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			Preface

			I’ve spent most of my life working hard to build the future with science and technology. But two of my other great interests are history and people. This book is a collection of essays I’ve written that indulge those interests. All of them are in the form of personal perspectives on people—describing from my point of view the stories of their lives and of the ideas they created.

			I’ve written different essays for different reasons: sometimes to commemorate a historical anniversary, sometimes because of a current event, and sometimes—unfortunately—because someone just died. The people I’ve written about span three centuries in time—and range from the very famous to the little-known. All of them had interests that intersect in some way or another with my own. But it’s ended up a rather eclectic list—that’s given me the opportunity to explore a wide range of very different lives and ideas.

			When I was younger, I really didn’t pay much attention to history. But as the decades have gone by, and I’ve seen so many different things develop, I’ve become progressively more interested in history—and in what it can teach us about the pattern of how things work. And I’ve learned that decoding the actual facts and path of history—like so many other areas—is a fascinating intellectual process.

			There’s a stereotype that someone focused on science and technology won’t be interested in people. But that’s not me. I’ve always been interested in people. I’ve been fortunate over the course of my life to get to know a very large and diverse set of them. And as I’ve grown my company over the past three decades I’ve had the pleasure of working with many wonderful individuals. I always like to give help and advice. But I’m also fascinated just to watch the trajectories of people’s lives—and to see how people end up doing the things they do.

			It’s been great to personally witness so many life trajectories over the past half century. And in this book I’ve written about a few of them. But I’ve also been interested to learn about the life trajectories of those from the more distant past. Usually I know quite a lot about the end of the story: the legacy of their work and ideas. But I find it fascinating to see how these things came to be—and how the paths of people’s lives led to what they did.

			Part of my interest is purely intellectual. But part of it is more practical—and more selfish. What can I learn from historical examples about how things I’m involved in now will work out? How can I use people from the past as models for people I know now? What can I learn for my own life from what these people did in their lives?

			To be clear: this book is not a systematic analysis of great thinkers and creators through history. It is an eclectic collection of essays about particular people who for one reason or another were topical for me to write about. I’ve tried to give both a sketch of each person’s life in its historical context and a description of their ideas—and then I’ve tried to relate those ideas to my own ideas, and to the latest science and technology.

			In the process of writing these essays I’ve ended up doing a considerable amount of original research. When the essays are about people I’ve personally known, I’ve been able to draw on interactions I had with them, as well as on material I’ve personally archived. For other people, I’ve tried when it’s possible to seek out individuals who knew them—and in all cases I’ve worked hard to find original documents and other primary sources. Many people and institutions have been very forthcoming with their help—and also it’s been immensely helpful that in modern times so many historical documents have been scanned and put on the web.

			But with all of this, I’m still constantly struck by how hard it is to do history. So often there’s been some story or analysis that people repeat all the time. But somehow something about it hasn’t quite rung true with me. So I’ve gone digging to try to find out the real story. Occasionally one just can’t tell what it was. But at least for the people I’ve written about in this book, there are usually enough records and documents—or actual people to talk to—that one can eventually figure it out.

			My strategy is to keep on digging and getting information until things make sense to me, based on my knowledge of people and situations that are somehow similar to what I’m studying. It’s certainly helped that in my own life I’ve seen all sorts of ideas and other things develop over the course of years—which has given me some intuition about how such things work. And one of the important lessons of this is that however brilliant one may be, every idea is the result of some progression or path—often hard-won. If there seems to be a jump in the story—a missing link—then that’s just because one hasn’t figured it out. And I always try to go on until there aren’t mysteries anymore, and everything that happened makes sense in the context of my own experiences.

			So having traced the lives of quite a few notable people, what have I learned? Perhaps the clearest lesson is that serious ideas that people have are always deeply entwined with the trajectories of their lives. That is not to say that people always live the paradigms they create—in fact, often, almost paradoxically, they don’t. But ideas arise out of the context of people’s lives. Indeed, more often than not, it’s a very practical situation that someone finds themselves in that leads them to create some strong, new, abstract idea.

			When history is written, all that’s usually said is that so-and-so came up with such-and-such an idea. But there’s always more to it: there’s always a human story behind it. Sometimes that story helps illuminate the abstract idea. But more often, it instead gives us insight about how to turn some human situation or practical issue into something intellectual—and perhaps something that will live on, abstractly, long after the person who created it is gone.

			This book is the first time I’ve systematically collected what I’ve written about people. I’ve written more generally about history in a few other places—for example in the hundred pages or so of detailed historical notes at the back of my 2002 book A New Kind of Science. I happened to start my career young, so my early colleagues were often much older than me—making it demographically likely that there may be many obituaries for me to write. But somehow I find it cathartic to reflect on how a particular life added stones—large or small—to the great tower that represents our civilization and its achievements.

			I wish I could have personally known all the people I write about in this book. But for those who died long ago it feels like a good second best to read so many documents they wrote—and somehow to get in and understand their lives. My greatest personal passion remains trying to build the future. But I hope that through understanding the past I may be able to do it a little better—and perhaps help build it on a more informed and solid basis. For now, though, I’m just happy to have been able to spend a little time on some remarkable people and their remarkable lives—and I hope that we’ll all be able to learn something from them.
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			Richard Feynman

			April 20, 2005 *

			I first met Richard Feynman when I was 18, and he was 60. And over the course of ten years, I think I got to know him fairly well. First when I was in the physics group at Caltech. And then later when we both consulted for a once-thriving Boston company called Thinking Machines Corporation.

			I actually don’t think I’ve ever talked about Feynman in public before. And there’s really so much to say, I’m not sure where to start.

			But if there’s one moment that summarizes Richard Feynman and my relationship with him, perhaps it’s this. It was probably 1982. I’d been at Feynman’s house, and our conversation had turned to some kind of unpleasant situation that was going on. I was about to leave. And Feynman stopped me and said, “You know, you and I are very lucky. Because whatever else is going on, we’ve always got our physics.”

			Feynman loved doing physics. I think what he loved most was the process of it. Of calculating. Of figuring things out. It didn’t seem to matter to him so much if what came out was big and important. Or esoteric and weird. What mattered to him was the process of finding it. And he was often quite competitive about it.

			Some scientists (myself probably included) are driven by the ambition to build grand intellectual edifices. I think Feynman—at least in the years I knew him—was much more driven by the pure pleasure of actually doing the science. He seemed to like best to spend his time figuring things out, and calculating. And he was a great calculator. All around perhaps the best human calculator there’s ever been.

			Here’s a page from my files: quintessential Feynman. Calculating a Feynman diagram:
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			 It’s kind of interesting to look at. His style was always very much the same. He always just used regular calculus and things. Essentially nineteenth-century mathematics. He never trusted much else. But wherever one could go with that, Feynman could go. Like no one else.

			I always found it incredible. He would start with some problem, and fill up pages with calculations. And at the end of it, he would actually get the right answer! But he usually wasn’t satisfied with that. Once he’d gotten the answer, he’d go back and try to figure out why it was obvious. And often he’d come up with one of those classic Feynman straightforward-sounding explanations. And he’d never tell people about all the calculations behind it. Sometimes it was kind of a game for him: having people be flabbergasted by his seemingly instant physical intuition, not knowing that really it was based on some long, hard calculation he’d done.

			He always had a fantastic formal intuition about the innards of his calculations. Knowing what kind of result some integral should have, whether some special case should matter, and so on. And he was always trying to sharpen his intuition.

			You know, I remember a time—it must have been the summer of 1985—when I’d just discovered a thing called rule 30. That’s probably my own all-time favorite scientific discovery. And that’s what launched a lot of the whole new kind of science that I’ve spent 20 years building (and wrote about in my book A New Kind of Science).
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			 Well, Feynman and I were both visiting Boston, and we’d spent much of an afternoon talking about rule 30. About how it manages to go from that little black square at the top to make all this complicated stuff. And about what that means for physics and so on.
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			 Well, we’d just been crawling around the floor—with help from some other people—trying to use meter rules to measure some feature of a giant printout of it. And Feynman took me aside, rather conspiratorially, and said, “Look, I just want to ask you one thing: how did you know rule 30 would do all this crazy stuff?” “You know me,” I said. “I didn’t. I just had a computer try all the possible rules. And I found it.” “Ah,” he said, “now I feel much better. I was worried you had some way to figure it out.”

			Feynman and I talked a bunch more about rule 30. He really wanted to get an intuition for how it worked. He tried bashing it with all his usual tools. Like he tried to work out what the slope of the line between order and chaos is. And he calculated. Using all his usual calculus and so on. He and his son Carl even spent a bunch of time trying to crack rule 30 using a computer.
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			And one day he calls me and says, “OK, Wolfram, I can’t crack it. I think you’re on to something.” Which was very encouraging.

			Feynman and I tried to work together on a bunch of things over the years. On quantum computers before anyone had ever heard of those. On trying to make a chip that would generate perfect physical randomness—or eventually showing that that wasn’t possible. On whether all the computation needed to evaluate Feynman diagrams really was necessary. On whether it was a coincidence or not that there’s an e –H t in statistical mechanics and an e i H t in quantum mechanics. On what the simplest essential phenomenon of quantum mechanics really is.

			I remember often when we were both consulting for Thinking Machines in Boston, Feynman would say, “Let’s hide away and do some physics.” This was a typical scenario. Yes, I think we thought nobody was noticing that we were off at the back of a press conference about a new computer system talking about the nonlinear sigma model. Typically, Feynman would do some calculation. With me continually protesting that we should just go and use a computer. Eventually I’d do that. Then I’d get some results. And he’d get some results. And then we’d have an argument about whose intuition about the results was better.
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			I should say, by the way, that it wasn’t that Feynman didn’t like computers. He even had gone to some trouble to get an early Commodore PET personal computer, and enjoyed doing things with it. And in 1979, when I started working on the forerunner of what would become Mathematica, he was very interested. We talked a lot about how it should work. He was keen to explain his methodologies for solving problems: for doing integrals, for notation, for organizing his work. I even managed to get him a little interested in the problem of language design. Though I don’t think there’s anything directly from Feynman that has survived in Mathematica. But his favorite integrals we can certainly do.
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			You know, it was sometimes a bit of a liability having Feynman involved. Like when I was working on SMP—the forerunner of Mathematica—I organized some seminars by people who’d worked on other systems. And Feynman used to come. And one day a chap from a well-known computer science department came to speak. I think he was a little tired, and he ended up giving what was admittedly not a good talk. And it degenerated at some point into essentially telling puns about the name of the system they’d built. Well, Feynman got more and more annoyed. And eventually stood up and gave a whole speech about how “If this is what computer science is about, it’s all nonsense....” I think the chap who gave the talk thought I’d put Feynman up to this. And has hated me for 25 years...

			You know, in many ways, Feynman was a loner. Other than for social reasons, he really didn’t like to work with other people. And he was mostly interested in his own work. He didn’t read or listen too much; he wanted the pleasure of doing things himself. He did used to come to physics seminars, though. Although he had rather a habit of using them as problem-solving exercises. And he wasn’t always incredibly sensitive to the speakers. In fact, there was a period of time when I organized the theoretical physics seminars at Caltech. And he often egged me on to compete to find fatal flaws in what the speakers were saying. Which led to some very unfortunate incidents. But also led to some interesting science.

			One thing about Feynman is that he went to some trouble to arrange his life so that he wasn’t particularly busy—and so he could just work on what he felt like. Usually he had a good supply of problems. Though sometimes his long-time assistant would say: “You should go and talk to him. Or he’s going to start working on trying to decode Mayan hieroglyphs again.” He always cultivated an air of irresponsibility. Though I would say more towards institutions than people.

			And I was certainly very grateful that he spent considerable time trying to give me advice—even if I was not always great at taking it. One of the things he often said was that “peace of mind is the most important prerequisite for creative work.” And he thought one should do everything one could to achieve that. And he thought that meant, among other things, that one should always stay away from anything worldly, like management.

			Feynman himself, of course, spent his life in academia—though I think he found most academics rather dull. And I don’t think he liked their standard view of the outside world very much. And he himself often preferred more unusual folk.

			Quite often he’d introduce me to the odd characters who’d visit him. I remember once we ended up having dinner with the rather charismatic founder of a semi-cult called EST. It was a curious dinner. And afterwards, Feynman and I talked for hours about leadership. About leaders like Robert Oppenheimer. And Brigham Young. He was fascinated—and mystified—by what it is that lets great leaders lead people to do incredible things. He wanted to get an intuition for that.

			You know, it’s funny. For all Feynman’s independence, he was surprisingly diligent. I remember once he was preparing some fairly minor conference talk. He was quite concerned about it. I said, “You’re a great speaker; what are you worrying about?” He said, “Yes, everyone thinks I’m a great speaker. So that means they expect more from me.” And in fact, sometimes it was those throwaway conference talks that have ended up being some of Feynman’s most popular pieces. On nanotechnology. Or foundations of quantum theory. Or other things.

			You know, Feynman spent most of his life working on prominent current problems in physics. But he was a confident problem solver. And occasionally he would venture outside, bringing his “one can solve any problem just by thinking about it” attitude with him. It did have some limits, though. I think he never really believed it applied to human affairs, for example. Like when we were both consulting for Thinking Machines in Boston, I would always be jumping up and down about how if the management of the company didn’t do this or that, they would fail. He would just say, “Why don’t you let these people run their company; we can’t figure out this kind of stuff.” Sadly, the company did in the end fail. But that’s another story.

			* A talk given on the occasion of the publication of Feynman’s collected letters. 

		


		
			Kurt Gödel

			May 1, 2006

			When Kurt Gödel was born—one hundred years ago today—the field of mathematics seemed almost complete. Two millennia of development had just been codified into a few axioms, from which it seemed one should be able almost mechanically to prove or disprove anything in mathematics—and, perhaps with some extension, in physics too.

			Twenty-five years later things were proceeding apace, when at the end of a small academic conference, a quiet but ambitious fresh PhD involved with the Vienna Circle ventured that he had proved a theorem that this whole program must ultimately fail.

			In the seventy-five years since then, what became known as Gödel’s theorem has been ascribed almost mystical significance, sowed the seeds for the computer revolution, and meanwhile been practically ignored by working mathematicians—and viewed as irrelevant for broader science.

			The ideas behind Gödel’s theorem have, however, yet to run their course. And in fact I believe that today we are poised for a dramatic shift in science and technology for which its principles will be remarkably central.

			Gödel’s original work was quite abstruse. He took the axioms of logic and arithmetic, and asked a seemingly paradoxical question: can one prove the statement “this statement is unprovable”?

			One might not think that mathematical axioms alone would have anything to say about this. But Gödel demonstrated that in fact his statement could be encoded purely as a statement about numbers.

			Yet the statement says that it is unprovable. So here, then, is a statement within mathematics that is unprovable by mathematics: an “undecidable statement”. And its existence immediately shows that there is a certain incompleteness to mathematics: there are mathematical statements that mathematical methods cannot reach.

			It could have been that these ideas would rest here. But from within the technicalities of Gödel’s proof there emerged something of incredible practical importance. For Gödel’s seemingly bizarre technique of encoding statements in terms of numbers was a critical step towards the idea of universal computation—which implied the possibility of software, and launched the whole computer revolution.

			Thinking in terms of computers gives us a modern way to understand what Gödel did: although he himself in effect only wanted to talk about one computation, he proved that logic and arithmetic are actually sufficient to build a universal computer, which can be programmed to carry out any possible computation.

			Not all areas of mathematics work this way. Elementary geometry and elementary algebra, for example, have no universal computation, and no analog of Gödel’s theorem—and we even now have practical software that can prove any statement about them.

			But universal computation—when it is present—has many deep consequences.

			The exact sciences have always been dominated by what I call computational reducibility: the idea of finding quick ways to compute what systems will do. Newton showed how to find out where an (idealized) Earth will be in a million years—we just have to evaluate a formula—we do not have to trace a million orbits.

			But if we study a system that is capable of universal computation we can no longer expect to “outcompute” it like this; instead, to find out what it will do may take us irreducible computational work.

			And this is why it can be so difficult to predict what computers will do—or to prove that software has no bugs. It is also at the heart of why mathematics can be difficult: it can take an irreducible amount of computational work to establish a given mathematical result.

			And it is what leads to undecidability—for if we want to know, say, whether any number of any size has a certain property, computational irreducibility may tell us that without checking infinitely many cases we may not be able to decide for sure.

			Working mathematicians, though, have never worried much about undecidability. For certainly Gödel’s original statement is remote, being astronomically long when translated into mathematical form. And the few alternatives constructed over the years have seemed almost as irrelevant in practice.

			But my own work with computer experiments suggests that in fact undecidability is much closer at hand. And indeed I suspect that quite a few of the famous unsolved problems in mathematics today will turn out to be undecidable within the usual axioms.

			The reason undecidability has not been more obvious is just that mathematicians—despite their reputation for abstract generality—like most scientists, tend to concentrate on questions that their methods succeed with.

			Back in 1931, Gödel and his contemporaries were not even sure whether Gödel’s theorem was something general, or just a quirk of their formalism for logic and arithmetic. But a few years later, when Turing machines and other models for computers showed the same phenomenon, it began to seem more general.

			Still, Gödel wondered whether there would be an analog of his theorem for human minds, or for physics. We still do not know the complete answer, though I certainly expect that both minds and physics are in principle just like universal computers—with Gödel-like theorems.

			One of the great surprises of my own work has been just how easy it is to find universal computation. If one systematically explores the abstract universe of possible computational systems one does not have to go far. One needs nothing like the billion transistors of a modern electronic computer, or even the elaborate axioms of logic and arithmetic. Simple rules that can be stated in a short sentence—or summarized in a three-digit number—are enough.

			And it is almost inevitable that such rules are common in nature—bringing with them undecidability. Is a solar system ultimately stable? Can a biochemical process ever go out of control? Can a set of laws have a devastating consequence? We can now expect general versions of such questions to be undecidable.

			This might have pleased Gödel—who once said he had found a bug in the US Constitution, who gave his friend Einstein a paradoxical model of the universe for his birthday—and who told a physicist I knew that for theoretical reasons he “did not believe in natural science”.

			Even in the field of mathematics, Gödel—like his results—was always treated as somewhat alien to the mainstream. He continued for decades to supply central ideas to mathematical logic, even as “the greatest logician since Aristotle” (as John von Neumann called him) became increasingly isolated, worked to formalize theology using logic, became convinced that discoveries of Leibniz from the 1600s had been suppressed, and in 1978, with his wife’s health failing, died of starvation, suspicious of doctors and afraid of being poisoned.

			He left us the legacy of undecidability, which we now realize affects not just esoteric issues about mathematics, but also all sorts of questions in science, engineering, medicine and more.

			One might think of undecidability as a limitation to progress, but in many ways it is instead a sign of richness. For with it comes computational irreducibility, and the possibility for systems to build up behavior beyond what can be summarized by simple formulas. Indeed, my own work suggests that much of the complexity we see in nature has precisely this origin. And perhaps it is also the essence of how from deterministic underlying laws we can build up apparent free will.

			In science and technology we have normally crafted our theories and devices by careful design. But thinking in the abstract computational terms pioneered by Gödel’s methods we can imagine an alternative. For if we represent everything uniformly in terms of rules or programs, we can in principle just explicitly enumerate all possibilities.

			In the past, though, nothing like this ever seemed even faintly sensible. For it was implicitly assumed that to create a program with interesting behavior would require explicit human design—or at least the efforts of something like natural selection. But when I started actually doing experiments and systematically running the simplest programs, what I found instead is that the computational universe is teeming with diverse and complex behavior.

			Already there is evidence that many of the remarkable forms we see in biology just come from sampling this universe. And perhaps by searching the computational universe we may find—even soon—the ultimate underlying laws for our own physical universe. (To discover all their consequences, though, will still require irreducible computational work.)

			Exploring the computational universe puts mathematics too into a new context. For we can also now see a vast collection of alternatives to the mathematics that we have ultimately inherited from the arithmetic and geometry of ancient Babylon. And for example, the axioms of basic logic, far from being something special, now just appear as roughly the 50,000th possibility. And mathematics, long a purely theoretical science, must adopt experimental methods.

			The exploration of the computational universe seems destined to become a core intellectual framework in the future of science. And in technology the computational universe provides a vast new resource that can be searched and mined for systems that serve our increasingly complex purposes. It is undecidability that guarantees an endless frontier of surprising and useful material to find.

			And so it is that from Gödel’s abstruse theorem about mathematics has emerged what I believe will be the defining theme of science and technology in the twenty-first century.

		


		
			Alan Turing

			June 23, 2012

			I never met Alan Turing; he died five years before I was born. But somehow I feel I know him well—not least because many of my own intellectual interests have had an almost eerie parallel with his.

			And by a strange coincidence, Mathematica’s “birthday” (June 23, 1988) is aligned with Turing’s—so that today is not only the centenary of Turing’s birth, but is also Mathematica’s 24th birthday.

			I think I first heard about Alan Turing when I was about eleven years old, right around the time I saw my first computer. Through a friend of my parents, I had gotten to know a rather eccentric old classics professor, who, knowing my interest in science, mentioned to me this “bright young chap named Turing” whom he had known during the Second World War.

			One of the classics professor’s eccentricities was that whenever the word “ultra” came up in a Latin text, he would repeat it over and over again, and make comments about remembering it. At the time, I didn’t think much of it—though I did remember it. Only years later did I realize that “Ultra” was the codename for the British cryptanalysis effort at Bletchley Park during the war. In a very British way, the classics professor wanted to tell me something about it, without breaking any secrets. And presumably it was at Bletchley Park that he had met Alan Turing.

			A few years later, I heard scattered mentions of Alan Turing in various British academic circles. I heard that he had done mysterious but important work in breaking German codes during the war. And I heard it claimed that after the war, he had been killed by British Intelligence. At the time, at least some of the British wartime cryptography effort was still secret, including Turing’s role in it. I wondered why. So I asked around, and started hearing that perhaps Turing had invented codes that were still being used. (In reality, the continued secrecy seems to have been intended to prevent it being known that certain codes had been broken—so other countries would continue to use them.)

			I’m not sure where I next encountered Alan Turing. Probably it was when I decided to learn all I could about computer science—and saw all sorts of mentions of “Turing machines”. But I have a distinct memory from around 1979 of going to the library and finding a little book about Alan Turing written by his mother, Sara Turing.

			And gradually I built up quite a picture of Alan Turing and his work. And over the 30+ years that have followed, I have kept on running into Alan Turing, often in unexpected places.

			In the early 1980s, for example, I had become very interested in theories of biological growth—only to find (from Sara Turing’s book) that Alan Turing had done all sorts of largely unpublished work on that.

			And for example in 1989, when we were promoting an early version of Mathematica, I decided to make a poster of the Riemann zeta function—only to discover that Alan Turing had at one time held the record for computing zeros of the zeta function. (Earlier he had also designed a gear-based machine for doing this.)

			Recently I even found out that Turing had written about the “reform of mathematical notation and phraseology”—a topic of great interest to me in connection with both Mathematica and Wolfram|Alpha.

			And at some point I learned that a high school math teacher of mine (Norman Routledge) had been a friend of Turing’s late in his life. But even though my teacher knew my interest in computers, he never mentioned Turing or his work to me. And indeed, 35 years ago, Alan Turing and his work were little known, and it is only fairly recently that Turing has become as famous as he is today.

			Turing’s greatest achievement was undoubtedly his construction in 1936 of a universal Turing machine—a theoretical device intended to represent the mechanization of mathematical processes. And in some sense, Mathematica is precisely a concrete embodiment of the kind of mechanization that Turing was trying to represent.

			In 1936, however, Turing’s immediate purpose was purely theoretical. Indeed it was to show not what could be mechanized in mathematics, but what could not. In 1931, Gödel’s theorem had shown that there were limits to what could be proved in mathematics, and Turing wanted to understand the boundaries of what could ever be done by any systematic procedure in mathematics.

			Turing was a young mathematician in Cambridge, England, and his work was couched in terms of mathematical problems of his time. But one of his steps was the theoretical construction of a universal Turing machine capable of being “programmed” to emulate any other Turing machine. In effect, Turing had invented the idea of universal computation—which was later to become the foundation on which all of modern computer technology is built.

			At the time, though, Turing’s work did not make much of a splash, probably largely because the emphasis of Cambridge mathematics was elsewhere. Just before Turing published his paper, he learned about a similar result by Alonzo Church from Princeton, formulated not in terms of theoretical machines, but in terms of the mathematics-like lambda calculus. And as a result Turing went to Princeton for a year to study with Church—and while he was there, wrote the most abstruse paper of his life.

			The next few years for Turing were dominated by his wartime cryptanalysis work. I learned a few years ago that during the war Turing visited Claude Shannon at Bell Labs in connection with speech encipherment. Turing had been working on a kind of statistical approach to cryptanalysis—and I am extremely curious to know whether Turing told Shannon about this, and potentially launched the idea of information theory, which itself was first formulated for secret cryptanalysis purposes.

			After the war, Turing got involved with the construction of the first actual computers in England. To a large extent, these computers had emerged from engineering, not from a fundamental understanding of Turing’s work on universal computation.

			There was, however, a definite, if circuitous, connection. In 1943 Warren McCulloch and Walter Pitts in Chicago wrote a theoretical paper about neural networks that used the idea of universal Turing machines to discuss general computation in the brain. John von Neumann read this paper, and used it in his recommendations about how practical computers should be built and programmed. (John von Neumann had known about Turing’s paper in 1936, but at the time did not recognize its significance, instead describing Turing in a recommendation letter as having done interesting work on the central limit theorem.)

			It is remarkable that in just over a decade Alan Turing was transported from writing theoretically about universal computation, to being able to write programs for an actual computer. I have to say, though, that from today’s vantage point, his programs look incredibly “hacky”—with lots of special features packed in, and encoded as strange strings of letters. But perhaps to reach the edge of a new technology it’s inevitable that there has to be hackiness.

			And perhaps too it required a certain hackiness to construct the very first universal Turing machine. The concept was correct, but Turing quickly published an erratum to fix some bugs, and in later years, it’s become clear that there were more bugs. But at the time Turing had no intuition about how easily bugs can occur.

			Turing also did not know just how general or not his results about universal computation might be. Perhaps the Turing machine was just one model of a computational process, and other models—or brains—might have quite different capabilities. But gradually over the course of several decades, it became clear that a wide range of possible models were actually exactly equivalent to the machines Turing had invented.

			It’s strange to realize that Alan Turing never appears to have actually simulated a Turing machine on a computer. He viewed Turing machines as theoretical devices relevant for proving general principles. But he does not appear to have thought about them as concrete objects to be explicitly studied.

			And indeed, when Turing came to make models of biological growth processes, he immediately started using differential equations—and appears never to have considered the possibility that something like a Turing machine might be relevant to natural processes.

			When I became interested in simple computational processes around 1980, I also didn’t consider Turing machines—and instead started off studying what I later learned were called cellular automata. And what I discovered was that even cellular automata with incredibly simple rules could produce incredibly complex behavior—which I soon realized could be considered as corresponding to a complex computation.

			I probably simulated my first explicit Turing machine only in 1991. To me, Turing machines were built a little bit too much like engineering systems—and not like something that would likely correspond to a system in nature. But I soon found that even simple Turing machines, just like simple cellular automata, could produce immensely complex behavior.

			In a sense, Alan Turing could easily have discovered this. But his intuition—like my original intuition—would have told him that no such phenomenon was possible. So it would likely only have been luck—and access to easy computation—that would have led him to find the phenomenon.

			Had he done so, I am quite sure he would have become curious about just what the threshold for his concept of universality would be, and just how simple a Turing machine would suffice. In the mid-1990s, I searched the space of simple Turing machines, and found the smallest possible candidate. And after I put up a $25,000 prize, in 2007 Alex Smith showed that indeed this Turing machine is universal.

			No doubt Alan Turing would quite quickly have grasped the significance of such results for thinking about both natural processes and mathematics. But without the empirical discoveries, his thinking did not progress in this direction.

			Instead, he began to consider from a more engineering point of view to what extent computers should be able to emulate brains, and he invented ideas like the Turing test. Reading through his writings today, it is remarkable how many of his conceptual arguments about artificial intelligence still need to be made—though some, like his discussion of extrasensory perception, have become quaintly dated.

			And looking at his famous 1950 article on “Computing Machinery and Intelligence” one sees a discussion of programming into a machine the contents of Encyclopædia Britannica—which he estimates should take 60 workers 50 years. I wonder what Alan Turing would think of Wolfram|Alpha, which, thanks to progress over the past 60 years, and perhaps some cleverness, has so far taken at least slightly less human effort.

			In addition to his intellectual work, Turing has in recent times become something of a folk hero, most notably through the story of his death. Almost certainly it will never be known for sure whether his death was in fact intentional. But from what I know and have heard I must say that I rather doubt that it was.

			When one first hears that Alan Turing died by eating an apple impregnated with cyanide one assumes it must have been intentional suicide. But when one later discovers that he was quite a tinkerer, had recently made cyanide for the purpose of electroplating spoons, kept chemicals alongside his food, and was rather a messy individual, the picture becomes a lot less clear.

			I often wonder what Alan Turing would have been like to meet. I do not know of any recording of his voice (though he did once do a BBC radio broadcast). But I gather that even near the end of his life he giggled a lot, and talked with a kind of stutter that seemed to come from thinking faster than he was talking. He seemed to have found it easiest to talk to mathematicians. He thought a little about physics, though doesn’t seem to have ever gotten deeply into it. And he seemed to have maintained a child-like enthusiasm and wonder for many intellectual questions throughout his life.

			He was something of a loner, working successively on his own on his various projects. He was gay, and lived alone. He was no organizational politician, and towards the end of his life seems to have found himself largely ignored both by people working on computers and by people working on his new interest of biological growth and morphogenesis.

			He was in some respects a quintessential British amateur, dipping his intellect into different areas. He achieved a high level of competence in pure mathematics, and used that as his professional base. His contributions in traditional mathematics were certainly perfectly respectable, though not spectacular. But in every area he touched, there was a certain crispness to the ideas he developed—even if their technical implementation was sometimes shrouded in arcane notation and masses of detail.

			In some ways he was fortunate to live when he did. For he was at the right time to be able take the formalism of mathematics as it had been developed, and to combine it with the emerging engineering of his day, to see for the first time the general concept of computation.

			It is perhaps a shame that he died 25 years before computer experiments became widely feasible. I certainly wonder what he would have discovered tinkering with Mathematica. I don’t doubt that he would have pushed it to its limits, writing code that would horrify me. But I fully expect that long before I did, he would have discovered the main elements of A New Kind of Science, and begun to understand their significance.

			He would probably be disappointed that 60 years after he invented the Turing test, there is still no full human-like artificial intelligence. And perhaps long ago he would have begun to campaign for the creation of something like Wolfram|Alpha, to turn human knowledge into something computers can handle.

			If he had lived a few decades longer, he would no doubt have applied himself to a half dozen more areas. But there is still much to be grateful for in what Alan Turing did achieve in his 41 years, and his modern reputation as the founding father of the concept of computation—and the conceptual basis for much of what I, for example, have done—is well deserved.

		


		
			John von Neumann

			December 28, 2003

			It would have been John von Neumann’s 100th birthday today—if he had not died at age 53 in 1957. I’ve been interested in von Neumann for many years—not least because his work touched on some of my most favorite topics. He is mentioned in 12 separate places in A New Kind of Science—second in number only to Alan Turing, who appears 19 times.

			I always feel that one can appreciate people’s work better if one understands the people themselves better. And from talking to many people who knew him, I think I’ve gradually built up a decent picture of John von Neumann as a man.

			He would have been fun to meet. He knew a lot, was very quick, always impressed people, and was lively, social and funny.

			One video clip of him has survived. In 1955 he was on a television show called Youth Wants to Know, which today seems painfully hokey. Surrounded by teenage kids, he is introduced as a commissioner of the Atomic Energy Commission—which in those days was a big deal. He is asked about an exhibit of equipment. He says very seriously that it’s mostly radiation detectors. But then a twinkle comes into his eye, and he points to another item, and says deadpan, “Except this, which is a carrying case.” And that’s the end of the only video record of John von Neumann that exists.

			Some scientists (such as myself) spend most of their lives pursuing their own grand programs, ultimately in a fairly isolated way. John von Neumann was instead someone who always liked to interact with the latest popular issues—and the people around them—and then contribute to them in his own characteristic way.

			He worked hard, often on many projects at once, and always seemed to have fun. In retrospect, he chose most of his topics remarkably well. He studied each of them with a definite practical mathematical style. And partly by being the first person to try applying serious mathematical methods in various areas, he was able to make important and unique contributions.

			But I’ve been told that he was never completely happy with his achievements because he thought he missed some great discoveries. And indeed he was close to a remarkable number of important mathematics-related discoveries of the twentieth century: Gödel’s theorem, Bell’s inequalities, information theory, Turing machines, computer languages—as well as my own more recent favorite core A New Kind of Science discovery of complexity from simple rules.

			But somehow he never quite made the conceptual shifts that were needed for any of these discoveries.

			There were, I think, two basic reasons for this. First, he was so good at getting new results by the mathematical methods he knew that he was always going off to get more results, and never had a reason to pause and see whether some different conceptual framework should be considered. And second, he was not particularly one to buck the system: he liked the social milieu of science and always seemed to take both intellectual and other authority seriously.

			By all reports, von Neumann was something of a prodigy, publishing his first paper (on zeros of polynomials) at the age of 19. By his early twenties, he was established as a promising young professional mathematician—working mainly in the then-popular fields of set theory and foundations of math. (One of his achievements was alternate axioms for set theory.)

			Like many good mathematicians in Germany at the time, he worked on David Hilbert’s program for formalizing mathematics, and for example wrote papers aimed at finding a proof of consistency for the axioms of arithmetic. But he did not guess the deeper point that Kurt Gödel discovered in 1931: that actually such a proof is fundamentally impossible. I’ve been told that von Neumann was always disappointed that he had missed Gödel’s theorem. He certainly knew all the methods needed to establish it (and understood it remarkably quickly once he heard it from Gödel). But somehow he did not have the brashness to disbelieve Hilbert, and go looking for a counterexample to Hilbert’s ideas.

			In the mid-1920s formalization was all the rage in mathematics, and quantum mechanics was all the rage in physics. And in 1927 von Neumann set out to bring these together—by axiomatizing quantum mechanics. A fair bit of the formalism that von Neumann built has become the standard framework for any mathematically oriented exposition of quantum mechanics. But I must say that I have always thought that it gave too much of an air of mathematical definiteness to ideas (particularly about quantum measurement) that in reality depend on all sorts of physical details. And indeed some of von Neumann’s specific axioms turned out to be too restrictive for ordinary quantum mechanics—obscuring for a number of years the phenomenon of entanglement, and later of criteria such as Bell’s inequalities.

			But von Neumann’s work on quantum mechanics had a variety of fertile mathematical spinoffs, and particularly what are now called von Neumann algebras have recently become popular in mathematics and mathematical physics.

			Interestingly, von Neumann’s approach to quantum mechanics was at first very much aligned with traditional calculus-based mathematics—investigating properties of Hilbert spaces, continuous operators, etc. But gradually it became more focused on discrete concepts, particularly early versions of “quantum logic”. In a sense von Neumann’s quantum logic ideas were an early attempt at defining a computational model of physics. But he did not pursue this, and did not go in the directions that have for example led to modern ideas of quantum computing.

			By the 1930s von Neumann was publishing several papers a year, on a variety of popular topics in mainstream mathematics, often in collaboration with contemporaries of significant later reputation (Wigner, Koopman, Jordan, Veblen, Birkhoff, Kuratowski, Halmos, Chandrasekhar, etc.). Von Neumann’s work was unquestionably good and innovative, though very much in the flow of development of the mathematics of its time.

			Despite von Neumann’s early interest in logic and the foundations of math, he (like most of the math community) moved away from this by the mid-1930s. In Cambridge and then in Princeton he encountered the young Alan Turing—even offering him a job as an assistant in 1938. But he apparently paid little attention to Turing’s classic 1936 paper on Turing machines and the concept of universal computation, writing in a recommendation letter on June 1, 1937 that “[Turing] has done good work on … theory of almost periodic functions and theory of continuous groups”.

			As it did for many scientists, von Neumann’s work on the Manhattan Project appears to have broadened his horizons, and seems to have spurred his efforts to apply his mathematical prowess to problems of all sorts—not just in traditional mathematics. His pure mathematical colleagues seem to have viewed such activities as a peculiar and somewhat suspect hobby, but one that could generally be tolerated in view of his respectable mathematical credentials.

			At the Institute for Advanced Study in Princeton, where von Neumann worked, there was strain, however, when he started a project to build an actual computer there. Indeed, even when I worked at the Institute in the early 1980s, there were still pained memories of the project. The pure mathematicians at the Institute had never been keen on it, and the story was that when von Neumann died, they had been happy to accept Thomas Watson of IBM’s offer to send a truck to take away all of von Neumann’s equipment. (Amusingly, the 6-inch on-off switch for the computer was left behind, bolted to the wall of the building, and has recently become a prized possession of a computer industry acquaintance of mine.)
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