NEED AN RDBMS?


The short answer is that an RDBMS is useful when we need to store records of events that have occurred, which can be involve simple item purchases as well as complex multi-table financial transactions.

An RDBMS allows you to define a collection of tables that contain rows of data, where a row contains one or more attributes (informally called fields). A row of data is a record of an event that occurred at a specific point in time, which can involve more than one table, and can also involve some type of transaction.



Transferring Money Between Bank Accounts


Consider a simple money transfer between two bank accounts in which you want to transfer $100 from a savings account to a checking account. The process involves two steps:


	debiting (subtracting) the savings account by $100 and

	crediting (adding) the checking account with $100.



However, if a system failure occurs after step 1 and before step 2 can be completed, you have lost $100. Obviously, steps 1 and 2 must be treated as an atomic transaction, which means that the transaction is successful only when both steps have completed successfully. If the transaction is unsuccessful, the transaction is “rolled back” so the system is returned to the state prior to transferring money between the two accounts.

As you learned earlier in this chapter, RDBMSs support ACID, which ensures that the previous transaction (i.e., transferring money between accounts) is treated as an atomic transaction.

Although atomic transactions are indispensable in financial systems, they might not be as critical for other systems. For example, a database that contains a lone events table in which each row contains information about a single event that you created by some process (such as a registration form) whenever a new event occurs in a system. Although this is conceptually simple, notice that the following attributes are relevant for each row in the events table: event_id, event_time, event_title, event_duration, and event_location, and possibly additional attributes.

As another example, displaying a set of pictures might not show the pictures in the correct order (e.g., based on their creation time). However, a failure in the event creation is not as critical as a failure in a financial system, and displaying images in the wrong sequence will probably be rectified when the page is refreshed.





THE IMPORTANCE OF NORMALIZATION


This section contains an introduction to the concept of normalization. As a starting point, consider an RDBMS that stores records for the temperature of a room during a time interval (such as a day, a week, or some other time interval). We just need one device_temperature table where each row contains the temperature of a room at a specific time. In the case of the IoT (Internet of Things), the temperature is recorded during regular time intervals (such as minute-by-minute or hourly).

If you need to track only one room, the device_temperature table is probably sufficient. However, if you need to track multiple devices in a room, then it’s convenient to create a second table called device_details that contains attributes for each device, such as device_id, device_name, device_year, device_price, and device_warranty.

Whenever we want the details of a temperature-related event, we need information from both tables, which consists of one row in the device_temperature table and its associated row in the device_details table. The way to perform the two-table connection is simple: each row in the device_details table contains a device_id that uniquely identifies the given row. Moreover, the same device_id appears in any row of the device_temperature table that refers to the given device.

The preceding two-table structure is a minimalistic example of something called database normalization, whose purpose is to reduce data redundancy in database tables. Normalization can result in a slower performance during the execution of some types of SQL statements (e.g., those that contain a JOIN keyword).

If you are new to the concept of database normalization, you might be thinking that normalization increases complexity and reduces performance without providing tangible benefits. While this is a valid thought, the trade-off is worthwhile because normalization enables you to maintain data consistency.

For example, suppose that every record in the purchase_orders table contains all the details of the customer who made the associated purchase. As a result, we can eliminate the customers table. However, if we ever need to update the address of a particular customer, we need to update all the rows in the purchase_orders table that contain that customer. By contrast, if we maintain a customers table, then updating a customer’s address involves changing a single row in the customers table.

Normalization enables us to avoid data duplication so that there is a single “source of truth” in the event that information (such as a customer’s address) must be updated. From another perspective, data duplication means that the same data appears in two (or possibly more) locations, and if an update is not applied to all those locations, the database data is in an inconsistent state. Depending on the nature of the application, the consequences of inconsistent data can range from minor to catastrophic.

Always remember the following point: whenever you need to update the same data that resides in two different locations, you increase the risk of a data inconsistency, which can adversely affect the data integrity.

As another example, suppose that a site sells widgets online. At a minimum, the associated database needs the following four tables:


	customer_details

	purchase_orders

	po_line_items

	item_desc



The preceding scenario is explored in greater detail in the next section that specifies the attributes of each of the preceding tables.




A FOUR-TABLE RDBMS


Suppose that www.mytools.com sells tools (the details of which are not important). For simplicity, let’s pretend that an actual website is available at the preceding URL and it contains the following sections:


	new user register registration

	existing user log in

	input fields for selecting items for purchase (and the quantities)



For example, the registered user John Smith wants to purchase one hammer, two screwdrivers, and three wrenches. The website needs to provide users with the ability to search for products by their type (e.g., a hammer, a screwdriver, or a wrench) and then display a list of matching products. Each product in that list would also contain an SKU, which is an industry-standard labeling mechanism for products (just like ISBNs for identifying books).

The preceding functionality is necessary in order to develop a website that enables users to purchase products. However, the purpose of this section is to describe a set of tables (and their relationships to each other) in an RDBMS, so we will assume that the necessary Web-based features are available at our URL.

Let’s describe a use case that contains the sequence of steps that are performed on behalf of an existing customer John Smith (whose customer ID is 1000), who wants to purchase 1 hammer, 2 screwdrivers, and 3 wrenches:


Step 1: Customer John Smith (with cust_id 1000) initiates a new purchase.

Step 2: A new purchase order is created with the value 12500 for po_id.

Step 3: John Smith selects 1 hammer, 2 screwdrivers, and 3 wrenches.

Step 4: The associated prices for the items are $20.00, $16.00, and $30.00.

Step 5: The subtotals for the items are $20.00, $16.00, and $30.00.

Step 6: A 10% tax for the items is $2.00, $1.60, and $3.00.

Step 7: The total cost of this purchase order is $72.60.



There are additional steps that you could perform. For example, Step 8 would allow John Smith to remove an item, increase/decrease the quantity for each selected item, delete items, or cancel the purchase order. Step 9 would enable John Smith to make a payment. Once again, for the sake of simplicity, we will assume that Step 8 and Step 9 are available in an enhanced version of this Web application.

Note that Step 8 involves updating several of our tables with the details of the purchase order. Step 9 creates a time stamp for the date when the purchase order was created, as well as the status of the purchase order (“paid” versus “pending”). The status of a purchase order is used to generated reports to display the customers whose payment is overdue (and perhaps also send them friendly reminders). Sometimes companies have a reward-based system whereby customers who have paid on time can collect credits that can be applied to other purchases (which is essentially a discount mechanism).




DETAILED TABLE DESCRIPTIONS


If you visualize the use case described in the previous section, you can probably see that we need


	a table for storing customer-specific information

	a table to store purchase orders (which is somehow linked to the associated customer)

	a table that contains the details of the items and quantity that are purchased (which are commonly called “line items”)

	a table that contains information about each tool (which includes the name, the description, and the price of the tool).



Hence, the RDBMS for our website requires the following tables:


	customers

	purchase_orders

	line_items

	item_desc



The following subsections describe the contents of the preceding tables, along with the relationships among these tables.



The Customers Table


Although there are different ways to specify the attributes of the customers table, you need enough information to uniquely identify each customer in the table. By analogy, the following information (except for cust_id) is required to send physical mail to a person:


	cust_id

	first_name

	last_name

	home_address

	city

	state

	zip_code



We will create the customers table with the attributes in the preceding list. Although we’ll defer the discussion of keys to a later chapter, it’s obvious that we need a mechanism for uniquely identifying every customer. In this table, notice that the cust_id attribute uniquely identifies every customer, and therefore it’s a key for this table. Other examples of keys for database tables include


	social security numbers for people

	student id numbers for students

	course id numbers for classes

	drivers’ licenses



Whenever we need to refer to the details of a particular customer, we will use the associated value of cust_id to retrieve those details from the row in the customers table that has the associated cust_id.

The preceding paragraph describes the essence of linking related tables T1 and T2 in an RDBMS: the key in T1 is stored as an attribute value in T2. If we need to access related information in table T3, then we store the key in T2 as an attribute value in T3.

Note that a customers table in a production system would contain additional attributes, such as the following:


title (Mr, Mrs, Ms, and so forth)

shipping_address

cell_phone



For the sake of simplicity, we’ll use the initial set of attributes to define the customers table. Later, you can add the new attributes to the four-table schema to make the system more like a real system.

Suppose that the following information pertains to customer John Smith, who has been assigned a cust_id of 1000:


cust_id: 1000

first_name: John

last_name: Smith

home_address: 1000 Appian Way

city: Sunnyvale

state: California

zip_code:95959



Whenever John Smith makes a new purchase, we will use the cust_id value of 1000 to create a new row for this customer in the purchase_orders table. Then whenever we need to find the purchase orders associated with John Smith, we simply look for the rows in the purchase_orders table whose cust_id value equals 1000.




The purchase_orders Table


When existing customers visit the website, they must log into the system, after which they can initiate a new purchase. After they select one or more items, the system creates a purchase order to insert as a new row in the purchase_orders table, and a new row in the line_items table for each item that was selected. While you might be tempted to place all the customers’ details in the new row, we will identify the customer by the associated cust_id and use this value instead.

However, we must create a new row in the customers table whenever new users register at the website. Repeat customers are identified by an existing cust_id that must be determined by searching the customers table with the information that the customer types into the input fields of the main webpage.

The customers table contains a key attribute; similarly, the purchase_orders table contains an attribute that we call po_id (you are free to use a different string) in order to associate a purchase order for a given customer.

Keep in mind the following detail: a row with a given po_id also contains the cust_id value of the customer (in the customers table) who initiated the current purchase order. Although there are multiple ways to define a set of suitable attributes, let’s use the following set of attributes for the purchase_orders table:


cust_id

po_id

purchase_date



For example, suppose that customer John Smith, whose cust_id is 1000, purchases some tools on December 01, 2021. Although there are dozens of different date formats that are supported in RDBMS, we use the YYYY-MM-DD format (which you can change to suit your particular needs). Then the new row for John Smith in the purchase_orders looks like this, where the po_id value was arbitrarily assigned:




cust_id: 1000

po_id: 12500

purchase_date: 2021-12-01



As mentioned earlier, a purchase order involves one or more items, each of which is stored in the line_items table that is discussed in the next section.




The line_items Table


As a concrete example, suppose that customer John Smith requested 1 hammer, 2 screwdrivers, and 3 wrenches in his most recent purchase order. Each of these purchased items requires a row in the line_items table that


	is identified by a line_id value

	specifies the quantity of each purchased item

	contains the value for the associated po_id in the purchase_orders table

	contains the value for the associated item_id in the item_desc table
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