

 [image: cover.png]

 Machine Learning with PyTorch and Scikit-Learn

 Develop machine learning and deep learning models with Python

 Sebastian Raschka

 Yuxi (Hayden) Liu

 Vahid Mirjalili

 [image:]

 BIRMINGHAM—MUMBAI

 “Python” and the Python Logo are trademarks of the Python Software Foundation.

 Machine Learning with PyTorch and Scikit-Learn

 Copyright © 2022 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Producer: Tushar Gupta

 Acquisition Editor – Peer Reviews: Saby Dsilva

 Project Editor: Janice Gonsalves

 Content Development Editor: Bhavesh Amin

 Copy Editor: Safis Editing

 Technical Editor: Aniket Shetty

 Proofreader: Safis Editing

 Indexer: Tejal Daruwale Soni

 Presentation Designer: Pranit Padwal

 First published: February 2022

 Production reference: 5151122

 Published by Packt Publishing Ltd.
 Livery Place
 35 Livery Street
 Birmingham
 B3 2PB, UK.

 ISBN 978-1-80181-931-2

 www.packt.com

 Foreword

 Over recent years, machine learning methods, with their ability to make sense of vast amounts of data and automate decisions, have found widespread applications in healthcare, robotics, biology, physics, consumer products, internet services, and various other industries.

 Giant leaps in science usually come from a combination of powerful ideas and great tools. Machine learning is no exception. The success of data-driven learning methods is based on the ingenious ideas of thousands of talented researchers over the field’s 60-year history. But their recent popularity is also fueled by the evolution of hardware and software solutions that make them scalable and accessible. The ecosystem of excellent libraries for numeric computing, data analysis, and machine learning built around Python like NumPy and scikit-learn gained wide adoption in research and industry. This has greatly helped propel Python to be the most popular programming language.

 Massive improvements in computer vision, text, speech, and other tasks brought by the recent advent of deep learning techniques exemplify this theme. Approaches draw on neural network theory of the last four decades that started working remarkably well in combination with GPUs and highly optimized compute routines.

 Our goal with building PyTorch over the past five years has been to give researchers the most flexible tool for expressing deep learning algorithms while taking care of the underlying engineering complexities. We benefited from the excellent Python ecosystem. In turn, we’ve been fortunate to see the community of very talented people build advanced deep learning models across various domains on top of PyTorch. The authors of this book were among them.

 I’ve known Sebastian within this tight-knit community for a few years now. He has unmatched talent in easily explaining information and making the complex accessible. Sebastian contributed to many widely used machine learning software packages and authored dozens of excellent tutorials on deep learning and data visualization.

 Mastery of both ideas and tools is also required to apply machine learning in practice. Getting started might feel intimidating, from making sense of theoretical concepts to figuring out which software packages to install.

 Luckily, the book you’re holding in your hands does a beautiful job of combining machine learning concepts and practical engineering steps to guide you in this journey. You’re in for a delightful ride from the basics of data-driven techniques to the most novel deep learning architectures. Within every chapter, you will find concrete code examples applying the introduced methods to a practical task.

 When the first edition came out in 2015, it set a very high bar for the ML and Python book category. But the excellence didn’t stop there. With every edition, Sebastian and the team kept upgrading and refining the material as the deep learning revolution unfolded in new domains. In this new PyTorch edition, you’ll find new chapters on transformer architectures and graph neural networks. These approaches are on the cutting edge of deep learning and have taken the fields of text understanding and molecular structure by storm in the last two years. You will get to practice them using new yet widely popular software packages in the ecosystem like Hugging Face, PyTorch Lightning, and PyTorch Geometric.

 The excellent balance of theory and practice this book strikes is no surprise given the authors’ combination of advanced research expertise and experience in solving problems hands-on. Sebastian Raschka and Vahid Mirjalili draw from their background in deep learning research for computer vision and computational biology. Hayden Liu brings the experience of applying machine learning methods to event prediction, recommendation systems, and other tasks in the industry. All of the authors share a deep passion for education, and it reflects in the approachable way the book goes from simple to advanced.

 I’m confident that you will find this book invaluable both as a broad overview of the exciting field of machine learning and as a treasure of practical insights. I hope it inspires you to apply machine learning for the greater good in your problem area, whatever it might be.

 Dmytro Dzhulgakov

 PyTorch Core Maintainer

 Contributors

 About the authors

 Dr. Sebastian Raschka is an Asst. Professor of Statistics at the University of Wisconsin-Madison focusing on machine learning and deep learning. His recent research focused on general challenges such as few-shot learning for working with limited data and developing deep neural networks for ordinal targets. Sebastian is also an avid open-source contributor, and in his new role as Lead AI Educator at Grid.ai, he plans to follow his passion for helping people to get into machine learning and AI.

 Big thanks to Jitian Zhao and Ben Kaufman, with whom I had the pleasure to work on the new chapters on transformers and graph neural networks. I’m also very grateful for Hayden’s and Vahid’s help—this book wouldn’t have been possible without you. Lastly, I want to thank Andrea Panizza, Tony Gitter, and Adam Bielski for helpful discussions on sections of the manuscript.

 Yuxi (Hayden) Liu is a machine learning software engineer at Google and has worked as a machine learning scientist in a variety of data-driven domains. Hayden is the author of a series of ML books. His first book, Python Machine Learning By Example, was ranked the #1 bestseller in its category on Amazon in 2017 and 2018 and was translated into many languages. His other books include R Deep Learning Projects, Hands-On Deep Learning Architectures with Python, and PyTorch 1.x Reinforcement Learning Cookbook.

 I would like to thank all the great people I worked with, especially my co-authors, my editors at Packt, and my reviewers. Without them, this book would be harder to read and to apply to real-world problems. Lastly, I’d like to thank all the readers for their support, which encouraged me to write the PyTorch edition of this bestselling ML book.

 Dr. Vahid Mirjalili is a deep learning researcher focusing on computer vision applications. Vahid received a Ph.D. degree in both Mechanical Engineering and Computer Science from Michigan State University. During his Ph.D. journey, he developed novel computer vision algorithms to solve real-world problems and published several research articles that are highly cited in the computer vision community.

 Other contributors

 Benjamin Kaufman is a Ph.D. candidate at the University of Wisconsin-Madison in Biomedical Data Science. His research focuses on the development and application of machine learning methods for drug discovery. His work in this area has provided a deeper understanding of graph neural networks.

 Jitian Zhao is a Ph.D. student at the University of Wisconsin-Madison, where she developed her interest in large-scale language models. She is passionate about deep learning in developing both real-world applications and theoretical support.

 I would like to thank my parents for their support. They encouraged me to always pursue my dream and motivated me to be a good person.

 About the reviewer

 Roman Tezikov is an industrial research engineer and deep learning enthusiast with over four years of experience in advanced computer vision, NLP, and MLOps. As the co-creator of the ML-REPA community, he organized several workshops and meetups about ML reproducibility and pipeline automation. One of his current work challenges involves utilizing computer vision in the fashion industry. Roman was also a core developer of Catalyst – a PyTorch framework for accelerated deep learning.

 Join our book’s Discord space

 Join our Discord community to meet like-minded people and learn alongside more than 2000 members at:

 https://packt.link/MLwPyTorch

 [image:]

 Contents

 	Preface

 	Who this book is for

 	What this book covers

 	To get the most out of this book

 	Get in touch

 	Share your thoughts

 	Giving Computers the Ability to Learn from Data

 	Building intelligent machines to transform data into knowledge

 	The three different types of machine learning

 	Making predictions about the future with supervised learning

 	Classification for predicting class labels

 	Regression for predicting continuous outcomes

 	Solving interactive problems with reinforcement learning

 	Discovering hidden structures with unsupervised learning

 	Finding subgroups with clustering

 	Dimensionality reduction for data compression

 	Introduction to the basic terminology and notations

 	Notation and conventions used in this book

 	Machine learning terminology

 	A roadmap for building machine learning systems

 	Preprocessing – getting data into shape

 	Training and selecting a predictive model

 	Evaluating models and predicting unseen data instances

 	Using Python for machine learning

 	Installing Python and packages from the Python Package Index

 	Using the Anaconda Python distribution and package manager

 	Packages for scientific computing, data science, and machine learning

 	Summary

 	Training Simple Machine Learning Algorithms for Classification

 	Artificial neurons – a brief glimpse into the early history of machine learning

 	The formal definition of an artificial neuron

 	The perceptron learning rule

 	Implementing a perceptron learning algorithm in Python

 	An object-oriented perceptron API

 	Training a perceptron model on the Iris dataset

 	Adaptive linear neurons and the convergence of learning

 	Minimizing loss functions with gradient descent

 	Implementing Adaline in Python

 	Improving gradient descent through feature scaling

 	Large-scale machine learning and stochastic gradient descent

 	Summary

 	A Tour of Machine Learning Classifiers Using Scikit-Learn

 	Choosing a classification algorithm

 	First steps with scikit-learn – training a perceptron

 	Modeling class probabilities via logistic regression

 	Logistic regression and conditional probabilities

 	Learning the model weights via the logistic loss function

 	Converting an Adaline implementation into an algorithm for logistic regression

 	Training a logistic regression model with scikit-learn

 	Tackling overfitting via regularization

 	Maximum margin classification with support vector machines

 	Maximum margin intuition

 	Dealing with a nonlinearly separable case using slack variables

 	Alternative implementations in scikit-learn

 	Solving nonlinear problems using a kernel SVM

 	Kernel methods for linearly inseparable data

 	Using the kernel trick to find separating hyperplanes in a high-dimensional space

 	Decision tree learning

 	Maximizing IG – getting the most bang for your buck

 	Building a decision tree

 	Combining multiple decision trees via random forests

 	K-nearest neighbors – a lazy learning algorithm

 	Summary

 	Building Good Training Datasets – Data Preprocessing

 	Dealing with missing data

 	Identifying missing values in tabular data

 	Eliminating training examples or features with missing values

 	Imputing missing values

 	Understanding the scikit-learn estimator API

 	Handling categorical data

 	Categorical data encoding with pandas

 	Mapping ordinal features

 	Encoding class labels

 	Performing one-hot encoding on nominal features

 	Optional: encoding ordinal features

 	Partitioning a dataset into separate training and test datasets

 	Bringing features onto the same scale

 	Selecting meaningful features

 	L1 and L2 regularization as penalties against model complexity

 	A geometric interpretation of L2 regularization

 	Sparse solutions with L1 regularization

 	Sequential feature selection algorithms

 	Assessing feature importance with random forests

 	Summary

 	Compressing Data via Dimensionality Reduction

 	Unsupervised dimensionality reduction via principal component analysis

 	The main steps in principal component analysis

 	Extracting the principal components step by step

 	Total and explained variance

 	Feature transformation

 	Principal component analysis in scikit-learn

 	Assessing feature contributions

 	Supervised data compression via linear discriminant analysis

 	Principal component analysis versus linear discriminant analysis

 	The inner workings of linear discriminant analysis

 	Computing the scatter matrices

 	Selecting linear discriminants for the new feature subspace

 	Projecting examples onto the new feature space

 	LDA via scikit-learn

 	Nonlinear dimensionality reduction and visualization

 	Why consider nonlinear dimensionality reduction?

 	Visualizing data via t-distributed stochastic neighbor embedding

 	Summary

 	Learning Best Practices for Model Evaluation and Hyperparameter Tuning

 	Streamlining workflows with pipelines

 	Loading the Breast Cancer Wisconsin dataset

 	Combining transformers and estimators in a pipeline

 	Using k-fold cross-validation to assess model performance

 	The holdout method

 	K-fold cross-validation

 	Debugging algorithms with learning and validation curves

 	Diagnosing bias and variance problems with learning curves

 	Addressing over- and underfitting with validation curves

 	Fine-tuning machine learning models via grid search

 	Tuning hyperparameters via grid search

 	Exploring hyperparameter configurations more widely with randomized search

 	More resource-efficient hyperparameter search with successive halving

 	Algorithm selection with nested cross-validation

 	Looking at different performance evaluation metrics

 	Reading a confusion matrix

 	Optimizing the precision and recall of a classification model

 	Plotting a receiver operating characteristic

 	Scoring metrics for multiclass classification

 	Dealing with class imbalance

 	Summary

 	Combining Different Models for Ensemble Learning

 	Learning with ensembles

 	Combining classifiers via majority vote

 	Implementing a simple majority vote classifier

 	Using the majority voting principle to make predictions

 	Evaluating and tuning the ensemble classifier

 	Bagging – building an ensemble of classifiers from bootstrap samples

 	Bagging in a nutshell

 	Applying bagging to classify examples in the Wine dataset

 	Leveraging weak learners via adaptive boosting

 	How adaptive boosting works

 	Applying AdaBoost using scikit-learn

 	Gradient boosting – training an ensemble based on loss gradients

 	Comparing AdaBoost with gradient boosting

 	Outlining the general gradient boosting algorithm

 	Explaining the gradient boosting algorithm for classification

 	Illustrating gradient boosting for classification

 	Using XGBoost

 	Summary

 	Applying Machine Learning to Sentiment Analysis

 	Preparing the IMDb movie review data for text processing

 	Obtaining the movie review dataset

 	Preprocessing the movie dataset into a more convenient format

 	Introducing the bag-of-words model

 	Transforming words into feature vectors

 	Assessing word relevancy via term frequency-inverse document frequency

 	Cleaning text data

 	Processing documents into tokens

 	Training a logistic regression model for document classification

 	Working with bigger data – online algorithms and out-of-core learning

 	Topic modeling with latent Dirichlet allocation

 	Decomposing text documents with LDA

 	LDA with scikit-learn

 	Summary

 	Predicting Continuous Target Variables with Regression Analysis

 	Introducing linear regression

 	Simple linear regression

 	Multiple linear regression

 	Exploring the Ames Housing dataset

 	Loading the Ames Housing dataset into a DataFrame

 	Visualizing the important characteristics of a dataset

 	Looking at relationships using a correlation matrix

 	Implementing an ordinary least squares linear regression model

 	Solving regression for regression parameters with gradient descent

 	Estimating the coefficient of a regression model via scikit-learn

 	Fitting a robust regression model using RANSAC

 	Evaluating the performance of linear regression models

 	Using regularized methods for regression

 	Turning a linear regression model into a curve – polynomial regression

 	Adding polynomial terms using scikit-learn

 	Modeling nonlinear relationships in the Ames Housing dataset

 	Dealing with nonlinear relationships using random forests

 	Decision tree regression

 	Random forest regression

 	Summary

 	Working with Unlabeled Data – Clustering Analysis

 	Grouping objects by similarity using k-means

 	k-means clustering using scikit-learn

 	A smarter way of placing the initial cluster centroids using k-means++

 	Hard versus soft clustering

 	Using the elbow method to find the optimal number of clusters

 	Quantifying the quality of clustering via silhouette plots

 	Organizing clusters as a hierarchical tree

 	Grouping clusters in a bottom-up fashion

 	Performing hierarchical clustering on a distance matrix

 	Attaching dendrograms to a heat map

 	Applying agglomerative clustering via scikit-learn

 	Locating regions of high density via DBSCAN

 	Summary

 	Implementing a Multilayer Artificial Neural Network from Scratch

 	Modeling complex functions with artificial neural networks

 	Single-layer neural network recap

 	Introducing the multilayer neural network architecture

 	Activating a neural network via forward propagation

 	Classifying handwritten digits

 	Obtaining and preparing the MNIST dataset

 	Implementing a multilayer perceptron

 	Coding the neural network training loop

 	Evaluating the neural network performance

 	Training an artificial neural network

 	Computing the loss function

 	Developing your understanding of backpropagation

 	Training neural networks via backpropagation

 	About convergence in neural networks

 	A few last words about the neural network implementation

 	Summary

 	Parallelizing Neural Network Training with PyTorch

 	PyTorch and training performance

 	Performance challenges

 	What is PyTorch?

 	How we will learn PyTorch

 	First steps with PyTorch

 	Installing PyTorch

 	Creating tensors in PyTorch

 	Manipulating the data type and shape of a tensor

 	Applying mathematical operations to tensors

 	Split, stack, and concatenate tensors

 	Building input pipelines in PyTorch

 	Creating a PyTorch DataLoader from existing tensors

 	Combining two tensors into a joint dataset

 	Shuffle, batch, and repeat

 	Creating a dataset from files on your local storage disk

 	Fetching available datasets from the torchvision.datasets library

 	Building an NN model in PyTorch

 	The PyTorch neural network module (torch.nn)

 	Building a linear regression model

 	Model training via the torch.nn and torch.optim modules

 	Building a multilayer perceptron for classifying flowers in the Iris dataset

 	Evaluating the trained model on the test dataset

 	Saving and reloading the trained model

 	Choosing activation functions for multilayer neural networks

 	Logistic function recap

 	Estimating class probabilities in multiclass classification via the softmax function

 	Broadening the output spectrum using a hyperbolic tangent

 	Rectified linear unit activation

 	Summary

 	Going Deeper – The Mechanics of PyTorch

 	The key features of PyTorch

 	PyTorch’s computation graphs

 	Understanding computation graphs

 	Creating a graph in PyTorch

 	PyTorch tensor objects for storing and updating model parameters

 	Computing gradients via automatic differentiation

 	Computing the gradients of the loss with respect to trainable variables

 	Understanding automatic differentiation

 	Adversarial examples

 	Simplifying implementations of common architectures via the torch.nn module

 	Implementing models based on nn.Sequential

 	Choosing a loss function

 	Solving an XOR classification problem

 	Making model building more flexible with nn.Module

 	Writing custom layers in PyTorch

 	Project one – predicting the fuel efficiency of a car

 	Working with feature columns

 	Training a DNN regression model

 	Project two – classifying MNIST handwritten digits

 	Higher-level PyTorch APIs: a short introduction to PyTorch-Lightning

 	Setting up the PyTorch Lightning model

 	Setting up the data loaders for Lightning

 	Training the model using the PyTorch Lightning Trainer class

 	Evaluating the model using TensorBoard

 	Summary

 	Classifying Images with Deep Convolutional Neural Networks

 	The building blocks of CNNs

 	Understanding CNNs and feature hierarchies

 	Performing discrete convolutions

 	Discrete convolutions in one dimension

 	Padding inputs to control the size of the output feature maps

 	Determining the size of the convolution output

 	Performing a discrete convolution in 2D

 	Subsampling layers

 	Putting everything together – implementing a CNN

 	Working with multiple input or color channels

 	Regularizing an NN with L2 regularization and dropout

 	Loss functions for classification

 	Implementing a deep CNN using PyTorch

 	The multilayer CNN architecture

 	Loading and preprocessing the data

 	Implementing a CNN using the torch.nn module

 	Configuring CNN layers in PyTorch

 	Constructing a CNN in PyTorch

 	Smile classification from face images using a CNN

 	Loading the CelebA dataset

 	Image transformation and data augmentation

 	Training a CNN smile classifier

 	Summary

 	Modeling Sequential Data Using Recurrent Neural Networks

 	Introducing sequential data

 	Modeling sequential data – order matters

 	Sequential data versus time series data

 	Representing sequences

 	The different categories of sequence modeling

 	RNNs for modeling sequences

 	Understanding the dataflow in RNNs

 	Computing activations in an RNN

 	Hidden recurrence versus output recurrence

 	The challenges of learning long-range interactions

 	Long short-term memory cells

 	Implementing RNNs for sequence modeling in PyTorch

 	Project one – predicting the sentiment of IMDb movie reviews

 	Preparing the movie review data

 	Embedding layers for sentence encoding

 	Building an RNN model

 	Building an RNN model for the sentiment analysis task

 	Project two – character-level language modeling in PyTorch

 	Preprocessing the dataset

 	Building a character-level RNN model

 	Evaluation phase – generating new text passages

 	Summary

 	Transformers – Improving Natural Language Processing with Attention Mechanisms

 	Adding an attention mechanism to RNNs

 	Attention helps RNNs with accessing information

 	The original attention mechanism for RNNs

 	Processing the inputs using a bidirectional RNN

 	Generating outputs from context vectors

 	Computing the attention weights

 	Introducing the self-attention mechanism

 	Starting with a basic form of self-attention

 	Parameterizing the self-attention mechanism: scaled dot-product attention

 	Attention is all we need: introducing the original transformer architecture

 	Encoding context embeddings via multi-head attention

 	Learning a language model: decoder and masked multi-head attention

 	Implementation details: positional encodings and layer normalization

 	Building large-scale language models by leveraging unlabeled data

 	Pre-training and fine-tuning transformer models

 	Leveraging unlabeled data with GPT

 	Using GPT-2 to generate new text

 	Bidirectional pre-training with BERT

 	The best of both worlds: BART

 	Fine-tuning a BERT model in PyTorch

 	Loading the IMDb movie review dataset

 	Tokenizing the dataset

 	Loading and fine-tuning a pre-trained BERT model

 	Fine-tuning a transformer more conveniently using the Trainer API

 	Summary

 	Generative Adversarial Networks for Synthesizing New Data

 	Introducing generative adversarial networks

 	Starting with autoencoders

 	Generative models for synthesizing new data

 	Generating new samples with GANs

 	Understanding the loss functions of the generator and discriminator networks in a GAN model

 	Implementing a GAN from scratch

 	Training GAN models on Google Colab

 	Implementing the generator and the discriminator networks

 	Defining the training dataset

 	Training the GAN model

 	Improving the quality of synthesized images using a convolutional and Wasserstein GAN

 	Transposed convolution

 	Batch normalization

 	Implementing the generator and discriminator

 	Dissimilarity measures between two distributions

 	Using EM distance in practice for GANs

 	Gradient penalty

 	Implementing WGAN-GP to train the DCGAN model

 	Mode collapse

 	Other GAN applications

 	Summary

 	Graph Neural Networks for Capturing Dependencies in Graph Structured Data

 	Introduction to graph data

 	Undirected graphs

 	Directed graphs

 	Labeled graphs

 	Representing molecules as graphs

 	Understanding graph convolutions

 	The motivation behind using graph convolutions

 	Implementing a basic graph convolution

 	Implementing a GNN in PyTorch from scratch

 	Defining the NodeNetwork model

 	Coding the NodeNetwork’s graph convolution layer

 	Adding a global pooling layer to deal with varying graph sizes

 	Preparing the DataLoader

 	Using the NodeNetwork to make predictions

 	Implementing a GNN using the PyTorch Geometric library

 	Other GNN layers and recent developments

 	Spectral graph convolutions

 	Pooling

 	Normalization

 	Pointers to advanced graph neural network literature

 	Summary

 	Reinforcement Learning for Decision Making in Complex Environments

 	Introduction – learning from experience

 	Understanding reinforcement learning

 	Defining the agent-environment interface of a reinforcement learning system

 	The theoretical foundations of RL

 	Markov decision processes

 	The mathematical formulation of Markov decision processes

 	Visualization of a Markov process

 	Episodic versus continuing tasks

 	RL terminology: return, policy, and value function

 	The return

 	Policy

 	Value function

 	Dynamic programming using the Bellman equation

 	Reinforcement learning algorithms

 	Dynamic programming

 	Policy evaluation – predicting the value function with dynamic programming

 	Improving the policy using the estimated value function

 	Policy iteration

 	Value iteration

 	Reinforcement learning with Monte Carlo

 	State-value function estimation using MC

 	Action-value function estimation using MC

 	Finding an optimal policy using MC control

 	Policy improvement – computing the greedy policy from the action-value function

 	Temporal difference learning

 	TD prediction

 	On-policy TD control (SARSA)

 	Off-policy TD control (Q-learning)

 	Implementing our first RL algorithm

 	Introducing the OpenAI Gym toolkit

 	Working with the existing environments in OpenAI Gym

 	A grid world example

 	Implementing the grid world environment in OpenAI Gym

 	Solving the grid world problem with Q-learning

 	A glance at deep Q-learning

 	Training a DQN model according to the Q-learning algorithm

 	Replay memory

 	Determining the target values for computing the loss

 	Implementing a deep Q-learning algorithm

 	Chapter and book summary

 	Other Books You May Enjoy

 	Index

 Landmarks

 	
 Cover

 	
 Index

 Preface

 Through exposure to the news and social media, you probably are familiar with the fact that machine learning has become one of the most exciting technologies of our time and age. Large companies, such as Microsoft, Google, Meta, Apple, Amazon, IBM, and many more, heavily invest in machine learning research and applications for good reasons. While it may seem that machine learning has become the buzzword of our time and age, it is certainly not hype. This exciting field opens the way to new possibilities and has become indispensable to our daily lives. Talking to the voice assistant on our smartphones, recommending the right product for our customers, preventing credit card fraud, filtering out spam from our e-mail inboxes, detecting and diagnosing medical diseases, the list goes on and on.

 If you want to become a machine learning practitioner, a better problem solver, or even consider a career in machine learning research, then this book is for you! However, for a novice, the theoretical concepts behind machine learning can be quite overwhelming. Yet, many practical books that have been published in recent years will help you get started in machine learning by implementing powerful learning algorithms.

 Getting exposed to practical code examples and working through example applications of machine learning is a great way to dive into this field. Concrete examples help to illustrate the broader concepts by putting the learned material directly into action. However, remember that with great power comes great responsibility! In addition to offering hands-on experience with machine learning using Python and Python-based machine learning libraries, this book also introduces the mathematical concepts behind machine learning algorithms, which is essential for using machine learning successfully. Thus, this book is different from a purely practical book; it is a book that discusses the necessary details regarding machine learning concepts, offers intuitive yet informative explanations on how machine learning algorithms work, how to use them, and most importantly, how to avoid the most common pitfalls.

 In this book, we will embark on an exciting journey that covers all the essential topics and concepts to give you a head start in this field. If you find that your thirst for knowledge is not satisfied, this book references many useful resources that you can use to follow up on the essential breakthroughs in this field.

 Who this book is for

 This book is the ideal companion for learning how to apply machine learning and deep learning to a wide range of tasks and datasets. If you are a programmer who wants to keep up with the recent trends in technology, this book is definitely for you. Also, if you are a student or considering a career transition, this book will be both your introduction and a comprehensive guide to the world of machine learning.

 What this book covers

 Chapter 1, Giving Computers the Ability to Learn from Data, introduces you to the main subareas of machine learning to tackle various problem tasks. In addition, it discusses the essential steps for creating a typical machine learning model building pipeline that will guide us through the following chapters.

 Chapter 2, Training Simple Machine Learning Algorithms for Classification, goes back to the origins of machine learning and introduces binary perceptron classifiers and adaptive linear neurons. This chapter is a gentle introduction to the fundamentals of pattern classification and focuses on the interplay of optimization algorithms and machine learning.

 Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-Learn, describes the essential machine learning algorithms for classification and provides practical examples using one of the most popular and comprehensive open-source machine learning libraries, scikit-learn.

 Chapter 4, Building Good Training Datasets – Data Preprocessing, discusses how to deal with the most common problems in unprocessed datasets, such as missing data. It also discusses several approaches to identify the most informative features in datasets and teaches you how to prepare variables of different types as proper inputs for machine learning algorithms.

 Chapter 5, Compressing Data via Dimensionality Reduction, describes the essential techniques to reduce the number of features in a dataset to smaller sets while retaining most of their useful and discriminatory information. It discusses the standard approach to dimensionality reduction via principal component analysis and compares it to supervised and nonlinear transformation techniques.

 Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter Tuning, discusses the do’s and don’ts for estimating the performances of predictive models. Moreover, it discusses different metrics for measuring the performance of our models and techniques to fine-tune machine learning algorithms.

 Chapter 7, Combining Different Models for Ensemble Learning, introduces you to the different concepts of combining multiple learning algorithms effectively. It teaches you how to build ensembles of experts to overcome the weaknesses of individual learners, resulting in more accurate and reliable predictions.

 Chapter 8, Applying Machine Learning to Sentiment Analysis, discusses the essential steps to transform textual data into meaningful representations for machine learning algorithms to predict the opinions of people based on their writing.

 Chapter 9, Predicting Continuous Target Variables with Regression Analysis, discusses the essential techniques for modeling linear relationships between target and response variables to make predictions on a continuous scale. After introducing different linear models, it also talks about polynomial regression and tree-based approaches.

 Chapter 10, Working with Unlabeled Data – Clustering Analysis, shifts the focus to a different subarea of machine learning, unsupervised learning. We apply algorithms from three fundamental families of clustering algorithms to find groups of objects that share a certain degree of similarity.

 Chapter 11, Implementing a Multilayer Artificial Neural Network from Scratch, extends the concept of gradient-based optimization, which we first introduced in Chapter 2, Training Simple Machine Learning Algorithms for Classification, to build powerful, multilayer neural networks based on the popular backpropagation algorithm in Python.

 Chapter 12, Parallelizing Neural Network Training with PyTorch, builds upon the knowledge from the previous chapter to provide you with a practical guide for training neural networks more efficiently. The focus of this chapter is on PyTorch, an open-source Python library that allows us to utilize multiple cores of modern GPUs and construct deep neural networks from common building blocks via a user-friendly and flexible API.

 Chapter 13, Going Deeper – The Mechanics of PyTorch, picks up where the previous chapter left off and introduces more advanced concepts and functionality of PyTorch. PyTorch is an extraordinarily vast and sophisticated library, and this chapter walks you through concepts such as dynamic computation graphs and automatic differentiation. You will also learn how to use PyTorch’s object-oriented API to implement complex neural networks and how PyTorch Lightning helps you with best practices and minimizing boilerplate code.

 Chapter 14, Classifying Images with Deep Convolutional Neural Networks, introduces convolutional neural networks (CNNs). A CNN represents a particular type of deep neural network architecture that is particularly well-suited for working with image datasets. Due to their superior performance compared to traditional approaches, CNNs are now widely used in computer vision to achieve state-of-the-art results for various image recognition tasks. Throughout this chapter, you will learn how convolutional layers can be used as powerful feature extractors for image classification.

 Chapter 15, Modeling Sequential Data Using Recurrent Neural Networks, introduces another popular neural network architecture for deep learning that is especially well suited for working with text and other types of sequential data and time series data. As a warm-up exercise, this chapter introduces recurrent neural networks for predicting the sentiment of movie reviews. Then, we will teach recurrent networks to digest information from books in order to generate entirely new text.

 Chapter 16, Transformers – Improving Natural Language Processing with Attention Mechanisms, focuses on the latest trends in natural language processing and explains how attention mechanisms help with modeling complex relationships in long sequences. In particular, this chapter describes the influential transformer architecture and state-of-the-art transformer models such as BERT and GPT.

 Chapter 17, Generative Adversarial Networks for Synthesizing New Data, introduces a popular adversarial training regime for neural networks that can be used to generate new, realistic-looking images. The chapter starts with a brief introduction to autoencoders, which is a particular type of neural network architecture that can be used for data compression. The chapter then shows you how to combine the decoder part of an autoencoder with a second neural network that can distinguish between real and synthesized images. By letting two neural networks compete with each other in an adversarial training approach, you will implement a generative adversarial network that generates new handwritten digits.

 Chapter 18, Graph Neural Networks for Capturing Dependencies in Graph Structured Data, goes beyond working with tabular datasets, images, and text. This chapter introduces graph neural networks that operate on graph-structured data, such as social media networks and molecules. After explaining the fundamentals of graph convolutions, this chapter includes a tutorial showing you how to implement predictive models for molecular data.

 Chapter 19, Reinforcement Learning for Decision Making in Complex Environments, covers a subcategory of machine learning that is commonly used for training robots and other autonomous systems. This chapter starts by introducing the basics of reinforcement learning (RL) to become familiar with the agent/environment interactions, the reward process of RL systems, and the concept of learning from experience. After learning about the main categories of RL, you will implement and train an agent that can navigate in a grid world environment using the Q-learning algorithm. Finally, this chapter introduces the deep Q-learning algorithm, which is a variant of Q-learning that uses deep neural networks.

 To get the most out of this book

 Ideally, you are already comfortable with programming in Python to follow along with the code examples we provide to both illustrate and apply various algorithms and models. To get the most out of this book, a firm grasp of mathematical notation will be helpful as well.

 A common laptop or desktop computer should be sufficient for running most of the code in this book, and we provide instructions for your Python environment in the first chapter. Later chapters will introduce additional libraries and installation recommendations when the need arises.

 A recent graphics processing unit (GPU) can accelerate the code runtimes in the later deep learning chapters. However, a GPU is not required, and we also provide instructions for using free cloud resources.

 Download the example code files

 All code examples are available for download through GitHub at https://github.com/rasbt/machine-learning-book. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 While we recommend using Jupyter Notebook for executing code interactively, all code examples are available in both a Python script (for example, ch02/ch02.py) and a Jupyter Notebook format (for example, ch02/ch02.ipynb). Furthermore, we recommend viewing the README.md file that accompanies each individual chapter for additional information and updates

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781801819312_ColorImages.pdf. In addition, lower resolution color images are embedded in the code notebooks of this book that come bundled with the example code files.

 Conventions

 There are a number of text conventions used throughout this book.

 Here are some examples of these styles and an explanation of their meaning. Code words in text are shown as follows: “And already installed packages can be updated via the --upgrade flag.”

 A block of code is set as follows:

 def __init__(self, eta=0.01, n_iter=50, random_state=1):
 self.eta = eta
 self.n_iter = n_iter
 self.random_state = random_state

 Any input in the Python interpreter is written as follows (notice the >>> symbol). The expected output will be shown without the >>> symbol:

 >>> v1 = np.array([1, 2, 3])
>>> v2 = 0.5 * v1
>>> np.arccos(v1.dot(v2) / (np.linalg.norm(v1) *
... np.linalg.norm(v2)))
0.0

 Any command-line input or output is written as follows:

 pip install gym==0.20

 New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: “Clicking the Next button moves you to the next screen.”

 Warnings or important notes appear in a box like this.

 Tips and tricks appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book we would be grateful if you would report this to us. Please visit, http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

 Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

 Share your thoughts

 Once you’ve read Machine Learning with PyTorch and Scikit-Learn, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

 Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

 Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

 	Scan the QR code or visit the link below
 [image:]
https://packt.link/free-ebook/9781801819312

 	Submit your proof of purchase

 	That’s it! We’ll send your free PDF and other benefits to your email directly

 1

 Giving Computers the Ability to Learn from Data

 In my opinion, machine learning, the application and science of algorithms that make sense of data, is the most exciting field of all the computer sciences! We are living in an age where data comes in abundance; using self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Thanks to the many powerful open-source libraries that have been developed in recent years, there has probably never been a better time to break into the machine learning field and learn how to utilize powerful algorithms to spot patterns in data and make predictions about future events.

 In this chapter, you will learn about the main concepts and different types of machine learning. Together with a basic introduction to the relevant terminology, we will lay the groundwork for successfully using machine learning techniques for practical problem solving.

 In this chapter, we will cover the following topics:

 	The general concepts of machine learning

 	The three types of learning and basic terminology

 	The building blocks for successfully designing machine learning systems

 	Installing and setting up Python for data analysis and machine learning

 Building intelligent machines to transform data into knowledge

 In this age of modern technology, there is one resource that we have in abundance: a large amount of structured and unstructured data. In the second half of the 20th century, machine learning evolved as a subfield of artificial intelligence (AI) involving self-learning algorithms that derive knowledge from data to make predictions.

 Instead of requiring humans to manually derive rules and build models from analyzing large amounts of data, machine learning offers a more efficient alternative for capturing the knowledge in data to gradually improve the performance of predictive models and make data-driven decisions.

 Not only is machine learning becoming increasingly important in computer science research, but it is also playing an ever-greater role in our everyday lives. Thanks to machine learning, we enjoy robust email spam filters, convenient text and voice recognition software, reliable web search engines, recommendations on entertaining movies to watch, mobile check deposits, estimated meal delivery times, and much more. Hopefully, soon, we will add safe and efficient self-driving cars to this list. Also, notable progress has been made in medical applications; for example, researchers demonstrated that deep learning models can detect skin cancer with near-human accuracy (https://www.nature.com/articles/nature21056). Another milestone was recently achieved by researchers at DeepMind, who used deep learning to predict 3D protein structures, outperforming physics-based approaches by a substantial margin (https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology). While accurate 3D protein structure prediction plays an essential role in biological and pharmaceutical research, there have been many other important applications of machine learning in healthcare recently. For instance, researchers designed systems for predicting the oxygen needs of COVID-19 patients up to four days in advance to help hospitals allocate resources for those in need (https://ai.facebook.com/blog/new-ai-research-to-help-predict-covid-19-resource-needs-from-a-series-of-x-rays/). Another important topic of our day and age is climate change, which presents one of the biggest and most critical challenges. Today, many efforts are being directed toward developing intelligent systems to combat it (https://www.forbes.com/sites/robtoews/2021/06/20/these-are-the-startups-applying-ai-to-tackle-climate-change). One of the many approaches to tackling climate change is the emergent field of precision agriculture. Here, researchers aim to design computer vision-based machine learning systems to optimize resource deployment to minimize the use and waste of fertilizers.

 The three different types of machine learning

 In this section, we will take a look at the three types of machine learning: supervised learning, unsupervised learning, and reinforcement learning. We will learn about the fundamental differences between the three different learning types and, using conceptual examples, we will develop an understanding of the practical problem domains where they can be applied:

 [image: Graphical user interface, text, application Description automatically generated]
 Figure 1.1: The three different types of machine learning

 Making predictions about the future with supervised learning

 The main goal in supervised learning is to learn a model from labeled training data that allows us to make predictions about unseen or future data. Here, the term “supervised” refers to a set of training examples (data inputs) where the desired output signals (labels) are already known. Supervised learning is then the process of modeling the relationship between the data inputs and the labels. Thus, we can also think of supervised learning as “label learning.”

 Figure 1.2 summarizes a typical supervised learning workflow, where the labeled training data is passed to a machine learning algorithm for fitting a predictive model that can make predictions on new, unlabeled data inputs:

 [image: Diagram Description automatically generated]
 Figure 1.2: Supervised learning process

 Considering the example of email spam filtering, we can train a model using a supervised machine learning algorithm on a corpus of labeled emails, which are correctly marked as spam or non-spam, to predict whether a new email belongs to either of the two categories. A supervised learning task with discrete class labels, such as in the previous email spam filtering example, is also called a classification task. Another subcategory of supervised learning is regression, where the outcome signal is a continuous value.

 Classification for predicting class labels

 Classification is a subcategory of supervised learning where the goal is to predict the categorical class labels of new instances or data points based on past observations. Those class labels are discrete, unordered values that can be understood as the group memberships of the data points. The previously mentioned example of email spam detection represents a typical example of a binary classification task, where the machine learning algorithm learns a set of rules to distinguish between two possible classes: spam and non-spam emails.

 Figure 1.3 illustrates the concept of a binary classification task given 30 training examples; 15 training examples are labeled as class A and 15 training examples are labeled as class B. In this scenario, our dataset is two-dimensional, which means that each example has two values associated with it: x1 and x2. Now, we can use a supervised machine learning algorithm to learn a rule—the decision boundary represented as a dashed line—that can separate those two classes and classify new data into each of those two categories given its x1 and x2 values:

 [image:]
 Figure 1.3: Classifying a new data point

 However, the set of class labels does not have to be of a binary nature. The predictive model learned by a supervised learning algorithm can assign any class label that was presented in the training dataset to a new, unlabeled data point or instance.

 A typical example of a multiclass classification task is handwritten character recognition. We can collect a training dataset that consists of multiple handwritten examples of each letter in the alphabet. The letters (“A,” “B,” “C,” and so on) will represent the different unordered categories or class labels that we want to predict. Now, if a user provides a new handwritten character via an input device, our predictive model will be able to predict the correct letter in the alphabet with certain accuracy. However, our machine learning system will be unable to correctly recognize any of the digits between 0 and 9, for example, if they were not part of the training dataset.

 Regression for predicting continuous outcomes

 We learned in the previous section that the task of classification is to assign categorical, unordered labels to instances. A second type of supervised learning is the prediction of continuous outcomes, which is also called regression analysis. In regression analysis, we are given a number of predictor (explanatory) variables and a continuous response variable (outcome), and we try to find a relationship between those variables that allows us to predict an outcome.

 Note that in the field of machine learning, the predictor variables are commonly called “features,” and the response variables are usually referred to as “target variables.” We will adopt these conventions throughout this book.

 For example, let’s assume that we are interested in predicting the math SAT scores of students. (The SAT is a standardized test frequently used for college admissions in the United States.) If there is a relationship between the time spent studying for the test and the final scores, we could use it as training data to learn a model that uses the study time to predict the test scores of future students who are planning to take this test.

 Regression toward the mean

 The term “regression” was devised by Francis Galton in his article Regression towards Mediocrity in Hereditary Stature in 1886. Galton described the biological phenomenon that the variance of height in a population does not increase over time.

 He observed that the height of parents is not passed on to their children, but instead, their children’s height regresses toward the population mean.

 Figure 1.4 illustrates the concept of linear regression. Given a feature variable, x, and a target variable, y, we fit a straight line to this data that minimizes the distance—most commonly the average squared distance—between the data points and the fitted line.

 We can now use the intercept and slope learned from this data to predict the target variable of new data:

 [image: Chart, scatter chart Description automatically generated]
 Figure 1.4: A linear regression example

 Solving interactive problems with reinforcement learning

 Another type of machine learning is reinforcement learning. In reinforcement learning, the goal is to develop a system (agent) that improves its performance based on interactions with the environment. Since the information about the current state of the environment typically also includes a so-called reward signal, we can think of reinforcement learning as a field related to supervised learning. However, in reinforcement learning, this feedback is not the correct ground truth label or value, but a measure of how well the action was measured by a reward function. Through its interaction with the environment, an agent can then use reinforcement learning to learn a series of actions that maximizes this reward via an exploratory trial-and-error approach or deliberative planning.

 A popular example of reinforcement learning is a chess program. Here, the agent decides upon a series of moves depending on the state of the board (the environment), and the reward can be defined as win or lose at the end of the game:

 [image: Diagram Description automatically generated]
 Figure 1.5: Reinforcement learning process

 There are many different subtypes of reinforcement learning. However, a general scheme is that the agent in reinforcement learning tries to maximize the reward through a series of interactions with the environment. Each state can be associated with a positive or negative reward, and a reward can be defined as accomplishing an overall goal, such as winning or losing a game of chess. For instance, in chess, the outcome of each move can be thought of as a different state of the environment.

 To explore the chess example further, let’s think of visiting certain configurations on the chessboard as being associated with states that will more likely lead to winning—for instance, removing an opponent’s chess piece from the board or threatening the queen. Other positions, however, are associated with states that will more likely result in losing the game, such as losing a chess piece to the opponent in the following turn. Now, in the game of chess, the reward (either positive for winning or negative for losing the game) will not be given until the end of the game. In addition, the final reward will also depend on how the opponent plays. For example, the opponent may sacrifice the queen but eventually win the game.

 In sum, reinforcement learning is concerned with learning to choose a series of actions that maximizes the total reward, which could be earned either immediately after taking an action or via delayed feedback.

 Discovering hidden structures with unsupervised learning

 In supervised learning, we know the right answer (the label or target variable) beforehand when we train a model, and in reinforcement learning, we define a measure of reward for particular actions carried out by the agent. In unsupervised learning, however, we are dealing with unlabeled data or data of an unknown structure. Using unsupervised learning techniques, we are able to explore the structure of our data to extract meaningful information without the guidance of a known outcome variable or reward function.

 Finding subgroups with clustering

 Clustering is an exploratory data analysis or pattern discovery technique that allows us to organize a pile of information into meaningful subgroups (clusters) without having any prior knowledge of their group memberships. Each cluster that arises during the analysis defines a group of objects that share a certain degree of similarity but are more dissimilar to objects in other clusters, which is why clustering is also sometimes called unsupervised classification. Clustering is a great technique for structuring information and deriving meaningful relationships from data. For example, it allows marketers to discover customer groups based on their interests, in order to develop distinct marketing programs.

 Figure 1.6 illustrates how clustering can be applied to organizing unlabeled data into three distinct groups or clusters (A, B, and C, in arbitrary order) based on the similarity of their features, x1 and x2:

 [image: Diagram Description automatically generated]
 Figure 1.6: How clustering works

 Dimensionality reduction for data compression

 Another subfield of unsupervised learning is dimensionality reduction. Often, we are working with data of high dimensionality—each observation comes with a high number of measurements—that can present a challenge for limited storage space and the computational performance of machine learning algorithms. Unsupervised dimensionality reduction is a commonly used approach in feature preprocessing to remove noise from data, which can degrade the predictive performance of certain algorithms. Dimensionality reduction compresses the data onto a smaller dimensional subspace while retaining most of the relevant information.

 Sometimes, dimensionality reduction can also be useful for visualizing data; for example, a high-dimensional feature set can be projected onto one-, two-, or three-dimensional feature spaces to visualize it via 2D or 3D scatterplots or histograms. Figure 1.7 shows an example where nonlinear dimensionality reduction was applied to compress a 3D Swiss roll onto a new 2D feature subspace:

 [image:]
 Figure 1.7: An example of dimensionality reduction from three to two dimensions

 Introduction to the basic terminology and notations

 Now that we have discussed the three broad categories of machine learning—supervised, unsupervised, and reinforcement learning—let’s have a look at the basic terminology that we will be using throughout this book. The following subsection covers the common terms we will be using when referring to different aspects of a dataset, as well as the mathematical notation to communicate more precisely and efficiently.

 As machine learning is a vast field and very interdisciplinary, you are guaranteed to encounter many different terms that refer to the same concepts sooner rather than later. The second subsection collects many of the most commonly used terms that are found in machine learning literature, which may be useful to you as a reference section when reading machine learning publications.

 Notation and conventions used in this book

 Figure 1.8 depicts an excerpt of the Iris dataset, which is a classic example in the field of machine learning (more information can be found at https://archive.ics.uci.edu/ml/datasets/iris). The Iris dataset contains the measurements of 150 Iris flowers from three different species—Setosa, Versicolor, and Virginica.

 Here, each flower example represents one row in our dataset, and the flower measurements in centimeters are stored as columns, which we also call the features of the dataset:

 [image: Diagram Description automatically generated]
 Figure 1.8: The Iris dataset

 To keep the notation and implementation simple yet efficient, we will make use of some of the basics of linear algebra. In the following chapters, we will use a matrix notation to refer to our data. We will follow the common convention to represent each example as a separate row in a feature matrix, X, where each feature is stored as a separate column.

 The Iris dataset, consisting of 150 examples and four features, can then be written as a 150×4 matrix, formally denoted as [image:]:

 [image:]

 Notational conventions

 For most parts of this book, unless noted otherwise, we will use the superscript i to refer to the ith training example, and the subscript j to refer to the jth dimension of the training dataset.

 We will use lowercase, bold-face letters to refer to vectors ([image:]) and uppercase, bold-face letters to refer to matrices ([image:]). To refer to single elements in a vector or matrix, we will write the letters in italics (x(n) or [image:], respectively).

 For example, [image:] refers to the first dimension of flower example 150, the sepal length. Each row in matrix X represents one flower instance and can be written as a four-dimensional row vector, [image:]:

 [image:]

 And each feature dimension is a 150-dimensional column vector, [image:]. For example:

 [image:]

 Similarly, we can represent the target variables (here, class labels) as a 150-dimensional column vector:

 [image:]

 Machine learning terminology

 Machine learning is a vast field and also very interdisciplinary as it brings together many scientists from other areas of research. As it happens, many terms and concepts have been rediscovered or redefined and may already be familiar to you but appear under different names. For your convenience, in the following list, you can find a selection of commonly used terms and their synonyms that you may find useful when reading this book and machine learning literature in general:

 	Training example: A row in a table representing the dataset and synonymous with an observation, record, instance, or sample (in most contexts, sample refers to a collection of training examples).

 	Training: Model fitting, for parametric models similar to parameter estimation.

 	Feature, abbrev. x: A column in a data table or data (design) matrix. Synonymous with predictor, variable, input, attribute, or covariate.

 	Target, abbrev. y: Synonymous with outcome, output, response variable, dependent variable, (class) label, and ground truth.

 	Loss function: Often used synonymously with a cost function. Sometimes the loss function is also called an error function. In some literature, the term “loss” refers to the loss measured for a single data point, and the cost is a measurement that computes the loss (average or summed) over the entire dataset.

 A roadmap for building machine learning systems

 In previous sections, we discussed the basic concepts of machine learning and the three different types of learning. In this section, we will discuss the other important parts of a machine learning system accompanying the learning algorithm.

 Figure 1.9 shows a typical workflow for using machine learning in predictive modeling, which we will discuss in the following subsections:

 [image: Diagram Description automatically generated]
 Figure 1.9: Predictive modeling workflow

 Preprocessing – getting data into shape

 Let’s begin by discussing the roadmap for building machine learning systems. Raw data rarely comes in the form and shape that is necessary for the optimal performance of a learning algorithm. Thus, the preprocessing of the data is one of the most crucial steps in any machine learning application.

 If we take the Iris flower dataset from the previous section as an example, we can think of the raw data as a series of flower images from which we want to extract meaningful features. Useful features could be centered around the color of the flowers or the height, length, and width of the flowers.

 Many machine learning algorithms also require that the selected features are on the same scale for optimal performance, which is often achieved by transforming the features in the range [0, 1] or a standard normal distribution with zero mean and unit variance, as we will see in later chapters.

 Some of the selected features may be highly correlated and therefore redundant to a certain degree. In those cases, dimensionality reduction techniques are useful for compressing the features onto a lower-dimensional subspace. Reducing the dimensionality of our feature space has the advantage that less storage space is required, and the learning algorithm can run much faster. In certain cases, dimensionality reduction can also improve the predictive performance of a model if the dataset contains a large number of irrelevant features (or noise); that is, if the dataset has a low signal-to-noise ratio.

 To determine whether our machine learning algorithm not only performs well on the training dataset but also generalizes well to new data, we also want to randomly divide the dataset into separate training and test datasets. We use the training dataset to train and optimize our machine learning model, while we keep the test dataset until the very end to evaluate the final model.

 Training and selecting a predictive model

 As you will see in later chapters, many different machine learning algorithms have been developed to solve different problem tasks. An important point that can be summarized from David Wolpert’s famous No free lunch theorems is that we can’t get learning “for free” (The Lack of A Priori Distinctions Between Learning Algorithms, D.H. Wolpert, 1996; No free lunch theorems for optimization, D.H. Wolpert and W.G. Macready, 1997). We can relate this concept to the popular saying, I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail (Abraham Maslow, 1966). For example, each classification algorithm has its inherent biases, and no single classification model enjoys superiority if we don’t make any assumptions about the task. In practice, it is therefore essential to compare at least a handful of different learning algorithms in order to train and select the best performing model. But before we can compare different models, we first have to decide upon a metric to measure performance. One commonly used metric is classification accuracy, which is defined as the proportion of correctly classified instances.

 One legitimate question to ask is this: how do we know which model performs well on the final test dataset and real-world data if we don’t use this test dataset for the model selection, but keep it for the final model evaluation? To address the issue embedded in this question, different techniques summarized as “cross-validation” can be used. In cross-validation, we further divide a dataset into training and validation subsets in order to estimate the generalization performance of the model.

 Finally, we also cannot expect that the default parameters of the different learning algorithms provided by software libraries are optimal for our specific problem task. Therefore, we will make frequent use of hyperparameter optimization techniques that help us to fine-tune the performance of our model in later chapters.

 We can think of those hyperparameters as parameters that are not learned from the data but represent the knobs of a model that we can turn to improve its performance. This will become much clearer in later chapters when we see actual examples.

 Evaluating models and predicting unseen data instances

 After we have selected a model that has been fitted on the training dataset, we can use the test dataset to estimate how well it performs on this unseen data to estimate the so-called generalization error. If we are satisfied with its performance, we can now use this model to predict new, future data. It is important to note that the parameters for the previously mentioned procedures, such as feature scaling and dimensionality reduction, are solely obtained from the training dataset, and the same parameters are later reapplied to transform the test dataset, as well as any new data instances—the performance measured on the test data may be overly optimistic otherwise.

 Using Python for machine learning

 Python is one of the most popular programming languages for data science, and thanks to its very active developer and open-source community, a large number of useful libraries for scientific computing and machine learning have been developed.

 Although the performance of interpreted languages, such as Python, for computation-intensive tasks is inferior to lower-level programming languages, extension libraries such as NumPy and SciPy have been developed that build upon lower-layer Fortran and C implementations for fast vectorized operations on multidimensional arrays.

 For machine learning programming tasks, we will mostly refer to the scikit-learn library, which is currently one of the most popular and accessible open-source machine learning libraries. In the later chapters, when we focus on a subfield of machine learning called deep learning, we will use the latest version of the PyTorch library, which specializes in training so-called deep neural network models very efficiently by utilizing graphics cards.

 Installing Python and packages from the Python Package Index

 Python is available for all three major operating systems—Microsoft Windows, macOS, and Linux—and the installer, as well as the documentation, can be downloaded from the official Python website: https://www.python.org.

 The code examples provided in this book have been written for and tested in Python 3.9, and we generally recommend that you use the most recent version of Python 3 that is available. Some of the code may also be compatible with Python 2.7, but as the official support for Python 2.7 ended in 2019, and the majority of open-source libraries have already stopped supporting Python 2.7 (https://python3statement.org), we strongly advise that you use Python 3.9 or newer.

 You can check your Python version by executing

 python --version

 or

 python3 --version

 in your terminal (or PowerShell if you are using Windows).

 The additional packages that we will be using throughout this book can be installed via the pip installer program, which has been part of the Python Standard Library since Python 3.3. More information about pip can be found at https://docs.python.org/3/installing/index.html.

 After we have successfully installed Python, we can execute pip from the terminal to install additional Python packages:

 pip install SomePackage

 Already installed packages can be updated via the --upgrade flag:

 pip install SomePackage --upgrade

 Using the Anaconda Python distribution and package manager

 A highly recommended open-source package management system for installing Python for scientific computing contexts is conda by Continuum Analytics. Conda is free and licensed under a permissive open-source license. Its goal is to help with the installation and version management of Python packages for data science, math, and engineering across different operating systems. If you want to use conda, it comes in different flavors, namely Anaconda, Miniconda, and Miniforge:

 	Anaconda comes with many scientific computing packages pre-installed. The Anaconda installer can be downloaded at https://docs.anaconda.com/anaconda/install/, and an Anaconda quick start guide is available at https://docs.anaconda.com/anaconda/user-guide/getting-started/.

 	Miniconda is a leaner alternative to Anaconda (https://docs.conda.io/en/latest/miniconda.html). Essentially, it is similar to Anaconda but without any packages pre-installed, which many people (including the authors) prefer.

 	Miniforge is similar to Miniconda but community-maintained and uses a different package repository (conda-forge) from Miniconda and Anaconda. We found that Miniforge is a great alternative to Miniconda. Download and installation instructions can be found in the GitHub repository at https://github.com/conda-forge/miniforge.

 After successfully installing conda through either Anaconda, Miniconda, or Miniforge, we can install new Python packages using the following command:

 conda install SomePackage

 Existing packages can be updated using the following command:

 conda update SomePackage

 Packages that are not available through the official conda channel might be available via the community-supported conda-forge project (https://conda-forge.org), which can be specified via the --channel conda-forge flag. For example:

 conda install SomePackage --channel conda-forge

 Packages that are not available through the default conda channel or conda-forge can be installed via pip as explained earlier. For example:

 pip install SomePackage

 Packages for scientific computing, data science, and machine learning

 Throughout the first half of this book, we will mainly use NumPy’s multidimensional arrays to store and manipulate data. Occasionally, we will make use of pandas, which is a library built on top of NumPy that provides additional higher-level data manipulation tools that make working with tabular data even more convenient. To augment your learning experience and visualize quantitative data, which is often extremely useful to make sense of it, we will use the very customizable Matplotlib library.

 The main machine learning library used in this book is scikit-learn (Chapters 3 to 11). Chapter 12, Parallelizing Neural Network Training with PyTorch, will then introduce the PyTorch library for deep learning.

 The version numbers of the major Python packages that were used to write this book are mentioned in the following list. Please make sure that the version numbers of your installed packages are, ideally, equal to these version numbers to ensure that the code examples run correctly:

 	NumPy 1.21.2

 	SciPy 1.7.0

 	Scikit-learn 1.0

 	Matplotlib 3.4.3

 	pandas 1.3.2

 After installing these packages, you can double-check the installed version by importing the package in Python and accessing its __version__ attribute, for example:

 >>> import numpy
>>> numpy.__version__
'1.21.2'

 For your convenience, we included a python-environment-check.py script in this book’s complimentary code repository at https://github.com/rasbt/machine-learning-book so that you can check both your Python version and the package versions by executing this script.

 Certain chapters will require additional packages and will provide information about the installations. For instance, do not worry about installing PyTorch at this point. Chapter 12 will provide tips and instructions when you need them.

 If you encounter errors even though your code matches the code in the chapter exactly, we recommend you first check the version numbers of the underlying packages before spending more time on debugging or reaching out to the publisher or authors. Sometimes, newer versions of libraries introduce backward-incompatible changes that could explain these errors.

 If you do not want to change the package version in your main Python installation, we recommend using a virtual environment for installing the packages used in this book. If you use Python without the conda manager, you can use the venv library to create a new virtual environment. For example, you can create and activate the virtual environment via the following two commands:

 python3 -m venv /Users/sebastian/Desktop/pyml-book
source /Users/sebastian/Desktop/pyml-book/bin/activate

 Note that you need to activate the virtual environment every time you open a new terminal or PowerShell. You can find more information about venv at https://docs.python.org/3/library/venv.html.

 If you are using Anaconda with the conda package manager, you can create and activate a virtual environment as follows:

 conda create -n pyml python=3.9
conda activate pyml

 Summary

 In this chapter, we explored machine learning at a very high level and familiarized ourselves with the big picture and major concepts that we are going to explore in the following chapters in more detail. We learned that supervised learning is composed of two important subfields: classification and regression. While classification models allow us to categorize objects into known classes, we can use regression analysis to predict the continuous outcomes of target variables. Unsupervised learning not only offers useful techniques for discovering structures in unlabeled data, but it can also be useful for data compression in feature preprocessing steps.

 We briefly went over the typical roadmap for applying machine learning to problem tasks, which we will use as a foundation for deeper discussions and hands-on examples in the following chapters. Finally, we set up our Python environment and installed and updated the required packages to get ready to see machine learning in action.

 Later in this book, in addition to machine learning itself, we will introduce different techniques to preprocess a dataset, which will help you to get the best performance out of different machine learning algorithms. While we will cover classification algorithms quite extensively throughout the book, we will also explore different techniques for regression analysis and clustering.

 We have an exciting journey ahead, covering many powerful techniques in the vast field of machine learning. However, we will approach machine learning one step at a time, building upon our knowledge gradually throughout the chapters of this book. In the following chapter, we will start this journey by implementing one of the earliest machine learning algorithms for classification, which will prepare us for Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-Learn, where we will cover more advanced machine learning algorithms using the scikit-learn open-source machine learning library.

 Join our book’s Discord space

 Join our Discord community to meet like-minded people and learn alongside more than 2000 members at:

 https://packt.link/MLwPyTorch

 [image:]

 2

 Training Simple Machine Learning Algorithms for Classification

 In this chapter, we will make use of two of the first algorithmically described machine learning algorithms for classification: the perceptron and adaptive linear neurons. We will start by implementing a perceptron step by step in Python and training it to classify different flower species in the Iris dataset. This will help us to understand the concept of machine learning algorithms for classification and how they can be efficiently implemented in Python.

 Discussing the basics of optimization using adaptive linear neurons will then lay the groundwork for using more sophisticated classifiers via the scikit-learn machine learning library in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-Learn.

 The topics that we will cover in this chapter are as follows:

 	Building an understanding of machine learning algorithms

 	Using pandas, NumPy, and Matplotlib to read in, process, and visualize data

 	Implementing linear classifiers for 2-class problems in Python

 Artificial neurons – a brief glimpse into the early history of machine learning

 Before we discuss the perceptron and related algorithms in more detail, let’s take a brief tour of the beginnings of machine learning. Trying to understand how the biological brain works in order to design an artificial intelligence (AI), Warren McCulloch and Walter Pitts published the first concept of a simplified brain cell, the so-called McCulloch-Pitts (MCP) neuron, in 1943 (A Logical Calculus of the Ideas Immanent in Nervous Activity by W. S. McCulloch and W. Pitts, Bulletin of Mathematical Biophysics, 5(4): 115-133, 1943).

 Biological neurons are interconnected nerve cells in the brain that are involved in the processing and transmitting of chemical and electrical signals, which is illustrated in Figure 2.1:

 [image: Diagram Description automatically generated]
 Figure 2.1: A neuron processing chemical and electrical signals

 McCulloch and Pitts described such a nerve cell as a simple logic gate with binary outputs; multiple signals arrive at the dendrites, they are then integrated into the cell body, and, if the accumulated signal exceeds a certain threshold, an output signal is generated that will be passed on by the axon.

 Only a few years later, Frank Rosenblatt published the first concept of the perceptron learning rule based on the MCP neuron model (The Perceptron: A Perceiving and Recognizing Automaton by F. Rosenblatt, Cornell Aeronautical Laboratory, 1957). With his perceptron rule, Rosenblatt proposed an algorithm that would automatically learn the optimal weight coefficients that would then be multiplied with the input features in order to make the decision of whether a neuron fires (transmits a signal) or not. In the context of supervised learning and classification, such an algorithm could then be used to predict whether a new data point belongs to one class or the other.

 The formal definition of an artificial neuron

 More formally, we can put the idea behind artificial neurons into the context of a binary classification task with two classes: 0 and 1. We can then define a decision function, [image:], that takes a linear combination of certain input values, x, and a corresponding weight vector, w, where z is the so-called net input z = w1x1 + w2x2 + ... + wmxm:

 [image:]

 Now, if the net input of a particular example, x(i), is greater than a defined threshold, [image:], we predict class 1, and class 0 otherwise. In the perceptron algorithm, the decision function, [image:], is a variant of a unit step function:

 [image:]

 To simplify the code implementation later, we can modify this setup via a couple of steps. First, we move the threshold, [image:], to the left side of the equation:

 [image:]

 Second, we define a so-called bias unit as [image:] and make it part of the net input:

 z = w1x1 + ... + wmxm + b = wTx + b

 Third, given the introduction of the bias unit and the redefinition of the net input z above, we can redefine the decision function as follows:

 [image:]

 Linear algebra basics: dot product and matrix transpose

 In the following sections, we will often make use of basic notations from linear algebra. For example, we will abbreviate the sum of the products of the values in x and w using a vector dot product, whereas the superscript T stands for transpose, which is an operation that transforms a column vector into a row vector and vice versa. For example, assume we have the following two column vectors:

 [image:]

 Then, we can write the transpose of vector a as aT = [a1 a2 a3] and write the dot product as

 [image:]

 Furthermore, the transpose operation can also be applied to matrices to reflect it over its diagonal, for example:

 [image:]

 Please note that the transpose operation is strictly only defined for matrices; however, in the context of machine learning, we refer to n × 1 or 1 × m matrices when we use the term “vector.”

 In this book, we will only use very basic concepts from linear algebra; however, if you need a quick refresher, please take a look at Zico Kolter’s excellent Linear Algebra Review and Reference, which is freely available at http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_notes.pdf.

 Figure 2.2 illustrates how the net input z = wTx + b is squashed into a binary output (0 or 1) by the decision function of the perceptron (left subfigure) and how it can be used to discriminate between two classes separable by a linear decision boundary (right subfigure):

 [image: Chart, scatter chart Description automatically generated]
 Figure 2.2: A threshold function producing a linear decision boundary for a binary classification problem

 The perceptron learning rule

 The whole idea behind the MCP neuron and Rosenblatt’s thresholded perceptron model is to use a reductionist approach to mimic how a single neuron in the brain works: it either fires or it doesn’t. Thus, Rosenblatt’s classic perceptron rule is fairly simple, and the perceptron algorithm can be summarized by the following steps:

 	Initialize the weights and bias unit to 0 or small random numbers

 	For each training example, x(i):
 	Compute the output value, [image:]

 	Update the weights and bias unit

 Here, the output value is the class label predicted by the unit step function that we defined earlier, and the simultaneous update of the bias unit and each weight, wj, in the weight vector, w, can be more formally written as:

 [image:]

 The update values (“deltas”) are computed as follows:

 [image:]

 Note that unlike the bias unit, each weight, wj, corresponds to a feature, xj, in the dataset, which is involved in determining the update value, [image:], defined above. Furthermore, [image:] is the learning rate (typically a constant between 0.0 and 1.0), y(i) is the true class label of the ith training example, and [image:] is the predicted class label. It is important to note that the bias unit and all weights in the weight vector are being updated simultaneously, which means that we don’t recompute the predicted label, [image:], before the bias unit and all of the weights are updated via the respective update values, [image:] and [image:]. Concretely, for a two-dimensional dataset, we would write the update as:

 [image:]

 Before we implement the perceptron rule in Python, let’s go through a simple thought experiment to illustrate how beautifully simple this learning rule really is. In the two scenarios where the perceptron predicts the class label correctly, the bias unit and weights remain unchanged, since the update values are 0:

 (1) [image:]

 (2) [image:]

 However, in the case of a wrong prediction, the weights are being pushed toward the direction of the positive or negative target class:

 (3) [image:]

 (4) [image:]

 To get a better understanding of the feature value as a multiplicative factor, [image:], let’s go through another simple example, where:

 [image:]

 Let’s assume that [image:] and we misclassify this example as class 0. In this case, we would increase the corresponding weight by 2.5 in total so that the net input, [image:], would be more positive the next time we encounter this example, and thus be more likely to be above the threshold of the unit step function to classify the example as class 1:

 [image:]

 The weight update, [image:], is proportional to the value of [image:]. For instance, if we have another example, [image:], that is incorrectly classified as class 0, we will push the decision boundary by an even larger extent to classify this example correctly the next time:

 [image:]

 It is important to note that the convergence of the perceptron is only guaranteed if the two classes are linearly separable, which means that the two classes can be perfectly separated by a linear decision boundary. (Interested readers can find the convergence proof in my lecture notes: https://sebastianraschka.com/pdf/lecture-notes/stat453ss21/L03_perceptron_slides.pdf). Figure 2.3 shows visual examples of linearly separable and linearly inseparable scenarios:

 [image: Chart, scatter chart Description automatically generated]
 Figure 2.3: Examples of linearly and nonlinearly separable classes

 If the two classes can’t be separated by a linear decision boundary, we can set a maximum number of passes over the training dataset (epochs) and/or a threshold for the number of tolerated misclassifications—the perceptron would never stop updating the weights otherwise. Later in this chapter, we will cover the Adaline algorithm that produces linear decision boundaries and converges even if the classes are not perfectly linearly separable. In Chapter 3, we will learn about algorithms that can produce nonlinear decision boundaries.

 Downloading the example code

 If you bought this book directly from Packt, you can download the example code files from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can download all code examples and datasets directly from https://github.com/rasbt/machine-learning-book.

 Now, before we jump into the implementation in the next section, what you just learned can be summarized in a simple diagram that illustrates the general concept of the perceptron:

 [image: Diagram Description automatically generated]
 Figure 2.4: Weights and bias of the model are updated based on the error function

 The preceding diagram illustrates how the perceptron receives the inputs of an example (x) and combines them with the bias unit (b) and weights (w) to compute the net input. The net input is then passed on to the threshold function, which generates a binary output of 0 or 1—the predicted class label of the example. During the learning phase, this output is used to calculate the error of the prediction and update the weights and bias unit.

 Implementing a perceptron learning algorithm in Python

 In the previous section, we learned how Rosenblatt’s perceptron rule works; let’s now implement it in Python and apply it to the Iris dataset that we introduced in Chapter 1, Giving Computers the Ability to Learn from Data.

 An object-oriented perceptron API

 We will take an object-oriented approach to defining the perceptron interface as a Python class, which will allow us to initialize new Perceptron objects that can learn from data via a fit method and make predictions via a separate predict method. As a convention, we append an underscore (_) to attributes that are not created upon the initialization of the object, but we do this by calling the object’s other methods, for example, self.w_.

 Additional resources for Python’s scientific computing stack

 If you are not yet familiar with Python’s scientific libraries or need a refresher, please see the following resources:

 	NumPy: https://sebastianraschka.com/blog/2020/numpy-intro.html

 	pandas: https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html

 	Matplotlib: https://matplotlib.org/stable/tutorials/introductory/usage.html

 The following is the implementation of a perceptron in Python:

 import numpy as np
class Perceptron:
 """Perceptron classifier.

 Parameters

 eta : float
 Learning rate (between 0.0 and 1.0)
 n_iter : int
 Passes over the training dataset.
 random_state : int
 Random number generator seed for random weight
 initialization.

 Attributes

 w_ : 1d-array
 Weights after fitting.
 b_ : Scalar
 Bias unit after fitting.
 errors_ : list
 Number of misclassifications (updates) in each epoch.

 """
 def __init__(self, eta=0.01, n_iter=50, random_state=1):
 self.eta = eta
 self.n_iter = n_iter
 self.random_state = random_state

 def fit(self, X, y):
 """Fit training data.

 Parameters

 X : {array-like}, shape = [n_examples, n_features]
 Training vectors, where n_examples is the number of
 examples and n_features is the number of features.
 y : array-like, shape = [n_examples]
 Target values.

 Returns

 self : object

 """
 rgen = np.random.RandomState(self.random_state)
 self.w_ = rgen.normal(loc=0.0, scale=0.01,
 size=X.shape[1])
 self.b_ = np.float_(0.)
 self.errors_ = []

 for _ in range(self.n_iter):
 errors = 0
 for xi, target in zip(X, y):
 update = self.eta * (target - self.predict(xi))
 self.w_ += update * xi
 self.b_ += update
 errors += int(update != 0.0)
 self.errors_.append(errors)
 return self

 def net_input(self, X):
 """Calculate net input"""
 return np.dot(X, self.w_) + self.b_

 def predict(self, X):
 """Return class label after unit step"""
 return np.where(self.net_input(X) >= 0.0, 1, 0)

 Using this perceptron implementation, we can now initialize new Perceptron objects with a given learning rate, eta ([image:]), and the number of epochs, n_iter (passes over the training dataset).

 Via the fit method, we initialize the bias self.b_ to an initial value 0 and the weights in self.w_ to a vector, [image:], where m stands for the number of dimensions (features) in the dataset.

 Notice that the initial weight vector contains small random numbers drawn from a normal distribution with a standard deviation of 0.01 via rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1]), where rgen is a NumPy random number generator that we seeded with a user-specified random seed so that we can reproduce previous results if desired.

 Technically, we could initialize the weights to zero (in fact, this is done in the original perceptron algorithm). However, if we did that, then the learning rate [image:] (eta) would have no effect on the decision boundary. If all the weights are initialized to zero, the learning rate parameter, eta, affects only the scale of the weight vector, not the direction. If you are familiar with trigonometry, consider a vector, v1 =[1 2 3], where the angle between v1 and a vector, v2 = 0.5 × v1, would be exactly zero, as demonstrated by the following code snippet:

 >>> v1 = np.array([1, 2, 3])
>>> v2 = 0.5 * v1
>>> np.arccos(v1.dot(v2) / (np.linalg.norm(v1) *
... np.linalg.norm(v2)))
0.0

 Here, np.arccos is the trigonometric inverse cosine, and np.linalg.norm is a function that computes the length of a vector. (Our decision to draw the random numbers from a random normal distribution—for example, instead of from a uniform distribution—and to use a standard deviation of 0.01 was arbitrary; remember, we are just interested in small random values to avoid the properties of all-zero vectors, as discussed earlier.)

 As an optional exercise after reading this chapter, you can change self.w_ = rgen.normal(loc=0.0, scale=0.01, size=X.shape[1]) to self.w_ = np.zeros(X.shape[1]) and run the perceptron training code presented in the next section with different values for eta. You will observe that the decision boundary does not change.

 NumPy array indexing

 NumPy indexing for one-dimensional arrays works similarly to Python lists using the square-bracket ([]) notation. For two-dimensional arrays, the first indexer refers to the row number and the second indexer to the column number. For example, we would use X[2, 3] to select the third row and fourth column of a two-dimensional array, X.

 After the weights have been initialized, the fit method loops over all individual examples in the training dataset and updates the weights according to the perceptron learning rule that we discussed in the previous section.

 The class labels are predicted by the predict method, which is called in the fit method during training to get the class label for the weight update; but predict can also be used to predict the class labels of new data after we have fitted our model. Furthermore, we also collect the number of misclassifications during each epoch in the self.errors_ list so that we can later analyze how well our perceptron performed during the training. The np.dot function that is used in the net_input method simply calculates the vector dot product, wTx + b.

 Vectorization: Replacing for loops with vectorized code

 Instead of using NumPy to calculate the vector dot product between two arrays, a and b, via a.dot(b) or np.dot(a, b), we could also perform the calculation in pure Python via sum([i * j for i, j in zip(a, b)]). However, the advantage of using NumPy over classic Python for loop structures is that its arithmetic operations are vectorized. Vectorization means that an elemental arithmetic operation is automatically applied to all elements in an array. By formulating our arithmetic operations as a sequence of instructions on an array, rather than performing a set of operations for each element at a time, we can make better use of our modern central processing unit (CPU) architectures with single instruction, multiple data (SIMD) support. Furthermore, NumPy uses highly optimized linear algebra libraries, such as Basic Linear Algebra Subprograms (BLAS) and Linear Algebra Package (LAPACK), that have been written in C or Fortran. Lastly, NumPy also allows us to write our code in a more compact and intuitive way using the basics of linear algebra, such as vector and matrix dot products.

 Training a perceptron model on the Iris dataset

 To test our perceptron implementation, we will restrict the following analyses and examples in the remainder of this chapter to two feature variables (dimensions). Although the perceptron rule is not restricted to two dimensions, considering only two features, sepal length and petal length, will allow us to visualize the decision regions of the trained model in a scatterplot for learning purposes.

 Note that we will also only consider two flower classes, setosa and versicolor, from the Iris dataset for practical reasons—remember, the perceptron is a binary classifier. However, the perceptron algorithm can be extended to multi-class classification—for example, the one-versus-all (OvA) technique.

 The OvA method for multi-class classification

 OvA, which is sometimes also called one-versus-rest (OvR), is a technique that allows us to extend any binary classifier to multi-class problems. Using OvA, we can train one classifier per class, where the particular class is treated as the positive class and the examples from all other classes are considered negative classes. If we were to classify a new, unlabeled data instance, we would use our n classifiers, where n is the number of class labels, and assign the class label with the highest confidence to the particular instance we want to classify. In the case of the perceptron, we would use OvA to choose the class label that is associated with the largest absolute net input value.

 First, we will use the pandas library to load the Iris dataset directly from the UCI Machine Learning Repository into a DataFrame object and print the last five lines via the tail method to check that the data was loaded correctly:

 >>> import os
>>> import pandas as pd
>>> s = 'https://archive.ics.uci.edu/ml/'\
... 'machine-learning-databases/iris/iris.data'
>>> print('From URL:', s)
From URL: https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
>>> df = pd.read_csv(s,
... header=None,
... encoding='utf-8')
>>> df.tail()

 After executing the previous code, we should see the following output, which shows the last five lines of the Iris dataset:

 [image: A picture containing calendar Description automatically generated]
 Figure 2.5: The last five lines of the Iris dataset

 Loading the Iris dataset

 You can find a copy of the Iris dataset (and all other datasets used in this book) in the code bundle of this book, which you can use if you are working offline or if the UCI server at https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data is temporarily unavailable. For instance, to load the Iris dataset from a local directory, you can replace this line,

 df = pd.read_csv(
 'https://archive.ics.uci.edu/ml/'
 'machine-learning-databases/iris/iris.data',
 header=None, encoding='utf-8')

 with the following one:

 df = pd.read_csv(
 'your/local/path/to/iris.data',
 header=None, encoding='utf-8')

 Next, we extract the first 100 class labels that correspond to the 50 Iris-setosa and 50 Iris-versicolor flowers and convert the class labels into the two integer class labels, 1 (versicolor) and 0 (setosa), that we assign to a vector, y, where the values method of a pandas DataFrame yields the corresponding NumPy representation.

 Similarly, we extract the first feature column (sepal length) and the third feature column (petal length) of those 100 training examples and assign them to a feature matrix, X, which we can visualize via a two-dimensional scatterplot:

 >>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> # select setosa and versicolor
>>> y = df.iloc[0:100, 4].values
>>> y = np.where(y == 'Iris-setosa', 0, 1)
>>> # extract sepal length and petal length
>>> X = df.iloc[0:100, [0, 2]].values
>>> # plot data
>>> plt.scatter(X[:50, 0], X[:50, 1],
... color='red', marker='o', label='Setosa')
>>> plt.scatter(X[50:100, 0], X[50:100, 1],
... color='blue', marker='s', label='Versicolor')
>>> plt.xlabel('Sepal length [cm]')
>>> plt.ylabel('Petal length [cm]')
>>> plt.legend(loc='upper left')
>>> plt.show()

 After executing the preceding code example, we should see the following scatterplot:

 [image: Chart, scatter chart Description automatically generated]
 Figure 2.6: Scatterplot of setosa and versicolor flowers by sepal and petal length

 Figure 2.6 shows the distribution of flower examples in the Iris dataset along the two feature axes: petal length and sepal length (measured in centimeters). In this two-dimensional feature subspace, we can see that a linear decision boundary should be sufficient to separate setosa from versicolor flowers. Thus, a linear classifier such as the perceptron should be able to classify the flowers in this dataset perfectly.

 Now, it’s time to train our perceptron algorithm on the Iris data subset that we just extracted. Also, we will plot the misclassification error for each epoch to check whether the algorithm converged and found a decision boundary that separates the two Iris flower classes:

 >>> ppn = Perceptron(eta=0.1, n_iter=10)
>>> ppn.fit(X, y)
>>> plt.plot(range(1, len(ppn.errors_) + 1),
... ppn.errors_, marker='o')
>>> plt.xlabel('Epochs')
>>> plt.ylabel('Number of updates')
>>> plt.show()

 Note that the number of misclassification errors and the number of updates is the same, since the perceptron weights and bias are updated each time it misclassifies an example. After executing the preceding code, we should see the plot of the misclassification errors versus the number of epochs, as shown in Figure 2.7:

 [image:]
 Figure 2.7: A plot of the misclassification errors against the number of epochs
 As we can see in Figure 2.7, our perceptron converged after the sixth epoch and should now be able to classify the training examples perfectly. Let’s implement a small convenience function to visualize the decision boundaries for two-dimensional datasets:

 from matplotlib.colors import ListedColormap
def plot_decision_regions(X, y, classifier, resolution=0.02):
 # setup marker generator and color map
 markers = ('o', 's', '^', 'v', '<')
 colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
 cmap = ListedColormap(colors[:len(np.unique(y))])

 # plot the decision surface
 x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
 np.arange(x2_min, x2_max, resolution))
 lab = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
 lab = lab.reshape(xx1.shape)
 plt.contourf(xx1, xx2, lab, alpha=0.3, cmap=cmap)
 plt.xlim(xx1.min(), xx1.max())
 plt.ylim(xx2.min(), xx2.max())

 # plot class examples
 for idx, cl in enumerate(np.unique(y)):
 plt.scatter(x=X[y == cl, 0],
 y=X[y == cl, 1],
 alpha=0.8,
 c=colors[idx],
 marker=markers[idx],
 label=f'Class {cl}',
 edgecolor='black')

 First, we define a number of colors and markers and create a colormap from the list of colors via ListedColormap. Then, we determine the minimum and maximum values for the two features and use those feature vectors to create a pair of grid arrays, xx1 and xx2, via the NumPy meshgrid function. Since we trained our perceptron classifier on two feature dimensions, we need to flatten the grid arrays and create a matrix that has the same number of columns as the Iris training subset so that we can use the predict method to predict the class labels, lab, of the corresponding grid points.

 After reshaping the predicted class labels, lab, into a grid with the same dimensions as xx1 and xx2, we can now draw a contour plot via Matplotlib’s contourf function, which maps the different decision regions to different colors for each predicted class in the grid array:

 >>> plot_decision_regions(X, y, classifier=ppn)
>>> plt.xlabel('Sepal length [cm]')
>>> plt.ylabel('Petal length [cm]')
>>> plt.legend(loc='upper left')
>>> plt.show()

 After executing the preceding code example, we should now see a plot of the decision regions, as shown in Figure 2.8:

 [image: Chart, scatter chart Description automatically generated]
 Figure 2.8: A plot of the perceptron’s decision regions
 As we can see in the plot, the perceptron learned a decision boundary that can classify all flower examples in the Iris training subset perfectly.

 Perceptron convergence

 Although the perceptron classified the two Iris flower classes perfectly, convergence is one of the biggest problems of the perceptron. Rosenblatt proved mathematically that the perceptron learning rule converges if the two classes can be separated by a linear hyperplane. However, if the classes cannot be separated perfectly by such a linear decision boundary, the weights will never stop updating unless we set a maximum number of epochs. Interested readers can find a summary of the proof in my lecture notes at https://sebastianraschka.com/pdf/lecture-notes/stat453ss21/L03_perceptron_slides.pdf.

 Adaptive linear neurons and the convergence of learning

 In this section, we will take a look at another type of single-layer neural network (NN): ADAptive LInear NEuron (Adaline). Adaline was published by Bernard Widrow and his doctoral student Tedd Hoff only a few years after Rosenblatt’s perceptron algorithm, and it can be considered an improvement on the latter (An Adaptive “Adaline” Neuron Using Chemical “Memistors”, Technical Report Number 1553-2 by B. Widrow and colleagues, Stanford Electron Labs, Stanford, CA, October 1960).

 The Adaline algorithm is particularly interesting because it illustrates the key concepts of defining and minimizing continuous loss functions. This lays the groundwork for understanding other machine learning algorithms for classification, such as logistic regression, support vector machines, and multilayer neural networks, as well as linear regression models, which we will discuss in future chapters.

 The key difference between the Adaline rule (also known as the Widrow-Hoff rule) and Rosenblatt’s perceptron is that the weights are updated based on a linear activation function rather than a unit step function like in the perceptron. In Adaline, this linear activation function, [image:], is simply the identity function of the net input, so that [image:].

 While the linear activation function is used for learning the weights, we still use a threshold function to make the final prediction, which is similar to the unit step function that we covered earlier.

 The main differences between the perceptron and Adaline algorithm are highlighted in Figure 2.9:

 [image: Diagram Description automatically generated]
 Figure 2.9: A comparison between a perceptron and the Adaline algorithm
 As Figure 2.9 indicates, the Adaline algorithm compares the true class labels with the linear activation function’s continuous valued output to compute the model error and update the weights. In contrast, the perceptron compares the true class labels to the predicted class labels.

 Minimizing loss functions with gradient descent

 One of the key ingredients of supervised machine learning algorithms is a defined objective function that is to be optimized during the learning process. This objective function is often a loss or cost function that we want to minimize. In the case of Adaline, we can define the loss function, L, to learn the model parameters as the mean squared error (MSE) between the calculated outcome and the true class label:

 [image:]

 The main advantage of this continuous linear activation function, in contrast to the unit step function, is that the loss function becomes differentiable. Another nice property of this loss function is that it is convex; thus, we can use a very simple yet powerful optimization algorithm called gradient descent to find the weights that minimize our loss function to classify the examples in the Iris dataset.

 As illustrated in Figure 2.10, we can describe the main idea behind gradient descent as climbing down a hill until a local or global loss minimum is reached. In each iteration, we take a step in the opposite direction of the gradient, where the step size is determined by the value of the learning rate, as well as the slope of the gradient (for simplicity, the following figure visualizes this only for a single weight, w):

 [image: Diagram Description automatically generated]
 Figure 2.10: How gradient descent works
 Using gradient descent, we can now update the model parameters by taking a step in the opposite direction of the gradient, [image:], of our loss function, L(w, b):

 [image:]

 The parameter changes, [image:] and [image:], are defined as the negative gradient multiplied by the learning rate, [image:]:

 [image:]

 To compute the gradient of the loss function, we need to compute the partial derivative of the loss function with respect to each weight, wj:

 [image:]

 Similarly, we compute the partial derivative of the loss with respect to the bias as:

 [image:]

 Please note that the 2 in the numerator above is merely a constant scaling factor, and we could omit it without affecting the algorithm. Removing the scaling factor has the same effect as changing the learning rate by a factor of 2. The following information box explains where this scaling factor originates.

 So we can write the weight update as:

 [image:]

 Since we update all parameters simultaneously, our Adaline learning rule becomes:

 [image:]

 The mean squared error derivative

 If you are familiar with calculus, the partial derivative of the MSE loss function with respect to the jth weight can be obtained as follows:

 [image:]

 The same approach can be used to find partial derivative [image:] except that [image:] is equal to –1 and thus the last step simplifies to [image:].

 Although the Adaline learning rule looks identical to the perceptron rule, we should note that [image:] with [image:] is a real number and not an integer class label. Furthermore, the weight update is calculated based on all examples in the training dataset (instead of updating the parameters incrementally after each training example), which is why this approach is also referred to as batch gradient descent. To be more explicit and avoid confusion when talking about related concepts later in this chapter and this book, we will refer to this process as full batch gradient descent.

 Implementing Adaline in Python

 Since the perceptron rule and Adaline are very similar, we will take the perceptron implementation that we defined earlier and change the fit method so that the weight and bias parameters are now updated by minimizing the loss function via gradient descent:

 class AdalineGD:
 """ADAptive LInear NEuron classifier.

 Parameters

 eta : float
 Learning rate (between 0.0 and 1.0)
 n_iter : int
 Passes over the training dataset.
 random_state : int
 Random number generator seed for random weight initialization.

 Attributes

 w_ : 1d-array
 Weights after fitting.
 b_ : Scalar
 Bias unit after fitting.
 losses_ : list
 Mean squared error loss function values in each epoch.
 """
 def __init__(self, eta=0.01, n_iter=50, random_state=1):
 self.eta = eta
 self.n_iter = n_iter
 self.random_state = random_state

 def fit(self, X, y):
 """ Fit training data.

 Parameters

 X : {array-like}, shape = [n_examples, n_features]
 Training vectors, where n_examples
 is the number of examples and
 n_features is the number of features.
 y : array-like, shape = [n_examples]
 Target values.

 Returns

 self : object

 """
 rgen = np.random.RandomState(self.random_state)
 self.w_ = rgen.normal(loc=0.0, scale=0.01,
 size=X.shape[1])
 self.b_ = np.float_(0.)
 self.losses_ = []

 for i in range(self.n_iter):
 net_input = self.net_input(X)
 output = self.activation(net_input)
 errors = (y - output)
 self.w_ += self.eta * 2.0 * X.T.dot(errors) / X.shape[0]
 self.b_ += self.eta * 2.0 * errors.mean()
 loss = (errors**2).mean()
 self.losses_.append(loss)
 return self

 def net_input(self, X):
 """Calculate net input"""
 return np.dot(X, self.w_) + self.b_

 def activation(self, X):
 """Compute linear activation"""
 return X

 def predict(self, X):
 """Return class label after unit step"""
 return np.where(self.activation(self.net_input(X))
 >= 0.5, 1, 0)

 Instead of updating the weights after evaluating each individual training example, as in the perceptron, we calculate the gradient based on the whole training dataset. For the bias unit, this is done via self.eta * 2.0 * errors.mean(), where errors is an array containing the partial derivative values [image:]. Similarly, we update the weights. However note that the weight updates via the partial derivatives [image:] involve the feature values xj, which we can compute by multiplying errors with each feature value for each weight:

 for w_j in range(self.w_.shape[0]):
 self.w_[w_j] += self.eta *
 (2.0 * (X[:, w_j]*errors)).mean()

 To implement the weight update more efficiently without using a for loop, we can use a matrix-vector multiplication between our feature matrix and the error vector instead:

 self.w_ += self.eta * 2.0 * X.T.dot(errors) / X.shape[0]

 Please note that the activation method has no effect on the code since it is simply an identity function. Here, we added the activation function (computed via the activation method) to illustrate the general concept with regard to how information flows through a single-layer NN: features from the input data, net input, activation, and output.

 In the next chapter, we will learn about a logistic regression classifier that uses a non-identity, nonlinear activation function. We will see that a logistic regression model is closely related to Adaline, with the only difference being its activation and loss function.

 Now, similar to the previous perceptron implementation, we collect the loss values in a self.losses_ list to check whether the algorithm converged after training.

 Matrix multiplication

 Performing a matrix multiplication is similar to calculating a vector dot-product where each row in the matrix is treated as a single row vector. This vectorized approach represents a more compact notation and results in a more efficient computation using NumPy. For example:

 [image:]

 Please note that in the preceding equation, we are multiplying a matrix with a vector, which is mathematically not defined. However, remember that we use the convention that this preceding vector is regarded as a 3×1 matrix.

 In practice, it often requires some experimentation to find a good learning rate, [image:], for optimal convergence. So, let’s choose two different learning rates, [image:] and [image:], to start with and plot the loss functions versus the number of epochs to see how well the Adaline implementation learns from the training data.

 Hyperparameters

 The learning rate, [image:] (eta), as well as the number of epochs (n_iter), are the so-called hyperparameters (or tuning parameters) of the perceptron and Adaline learning algorithms. In Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter Tuning, we will take a look at different techniques to automatically find the values of different hyperparameters that yield optimal performance of the classification model.

 Let’s now plot the loss against the number of epochs for the two different learning rates:

 >>> fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
>>> ada1 = AdalineGD(n_iter=15, eta=0.1).fit(X, y)
>>> ax[0].plot(range(1, len(ada1.losses_) + 1),
... np.log10(ada1.losses_), marker='o')
>>> ax[0].set_xlabel('Epochs')
>>> ax[0].set_ylabel('log(Mean squared error)')
>>> ax[0].set_title('Adaline - Learning rate 0.1')
>>> ada2 = AdalineGD(n_iter=15, eta=0.0001).fit(X, y)
>>> ax[1].plot(range(1, len(ada2.losses_) + 1),
... ada2.losses_, marker='o')
>>> ax[1].set_xlabel('Epochs')
>>> ax[1].set_ylabel('Mean squared error')
>>> ax[1].set_title('Adaline - Learning rate 0.0001')
>>> plt.show()

 As we can see in the resulting loss function plots, we encountered two different types of problems. The left chart shows what could happen if we choose a learning rate that is too large. Instead of minimizing the loss function, the MSE becomes larger in every epoch, because we overshoot the global minimum. On the other hand, we can see that the loss decreases on the right plot, but the chosen learning rate, [image:], is so small that the algorithm would require a very large number of epochs to converge to the global loss minimum:

 [image: A picture containing icon Description automatically generated]
 Figure 2.11: Error plots for suboptimal learning rates

 Figure 2.12 illustrates what might happen if we change the value of a particular weight parameter to minimize the loss function, L. The left subfigure illustrates the case of a well-chosen learning rate, where the loss decreases gradually, moving in the direction of the global minimum.

 The subfigure on the right, however, illustrates what happens if we choose a learning rate that is too large—we overshoot the global minimum:

 [image: Diagram Description automatically generated]
 Figure 2.12: A comparison of a well-chosen learning rate and a learning rate that is too large

 Improving gradient descent through feature scaling

 Many machine learning algorithms that we will encounter throughout this book require some sort of feature scaling for optimal performance, which we will discuss in more detail in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-Learn, and Chapter 4, Building Good Training Datasets – Data Preprocessing.

 Gradient descent is one of the many algorithms that benefit from feature scaling. In this section, we will use a feature scaling method called standardization. This normalization procedure helps gradient descent learning to converge more quickly; however, it does not make the original dataset normally distributed. Standardization shifts the mean of each feature so that it is centered at zero and each feature has a standard deviation of 1 (unit variance). For instance, to standardize the jth feature, we can simply subtract the sample mean, [image:], from every training example and divide it by its standard deviation, [image:]:

 [image:]

 Here, xj is a vector consisting of the jth feature values of all training examples, n, and this standardization technique is applied to each feature, j, in our dataset.

 One of the reasons why standardization helps with gradient descent learning is that it is easier to find a learning rate that works well for all weights (and the bias). If the features are on vastly different scales, a learning rate that works well for updating one weight might be too large or too small to update the other weight equally well. Overall, using standardized features can stabilize the training such that the optimizer has to go through fewer steps to find a good or optimal solution (the global loss minimum). Figure 2.13 illustrates possible gradient updates with unscaled features (left) and standardized features (right), where the concentric circles represent the loss surface as a function of two model weights in a two-dimensional classification problem:

 [image: Diagram, engineering drawing Description automatically generated]
 Figure 2.13: A comparison of unscaled and standardized features on gradient updates

 Standardization can easily be achieved by using the built-in NumPy methods mean and std:

 >>> X_std = np.copy(X)
>>> X_std[:,0] = (X[:,0] - X[:,0].mean()) / X[:,0].std()
>>> X_std[:,1] = (X[:,1] - X[:,1].mean()) / X[:,1].std()

 After standardization, we will train Adaline again and see that it now converges after a small number of epochs using a learning rate of [image:]:

 >>> ada_gd = AdalineGD(n_iter=20, eta=0.5)
>>> ada_gd.fit(X_std, y)
>>> plot_decision_regions(X_std, y, classifier=ada_gd)
>>> plt.title('Adaline - Gradient descent')
>>> plt.xlabel('Sepal length [standardized]')
>>> plt.ylabel('Petal length [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.tight_layout()
>>> plt.show()
>>> plt.plot(range(1, len(ada_gd.losses_) + 1),
... ada_gd.losses_, marker='o')
>>> plt.xlabel('Epochs')
>>> plt.ylabel('Mean squared error')
>>> plt.tight_layout()
>>> plt.show()

 After executing this code, we should see a figure of the decision regions, as well as a plot of the declining loss, as shown in Figure 2.14:

 [image: Chart Description automatically generated]
 Figure 2.14: Plots of Adaline’s decision regions and MSE by number of epochs

 As we can see in the plots, Adaline has now converged after training on the standardized features. However, note that the MSE remains non-zero even though all flower examples were classified correctly.

 Large-scale machine learning and stochastic gradient descent

 In the previous section, we learned how to minimize a loss function by taking a step in the opposite direction of the loss gradient that is calculated from the whole training dataset; this is why this approach is sometimes also referred to as full batch gradient descent. Now imagine that we have a very large dataset with millions of data points, which is not uncommon in many machine learning applications. Running full batch gradient descent can be computationally quite costly in such scenarios, since we need to reevaluate the whole training dataset each time we take one step toward the global minimum.

 A popular alternative to the batch gradient descent algorithm is stochastic gradient descent (SGD), which is sometimes also called iterative or online gradient descent. Instead of updating the weights based on the sum of the accumulated errors over all training examples, x(i):

 [image:]

 we update the parameters incrementally for each training example, for instance:

 [image:]

 Although SGD can be considered as an approximation of gradient descent, it typically reaches convergence much faster because of the more frequent weight updates. Since each gradient is calculated based on a single training example, the error surface is noisier than in gradient descent, which can also have the advantage that SGD can escape shallow local minima more readily if we are working with nonlinear loss functions, as we will see later in Chapter 11, Implementing a Multilayer Artificial Neural Network from Scratch. To obtain satisfying results via SGD, it is important to present training data in a random order; also, we want to shuffle the training dataset for every epoch to prevent cycles.

 Adjusting the learning rate during training

 In SGD implementations, the fixed learning rate, [image:], is often replaced by an adaptive learning rate that decreases over time, for example:

 [image:]

 where c1 and c2 are constants. Note that SGD does not reach the global loss minimum but an area very close to it. And using an adaptive learning rate, we can achieve further annealing to the loss minimum.

 Another advantage of SGD is that we can use it for online learning. In online learning, our model is trained on the fly as new training data arrives. This is especially useful if we are accumulating large amounts of data, for example, customer data in web applications. Using online learning, the system can immediately adapt to changes, and the training data can be discarded after updating the model if storage space is an issue.

 Mini-batch gradient descent

 A compromise between full batch gradient descent and SGD is so-called mini-batch gradient descent. Mini-batch gradient descent can be understood as applying full batch gradient descent to smaller subsets of the training data, for example, 32 training examples at a time. The advantage over full batch gradient descent is that convergence is reached faster via mini-batches because of the more frequent weight updates. Furthermore, mini-batch learning allows us to replace the for loop over the training examples in SGD with vectorized operations leveraging concepts from linear algebra (for example, implementing a weighted sum via a dot product), which can further improve the computational efficiency of our learning algorithm.

 Since we already implemented the Adaline learning rule using gradient descent, we only need to make a few adjustments to modify the learning algorithm to update the weights via SGD. Inside the fit method, we will now update the weights after each training example. Furthermore, we will implement an additional partial_fit method, which does not reinitialize the weights, for online learning. In order to check whether our algorithm converged after training, we will calculate the loss as the average loss of the training examples in each epoch. Furthermore, we will add an option to shuffle the training data before each epoch to avoid repetitive cycles when we are optimizing the loss function; via the random_state parameter, we allow the specification of a random seed for reproducibility:

 class AdalineSGD:
 """ADAptive LInear NEuron classifier.

 Parameters

 eta : float
 Learning rate (between 0.0 and 1.0)
 n_iter : int
 Passes over the training dataset.
 shuffle : bool (default: True)
 Shuffles training data every epoch if True to prevent
 cycles.
 random_state : int
 Random number generator seed for random weight
 initialization.

 Attributes

 w_ : 1d-array
 Weights after fitting.
 b_ : Scalar
 Bias unit after fitting.
 losses_ : list
 Mean squared error loss function value averaged over all
 training examples in each epoch.

 """
 def __init__(self, eta=0.01, n_iter=10,
 shuffle=True, random_state=None):
 self.eta = eta
 self.n_iter = n_iter
 self.w_initialized = False
 self.shuffle = shuffle
 self.random_state = random_state

 def fit(self, X, y):
 """ Fit training data.

 Parameters

 X : {array-like}, shape = [n_examples, n_features]
 Training vectors, where n_examples is the number of
 examples and n_features is the number of features.
 y : array-like, shape = [n_examples]
 Target values.

 Returns

 self : object

 """
 self._initialize_weights(X.shape[1])
 self.losses_ = []
 for i in range(self.n_iter):
 if self.shuffle:
 X, y = self._shuffle(X, y)
 losses = []
 for xi, target in zip(X, y):
 losses.append(self._update_weights(xi, target))
 avg_loss = np.mean(losses)
 self.losses_.append(avg_loss)
 return self

 def partial_fit(self, X, y):
 """Fit training data without reinitializing the weights"""
 if not self.w_initialized:
 self._initialize_weights(X.shape[1])
 if y.ravel().shape[0] > 1:
 for xi, target in zip(X, y):
 self._update_weights(xi, target)
 else:
 self._update_weights(X, y)
 return self

 def _shuffle(self, X, y):
 """Shuffle training data"""
 r = self.rgen.permutation(len(y))
 return X[r], y[r]

 def _initialize_weights(self, m):
 """Initialize weights to small random numbers"""
 self.rgen = np.random.RandomState(self.random_state)
 self.w_ = self.rgen.normal(loc=0.0, scale=0.01,
 size=m)
 self.b_ = np.float_(0.)
 self.w_initialized = True

 def _update_weights(self, xi, target):
 """Apply Adaline learning rule to update the weights"""
 output = self.activation(self.net_input(xi))
 error = (target - output)
 self.w_ += self.eta * 2.0 * xi * (error)
 self.b_ += self.eta * 2.0 * error
 loss = error**2
 return loss

 def net_input(self, X):
 """Calculate net input"""
 return np.dot(X, self.w_) + self.b_

 def activation(self, X):
 """Compute linear activation"""
 return X

 def predict(self, X):
 """Return class label after unit step"""
 return np.where(self.activation(self.net_input(X))
 >= 0.5, 1, 0)

 The _shuffle method that we are now using in the AdalineSGD classifier works as follows: via the permutation function in np.random, we generate a random sequence of unique numbers in the range 0 to 100. Those numbers can then be used as indices to shuffle our feature matrix and class label vector.

 We can then use the fit method to train the AdalineSGD classifier and use our plot_decision_regions to plot our training results:

 >>> ada_sgd = AdalineSGD(n_iter=15, eta=0.01, random_state=1)
>>> ada_sgd.fit(X_std, y)
>>> plot_decision_regions(X_std, y, classifier=ada_sgd)
>>> plt.title('Adaline - Stochastic gradient descent')
>>> plt.xlabel('Sepal length [standardized]')
>>> plt.ylabel('Petal length [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.tight_layout()
>>> plt.show()
>>> plt.plot(range(1, len(ada_sgd.losses_) + 1), ada_sgd.losses_,
... marker='o')
>>> plt.xlabel('Epochs')
>>> plt.ylabel('Average loss')
>>> plt.tight_layout()
>>> plt.show()

 The two plots that we obtain from executing the preceding code example are shown in Figure 2.15:

 [image: Chart Description automatically generated]
 Figure 2.15: Decision regions and average loss plots after training an Adaline model using SGD

 As you can see, the average loss goes down pretty quickly, and the final decision boundary after 15 epochs looks similar to the batch gradient descent Adaline. If we want to update our model, for example, in an online learning scenario with streaming data, we could simply call the partial_fit method on individual training examples—for instance, ada_sgd.partial_fit(X_std[0, :], y[0]).

 Summary

 In this chapter, we gained a good understanding of the basic concepts of linear classifiers for supervised learning. After we implemented a perceptron, we saw how we can train adaptive linear neurons efficiently via a vectorized implementation of gradient descent and online learning via SGD.

 Now that we have seen how to implement simple classifiers in Python, we are ready to move on to the next chapter, where we will use the Python scikit-learn machine learning library to get access to more advanced and powerful machine learning classifiers, which are commonly used in academia as well as in industry.

 The object-oriented approach that we used to implement the perceptron and Adaline algorithms will help with understanding the scikit-learn API, which is implemented based on the same core concepts that we used in this chapter: the fit and predict methods. Based on these core concepts, we will learn about logistic regression for modeling class probabilities and support vector machines for working with nonlinear decision boundaries. In addition, we will introduce a different class of supervised learning algorithms, tree-based algorithms, which are commonly combined into robust ensemble classifiers.

 Join our book’s Discord space

 Join our Discord community to meet like-minded people and learn alongside more than 2000 members at:

 https://packt.link/MLwPyTorch

 [image:]

 3

 A Tour of Machine Learning Classifiers Using Scikit-Learn

 In this chapter, we will take a tour of a selection of popular and powerful machine learning algorithms that are commonly used in academia as well as in industry. While learning about the differences between several supervised learning algorithms for classification, we will also develop an appreciation of their individual strengths and weaknesses. In addition, we will take our first steps with the scikit-learn library, which offers a user-friendly and consistent interface for using those algorithms efficiently and productively.

 The topics that will be covered throughout this chapter are as follows:

 	An introduction to robust and popular algorithms for classification, such as logistic regression, support vector machines, decision trees, and k-nearest neighbors

 	Examples and explanations using the scikit-learn machine learning library, which provides a wide variety of machine learning algorithms via a user-friendly Python API

 	Discussions about the strengths and weaknesses of classifiers with linear and nonlinear decision boundaries

 Choosing a classification algorithm

 Choosing an appropriate classification algorithm for a particular problem task requires practice and experience; each algorithm has its own quirks and is based on certain assumptions. To paraphrase the no free lunch theorem by David H. Wolpert, no single classifier works best across all possible scenarios (The Lack of A Priori Distinctions Between Learning Algorithms, Wolpert, David H, Neural Computation 8.7 (1996): 1341-1390). In practice, it is always recommended that you compare the performance of at least a handful of different learning algorithms to select the best model for the particular problem; these may differ in the number of features or examples, the amount of noise in a dataset, and whether the classes are linearly separable.

 Eventually, the performance of a classifier—computational performance as well as predictive power—depends heavily on the underlying data that is available for learning. The five main steps that are involved in training a supervised machine learning algorithm can be summarized as follows:

 	Selecting features and collecting labeled training examples

 	Choosing a performance metric

 	Choosing a learning algorithm and training a model

 	Evaluating the performance of the model

 	Changing the settings of the algorithm and tuning the model.

 Since the approach of this book is to build machine learning knowledge step by step, we will mainly focus on the main concepts of the different algorithms in this chapter and revisit topics such as feature selection and preprocessing, performance metrics, and hyperparameter tuning for more detailed discussions later in the book.

 First steps with scikit-learn – training a perceptron

 In Chapter 2, Training Simple Machine Learning Algorithms for Classification, you learned about two related learning algorithms for classification, the perceptron rule and Adaline, which we implemented in Python and NumPy by ourselves. Now we will take a look at the scikit-learn API, which, as mentioned, combines a user-friendly and consistent interface with a highly optimized implementation of several classification algorithms. The scikit-learn library offers not only a large variety of learning algorithms, but also many convenient functions to preprocess data and to fine-tune and evaluate our models. We will discuss this in more detail, together with the underlying concepts, in Chapter 4, Building Good Training Datasets – Data Preprocessing, and Chapter 5, Compressing Data via Dimensionality Reduction.

 To get started with the scikit-learn library, we will train a perceptron model similar to the one that we implemented in Chapter 2. For simplicity, we will use the already familiar Iris dataset throughout the following sections. Conveniently, the Iris dataset is already available via scikit-learn, since it is a simple yet popular dataset that is frequently used for testing and experimenting with algorithms. Similar to the previous chapter, we will only use two features from the Iris dataset for visualization purposes.

 We will assign the petal length and petal width of the 150 flower examples to the feature matrix, X, and the corresponding class labels of the flower species to the vector array, y:

 >>> from sklearn import datasets
>>> import numpy as np
>>> iris = datasets.load_iris()
>>> X = iris.data[:, [2, 3]]
>>> y = iris.target
>>> print('Class labels:', np.unique(y))
Class labels: [0 1 2]

 The np.unique(y) function returned the three unique class labels stored in iris.target, and as we can see, the Iris flower class names, Iris-setosa, Iris-versicolor, and Iris-virginica, are already stored as integers (here: 0, 1, 2). Although many scikit-learn functions and class methods also work with class labels in string format, using integer labels is a recommended approach to avoid technical glitches and improve computational performance due to a smaller memory footprint; furthermore, encoding class labels as integers is a common convention among most machine learning libraries.

 To evaluate how well a trained model performs on unseen data, we will further split the dataset into separate training and test datasets. In Chapter 6, Learning Best Practices for Model Evaluation and Hyperparameter Tuning, we will discuss the best practices around model evaluation in more detail. Using the train_test_split function from scikit-learn’s model_selection module, we randomly split the X and y arrays into 30 percent test data (45 examples) and 70 percent training data (105 examples):

 >>> from sklearn.model_selection import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.3, random_state=1, stratify=y
...)

 Note that the train_test_split function already shuffles the training datasets internally before splitting; otherwise, all examples from class 0 and class 1 would have ended up in the training datasets, and the test dataset would consist of 45 examples from class 2. Via the random_state parameter, we provided a fixed random seed (random_state=1) for the internal pseudo-random number generator that is used for shuffling the datasets prior to splitting. Using such a fixed random_state ensures that our results are reproducible.

 Lastly, we took advantage of the built-in support for stratification via stratify=y. In this context, stratification means that the train_test_split method returns training and test subsets that have the same proportions of class labels as the input dataset. We can use NumPy’s bincount function, which counts the number of occurrences of each value in an array, to verify that this is indeed the case:

 >>> print('Labels counts in y:', np.bincount(y))
Labels counts in y: [50 50 50]
>>> print('Labels counts in y_train:', np.bincount(y_train))
Labels counts in y_train: [35 35 35]
>>> print('Labels counts in y_test:', np.bincount(y_test))
Labels counts in y_test: [15 15 15]

 Many machine learning and optimization algorithms also require feature scaling for optimal performance, as we saw in the gradient descent example in Chapter 2. Here, we will standardize the features using the StandardScaler class from scikit-learn’s preprocessing module:

 >>> from sklearn.preprocessing import StandardScaler
>>> sc = StandardScaler()
>>> sc.fit(X_train)
>>> X_train_std = sc.transform(X_train)
>>> X_test_std = sc.transform(X_test)

 Using the preceding code, we loaded the StandardScaler class from the preprocessing module and initialized a new StandardScaler object that we assigned to the sc variable. Using the fit method, StandardScaler estimated the parameters, [image:] (sample mean) and [image:] (standard deviation), for each feature dimension from the training data. By calling the transform method, we then standardized the training data using those estimated parameters, [image:] and [image:]. Note that we used the same scaling parameters to standardize the test dataset so that both the values in the training and test dataset are comparable with one another.

 Having standardized the training data, we can now train a perceptron model. Most algorithms in scikit-learn already support multiclass classification by default via the one-versus-rest (OvR) method, which allows us to feed the three flower classes to the perceptron all at once. The code is as follows:

 >>> from sklearn.linear_model import Perceptron
>>> ppn = Perceptron(eta0=0.1, random_state=1)
>>> ppn.fit(X_train_std, y_train)

 The scikit-learn interface will remind you of our perceptron implementation in Chapter 2. After loading the Perceptron class from the linear_model module, we initialized a new Perceptron object and trained the model via the fit method. Here, the model parameter, eta0, is equivalent to the learning rate, eta, that we used in our own perceptron implementation.

 As you will remember from Chapter 2, finding an appropriate learning rate requires some experimentation. If the learning rate is too large, the algorithm will overshoot the global loss minimum. If the learning rate is too small, the algorithm will require more epochs until convergence, which can make the learning slow—especially for large datasets. Also, we used the random_state parameter to ensure the reproducibility of the initial shuffling of the training dataset after each epoch.

 Having trained a model in scikit-learn, we can make predictions via the predict method, just like in our own perceptron implementation in Chapter 2. The code is as follows:

 >>> y_pred = ppn.predict(X_test_std)
>>> print('Misclassified examples: %d' % (y_test != y_pred).sum())
Misclassified examples: 1

 Executing the code, we can see that the perceptron misclassifies 1 out of the 45 flower examples. Thus, the misclassification error on the test dataset is approximately 0.022, or 2.2 percent ([image:]).

 Classification error versus accuracy

 Instead of the misclassification error, many machine learning practitioners report the classification accuracy of a model, which is simply calculated as follows:

 1–error = 0.978, or 97.8 percent

 Whether we use the classification error or accuracy is merely a matter of preference.

 Note that scikit-learn also implements a large variety of different performance metrics that are available via the metrics module. For example, we can calculate the classification accuracy of the perceptron on the test dataset as follows:

 >>> from sklearn.metrics import accuracy_score
>>> print('Accuracy: %.3f' % accuracy_score(y_test, y_pred))
Accuracy: 0.978

 Here, y_test is the true class labels and y_pred is the class labels that we predicted previously. Alternatively, each classifier in scikit-learn has a score method, which computes a classifier’s prediction accuracy by combining the predict call with accuracy_score, as shown here:

 >>> print('Accuracy: %.3f' % ppn.score(X_test_std, y_test))
Accuracy: 0.978

 Overfitting

 Note that we will evaluate the performance of our models based on the test dataset in this chapter. In Chapter 6, you will learn about useful techniques, including graphical analysis, such as learning curves, to detect and prevent overfitting. Overfitting, which we will return to later in this chapter, means that the model captures the patterns in the training data well but fails to generalize well to unseen data.

 Finally, we can use our plot_decision_regions function from Chapter 2 to plot the decision regions of our newly trained perceptron model and visualize how well it separates the different flower examples. However, let’s add a small modification to highlight the data instances from the test dataset via small circles:

 from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
def plot_decision_regions(X, y, classifier, test_idx=None,
 resolution=0.02):
 # setup marker generator and color map
 markers = ('o', 's', '^', 'v', '<')
 colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
 cmap = ListedColormap(colors[:len(np.unique(y))])
 # plot the decision surface
 x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
 np.arange(x2_min, x2_max, resolution))
 lab = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
 lab = lab.reshape(xx1.shape)
 plt.contourf(xx1, xx2, lab, alpha=0.3, cmap=cmap)
 plt.xlim(xx1.min(), xx1.max())
 plt.ylim(xx2.min(), xx2.max())
 # plot class examples
 for idx, cl in enumerate(np.unique(y)):
 plt.scatter(x=X[y == cl, 0],
 y=X[y == cl, 1],
 alpha=0.8,
 c=colors[idx],
 marker=markers[idx],
 label=f'Class {cl}',
 edgecolor='black')
 # highlight test examples
 if test_idx:
 # plot all examples
 X_test, y_test = X[test_idx, :], y[test_idx]

 plt.scatter(X_test[:, 0], X_test[:, 1],
 c='none', edgecolor='black', alpha=1.0,
 linewidth=1, marker='o',
 s=100, label='Test set')

 With the slight modification that we made to the plot_decision_regions function, we can now specify the indices of the examples that we want to mark on the resulting plots. The code is as follows:

 >>> X_combined_std = np.vstack((X_train_std, X_test_std))
>>> y_combined = np.hstack((y_train, y_test))
>>> plot_decision_regions(X=X_combined_std,
... y=y_combined,
... classifier=ppn,
... test_idx=range(105, 150))
>>> plt.xlabel('Petal length [standardized]')
>>> plt.ylabel('Petal width [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.tight_layout()
>>> plt.show()

 As we can see in the resulting plot, the three flower classes can’t be perfectly separated by a linear decision boundary:

 [image: Chart Description automatically generated with low confidence]
 Figure 3.1: Decision boundaries of a multi-class perceptron model fitted to the Iris dataset

 However, remember from our discussion in Chapter 2 that the perceptron algorithm never converges on datasets that aren’t perfectly linearly separable, which is why the use of the perceptron algorithm is typically not recommended in practice. In the following sections, we will look at more powerful linear classifiers that converge to a loss minimum even if the classes are not perfectly linearly separable.

 Additional perceptron settings

 The Perceptron, as well as other scikit-learn functions and classes, often has additional parameters that we omit for clarity. You can read more about those parameters using the help function in Python (for instance, help(Perceptron)) or by going through the excellent scikit-learn online documentation at http://scikit-learn.org/stable/.

 Modeling class probabilities via logistic regression

 Although the perceptron rule offers a nice and easy-going introduction to machine learning algorithms for classification, its biggest disadvantage is that it never converges if the classes are not perfectly linearly separable. The classification task in the previous section would be an example of such a scenario. The reason for this is that the weights are continuously being updated since there is always at least one misclassified training example present in each epoch. Of course, you can change the learning rate and increase the number of epochs, but be warned that the perceptron will never converge on this dataset.

 To make better use of our time, we will now take a look at another simple, yet more powerful, algorithm for linear and binary classification problems: logistic regression. Note that, despite its name, logistic regression is a model for classification, not regression.

 Logistic regression and conditional probabilities

 Logistic regression is a classification model that is very easy to implement and performs very well on linearly separable classes. It is one of the most widely used algorithms for classification in industry. Similar to the perceptron and Adaline, the logistic regression model in this chapter is also a linear model for binary classification.

 Logistic regression for multiple classes

 Note that logistic regression can be readily generalized to multiclass settings, which is known as multinomial logistic regression, or softmax regression. More detailed coverage of multinomial logistic regression is outside the scope of this book, but the interested reader can find more information in my lecture notes at https://sebastianraschka.com/pdf/lecture-notes/stat453ss21/L08_logistic__slides.pdf or https://www.youtube.com/watch?v=L0FU8NFpx4E.

 Another way to use logistic regression in multiclass settings is via the OvR technique, which we discussed previously.

 To explain the main mechanics behind logistic regression as a probabilistic model for binary classification, let’s first introduce the odds: the odds in favor of a particular event. The odds can be written as [image:], where p stands for the probability of the positive event. The term “positive event” does not necessarily mean “good,” but refers to the event that we want to predict, for example, the probability that a patient has a certain disease given certain symptoms; we can think of the positive event as class label y = 1 and the symptoms as features x. Hence, for brevity, we can define the probability p as p := p(y = 1|x), the conditional probability that a particular example belongs to a certain class 1 given its features, x.

 We can then further define the logit function, which is simply the logarithm of the odds (log-odds):

 [image:]

 Note that log refers to the natural logarithm, as it is the common convention in computer science. The logit function takes input values in the range 0 to 1 and transforms them into values over the entire real-number range.

 Under the logistic model, we assume that there is a linear relationship between the weighted inputs (referred to as net inputs in Chapter 2) and the log-odds:

 [image:]

 While the preceding describes an assumption we make about the linear relationship between the log-odds and the net inputs, what we are actually interested in is the probability p, the class-membership probability of an example given its features. While the logit function maps the probability to a real-number range, we can consider the inverse of this function to map the real-number range back to a [0, 1] range for the probability p.

 This inverse of the logit function is typically called the logistic sigmoid function, which is sometimes simply abbreviated to sigmoid function due to its characteristic S-shape:

 [image:]

 Here, z is the net input, the linear combination of weights, and the inputs (that is, the features associated with the training examples):

 z = wTx + b

 Now, let’s simply plot the sigmoid function for some values in the range –7 to 7 to see how it looks:

 >>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> def sigmoid(z):
... return 1.0 / (1.0 + np.exp(-z))
>>> z = np.arange(-7, 7, 0.1)
>>> sigma_z = sigmoid(z)
>>> plt.plot(z, sigma_z)
>>> plt.axvline(0.0, color='k')
>>> plt.ylim(-0.1, 1.1)
>>> plt.xlabel('z')
>>> plt.ylabel('$\sigma (z)$')
>>> # y axis ticks and gridline
>>> plt.yticks([0.0, 0.5, 1.0])
>>> ax = plt.gca()
>>> ax.yaxis.grid(True)
>>> plt.tight_layout()
>>> plt.show()

 As a result of executing the previous code example, we should now see the S-shaped (sigmoidal) curve:

 [image: Chart, histogram Description automatically generated]
 Figure 3.2: A plot of the logistic sigmoid function

 We can see that [image:] approaches 1 if z goes toward infinity (z→∞) since e–z becomes very small for large values of z. Similarly, [image:] goes toward 0 for z→–∞ as a result of an increasingly large denominator. Thus, we can conclude that this sigmoid function takes real-number values as input and transforms them into values in the range [0, 1] with an intercept at [image:].

 To build some understanding of the logistic regression model, we can relate it to Chapter 2. In Adaline, we used the identity function, [image:], as the activation function. In logistic regression, this activation function simply becomes the sigmoid function that we defined earlier.

 The difference between Adaline and logistic regression is illustrated in the following figure, where the only difference is the activation function:

 [image: Diagram, schematic Description automatically generated]
 Figure 3.3: Logistic regression compared to Adaline

 The output of the sigmoid function is then interpreted as the probability of a particular example belonging to class 1, [image:], given its features, x, and parameterized by the weights and bias, w and b. For example, if we compute [image:] for a particular flower example, it means that the chance that this example is an Iris-versicolor flower is 80 percent. Therefore, the probability that this flower is an Iris-setosa flower can be calculated as p(y = 0|x; w, b) = 1 – p(y = 1|x; w, b) = 0.2, or 20 percent.

 The predicted probability can then simply be converted into a binary outcome via a threshold function:

 [image:]

 If we look at the preceding plot of the sigmoid function, this is equivalent to the following:

 [image:]

 In fact, there are many applications where we are not only interested in the predicted class labels, but where the estimation of the class-membership probability is particularly useful (the output of the sigmoid function prior to applying the threshold function). Logistic regression is used in weather forecasting, for example, not only to predict whether it will rain on a particular day, but also to report the chance of rain. Similarly, logistic regression can be used to predict the chance that a patient has a particular disease given certain symptoms, which is why logistic regression enjoys great popularity in the field of medicine.

 Learning the model weights via the logistic loss function

 You have learned how we can use the logistic regression model to predict probabilities and class labels; now, let’s briefly talk about how we fit the parameters of the model, for instance, the weights and bias unit, w and b. In the previous chapter, we defined the mean squared error loss function as follows:

 [image:]

 We minimized this function in order to learn the parameters for our Adaline classification model. To explain how we can derive the loss function for logistic regression, let’s first define the likelihood, [image:], that we want to maximize when we build a logistic regression model, assuming that the individual examples in our dataset are independent of one another. The formula is as follows:

 [image:]

 In practice, it is easier to maximize the (natural) log of this equation, which is called the log-likelihood function:

 [image:]

 Firstly, applying the log function reduces the potential for numerical underflow, which can occur if the likelihoods are very small. Secondly, we can convert the product of factors into a summation of factors, which makes it easier to obtain the derivative of this function via the addition trick, as you may remember from calculus.

 Deriving the likelihood function

 We can obtain the expression for the likelihood of the model given the data, [image:], as follows. Given that we have a binary classification problem with class labels 0 and 1, we can think of the label 1 as a Bernoulli variable—it can take on two values, 0 and 1, with the probability p of being 1: [image:]. For a single data point, we can write this probability as [image:] and [image:].

 Putting these two expressions together, and using the shorthand [image:], we get the probability mass function of the Bernoulli variable:

 [image:]
 We can write the likelihood of the training labels given the assumption that all training examples are independent, using the multiplication rule to compute the probability that all events occur, as follows:

 [image:]
 Now, substituting the probability mass function of the Bernoulli variable, we arrive at the expression of the likelihood, which we attempt to maximize by changing the model parameters:

 [image:]

 Now, we could use an optimization algorithm such as gradient ascent to maximize this log-likelihood function. (Gradient ascent works exactly the same way as gradient descent explained in Chapter 2, except that gradient ascent maximizes a function instead of minimizing it.) Alternatively, let’s rewrite the log-likelihood as a loss function, L, that can be minimized using gradient descent as in Chapter 2:

 [image:]

 To get a better grasp of this loss function, let’s take a look at the loss that we calculate for one single training example:

 [image:]

 Looking at the equation, we can see that the first term becomes zero if y = 0, and the second term becomes zero if y = 1:

 [image:]

 Let’s write a short code snippet to create a plot that illustrates the loss of classifying a single training example for different values of [image:]:

 >>> def loss_1(z):
... return - np.log(sigmoid(z))
>>> def loss_0(z):
... return - np.log(1 - sigmoid(z))
>>> z = np.arange(-10, 10, 0.1)
>>> sigma_z = sigmoid(z)
>>> c1 = [loss_1(x) for x in z]
>>> plt.plot(sigma_z, c1, label='L(w, b) if y=1')
>>> c0 = [loss_0(x) for x in z]
>>> plt.plot(sigma_z, c0, linestyle='--', label='L(w, b) if y=0')
>>> plt.ylim(0.0, 5.1)
>>> plt.xlim([0, 1])
>>> plt.xlabel('$\sigma(z)$')
>>> plt.ylabel('L(w, b)')
>>> plt.legend(loc='best')
>>> plt.tight_layout()
>>> plt.show()

 The resulting plot shows the sigmoid activation on the x axis in the range 0 to 1 (the inputs to the sigmoid function were z values in the range –10 to 10) and the associated logistic loss on the y axis:

 [image: Chart Description automatically generated]
 Figure 3.4: A plot of the loss function used in logistic regression

 We can see that the loss approaches 0 (continuous line) if we correctly predict that an example belongs to class 1. Similarly, we can see on the y axis that the loss also approaches 0 if we correctly predict y = 0 (dashed line). However, if the prediction is wrong, the loss goes toward infinity. The main point is that we penalize wrong predictions with an increasingly larger loss.

 Converting an Adaline implementation into an algorithm for logistic regression

 If we were to implement logistic regression ourselves, we could simply substitute the loss function, L, in our Adaline implementation from Chapter 2, with the new loss function:

 [image:]

 We use this to compute the loss of classifying all training examples per epoch. Also, we need to swap the linear activation function with the sigmoid. If we make those changes to the Adaline code, we will end up with a working logistic regression implementation. The following is an implementation for full-batch gradient descent (but note that the same changes could be made to the stochastic gradient descent version as well):

 class LogisticRegressionGD:
 """Gradient descent-based logistic regression classifier.
 Parameters

 eta : float
 Learning rate (between 0.0 and 1.0)
 n_iter : int
 Passes over the training dataset.
 random_state : int
 Random number generator seed for random weight
 initialization.
 Attributes

 w_ : 1d-array
 Weights after training.
 b_ : Scalar
 Bias unit after fitting.
 losses_ : list
 Mean squared error loss function values in each epoch.
 """
 def __init__(self, eta=0.01, n_iter=50, random_state=1):
 self.eta = eta
 self.n_iter = n_iter
 self.random_state = random_state
 def fit(self, X, y):
 """ Fit training data.
 Parameters

 X : {array-like}, shape = [n_examples, n_features]
 Training vectors, where n_examples is the
 number of examples and n_features is the
 number of features.
 y : array-like, shape = [n_examples]
 Target values.
 Returns

 self : Instance of LogisticRegressionGD
 """
 rgen = np.random.RandomState(self.random_state)
 self.w_ = rgen.normal(loc=0.0, scale=0.01, size=X.shape[1])
 self.b_ = np.float_(0.)
 self.losses_ = []
 for i in range(self.n_iter):
 net_input = self.net_input(X)
 output = self.activation(net_input)
 errors = (y - output)
 self.w_ += self.eta * 2.0 * X.T.dot(errors) / X.shape[0]
 self.b_ += self.eta * 2.0 * errors.mean()
 loss = (-y.dot(np.log(output))
 - ((1 - y).dot(np.log(1 - output)))
 / X.shape[0])
 self.losses_.append(loss)
 return self
 def net_input(self, X):
 """Calculate net input"""
 return np.dot(X, self.w_) + self.b_
 def activation(self, z):
 """Compute logistic sigmoid activation"""
 return 1. / (1. + np.exp(-np.clip(z, -250, 250)))
 def predict(self, X):
 """Return class label after unit step"""
 return np.where(self.activation(self.net_input(X)) >= 0.5, 1, 0)

 When we fit a logistic regression model, we have to keep in mind that it only works for binary classification tasks.

 So, let’s consider only setosa and versicolor flowers (classes 0 and 1) and check that our implementation of logistic regression works:

 >>> X_train_01_subset = X_train_std[(y_train == 0) | (y_train == 1)]
>>> y_train_01_subset = y_train[(y_train == 0) | (y_train == 1)]
>>> lrgd = LogisticRegressionGD(eta=0.3,
... n_iter=1000,
... random_state=1)
>>> lrgd.fit(X_train_01_subset,
... y_train_01_subset)
>>> plot_decision_regions(X=X_train_01_subset,
... y=y_train_01_subset,
... classifier=lrgd)
>>> plt.xlabel('Petal length [standardized]')
>>> plt.ylabel('Petal width [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.tight_layout()
>>> plt.show()

 The resulting decision region plot looks as follows:

 [image: Chart, scatter chart Description automatically generated]
 Figure 3.5: The decision region plot for the logistic regression model

 The gradient descent learning algorithm for logistic regression

 If you compared the LogisticRegressionGD in the previous code with the AdalineGD code from Chapter 2, you may have noticed that the weight and bias update rules remained unchanged (except for the scaling factor 2). Using calculus, we can show that the parameter updates via gradient descent are indeed similar for logistic regression and Adaline. However, please note that the following derivation of the gradient descent learning rule is intended for readers who are interested in the mathematical concepts behind the gradient descent learning rule for logistic regression. It is not essential for following the rest of this chapter.

 Figure 3.6 summarizes how we can calculate the partial derivative of the log-likelihood function with respect to the jth weight:

 [image: Diagram Description automatically generated]
 Figure 3.6: Calculating the partial derivative of the log-likelihood function

 Note that we omitted averaging over the training examples for brevity.

 Remember from Chapter 2 that we take steps in the opposite direction of the gradient. Hence, we flip [image:] and update the jth weight as follows, including the learning rate [image:]:

 [image:]

 While the partial derivative of the loss function with respect to the bias unit is not shown, bias derivation follows the same overall concept using the chain rule, resulting in the following update rule:

 [image:]

 Both the weight and bias unit updates are equal to the ones for Adaline in Chapter 2.

 Training a logistic regression model with scikit-learn

 We just went through useful coding and math exercises in the previous subsection, which helped to illustrate the conceptual differences between Adaline and logistic regression. Now, let’s learn how to use scikit-learn’s more optimized implementation of logistic regression, which also supports multiclass settings off the shelf. Note that in recent versions of scikit-learn, the technique used for multiclass classification, multinomial, or OvR, is chosen automatically. In the following code example, we will use the sklearn.linear_model.LogisticRegression class as well as the familiar fit method to train the model on all three classes in the standardized flower training dataset. Also, we set multi_class='ovr' for illustration purposes. As an exercise for the reader, you may want to compare the results with multi_class='multinomial'. Note that the multinomial setting is now the default choice in scikit-learn’s LogisticRegression class and recommended in practice for mutually exclusive classes, such as those found in the Iris dataset. Here, “mutually exclusive” means that each training example can only belong to a single class (in contrast to multilabel classification, where a training example can be a member of multiple classes).

 Now, let’s have a look at the code example:

 >>> from sklearn.linear_model import LogisticRegression
>>> lr = LogisticRegression(C=100.0, solver='lbfgs',
... multi_class='ovr')
>>> lr.fit(X_train_std, y_train)
>>> plot_decision_regions(X_combined_std,
... y_combined,
... classifier=lr,
... test_idx=range(105, 150))
>>> plt.xlabel('Petal length [standardized]')
>>> plt.ylabel('Petal width [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.tight_layout()
>>> plt.show()

 After fitting the model on the training data, we plotted the decision regions, training examples, and test examples, as shown in Figure 3.7:

 [image: A picture containing chart Description automatically generated]
 Figure 3.7: Decision regions for scikit-learn’s multi-class logistic regression model

 Algorithms for convex optimization

 Note that there exist many different algorithms for solving optimization problems. For minimizing convex loss functions, such as the logistic regression loss, it is recommended to use more advanced approaches than regular stochastic gradient descent (SGD). In fact, scikit-learn implements a whole range of such optimization algorithms, which can be specified via the solver parameter, namely, 'newton-cg', 'lbfgs', 'liblinear', 'sag', and 'saga'.

 While the logistic regression loss is convex, most optimization algorithms should converge to the global loss minimum with ease. However, there are certain advantages of using one algorithm over the other. For example, in previous versions (for instance, v 0.21), scikit-learn used 'liblinear' as a default, which cannot handle the multinomial loss and is limited to the OvR scheme for multiclass classification. However, in scikit-learn v 0.22, the default solver was changed to 'lbfgs', which stands for the limited-memory Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (https://en.wikipedia.org/wiki/Limited-memory_BFGS) and is more flexible in this regard.

 Looking at the preceding code that we used to train the LogisticRegression model, you might now be wondering, “What is this mysterious parameter C?” We will discuss this parameter in the next subsection, where we will introduce the concepts of overfitting and regularization. However, before we move on to those topics, let’s finish our discussion of class membership probabilities.

 The probability that training examples belong to a certain class can be computed using the predict_proba method. For example, we can predict the probabilities of the first three examples in the test dataset as follows:

 >>> lr.predict_proba(X_test_std[:3, :])

 This code snippet returns the following array:

 array([[3.81527885e-09, 1.44792866e-01, 8.55207131e-01],
 [8.34020679e-01, 1.65979321e-01, 3.25737138e-13],
 [8.48831425e-01, 1.51168575e-01, 2.62277619e-14]])

 The first row corresponds to the class membership probabilities of the first flower, the second row corresponds to the class membership probabilities of the second flower, and so forth. Notice that the column-wise sum in each row is 1, as expected. (You can confirm this by executing lr.predict_proba(X_test_std[:3, :]).sum(axis=1).)

 The highest value in the first row is approximately 0.85, which means that the first example belongs to class 3 (Iris-virginica) with a predicted probability of 85 percent. So, as you may have already noticed, we can get the predicted class labels by identifying the largest column in each row, for example, using NumPy’s argmax function:

 >>> lr.predict_proba(X_test_std[:3, :]).argmax(axis=1)

 The returned class indices are shown here (they correspond to Iris-virginica, Iris-setosa, and Iris-setosa):

 array([2, 0, 0])

 In the preceding code example, we computed the conditional probabilities and converted these into class labels manually by using NumPy’s argmax function. In practice, the more convenient way of obtaining class labels when using scikit-learn is to call the predict method directly:

 >>> lr.predict(X_test_std[:3, :])
array([2, 0, 0])

 Lastly, a word of caution if you want to predict the class label of a single flower example: scikit-learn expects a two-dimensional array as data input; thus, we have to convert a single row slice into such a format first. One way to convert a single row entry into a two-dimensional data array is to use NumPy’s reshape method to add a new dimension, as demonstrated here:

 >>> lr.predict(X_test_std[0, :].reshape(1, -1))
array([2])

OEBPS/Images/B17582_02_041.png
n

L(w,b) = %Z (y(i) - a(z(")))z

i=1

OEBPS/Images/B17582_02_15.png
Petal length [standardized]

-2

Class 0
Class 1

-2

-1

Adaline - Stochastic gradient descent

0 1
Sepal length [standardized]

0.14

0.12 4

0.10 A

Average loss
o o
o o
o o
))

0.04 4

0.02

8
Epochs

10

12

14

OEBPS/Images/B17582_01_07.png

OEBPS/Images/B17582_02_068.png

OEBPS/Images/B17582_02_07.png
9ts
[J
® o
Q
o
F<r
FoN
o o »n o o
m o~ — — o

sajepdn jo Jaquinn

Epochs

OEBPS/Images/blockquote-top.png

OEBPS/Images/B17582_02_007.png
z>0
z—0>0

OEBPS/Images/B17582_02_009.png
1 ifz=0
0 otherwise

o(z) = {

OEBPS/Images/B17582_02_017.png

OEBPS/Images/B17582_02_051.png
Aw; =

-n

oL
— and Ab =
ow;

oL
UPT)

OEBPS/Images/B17582_03_07.png
Petal width [standardized]

Class\ o

(]
>/ 0 Class 1
A Class 2 \\
QO Testset
1 kS
\
\l
0- ‘
-1 N \
X N
-2 A \
\
-2 -1 0 1 2

Petal length [standardized]

OEBPS/Images/B17582_03_038.png
b=b+nly—a)

OEBPS/Images/B17582_02_025.png
y® =1, 9@ =0, Aw;=n(1 - O)x].(i) = Ux,-(i), Ab=n(1—-0)=rn

OEBPS/Images/B17582_03_021.png
I(w,b|x) =logL(w, b|x) = Z[y(i) log(a(z®)) + (1 — y©) log(1 — 0(2?))]

i=1

OEBPS/Images/B17582_02_043.png
VL(w,b)

OEBPS/Images/B17582_01_004.png
X e]Rnxm

OEBPS/Images/B17582_01_09.png
[Raw data collection]
Preprocessing pipeline I:

* Missing data handling
* Initial featl.Jre extraction Dataset
and selection
S R
Training dataset | Test dataset
Preprocessing pipeline 2: —¢ [+ Final preprocessing pipeline]
TR

v

/

* Feature scaling Processed
* Dimensionality reduction: training dataset
* Feature selection i

* Feature extraction ————
Machine learning

. - algorithm
Hyperparameter choice + training — l

Iterate and evaluate Predictive model
via cross-validation candidate
-

.
Final New dataset
predictive model ew datase

[+ Final preprocessing pipeline]

Evaluate

OEBPS/Images/blockquote-bottom.png

OEBPS/Images/B17582_03_026.png

OEBPS/Images/B17582_02_005.png
1 ifz=6
0 otherwise

o(z) = {

OEBPS/Images/B17582_02_035.png
Aw;=(1-0)2=2, Ab=(1-0)=1

OEBPS/Images/B17582_02_048.png
Aw = —nV,L(w,b), Ab = -nV,L(w,b)

OEBPS/Images/B17582_02_010.png
a, b,
a = az], b = bz
as b3

OEBPS/Images/B17582_03_028.png
n
L(w,b|x) = np(y(i) | x®;w,b)
=1

OEBPS/Images/B17582_02_023.png
y® =0, 9O =0, Aw; =n(0- O)x].(i) =0, Ab=n(0-0)=0

OEBPS/Images/B17582_03_031.png
L(o(2),y;w,b) = —ylog(a(z)) — (1 — y)log(1 — a(2))

OEBPS/Images/B17582_02_05.png
145
146
147
148
149

6.7
6.3
6.5
6.2
5.9

1
3.0
25
3.0
34
3.0

2
5.2
5.0
5.2
5.4

51

23
19
20
2.3
1.8

Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica

Iris-virginica

OEBPS/Images/B17582_02_053.png
6W] 6W] now;

oL _ 90 12(},@_(,(2@)))2 li (ya)_(,(z(z)))z
i i

2

= _Z (ya) _ (,(Za))) ai(y(t) _ (,(Za)))

n
i

_ %Z (v = o(z9)) ai< ® _ Z(w D + b))

L

B %Z (y(i) B G(Z(i))) (%) = _%Z (y(i) - G(z(i))) x

i i

OEBPS/Images/B17582_02_019.png

OEBPS/Images/B17582_03_001.png

OEBPS/Images/B17582_01_002.png
xil) xgl) .X§1) xil)
x§2) x§2) x§2) xiZ)

(150) x({50) x({50) x({50)

X4 5 3 "

OEBPS/Images/B17582_02_046.png
Ab

OEBPS/Images/B17582_02_003.png

OEBPS/Images/B17582_01_02.png
Training data

Machine learning
algorithm

[New data J—V[Predictive model J—V[Predicted labels J

OEBPS/Images/B17582_02_029.png
P =15

OEBPS/Images/B17582_02_063.png

OEBPS/Images/B17582_02_055.png
a .
5(y(L) -y, (W(l)x(l) +b

OEBPS/Images/B17582_03_015.png
o(z) = 0.8

OEBPS/Images/B17582_02_020.png

OEBPS/Images/B17582_02_072.png
Aw; =17 (y(i) - a(z(i))) x].(i), Ab =17 (y(i) - a(z(i)))

OEBPS/Images/B17582_03_017.png
" {1 ifz>0.0
0 otherwise

OEBPS/Images/Packt_orange_logo.png
Packb

OEBPS/Images/B17582_03_034.png
L 8) =Y -y log(o(a%)) = (1 -) og(t. = o(2)

OEBPS/Images/B17582_01_009.png
X(L) € R150x1

OEBPS/Images/B17582_02_03.png
Linearly separable Not linearly separable

Alinear decision boundary that No linear decision boundary that separates
separates the two classes exists Nonlinear the two classes perfectly exists
boundary N
B Linear 4+ S~ 1
boundary
o
o/ m [- R
/
o] X2 @ X2)
o [] ! \
o\ \ 0
[| s
/g ® ®

v

X4

v

OEBPS/Images/B17582_03_03.png
]

Class label

Input
features

Bias and

Error |¢
/ Weight and bias —

updates

()

Net input Activation function Threshold lTredi;:tle]dI
function (here: identity) function c aoszri e

Adaptive Linear Neuron
(Adaline)

o]

Class label

Bias and
weights

Input
features

m
3
o
=
VN

Weight and bias
updates

1
. X . 1
Activation function o Threshold
function

Net input
function (here: sigmoid) =
1
1

Class membership probability,
p(y =1]x)

Logistic Regression

FProl-@
1

Predicted
class label
Oor1

OEBPS/Images/B17582_02_012.png
T
R
5 6 2 4 6

OEBPS/Images/B17582_03_008.png
logit(p) = wyx; + -+ Wpx, +b = ijx] +b=wlx+b
i

OEBPS/Images/B17582_02_12.png
L(w)

Initial
weight
,"/ Gradient

L(w)
Global loss minimum

/ Linin(w)

w

OEBPS/Images/B17582_03_025.png

OEBPS/Images/info.png

OEBPS/Images/B17582_02_057.png
a(z®)

OEBPS/Images/B17582_02_014.png
wj = w; + Aw,
b:= b+ Ab

OEBPS/Images/B17582_01_04.png
A

New data point

OEBPS/Images/B17582_02_027.png
MO

OEBPS/Images/B17582_01_005.png

OEBPS/Images/B17582_02_001.png
a(z)

OEBPS/Images/B17582_02_031.png
Aw; =(1-0)1.5=15 Ab=(1-0)=1

OEBPS/Images/B17582_02_074.png
€1

[number of iterations] + ¢,

OEBPS/Images/B17582_02_044.png
w:=w+Aw, b:=b+ Ab

OEBPS/Images/B17582_02_061.png
7
AR R R A et B

OEBPS/Images/B17582_03_05.png
@ Class0
m Class1

|
o
]

|
=
s}

—_
°
Q
N
kel
—
©
o
c
©
S
0
)
=
=}
h)
H
©
3
o}
o

|
=
[t

|
g
s}

-20 -15 -1.0 -05 0.0 0.5 1.0
Petal length [standardized]

OEBPS/Images/B17582_03_023.png
Y~Bern(p)

OEBPS/Images/B17582_01_007.png
x® g R1x4

OEBPS/Images/B17582_03_006.png
(1-p)

OEBPS/Images/B17582_03_019.png

OEBPS/Images/B17582_01_06.png
Cluster B

® / Cluster C

\/

X4

OEBPS/Images/B17582_01_011.png
_ [y®

, where y®© € {Setosa, Versicolor, Virginica}
4(150)

OEBPS/Images/B17582_02_14.png
Petal length [standardized]

Adaline - Gradient descent

Class 0 051
Class 1
0.4 1
g
o
5 0.3
4
©
3
g
c 0.2 1
3
=
0.1 1
0.0 . . . —
-2 -1 0 1 2 3 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Sepal length [standardized] Epochs

OEBPS/Images/B17582_02_01.png
Input
signals

—

Dendrites

Cell nucleus

Myelin sheath

Axon
terminals

A

Output
signals

OEBPS/Images/B17582_QR_Free_PDF.png

OEBPS/Images/B17582_02_016.png

OEBPS/Images/QR_Code874410888448293359.png

OEBPS/Images/B17582_03_029.png
n

£w.blx) = 1_[(“(z(”))ym (1- g(z(t)))l‘y @

i=1

OEBPS/Images/B17582_02_06.png
Petal length [cm]

54 @ Setosa]
. - u at
W \Versicolor l] -..]
| = § | [] I.l am
.. m BN
4 Hel BLL
.l
| |
[N |
3_
2_
[J
s .c'lto .
X ‘o ° °
4.5 5.0 5.5 6.0 6.5 7.0

Sepal length [cm]

OEBPS/Images/B17582_02_067.png

OEBPS/Images/B17582_03_06.png
oL _oLda 0z . 1
w, da dz ow, "Ne€E=0D =117

_
Apply chain rule

1) Derive terms separately: 2) Combine via chain rule and simplify:

oL a-y }

da a-(1-a) oL oL

da _ e—z — . 1 —_> E - } -1 " a_VVJ - (a B y)xl
E—m—a 1-a = - —-ax;

62 x}
WJ J

OEBPS/Images/B17582_03_002.png

OEBPS/Images/B17582_02_050.png
5= 0= o)

1

OEBPS/Images/B17582_02_024.png
y® =1, 9O =1, Aaw;=n(1 - 1)x].(i) =0, Ab=n(1-1)=0

OEBPS/Images/B17582_03_020.png
n n . .
£, blx) = pOlww,) = [[0 w,b) = [[(o(z))" (1 - o (z0)) "
i=1 i=1

OEBPS/Images/B17582_02_059.png

OEBPS/Images/B17582_03_037.png
wj = w; +n(y — a)x;

OEBPS/Images/B17582_01_003.png
X €E]Rnxl

OEBPS/Images/B17582_02_034.png
x® =

OEBPS/Images/B17582_02_026.png
y© =0, 90 =1, Aw;=n0-Dx® =-nx®, aAb=7n(0-1) = -

OEBPS/Images/B17582_01_08.png
Samples Petal —__
(instances, observations)

Length
& width

Sepal Sepal Petal Petal
length width length width

| Setosa
2 4.9 3.0 1.4 0.2 Setosa
LN]
50 6.4 35 45 1.2
—| 150 5.9 3.0 5.0 1.8 Virginica \

(J J Sepal

/ Class labels

Features (targets, outcomes)

(inputs, attributes, measurements, dimensions)

OEBPS/Images/B17582_02_069.png

OEBPS/Images/B17582_02_08.png
Petal length [cm]

@ ClassO0
m Class1 =
5 T D D
Bgg oty
mom SRR
By
o5
31] :
21 P
- O
T =3
1- ° o
0 T T T T
4 5 6 7

Sepal length [cm]

OEBPS/Images/tip.png

OEBPS/Images/B17582_02_060.png
JaL
aWj

OEBPS/Images/cover.png
EXPERT INSIGHT e‘ pgthonTM

Machine
Learning

with PyTorch
and Scikit-Learn

Develop machine learning and deep learning
models with Python

PyTorch book of the bestselling and widely
acclaimed Python Machine Learning series

Foreword by:
Dmytro Dzhulgakov
PyTorch Core Maintainer

Sebastian Raschka

Yuxi (Hayden) Liu PGCI(.l.)

Vahid Mirjalili

OEBPS/Images/B17582_03_012.png
a(0) = 0.5

OEBPS/Images/B17582_02_008.png

OEBPS/Images/B17582_02_022.png
Aw,
Aw,
Ab

n(y® — output®)x?;
n(y® — output®)x;

= n(y® — output®)

OEBPS/Images/B17582_02_04.png
= 1

Error
/ Weight & bias

updates

Class label

— Update

'S

Y | Output
Net input Threshold Predicted — Prediction
function function class label
Oor1

Bias and
weights

Input
features

OEBPS/Images/B17582_02_065.png

OEBPS/Images/B17582_02_052.png
w:=w+Aw, b:=b+ Ab

OEBPS/Images/B17582_03_030.png
L(w,b) = Z[—y“) log(a(z)) — (1 - y©) log(1 — o (z))]

OEBPS/Images/B17582_02_018.png

OEBPS/Images/B17582_01_001.png
X e]R150><4

OEBPS/Images/B17582_02_040.png

OEBPS/Images/B17582_03_009.png
a(z) = 1+e 2

OEBPS/Images/B17582_03_014.png
o(z) =p(y = 1|x;w,b)

OEBPS/Images/B17582_02_006.png

OEBPS/Images/B17582_02_049.png
oL 2 . . i
o =2, (0 =) !

1

OEBPS/Images/B17582_03_032.png
—log(o(2)) ify=1

L(a(2),y;w,b) = {—log(l —o0(2)) ify=0

OEBPS/Images/B17582_02_036.png

OEBPS/Images/B17582_01_01.png
> Labeled data
Supervised learning > Direct feedback

> Predict outcome/future

> No labels/targets
Unsupervised learning > No feedback

> Find hidden structure in data

> Decision process
Reinforcement learning > Reward system

> Learn series of actions

OEBPS/Images/B17582_03_01.png
Petal width [standardized]

Class 0

(&)
>4 0 Class1 .
A Class 2
O Testset N
1 -
0 -
//r/'
=14 ///
o
///
—2) £
///4
-2 -1 0 1 2

Petal length [standardized]

OEBPS/Images/B17582_03_027.png
P00 [x0) = (a(z)) (1= o(z)) "

OEBPS/Images/B17582_02_10.png
L(w)

Initial _ Gradient

~
~.
~
~~

s Global loss minimum
—_ — Lmin(w)

»

w

OEBPS/Images/B17582_02_071.png
2n . . 10
Aw; = 72 (yo) _ (,(Zm)) xC
A

OEBPS/Images/B17582_01_008.png
X0 = [xfi) xgi) xéi) xii)]

OEBPS/Images/B17582_03_016.png
“ {1 if (z) = 0.5
0 otherwise

OEBPS/Images/B17582_02_054.png

OEBPS/Images/B17582_02_011.png
aTb = Zaibi= al'b1+ az'b2+a3'b3

1

OEBPS/Images/B17582_03_02.png
1.0 A

(2)0

0.0 4

OEBPS/Images/B17582_03_007.png
logit(p) = log 7=

OEBPS/Images/B17582_02_02.png
AN

o(2)

1 -—— -

o

v

wherez=wlx+ b

X2 1

Class 1

E = B s=0

[] Decision

[] _ - ==-="" boundary

® C(ClassO0
o0(z)<0

»

X1

OEBPS/Images/B17582_02_037.png
]:Rm

OEBPS/Images/B17582_02_070.png

OEBPS/Images/B17582_03_024.png
P(Y =1| X =x®) =g(z®)

OEBPS/Images/B17582_02_11.png
log(Mean squared error)

Adaline - Learning rate 0.1

Adaline - Learning rate 0.0001

0.43
20
<
g 0.42 A
15 A [0}
®
S 0.41
3
10 - 3
& 0.40 -
[
=
5 -
0.39
0 -
0.38

g

g

OEBPS/Images/B17582_01_03.png
New data point

OEBPS/Images/B17582_02_039.png
o(z)

OEBPS/Images/B17582_02_004.png
a()

OEBPS/Images/B17582_02_064.png
n = 0.0001

OEBPS/Images/B17582_02_013.png

OEBPS/Images/B17582_02_056.png
_521‘ (ya) _ g(za)))

OEBPS/Images/B17582_02_030.png
_ O
Z = X; X wj + b

OEBPS/Images/B17582_02_021.png
Ab

OEBPS/Images/B17582_02_09.png
Y

Class label

updates

O—H-D

Netinput Activation function Threshold ITfedilctgdl
function (here: identity) function Cagz ra1 e

Bias and : :
weights Adaptive Linear Neuron

input (Adaline)

features

OEBPS/Images/B17582_03_035.png

OEBPS/Images/B17582_03_018.png
L(w,blx) = Z % (o(z®) - ya))z

i

OEBPS/Images/B17582_03_04.png
—— Lw, b) ify=1

1.0

5 4
== L(w, b) if y=0
4
) 1
a
2
-
2_ td
e
,/
14 - .
0f—==mm l I
- 0a 0.6 0.8
o(z)

OEBPS/Images/B17582_03_005.png
Al

Q

0.022

OEBPS/Images/B17582_02_13.png
Global loss minimum

Zero mean and
unit variance

Wi

S%

»
»

OEBPS/Images/B17582_03_022.png
L(w,b | x)

OEBPS/Images/B17582_02_058.png
z® =wlx® + b

OEBPS/Images/B17582_02_015.png
Aw; = n(y® — 9©)x®
)
and Ab = (y® — $0)

OEBPS/Images/B17582_02_002.png
RSN

OEBPS/Images/B17582_01_010.png

OEBPS/Images/B17582_01_05.png
S

State

Reward

\ / \ Action

[Agent

OEBPS/Images/B17582_02_028.png
y(i) =1, }';(i) =0 n=1

OEBPS/Images/B17582_01_006.png
(150)
X4

OEBPS/Images/B17582_02_045.png
Aw

OEBPS/Images/B17582_02_032.png

