
[image: cover]

[image:]

Gunter Saake
Kai-Uwe Sattler
Andreas Heuer

Datenbanken

Konzepte und Sprachen

Sechste Auflage

[image: image]

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.dnb.de> abrufbar.

Bei der Herstellung des Werkes haben wir uns zukunftsbewusst für umweltverträgliche und wiederverwertbare Materialien entschieden.

Der Inhalt ist auf elementar chlorfreiem Papier gedruckt.

ISBN 978-3-95845-778-2
6. Auflage 2018

www.mitp.de

E-Mail: mitp-verlag@sigloch.de
Telefon: +49 7953 / 7189 - 079
Telefax: +49 7953 / 7189 - 082

© 2018 mitp Verlags GmbH & Co. KG, Frechen

Dieses Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Lektorat: Sabine Janatschek, Ernst-Heinrich Pröfener Sprachkorrektorat: Jürgen Dubau, Astrid Langen Covergestaltung: Christian Kalkert, www.kalkert.de

Bildnachweis Cover: iStock.com/Shawn Hempel | fotolia.com/karpenko_ilia Satz: Gunter Saake, Magdeburg; Kai-Uwe Sattler, Ilmenau; Andreas Heuer, Rostock

Vorwort zur sechsten Auflage

Datenbanken sind nach Softwaretechnik das wichtigste Teilgebiet der Fachrichtung Informatik. In einer aktuellen Umfrage der Gesellschaft für Informatik (GI) bezeichnen sich 30,32 Prozent der Informatiker als Datenbänker1, der stärkste Wert nach dem Gebiet Softwaretechnik mit 33,39 Prozent. Selbst dem Fachgebiet Wirtschaftsinformatik ordnen sich weniger GI-Mitglieder zu (24,54 Prozent). Und weitere Gebiete wie Technische Informatik (11,44 Prozent), Künstliche Intelligenz (8,68 Prozent) und Computergraphik (4,38 Prozent) sind weit abgehängt.

Datenbanken, genauer das Gebiet der Verwaltung großer Mengen strukturierter Daten, ist auch eines der alten, klassischen Gebiete der Informatik. Datenbanksysteme gibt es auf heutzutage veralteten Datenbankmodellen wie dem hierarchischen und Netzwerk-Modell seit den sechziger Jahren, das derzeit immer noch verbreitetste relationale Datenbankmodell ist bereits in den siebziger Jahren in der Forschung und dann in den achtziger Jahren in Form von kommerziellen Datenbank-Management-Systemen eingeführt worden. Die auch aus den siebziger Jahren stammende Datenbanksprache SQL ist immer noch intergalactic dataspeak, also die Standardsprache für die Verwaltung strukturierter Daten. Analysiert man große Online-Stellenportale wie das von Monster, so ist SQL nach Java und fast gleichauf mit C++ die drittgefragteste Sprache der Informatik — weit vor Python und anderen modernen Programmiersprachen und weit vor anderen Daten- und Dokumentbeschreibungssprachen wie XML und JSON.

Datenbanken hatte man aufgrund der langen Vorgeschichte im neuen Jahrtausend sowohl als Forschungsgebiet als auch als modernes Lehrgebiet in der Informatik den schleichenden Tod vorausgesagt: Relationale Datenbanksysteme waren nun einmal einfach da, veränderten sich kaum noch, gehörten zur Folklore für Informatiker. Das Kerngebiet der Informatik schien aus der Mode zu kommen.

Aber plötzlich erlebte das Forschungs- und Lehrgebiet Datenbanken einen riesigen Boom als Kernstück moderner Informationssystem-Infrastrukturen: Sowohl die Hardware entwickelte sich in verschiedene Richtungen weiter, als auch Anwendungen wie das Internet, Big Data, Industrie 4.0, das Internet der Dinge und Digitalisierung im allgemeinen Sinne sind abhängig von einer riesigen Menge von Daten, die effizient verwaltet und wiedergefunden werden muss. Und im Sinne von Big Data Analytics und Maschinellem Lernen müssen Daten heutzutage auch nicht nur wiedergefunden werden, es müssen auch komplexe Muster in riesigen Datenmengen gefunden werden und sie müssen statistisch analysiert werden.

All das führte dazu, dass sich in den 10er Jahren dieses Jahrhunderts das Gebiet Datenbanken dynamischer entwickelt als je zuvor. Und obwohl in diesem Lehrbuch für eine erste Grundvorlesung Datenbanken im Bachelor-Studium der Informatik, Wirtschaftsinformatik oder Technischen Informatik im Wesentlichen die klassischen Grundlagen wie das relationale Datenbankmodell und SQL vorgestellt werden müssen, müssen sich die Autoren auch auf die vielfältigen Neuentwicklungen einstellen. Die führen dazu, dass das Buch in dieser sechsten Auflage von 2018 wieder umstrukturiert wurde. Wir stellen im Folgenden kurz die Veränderungen von der ersten zur fünften Auflage vor und beschreiben dann, welche Neuerungen diese sechste Auflage bestimmen.

Von der ersten zur fünften Auflage

[image:]

Abbildung 1: Die zweite und dritte Auflage des Biberbuches

Die erste Auflage des Biber-Buches erschien im September 1995, die zweite im Januar 2000, die dritte dann in 2008 (Abbildung 1 zeigt die Cover der Auflagen 2 und 3). In der Zeit bis zur dritten Auflage, immerhin über zehn Jahre, waren wichtige Themen wie SQL:2003, XML, objektrelationale Datenbanken, Data Warehouses und die Verwaltung multimedialer Daten dazugekommen. Weiterhin hatten sich auch im Aufbau, in laufenden Beispielen und in der Didaktik in den Vorlesungen zum Buch diverse Änderungen ergeben, die zur völligen Neuentwicklung schon bestehender Buchkapitel in der dritten Auflage führte.

Die Überarbeitung in der dritten Auflage wurde auch dazu genutzt, um den Stoff des Buches neu zu organisieren. Diese Umstrukturierung wurde auch dadurch motiviert, dass in einer nur zweistündigen Vorlesung die ersten Kapitel in den vorherigen Auflagen zu gehaltvoll waren, um direkt chronologisch als Stoff für eine Vorlesung herzuhalten. Seit der dritten Auflage ist das Buch in drei Teile aufgeteilt:

Der erste Teil bearbeitet umfassend die Kernkonzepte der relationalen Datenbanken, ohne auf Spezialitäten und andere Datenmodelle einzugehen. Er bildet den Kern einer Vorlesung „Grundlagen von Datenbanken“ auch mit geringerem Stundenumfang.

Der zweite Teil vertieft die Themen des ersten Teils, und kann insbesondere für eine 3- oder 4-stündige Vorlesung herangezogen werden. Zusammen geben die ersten beiden Teile eine umfassende Behandlung von Theorie, Entwurfsmethoden und Sprachkonzepten für relationale Datenbanken inklusive der ausführlichen Behandlung von SQL.

Der dritte Teil behandelt Alternativen und Erweiterungen bei Datenmodellen. Hiervon können ausgewählte Teile in eine Grundvorlesung übernommen werden, oder die Basis für Spezialvorlesungen bilden. In diesen Kapiteln wird die Sprach- bzw. Anwendungssicht in den Vordergrund gestellt; Implementierungsaspekte werden im Buch „Datenbanken: Implementierungstechniken“ [SSH11] der Autoren behandelt und sind deshalb hier ausgeblendet.

[image:]

Abbildung 2: Die vierte und fünfte Auflage des Biberbuches

In der fünften Auflage [SSH13] (siehe Abbildung 2) wurden erstmals Teile wieder aus dem Buch entfernt: Der Stoff zu Datenbankkonzepten für Data- Warehouse-Anwendungen wurde derart umfangreich, dass wir ihn aus dem

Buch herausnahmen und stattdessen auf ein eigenes Spezialbuch zu dieser Thematik verweisen mussten [KSS12]. Des weiteren wurden aufgrund von Anregungen von Lesern die Abschnitte zur relationalen Entwurfstheorie und zu SQL an einigen Stellen überarbeitet. Neu hinzugekommen waren Abschnitte zu Datenbankzugriffen in der Cloud, zu RDF-Daten und zu temporalen Daten.

Die hier vorliegende sechste Auflage

Die sechste Auflage bietet nun sowohl einige Umstrukturierungen, neue Kapitel zu aktuellen Themen als auch (leider) wieder Streichungen bestimmter Kapitel. Einige kleinere Fehler, die in den bisherigen Auflagen übersehen oder unglücklicherweise neu eingebaut wurden, haben wir in dieser sechsten Auflage auch korrigiert— und wahrscheinlich unvermeidlicherweise auch neue Fehler eingebaut. Im Wesentlichen haben wir aber den Stand der Technik auf das Jahr 2018 gebracht und beispielsweise den Stand der SQL-Standardisierung auf die derzeit aktuelle Version SQL:2016. Im Folgenden geben wir einen Überblick über die Änderungen. Eine Änderung auf dem Cover möchten wir noch erwähnen: Der Biber als Logo für die gesamte Buchreihe findet sich auch weiterhin (stilisiert und klein) auf dem Cover, hat aber dort seine seitenfüllende Präsenz verloren. Als Ausgleich haben wir in Abbildung 3 noch einmal den Biber in voller Schönheit präsentiert (gezeichnet von Arved Sattler).

[image:]

Abbildung 3: Der Biber als Logo für die gesamte Buchreihe (Zeichnung von Arved Sattler)

Umstrukturierungen. Während die oben für die dritte Auflage beschriebene Aufteilung des Buches in Teile eins bis drei stabil bleibt, wurden bestehende Kapitel aufgetrennt und verschoben bzw. Teile des Stoffes neu zugeordnet.

Kapitel 1 haben wir stark gekürzt, da die Einführung in das klassische relationale Datenbankmodell nun in einem eigenen Kapitel direkt anschließend erfolgt.

Kapitel 2 ist neu und führt nun das relationale Datenbankmodell zunächst informal, aber bereits sehr frühzeitig im Buch ein.

In Kapitel 5 wird das relationale Datenbankmodell und die Relationenalgebra als erstes Anfragemodell formal eingeführt. Die alternativen Anfragekalküle werden aber erst im zweiten Teil des Buches in Kapitel 10 eingeführt.

Ebenso werden im Kapitel 7 über den Relationalen Datenbankentwurf nur noch die Kriterien für einen guten Datenbankentwurf und das einfachste Entwurfsverfahren, die Dekomposition, vorgestellt. Erweiterte Kriterien und Verfahren werden nun auch erst in einem eigenen Kapitel 9 im zweiten Teil des Buches aufgegriffen.

Der dritte Teil des Buches ab Kapitel 17 ist völlig neu strukturiert und sortiert worden. Hier beschreiben wir die diversen Erweiterungen des Relationenmodells und in den letzten Jahrzehnten entstandenen alternativen Datenbankmodelle, die in vielen Fällen auch als Erweiterungen in den SQL-Standard mit eingeflossen sind.

Neue Kapitel zu neuen Themen. In den letzten Jahren sind diverse Datenbanktechniken neu entwickelt worden, in eigenen Linien von Datenbanksystemen auch bereits umgesetzt und breit verwendet worden, teilweise aber auch bereits als Erweiterungen in den aktuellen SQL-Standard aufgenommen worden. Diese neuen Techniken werden in eigenen Abschnitten oder Kapiteln eingeführt, etwa die Erkennung von Tupelmustern in relationalen Datenbanken als neue Analyseform in SQL:2016 (Abschnitt 11.6) und erweiterte Programmierschnittstellen als Verbindung von Java mit relationalen Datenbanken (Abschnitt 14.4 zu JPA: Java Persistence API). Stark erweitert wurden im Bereich des Datenschutzes Anonymitätsmaße und die Prinzipien der datensparsamen Anfrageverarbeitung (Abschnitt 16.3) sowie im Bereich des Text Retrieval das Ranking im Vektorraummodell (Abschnitt 17.2). In zwei eigenen Kapiteln am Schluss des dritten Teiles gehen wir auf die Entwicklungen zu NoSQL- und NewSQL-Datenbanksystemen (Kapitel 21) sowie Graph-Datenbanken (Kapitel 22) näher ein.

Streichungen. Aufgrund des Umfangs des Buches und der produktionstechnisch vorgegebenen Seitengrenze mussten wir diverse Teile der fünften Auflage aus dem Buch streichen. Im digitalen Zeitalter nutzen wir aber die Möglichkeit, diese eliminierten Teile als virtuelle Kapitel über das Internet als pdf-Dateien zur Verfügung stellen zu können. Alle virtuellen Kapitel führen wir in Anhang B kurz ein, dort befindet sich auch der Link auf die elektronischen Dokumente. Die eliminierten Abschnitte oder Kapitel betreffen die historischen Modelle (hierarchisches Modell, Netzwerkmodell) aus der vorrelationalen Zeit, die Erweiterungen des Entity-Relationship-Modells als Entwurfsmodell, objektorientierte Datenbankmodelle inklusive des ODMG-Standards, einige Erweiterungen des Relationenmodells und ihrer Anfragesprachen um strukturierte Tabellen nicht in erster Normalform, eine Umsetzung der Relationenalgebra in eine Lehrsprache (Tutorial D) sowie ECA-Regeln und aktive Datenbanken.

Die Biber-Reihe

Das Gebiet Datenbanken wird in mehreren Büchern behandelt, an denen Autoren dieses Buches auch beteiligt sind. Obwohl nicht auf allen Covern der Bücher ein Bezug zum Biber hergestellt wird, nennen wir diese Bücher Biber 1 bis Biber 4, wobei Biber 1 das hier vorliegende Buch „Datenbanken: Konzepte und Sprachen“ darstellt.

Biber 2. Implementierungsaspekte von Datenbanksystemen wie Dateiorganisationsformen und Zugriffstrukturen (etwa Indexdateien), Anfrageoptimierung und Transaktionskonzepte (Concurrency Control) werden im Buch „Datenbanken: Implementierungstechniken“ [SSH11] behandelt (siehe Abbildung 4). Aufgrund der dramatischen Entwicklung im Bereich der Prozessoren (Single Instruction Multiple Data, Mehrkern) und der Speichertechnologie (Cache-Levels, Non-Volatile RAM, Storage Class Memory) müssen wir die hierfür vollständig neu entwickelten Implementierungstechniken in den nächsten Jahren in einem getrennten Band anbieten.

[image:]

Abbildung 4: Der zweite Band der Biberbuch-Reihe: Biber 2 oder Datenbanken: Implementierungstechniken

Biber 3. Bereits in Auflage drei dieses Buches wurden die Datenbankkonzepte für Data-Warehouse-Anwendungen derart umfangreich, dass wir sie aus dem Buch herausnahmen und stattdessen in ein eigenes Spezialbuch zu dieser Thematik aufgenommen haben [KSS12].

Biber 4. Bei einem anderen Verlag ist zusätzlich ein Buch erschienen, das die Reihe durch Techniken für extrem große, auf diversen Rechnern im Netz verteilten Datenbeständen ergänzt sowie die parallele Verarbeitung von Datenbankoperationen auf Rechnerclustern thematisiert [RSS15].

Danksagungen

Zu danken haben wir bei den Neuauflagen dieses Biber-1-Buches insbesondere für Korrekturen und Hinweise zu nötigen Aktualisierungen und Erweiterungen unseren (jetzigen und ehemaligen) Mitarbeitern und Studenten Ingolf Geist, Eike Schallehn, Andreas Lübcke, Stephan Vornholt, Christine Krause, Rita Schindler, Constantin, Pohl, Meike Klettke, Holger Meyer, Temenushka Ignatova, Andre Peters, Martin Garbe, Alf-Christian Schering, Dagmar Waltemath, Nils Weber, Sebastian Schick, Thomas Nösinger sowie den Lesern Lorenz Froihofer und Andreas Hilmer. Weiterhin danken wir Knut Stolze für die Unterstützung bei praktischen Tests.

Speziell bei der sechsten Auflage bedanken wir uns bei Tanja Auge, Henrik Hertel, Mark Lukas Möller, Johannes Goltz, Michael Poppe, Daniel Dietrich, Ben Hellmanzik, Enrico Gruner, Frank Röger, Hannes Grunert, Ilvio Bruder und Frank Meyer.

Mit praktischen Tests haben bei der sechsten Auflage mitgeholfen: Ilvio Bruder, Daniel Dietrich, Johannes Goltz, Hannes Grunert, Martin Jurklies und Rita Schindler.

Ein Dankeschön geht auch an die zuständige Lektorin des MITP-Verlages Sabine Janatschek, die viel Geduld aufgebracht hat, sowie an Jürgen Dubau und Astrid Langen für das sorgfältige Korrekturlesen.

Gunter Saake bedankt sich bei Birgit, Torben und Annkristin für den liebevollen und familiären Rückhalt, der sich lange hinziehende Buchprojekte erst erträglich machen kann.

Kai-Uwe Sattler bedankt sich bei Britta, Arved und Bennett, ohne deren Liebe, Rückhalt und Verständnis ein solches Buchprojekt wohl nicht möglich wäre.

Andreas Heuer möchte sich schließlich bei Renate für die über 30-jährige Unterstützung und Geduld über alle sechs Auflagen hinweg bedanken.

Ergänzende Informationen zum Buch, wie Verweise zu begleitenden Vorlesungsmaterialien, gegebenenfalls erforderliche Fehlerkorrekturen und alle virtuellen Kapitel, die aus Platzgründen nicht mehr in dieses Buch passten, sind im Web unter folgender Adresse zu finden:

http://www.biberbuch.de

Informationen und Downloads zur Buchreihe gibt es auch auf der Verlagsseite:

http://www.mitp.de/776

Magdeburg, Ilmenau und Rostock, im Februar 2018

Gunter Saake, Kai-Uwe Sattler und Andreas Heuer

Inhaltsverzeichnis

Vorwort zur sechsten Auflage

Inhaltsverzeichnis

1 Grundlegende Konzepte

1.1 Motivation und Historie

1.2 Komponenten und Funktionen

1.2.1 Prinzipien und Aufgaben

1.2.2 Einsatzgebiete, Grenzen und Entwicklungstendenzen

1.2.3 Wann kommt was?

1.3 Beispielanwendung

1.4 Vertiefende Literatur

1.5 Übungsaufgaben

2 Relationale Datenbanken – Daten in Tabellen

2.1 Relationen für tabellarische Daten

2.1.1 Begriffe im Relationenmodell

2.1.2 Integritätsbedingungen: Schlüssel

2.1.3 Integritätsbedingungen: Fremdschlüssel

2.2 Datendefinition in SQL

2.2.1 Mögliche Wertebereiche in SQL

2.2.2 Beispiele für die Datendeklaration

2.2.3 Nullwerte

2.3 Grundoperationen: Die Relationenalgebra

2.3.1 Selektion σ

2.3.2 Projektion π

2.3.3 Natürlicher Verbund [image:]

2.3.4 Umbenennung ß

2.3.5 Mengenoperationen

2.4 Qualität entworfener Tabellen

2.5 SQL als Anfragesprache

2.6 Änderungsoperationen in SQL

2.6.1 Die update-Anweisung

2.6.2 Die delete-Anweisung

2.6.3 Die insert-Anweisung

2.7 Sichten in SQL

2.8 Wie geht es weiter?

2.9 Übungsaufgaben

I Kernkonzepte relationaler Datenbanken

3 Architekturen von Datenbanksystemen

3.1 Schemaarchitektur und Datenunabhängigkeit

3.2 Systemarchitekturen

3.2.1 ANSI-SPARC-Architektur

3.2.2 Der Weg einer Anfrage

3.2.3 Fünf-Schichten-Architektur

3.2.4 Konkrete Systemarchitekturen

3.3 Anwendungsarchitekturen

3.4 Zusammenfassung

3.5 Vertiefende Literatur

3.6 Übungsaufgaben

4 Das Entity-Relationship-Modell

4.1 Datenbankmodelle

4.2 Grundlagen des Entity-Relationship-Modells

4.2.1 Grundkonzepte des klassischen ER-Modells

4.2.2 Ein einfaches Beispiel für ein ER-Schema

4.2.3 Semantik eines ER-Schemas

4.3 Eigenschaften von Beziehungen

4.3.1 Stelligkeit

4.3.2 Kardinalitäten und funktionale Beziehungen

4.3.3 Kardinalitäten in der klassischen Chen-Notation

4.3.4 Kardinalitäten in funktionaler Notation

4.3.5 Kardinalitäten in Intervallnotation

4.4 Weitere Konzepte im Entity-Relationship-Modell

4.4.1 Abhängige Entity-Typen

4.4.2 Die IST-Beziehung

4.4.3 Optionalität von Attributen

4.5 Zusammenfassung

4.6 Vertiefende Literatur

4.7 Übungsaufgaben

5 Relationenmodell und Relationenalgebra

5.1 Relationenmodell: Strukturteil

5.1.1 Schemata und Instanzen

5.1.2 Integritätsbedingungen

5.2 Relationenalgebra: Operationenteil

5.2.1 Kriterien für Anfragesprachen

5.2.2 Relationenalgebra

5.3 Änderungsoperationen

5.3.1 Allgemeine Grundprinzipien

5.3.2 Relationale Änderungsoperationen

5.4 Zusammenfassung

5.5 Vertiefende Literatur

5.6 Übungsaufgaben

6 Phasen des Datenbankentwurfs

6.1 Entwurfsaufgabe

6.2 Phasenmodell

6.2.1 Anforderungsanalyse

6.2.2 Konzeptioneller Entwurf

6.2.3 Verteilungsentwurf

6.2.4 Logischer Entwurf

6.2.5 Datendefinition

6.2.6 Physischer Entwurf

6.2.7 Implementierung und Wartung

6.2.8 Objektorientierte Entwurfsmethoden

6.2.9 Phasenbegleitende Methoden

6.3 Aspekte der Datenintegration

6.3.1 Heterogenität der Datenmodelle

6.3.2 Heterogene Datenbankschemata

6.3.3 Heterogenität auf der Datenebene

6.3.4 Schemakonflikte bei der Integration

6.4 Entity-Relationship-Abbildung auf das Relationenmodell

6.4.1 Informationskapazität

6.4.2 Beispiel für eine Abbildung auf das Relationenmodell

6.4.3 Abbildungsregeln für das relationale Modell

6.5 Zusammenfassung

6.6 Vertiefende Literatur

6.7 Übungsaufgaben

7 Relationaler Datenbankentwurf

7.1 Funktionale Abhängigkeiten

7.1.1 Definition funktionaler Abhängigkeiten

7.1.2 Ableitung von funktionalen Abhängigkeiten

7.2 Schemaeigenschaften

7.2.1 Änderungsanomalien

7.2.2 Normalformen

7.2.3 Minimalität

7.3 Transformationseigenschaften

7.3.1 Abhängigkeitstreue

7.3.2 Verbundtreue

7.4 Entwurfsverfahren

7.4.1 Ziele

7.4.2 Dekompositionsverfahren

7.4.3 Ausblick Syntheseverfahren

7.5 Zusammenfassung

7.6 Vertiefende Literatur

7.7 Übungsaufgaben

8 Die relationale Datenbanksprache SQL

8.1 SQL als Datendefinitionssprache

8.1.1 Erzeugen von Tabellen

8.1.2 Tabellen mit Integritätsbedingungen

8.1.3 Löschen und Ändern von Tabellendefinitionen

8.1.4 Erzeugen und Löschen von Indexen

8.2 SQL als relationale Anfragesprache

8.2.1 Überblick

8.2.2 Die from-Klausel

8.2.3 Die select-Klausel

8.2.4 Die where-Klausel

8.2.5 Mengenoperationen

8.2.6 Schachtelung von Anfragen

8.2.7 Mächtigkeit des SQL-Kerns

8.3 Änderungsoperationen in SQL

8.3.1 Übersicht über Änderungen in SQL

8.3.2 Die update-Anweisung

8.3.3 Die delete-Anweisung

8.3.4 Die insert-Anweisung

8.3.5 Die merge-Anweisung

8.3.6 Probleme bei SQL-Änderungen

8.4 Zusammenfassung

8.5 Vertiefende Literatur

8.6 Übungsaufgaben

II Erweiterte Konzepte für relationale Datenbanken

9 Erweiterter relationaler Datenbankentwurf

9.1 Überdeckungen von funktionalen Abhängigkeiten

9.1.1 Nicht-redundante Überdeckung

9.1.2 Reduzierte Überdeckung

9.1.3 Bildung von Äquivalenzklassen

9.1.4 Minimale Überdeckung

9.1.5 Ringförmige Überdeckung

9.2 Syntheseverfahren

9.2.1 Ablauf der Synthese

9.2.2 Erreichung der Verbundtreue

9.3 Verfeinerung des Entity-Relationship-Datenbankentwurfs

9.4 Mehrwertige Abhängigkeiten

9.4.1 Grundlagen

9.4.2 Schemaeigenschaften

9.4.3 Transformationseigenschaften

9.5 Weitere Abhängigkeiten und Normalformen

9.5.1 Verbundabhängigkeiten

9.5.2 Inklusionsabhängigkeiten

9.5.3 Weitere relationale Entwurfsverfahren

9.5.4 Weitere Anwendungen der relationalen Theorie

9.6 Zusammenfassung

9.7 Vertiefende Literatur

9.8 Übungsaufgaben

10 Grundlagen von relationalen Anfragen

10.1 Erweiterungen der Relationenalgebra

10.2 Anfragekalküle

10.2.1 Ein allgemeiner Kalkül

10.2.2 Ergebnisbestimmung einer Anfrage

10.3 Tupelkalkül

10.3.1 Definition des Tupelkalküls

10.3.2 Beispielanfragen im Tupelkalkül

10.3.3 Bezug zu SQL

10.4 Bereichskalkül

10.4.1 Sichere Anfragen

10.4.2 Beispielanfragen im Bereichskalkül

10.4.3 Eigenschaften des Bereichskalküls

10.4.4 Relationenalgebraoperationen im Bereichskalkül

10.5 Zusammenfassung

10.6 Vertiefende Literatur

10.7 Übungsaufgaben

11 Erweiterte Konzepte von SQL

11.1 Weitere Operationen und Prädikate

11.1.1 Skalare Ausdrücke

11.1.2 Prädikate

11.1.3 Quantoren und Mengenvergleiche

11.1.4 Behandlung von Nullwerten

11.2 Aggregation, Gruppierung und Sortierung

11.2.1 Aggregatfunktionen

11.2.2 Gruppierung

11.2.3 Sortierung

11.2.4 Erweiterte Aggregatfunktionen in SQL:2003

11.2.5 Top-k-Anfragen

11.2.6 Skyline-Anfragen

11.3 Äußere Verbunde

11.4 Künstliche Schlüssel und Sequenzgeneratoren

11.5 Benannte Anfragen und Rekursion

11.5.1 Benannte Anfragen

11.5.2 Rekursive Anfragen

11.6 Erkennung von Tupelmustern

11.7 SQL-Versionen

11.7.1 SEQUEL2

11.7.2 SQL-89

11.7.3 SQL-92

11.7.4 SQL:1999 und SQL:2003

11.7.5 SQL:2006 und SQL:2008

11.7.6 SQL:2011 und SQL:2016

11.8 Zusammenfassung

11.9 Vertiefende Literatur

11.10 Übungsaufgaben

12 Weitere relationale Datenbanksprachen

12.1 QUEL

12.1.1 Anfragen in QUEL

12.1.2 Änderungsoperationen in QUEL

12.2 Query by Example

12.2.1 Anfragen in QBE

12.2.2 Funktionen, Sortierung und Aggregierung in QBE

12.2.3 Formale Semantik von QBE

12.2.4 Ausdrucksfähigkeit von QBE

12.2.5 Änderungen in QBE

12.2.6 Anfragen in MS Access

12.3 Datalog

12.3.1 Grundbegriffe

12.3.2 Semantik rekursiver Regeln

12.3.3 Semantik und Auswertung von Datalog

12.4 Zusammenfassung

12.5 Vertiefende Literatur

12.6 Übungsaufgaben

13 Transaktionen, Integrität & Trigger

13.1 Grundlagen von Transaktionen

13.1.1 ACID-Prinzip

13.1.2 Probleme im Mehrbenutzerbetrieb

13.1.3 Transaktionssteuerung in SQL

13.1.4 Transaktionen und Integritätssicherung

13.2 Architekturen zur Integritätssicherung

13.2.1 Integritätssicherung durch Anwendung

13.2.2 Integritätsmonitor als Komponente des DBMS

13.2.3 Integritätssicherung durch Einkapselung

13.3 Integritätsbedingungen in SQL

13.3.1 Inhärente Integritätsbedingungen im Relationenmodell

13.3.2 Weitere Bedingungen in der SQL-DDL

13.3.3 Die assertion-Klausel

13.3.4 Verwaltung und Überprüfung von Bedingungen

13.4 Klassifikation von Integritätsbedingungen

13.5 Trigger

13.6 Methoden der Integritätssicherung

13.6.1 Integritätssicherung durch Trigger

13.6.2 Integritätssicherung durch Anfragemodifikation

13.7 Zusammenfassung

13.8 Vertiefende Literatur

13.9 Übungsaufgaben

14 Datenbankanwendungsentwicklung

14.1 Grundprinzipien

14.2 Programmiersprachenanbindung: Call-Level-Schnittstellen

14.2.1 SQL/CLI: Der Standard

14.2.2 ODBC

14.2.3 JDBC

14.2.4 Weitere Call-Level-Schnittstellen

14.3 Eingebettetes SQL

14.3.1 Statische Einbettung: Embedded SQL

14.3.2 Dynamische Einbettung: Dynamic SQL

14.3.3 SQLJ: Embedded SQL für Java

14.4 High-Level-Schnittstellen

14.4.1 Persistenz von Objekten

14.4.2 Grundlagen der Abbildung

14.4.3 JPA und Hibernate

14.4.4 Weitere Technologien

14.5 Prozedurale SQL-Erweiterungen und Datenbanksprachen

14.5.1 Vorteile von gespeicherten Prozeduren

14.5.2 SQL/PSM: Der Standard

14.5.3 PL/SQL von Oracle

14.5.4 Gespeicherte Prozeduren in Java

14.6 Anwendungsentwicklung in der Cloud

14.6.1 Database-as-a-Service und Cloud-Datenbanken

14.6.2 Klassische DBMS in der Cloud

14.6.3 NoSQL-Systeme in der Cloud

14.7 Zusammenfassung

14.8 Vertiefende Literatur

14.9 Übungsaufgaben

15 Sichten

15.1 Motivation und Begriffsbildung

15.1.1 Sichten und externe Schemata

15.1.2 Definition von Sichten

15.1.3 Definition von Sichten in SQL

15.1.4 Vorteile von Sichten

15.2 Probleme mit Sichten

15.2.1 Kriterien für Änderungen auf Sichten

15.2.2 Projektionssichten

15.2.3 Selektionssichten

15.2.4 Verbundsichten

15.2.5 Aggregierungssichten

15.2.6 Klassifikation der Problembereiche

15.3 Behandlung von Sichten in SQL

15.3.1 Auswertung von Anfragen an Sichten in SQL

15.3.2 Sichtänderungen in SQL-92

15.3.3 Sichtänderungen ab SQL:2003

15.4 Theorie änderbarer Sichten

15.5 Instead-of-Trigger für Sichtänderungen

15.6 Zusammenfassung

15.7 Vertiefende Literatur

15.8 Übungsaufgaben

16 Zugriffskontrolle & Privacy

16.1 Sicherheitsmodelle

16.1.1 Diskrete Sicherheitsmodelle

16.1.2 Verbindliche Sicherheitsmodelle

16.2 Rechtevergabe in SQL

16.2.1 Benutzer und Schemata

16.2.2 Rechtevergabe in SQL

16.2.3 Zurücknahme von Rechten

16.2.4 Rollenmodell in SQL:2003

16.2.5 Auditing

16.2.6 Authentifikation und Autorisierung

16.3 Privacy-Aspekte in Datenbanken

16.3.1 Statistische Datenbanken

16.3.2 Quasi-Identifikator

16.3.3 k-Anonymität

16.3.4 l-Diversität, t-Closeness, Differential Privacy

16.3.5 Datensparsame Anfrageverarbeitung

16.4 Zusammenfassung

16.5 Vertiefende Literatur

16.6 Übungsaufgaben

III Erweiterte Datenbankmodelle und -techniken

17 Multimediale Daten

17.1 Multimedia-Datenbanken

17.1.1 Grundbegriffe

17.1.2 Grundlagen des Multimedia Retrieval

17.2 Text Retrieval

17.2.1 Information Retrieval auf Texten

17.2.2 Grundtechniken des Text Retrieval

17.2.3 Deskribierung

17.2.4 Recherche

17.2.5 Ranking

17.2.6 Information-Retrieval-Systeme

17.3 SQL/MM

17.3.1 SQL/MM Full Text

17.3.2 SQL/MM Still Image

17.3.3 Der Datentyp Video

17.3.4 SQL/MM Spatial

17.4 Zusammenfassung

17.5 Vertiefende Literatur

17.6 Übungsaufgaben

18 Räumliche und temporale Daten

18.1 Verwaltung raumbezogener Daten

18.1.1 Grundbegriffe

18.1.2 Modellierung raumbezogener Daten

18.1.3 Prädikate und Anfragen auf raumbezogenen Daten

18.1.4 Oracle Spatial

18.1.5 Weitere Systeme

18.2 Temporale Daten

18.2.1 Grundbegriffe

18.2.2 Umsetzung in SQL

18.2.3 Temporale Schlüssel, Fremdschlüssel und Anfragen

18.2.4 Weitere Entwicklung und Einordnung

18.3 Zusammenfassung

18.4 Vertiefende Literatur

18.5 Übungsaufgaben

19 Objektorientierte und objektrelationale Modelle

19.1 Exkurs: Objektorientierte Datenbankmodelle

19.2 Abbildung von Objekten auf Relationen

19.2.1 Typkonstruktoren

19.2.2 Abbildung der Spezialisierungshierarchie

19.3 Objektrelationale Erweiterungen

19.3.1 Large Objects: BLOB und CLOB

19.3.2 Typkonstruktoren

19.3.3 Identitäten, Referenzen und Pfadausdrücke

19.3.4 Hierarchien und Vererbung

19.3.5 Methoden

19.4 Objektrelationale Konzepte in SQL:2003

19.4.1 Typsystem und DDL

19.4.2 Anfragen

19.4.3 Methoden in SQL:2003

19.5 Zusammenfassung

19.6 Vertiefende Literatur

19.7 Übungsaufgaben

20 XML, XQuery und SQL/XML

20.1 Semistrukturierte Datenmodelle

20.1.1 Merkmale semistrukturierter Datenmodelle

20.1.2 Datenmodelle für semistrukturierte Dokumente

20.2 XML

20.2.1 Bausteine von XML

20.2.2 Verarbeitung von XML

20.3 Datendefinition in XML

20.3.1 Dokumenttypdefinition

20.3.2 XML Schema

20.3.3 XML-Abbildung auf relationale Schemata

20.4 Navigation in XML-Dokumenten: XPath

20.4.1 Pfadausdrücke und Lokalisierungsschritte

20.4.2 Selektionsprädikate und Funktionen

20.5 Die Anfragesprache XQuery

20.5.1 FLWOR-Ausdrücke

20.5.2 Elementkonstruktoren

20.5.3 Verbunde und Gruppierungen

20.5.4 Ausdrücke und Vergleiche

20.5.5 Funktionen

20.6 SQL/XML: XML-Erweiterungen für SQL

20.6.1 XML-Datentypen

20.6.2 XML-Konstruktion mit SQL

20.7 Zusammenfassung

20.8 Vertiefende Literatur

20.9 Übungsaufgaben

21 NoSQL-Datenbanken

21.1 Exkurs: Big Data

21.2 Motivation für NoSQL

21.3 KV-Stores und das Wide-Column-Datenmodell

21.3.1 Datenmodell: Key-Value-Stores

21.3.2 Datenmodell: Wide Column

21.4 Document Stores

21.4.1 Das JSON-Format

21.4.2 Anfragen bei dokumentenorientierter Speicherung

21.4.3 Datenrepräsentation und Anfragen in MongoDB

21.5 NewSQL – relationale Datenbanken schlagen zurück

21.6 Zusammenfassung

21.7 Vertiefende Literatur

21.8 Übungsaufgaben

22 Graph-Datenbanken

22.1 Graph-Datenmodelle: Grundlagen

22.1.1 Repräsentation von Graphstrukturen

22.1.2 Operationen und Anfragen auf Graphen

22.2 Das Resource Description Framework

22.2.1 Das RDF-Modell

22.2.2 RDF-Repräsentationen

22.2.3 RDF Schema und Vokabulare

22.3 Die RDF-Anfragesprache SPARQL

22.3.1 Grundlagen

22.3.2 SPARQL-Elemente

22.3.3 Aggregation und Gruppierung

22.3.4 Weitere Anfragetypen

22.3.5 Updates

22.4 Property-Graph-Modelle

22.4.1 Anfragen in Cypher

22.4.2 Anfragen in Gremlin

22.5 Zusammenfassung

22.6 Vertiefende Literatur

22.7 Übungsaufgaben

A Laufendes Beispiel

A.1 ER-Schema der Weindatenbank

A.2 Relationale Repräsentation

A.3 Vereinfachtes Schema und Beispieldaten

B Zusätzliche Kapitel

B.1 Historische Modelle

B.2 Erweiterte Entwurfsmodelle

B.3 Erweiterte Modelle und Anfragealgebren

B.4 Objektorientierte und objektrelationale Modelle inklusive SQL:2003

B.5 Tutorial D

B.6 ECA-Regeln und aktive Datenbanken

B.7 Grundlegende Datenbanktechniken

B.8 SQL/JSON

Literaturverzeichnis

1

Grundlegende Konzepte

Dieses erste Kapitel ist den grundlegenden Konzepten der Datenbankterminologie und -technik gewidmet. Wir werden uns die historische Entwicklung von Datenbanksystemen ansehen, Gründe für den Einsatz von derartigen Systemen diskutieren sowie Funktionen und Architektur von Datenbanksystemen betrachten. Ferner stellen wir als eine Beispielanwendung eine Weinkellerverwaltung vor, die wir über das ganze Buch hinweg verwenden werden.

1.1 Motivation und Historie

Wie ordnen sich Datenbanksysteme in die Vielfalt von Softwarepaketen ein, die heutzutage eingesetzt werden? Zur Beantwortung dieser Frage diskutieren wir zuerst eine verbreitete Klassifikation von Softwaresystemen.

Softwareschichten

Üblicherweise teilt man die Software eines Computersystems in mehrere Schichten ein, etwa der Aufteilung in Abbildung 1.1 folgend. In der Praxis können natürlich einige Softwarepakete mehrere Schichten umfassen.

Jede Schicht baut auf den weiter innen liegenden Schichten auf. Beispielsweise bietet das Betriebssystem Dateien und Operationen auf Dateien, Möglichkeiten zum Drucken etc. an. Anwendungssoftware wie Textverarbeitungssoftware nutzt diese Möglichkeiten als Dienste der niedrigeren Schicht. Als Beispiele für typische Softwareprodukte auf den einzelnen Schichten mag die folgende Auswahl dienen:

• Typische Betriebssysteme sind etwa Windows, Linux, MacOS X oder z/OS.

[image:]

Abbildung 1.1: Aufteilung in Softwareschichten

• Zur Systemsoftware, die direkt auf diesen Betriebssystemen aufbaut, zählen Datenbanksysteme und Benutzerschnittstellen (wie das Windows-GUI oder X11-Produkte unter Unix).

• Zur Basissoftware, die wiederum auf der Systemsoftware aufbaut, gehören etwa Graphiksysteme wie OpenGL.

• Anwendungs- und Individualsoftware ist auf bestimmte Anwendungsklassen hin zugeschnitten: CAD-Systeme für Konstruktionsanwendungen, Desktop-Publishing-Systeme für Publikationsanwendungen sowie Buchhaltungssysteme, Lagerverwaltungssysteme oder allgemeiner ERP-Systeme (Enterprise Resource Planning) zur Unterstützung aller Geschäftsprozesse in Unternehmen.

Die Rolle der Datenbanksysteme ist also eine sehr elementare. Idealerweise sollten selbst Textverarbeitungssysteme ihre Texte und Informationen über Texte in einem Datenbanksystem verwalten und nicht einfach in einem Dateisystem. Genauso sollten CAD-Systeme sich allgemeinerer Graphiksysteme bedienen und diese wiederum zur Speicherung von Graphiken auf Datenbanksysteme zurückgreifen. Die Welt der kommerziellen Software ist von dieser Idealvorstellung jedoch leider noch etwas entfernt.

Das Problem der Datenredundanz

Ohne den Einsatz von Datenbanksystemen tritt das Problem der Datenredundanz auf. Die Basis- oder Anwendungssoftware verwaltet in diesem Szenario jeweils ihre eigenen Daten in ihren eigenen Dateien, und zwar jeweils in eigenen speziellen Formaten. Ein typisches Szenario gibt die folgende Auflistung wieder:

• Ein Textverarbeitungssystem verwaltet Texte, Artikel und Adressen.

• Die Buchhaltung speichert ebenso Artikel- und Adressinformationen.

• In der Lagerverwaltung werden Artikel und Aufträge benötigt und verwendet.

• Die Auftragsverwaltung manipuliert Aufträge, Artikel und Kundenadressen.

• Das CAD-System verwaltet Artikeldaten, technische Daten und technische Bausteine.

• Die Bereiche Produktion, Bestelleingang und Kalkulation benötigen teilweise ebenfalls diese Daten.

In diesem Szenario sind die Daten redundant, also mehrfach gespeichert. So werden Artikel und Adressen von mehreren Anwendungen verwaltet. Die entstehenden Probleme sind Verschwendung von Speicherplatz und „Vergessen“ von lokalen Änderungen, die typisch für das Fehlen einer zentralen, genormten Datenhaltung sind. Ein Ziel der Entwicklung von Datenbanksystemen ist die Beseitigung der Datenredundanz.

Weitere Problemfelder

Die meisten anderen Softwaresysteme (auch Programmiersprachen, Tabellenkalkulationen, Dateiverwaltungssysteme …) können große Mengen von Daten nicht effizient verarbeiten, so dass fehlender Einsatz von Datenbankmanagementsystemen (DBMS) zu erheblichen Effizienzeinbußen führen kann. Auch ermöglichen es viele Systeme nicht, dass mehrere Benutzer oder Anwendungen parallel mit den gleichen Daten arbeiten können, ohne einander zu stören. Weiterhin können gar Datenverluste durch unkontrolliertes Überschreiben entstehen. Diese Kontrolle ist eine Basisfunktion moderner DBMS.

Auch in der Anwendungserstellung führt der fehlende Einsatz einer zentralen Datenhaltungskomponente zu erheblichen Defiziten. Die Anwendungsprogrammierer oder auch Endanwender können Anwendungen nicht programmieren bzw. benutzen, ohne

• die interne Darstellung der Daten sowie

• Speichermedien oder Rechner (bei verteilten Systemen)

zu kennen. Dieses Problem wird als fehlende Datenunabhängigkeit bezeichnet und in Abschnitt 3.1 intensiver diskutiert. Auch ist die Sicherstellung der Zugriffskontrolle und der Datensicherheit ohne zentrale Datenhaltung nicht gewährleistet.

Datenintegration

Die obigen Probleme können mithilfe des Einsatzes von Datenbanktechnologien gelöst werden. Wir sprechen dann im Gegensatz zur Datenredundanz von einer Datenintegration. Das Prinzip der Datenintegration basiert auf folgenden Überlegungen:

Die gesamte Basis- und Anwendungssoftware arbeitet mit denselben Daten, die in einer zentralen Datenhaltungskomponente verwaltet werden. Der Gesamtbestand der Daten wird nun als Datenbank bezeichnet. Diese Architekturvorstellung wird in Abbildung 1.4 auf Seite 6 im Rahmen der historischen Entwicklung von Datenhaltungskomponenten graphisch verdeutlicht. Eine derartige Datenbank muss natürlich äußerst sorgfältig entworfen und in einer geeigneten Datendefinitionssprache beschrieben werden.

In unserem Beispielszenario bedeutet Datenintegration, dass zum Beispiel Adressen und Artikel nur einmal gespeichert werden, also nicht mehr redundant vorliegen.

Auch andere Probleme im Umgang mit großen Datenbeständen, etwa Fragestellungen der Effizienz, Parallelität, Zugriffskontrolle und Datensicherheit können mit heutigen kommerziellen Datenbankmanagementsystemen zufriedenstellend gelöst werden. Diese Systeme zeichnen sich durch folgende Eigenschaften aus:

• Datenbanksysteme können große Datenmengen effizient verwalten. Sie bieten benutzergerechte Anfragesprachen an, die eine komfortable Anfrageformulierung ohne Rücksichtnahme auf die interne Realisierung der Datenspeicherung ermöglichen. Eine interne Optimierung ermöglicht trotzdem einen effizienten Zugriff auf die Datenbestände.

• Viele Benutzer können parallel auf Datenbanken arbeiten. Das Transaktionskonzept verhindert hier unerwünschte Nebeneffekte beim Zugriff auf gemeinsam genutzte Daten.

• Die Datenunabhängigkeit wird durch ein Drei-Ebenen-Konzept gewährleistet, das eine externe Ebene der Anwendungssicht, eine konzeptuelle Ebene der logischen Gesamtsicht auf den Datenbestand und eine interne Ebene der implementierten Datenstrukturen unterscheidet.

• Zugriffskontrolle (kein unbefugter Zugriff) und Datensicherheit (kein ungewollter Datenverlust) werden vom System gewährleistet.

Historische Entwicklung

Die historische Entwicklung hin zu Datenbankmanagementsystemen kann in drei Stufen skizziert werden:

Die erste Stufe ist zu Beginn der 60er Jahre anzusiedeln, also zu einem Zeitpunkt, als die ersten Anwendungen der Massendatenverarbeitung auf Rechnern realisiert wurden. Die Daten wurden in elementaren Dateien abgelegt, und es erfolgte eine anwendungsspezifische Datenorganisation. Die Datenorganisation war geräteabhängig, zwangsweise redundant und führte leicht zu inkonsistenten Datenbeständen. Die Situation ist in Abbildung 1.2 verdeutlicht.

[image:]

Abbildung 1.2: Historische Entwicklung 1: Zugriff auf Dateien ohne spezielle Verwaltung

Die zweite Stufe kennzeichnet die Situation Ende der 60er Jahre. Sie ist durch die Verwendung sogenannter Dateiverwaltungssysteme gekennzeichnet (bekannte Methoden sind etwa die Systeme SAM und ISAM für den sequentiellen und indexsequentiellen Dateizugriff, die auch in der Datenbankimplementierung eine große Rolle spielen [HR01, SSH11]). Dateiverwaltungssysteme konnten um zusätzliche Dienstprogramme ergänzt werden, etwa zum Sortieren von Datenbeständen. Die Situation der zweiten Stufe ist in Abbildung 1.3 dargestellt. Als wesentlicher Fortschritt wurde die Geräteunabhängigkeit der Datenhaltung erreicht, die Probleme der redundanten und eventuell inkonsistenten Datenhaltung blieben aber bestehen.

Diese Probleme konnten ab den 70er Jahren mit dem Einsatz von Datenbanksystemen gelöst werden. Sie garantieren Geräte- und Datenunabhängigkeit und ermöglichen eine redundanzfreie und konsistente Datenhaltung. Das Prinzip der Datenbanksysteme ist in Abbildung 1.4 skizziert: Der Datenbestand ist in einer Datenbank integriert, und jeder Zugriff erfolgt ausschließlich durch den „Filter“ des DBMS.

[image:]

Abbildung 1.3: Historische Entwicklung 2: Dateiverwaltungssoftware

[image:]

Abbildung 1.4: Historische Entwicklung 3: Datenbankmanagementsysteme

Ein wesentlicher Erfolgsfaktor war das von Codd vorgeschlagene Relationenmodell und dessen Umsetzung in relationalen Datenbanksystemen. Das erste System wurde – noch als Forschungsprototyp – von IBM unter dem Namen System R entwickelt und 1977 erstmals in einer größeren Installation eingesetzt. Später wurde es in das kommerzielle Produkt unter dem Namen DB2 überführt. Fast zeitgleich wurde an der University of California in Berkeley (UCB) unter Leitung von Mike Stonebraker das System Ingres entwickelt, das Vorläufer für Systeme wie Postgres, Sybase und der aktuellen Version von Ingres war. 1979 wurde auch Oracle erstmals veröffentlicht – interessanterweise gleich als Version 2, weil die Firma (wohl berechtigterweise) davon ausging, dass Kunden der zweiten Version eines Produktes mehr Vertrauen schenken würden. Darüber hinaus hat Oracle von Beginn an die Bedeutung einer Standardisierung erkannt und dies in Form einer Kompatibilität zum IBM-Konkurrenzprodukt umgesetzt. Dagegen war das DBMS von Microsoft – der SQL Server – zunächst keine Eigenentwicklung: Als Microsoft Ende der 80er Jahre den Bedarf eines DBMS für die eigene Serverplattform Windows NT erkannte, wurde kurzerhand der Quellcode von Sybase gekauft und als eigenes Produkt vermarktet. Erst nach und nach haben sich die beiden Produkte unabhängig voneinander weiterentwickelt.

Nachdem der Markt für SQL-basierte RDBMS mit drei bis vier großen Playern jahrzehntelang sehr überschaubar war, ist er nach 2000 geradezu explodiert, indem beispielsweise Open Source DBMS (etwa MySQL) und komplette Neuentwicklungen wie SAP HANA eine bisher ungewohnte Vielfalt erzeugten.

Neben dem stabilen Einsatz von SQL-DBMS lassen sich ferner Zehn- Jahres-Hypes von innovativen Datenbanktechnologien erkennen, die zu sehr vielen Neuentwicklungen geführt haben, deren Technologien aber üblicherweise dann vom SQL-Standard und von den RDBMS-Herstellern nach der Hype-Zeit aufgegriffen wurden. In den 90ern wurden die objektorientierten DBMS populär, deren Konzepte zum großen Teil in die SQL-Standards SQL:1999 und SQL:2003 aufgenommen und in objektrelationalen DBMS dann weit verbreitet wurden. In den 00er Jahren wurden XML-Datenbanksysteme modern, die in der Dokumentbeschreibungssprache XML strukturierte Daten und Dokumente verarbeiten konnten. Sie wurden dann von SQL:2003 bis SQL:2008 schrittweise in den SQL-Standard aufgenommen (SQL/XML). In den 10er Jahren sind NoSQL-Datenbanksysteme, die schwachstrukturierte Daten sehr flexibel und hochgradig skalierbar verarbeiten können, der aktuelle Hype. Die RDBMS-Hersteller reagieren auf diesen Trend durch diverse Verbesserungen auf der internen Ebene der DBMS sowie durch Spracherweiterungen, die insgesamt mit NewSQL zusammengefasst werden. Erste Ansätze sind auch bereits im SQL-Standard erschienen (SQL:2016: SQL/JSON).

Die Entwicklung der Datenbanksysteme bis zum heutigen Stand sowie aktuelle Entwicklungstendenzen werden wir in den verschiedenen Abschnitten dieses Buchs noch genauer betrachten.

1.2 Komponenten und Funktionen

Im vorigen Abschnitt haben wir die Vorteile von Datenbanksystemen gegenüber einfacher Dateispeicherung erläutert. In diesem Abschnitt werden wir uns die Aufgaben eines derartigen Systems sowie die daraus folgenden grundlegenden Komponenten eines Datenbanksystems im Überblick anschauen. Eine genauere Beschreibung der Komponenten eines DBMS und insbesondere der verwendeten Implementierungstechniken kann im Datenbankimplementierungsbuch [SSH11] gefunden werden.

1.2.1 Prinzipien und Aufgaben

Wir wollen die Diskussion der Funktionen eines Datenbanksystems damit beginnen, dass wir die allgemeinen Aufgaben kurz skizzieren sowie einige grundlegende Begriffe einführen.

Aufgaben eines Datenbankmanagementsystems (DBMS)

Im Laufe der Jahre hat sich eine Basisfunktionalität herauskristallisiert, die von einem Datenbankmanagementsystem erwartet wird. Codd hat 1982 diese Anforderungen in neun Punkten zusammengefasst [Cod82]:

1. Integration
Die Datenintegration erfordert die einheitliche Verwaltung aller von Anwendungen benötigten Daten. Hier verbirgt sich die Möglichkeit der kontrollierten nicht-redundanten Datenhaltung des gesamten relevanten Datenbestands.

2. Operationen
Auf der Datenbank müssen Operationen möglich sein, die Datenspeicherung, Suchen und Änderungen des Datenbestands ermöglichen.

3. Katalog
Der Katalog, auch Data Dictionary genannt, ermöglicht Zugriffe auf die Datenbeschreibungen der Datenbank.

4. Benutzersichten
Für unterschiedliche Anwendungen sind unterschiedliche Sichten auf den Datenbestand notwendig, sei es in der Auswahl relevanter Daten oder in einer angepassten Strukturierung des Datenbestands. Die Abbildung dieser speziellen Sichten auf den Gesamtdatenbestand muss vom System kontrolliert werden.

5. Konsistenzüberwachung
Die Konsistenzüberwachung, auch als Integritätssicherung bekannt, übernimmt die Gewährleistung korrekter Datenbankinhalte und der korrekten Ausführung von Änderungen, so dass diese die Konsistenz nicht verletzen können.

6. Zugriffskontrolle
Aufgabe des Zugriffskontrolle ist der Ausschluss unautorisierter Zugriffe auf die gespeicherten Daten. Dies umfasst datenschutzrechtlich relevante Aspekte personenbezogener Informationen ebenso wie den Schutz firmenspezifischer Datenbestände vor Werksspionage.

7. Transaktionen
Unter einer Transaktion versteht man eine Zusammenfassung von Datenbankänderungen zu Funktionseinheiten, die als Ganzes ausgeführt werden sollen und die bei Erfolg permanent in der Datenbank gespeichert werden.

8. Synchronisation
Konkurrierende Transaktionen mehrerer Benutzer müssen synchronisiert werden, um gegenseitige Beeinflussungen, etwa Schreibkonflikte auf gemeinsam benötigten Datenbeständen, zu vermeiden.

9. Datensicherung
Aufgabe der Datensicherung ist es, die Wiederherstellung von Daten, etwa nach Systemfehlern, zu ermöglichen.

Prinzipien von Datenbanksystemen

Unter dem Begriff Datenbankmanagementsystem verstehen wir die Gesamtheit der Softwaremodule, die die Verwaltung einer Datenbank übernehmen. Ein Datenbanksystem, kurz DBS, ist die Kombination eines DBMS mit einer Datenbank1. Diese Begriffsbildung ist für das Verständnis der Datenbankkonzepte essentiell und wird in Tabelle 1.1 zusammengefasst.

[image:]

Tabelle 1.1: Begriffsbildungen für Datenbanksysteme

Grundmerkmale von modernen Datenbanksystemen sind die folgenden (angelehnt an die aufgeführten neun Punkte von Codd):

• DBMSe verwalten persistente (langfristig zu haltende) Daten, die einzelne Läufe von Anwendungsprogrammen überstehen sollen.

• Sie haben die Aufgabe, große Datenmengen effizient zu verwalten.

• DBMSe definieren ein Datenbankmodell, mit dessen Konzepten alle Daten einheitlich beschrieben werden.

• Sie stellen Operationen und Sprachen (Datendefinitionssprache, interaktive Anfragesprachen, Datenmanipulationssprachen usw.) zur Verfügung. Derartige Sprachen sind deskriptiv, verzichten also auf die explizite Angabe von Berechnungsschritten. Die Sprachen sind getrennt von einer Programmiersprache zu benutzen.

• DBMSe unterstützen das Transaktionskonzept inklusive Mehrbenutzerkontrolle: Logisch zusammenhängende Operationen werden zu Transaktionen zusammengefasst, die als atomare (unteilbare) Einheit bearbeitet werden. Auswirkungen von Transaktionen sind langlebig. Transaktionen können parallel durchgeführt werden, wobei sie voneinander isoliert werden.

• Sie unterstützen die Einhaltung des Datenschutzes, gewährleisten Datenintegrität (Konsistenz) und fördern die Datensicherheit durch geeignete Maßnahmen.

1.2.2 Einsatzgebiete, Grenzen und Entwicklungstendenzen

Bisher haben wir die Grundkonzepte von DBMS beschrieben. Nun müssen wir sie in die Softwarelandschaft einordnen sowie Entwicklungslinien der Vergangenheit und Entwicklungstendenzen der Zukunft diskutieren.

Einsatzgebiete und Grenzen

Die klassischen Einsatzgebiete der Datenbanken sind Anwendungen im kommerziellen Bereich, die sich aus Buchhaltungs- und Katalogisierungsproblemen entwickelt haben. Ein typisches Beispiel neben unserer kleinen Weindatenbank sind beispielsweise Artikelverwaltungs- und Bestellsysteme im Handel bzw. E-Commerce. Derartige Anwendungen zeichnen sich durch einige Charakteristika aus: Es gibt viele Objekte (20.000 Artikel, 10.000 Kunden, 1.000 Bestellvorgänge pro Tag usw.), aber vergleichsweise wenige Objekttypen (ARTIKEL, KUNDE, BESTELLUNG). Objekte sind einfach strukturiert und verhältnismäßig klein. Durchzuführende Transaktionen sind kurz und betreffen wenige Objekte (etwa die Bestellung eines Artikels), und die ausgeführten Operationen sind relativ unkompliziert, wie etwa einfache arithmetische Berechnungen.

Andere wichtige Beispiele für Datenbankanwendungen sind Enterprise Resource Planning (ERP)-Systeme, die die gesamte Ressourcenplanung in Unternehmen unterstützen. Derartige Systeme beinhalten neben der Stammdatenverwaltung Komponenten für die Materialwirtschaft (Lagerhaltung, Beschaffung), Finanz- und Rechnungswesen, Controlling, Personalwirtschaft und Produktion2. Die bekanntesten Vertreter sind sicherlich SAP R/3 bzw. der Nachfolger mySAP ERP und PeopleSoft.

Ein weiteres Beispiel sind Customer Relationship Management (CRM)- Systeme, die zur Verwaltung der Kundenbeziehungen eines Unternehmens dienen. In einer Datenbank werden dazu alle Kundenkontakte erfasst – beginnend bei den Adressen über die Historie von Anfragen, Angeboten und Kaufvorgängen bis hin zur finanziellen Situation. Derartige Systeme werden insbesondere zur Unterstützung des Vertriebs und für Marketingaktionen eingesetzt.

Datenbanksysteme bilden auch die Basis für sogenannte Data Warehouses. Hierbei handelt es sich um eine integrierte Datenbasis für Unternehmensdaten aus verschiedenen Quellsystemen, die zum Zweck der Analyse längerfristig und unabhängig von den Quellsystemen gespeichert werden. Aspekte von Data Warehouses werden u.a. in [KSS12] ausführlich behandelt.

Natürlich haben herkömmliche Datenbanksysteme auch Grenzen:

• Relationale Datenbanksysteme mit ihren flachen, einheitlich strukturierten Daten (siehe Kapitel 2) sind überfordert, wenn sehr tiefe, auch wechselnde Strukturen der Daten mit vielen Objekttypen benötigt werden und wenn Transaktionen viele Objekte über längere Zeiträume hinweg manipulieren. Beispiele hierfür sind CAD- und andere technische oder wissenschaftliche Anwendungen wie in der Physik, Astronomie oder Genomforschung.

• Auch Anwendungen, in denen kontinuierlich und unter Umständen große Datenmengen erzeugt werden, die möglichst zeitnah oder gar in Echtzeit verarbeitet werden müssen, stellen relationale Datenbanksysteme vor Probleme. Beispiele hierfür sind die Verarbeitung von Protokolldaten in Telekommunikationsnetzwerken, von Sensordaten in der Umweltmessung, in Logistik- und Fertigungsprozessen, der Verkehrssteuerung oder der Satellitenüberwachung. Hier verbietet sich oft schon aufgrund des Datenvolumens und der theoretischen Unendlichkeit der Daten eine Ablage in einem Datenbanksystem und eine darauf aufbauende Verarbeitung durch Anfragen.

Entwicklungslinien bei Datenbankmanagementsystemen

In den 60er Jahren entstanden die ersten Datenbanksysteme im Sinne unserer Begriffsbildung. Diese unterstützten das sogenannte hierarchische Modell bzw. das Netzwerkmodell. Diese Modelle sind an die Datenstrukturen von kommerziellen Programmiersprachen angelehnt und basieren somit auf Zeigerstrukturen zwischen Datensätzen. Dem hierarchischen Datenmodell können hierbei Baumstrukturen zugeordnet werden, während das Netzwerkmodell allgemeinere Verknüpfungen zulässt.

Die Systeme dieser ersten Generation zeichneten sich durch eine schwache Trennung zwischen interner und konzeptueller Ebene aus, so dass die Art der internen Speicherung die Anwendungsprogrammierung beeinflusste. Die Datenmanipulationssprache war navigierend anhand der Zeigerstrukturen.

Die 70er und 80er Jahre waren geprägt durch die Entwicklung der relationalen Datenbanksysteme, die zurzeit den kommerziellen Markt beherrschen. Wie wir im folgenden Kapitel 2 noch sehen werden, werden Daten in Tabellenstrukturen verwaltet, wobei das Drei-Ebenen-Konzept eine Trennung der internen von der konzeptuellen Ebene erzwingt. Relationale DBMS unterstützen eine deklarative Datenmanipulationssprache, in der Regel SQL. Die Datenmanipulationssprache ist von der Programmiersprache der Anwendungsentwicklung separiert, so dass die Kopplung der beiden Sprachwelten zwangsweise zu Problemen führt.

Seit den (späten 80er und) 90er Jahren kann die relationale Datenbanktechnik als etabliert gelten. Aktuelle Entwicklungstendenzen sind daher auf die Berücksichtigung neuer Anforderungen gerichtet.

Hierzu zählt zum einen die Verwaltung komplex strukturierter Datenbestände. So waren Ende der 90er Jahre objektorientierte Datenbanksysteme eines der populärsten Schlagworte im Datenbankbereich. Derartige Systeme ermöglichen die Zusammenfassung von Daten in komplexeren Objektstrukturen und bieten so adäquate Strukturierungskonzepte. Sie unterstützen zum Teil deklarative oder navigierende DML, wobei die deklarativen Ansätze in kommerziellen Systemen nicht ausgereift waren. Daher boten sie eine integrierte Datenbankprogrammiersprache an – zunächst als Erweiterung von C++, später dann auf Basis von Java.

Inzwischen haben objektorientierte Konzepte als objektrelationale Erweiterungen auch Eingang in die SQL-Datenbanksysteme gefunden. Im Gegensatz zu den objektorientierten Datenbanksystemen werden Entwicklungen im Bereich dieser objektrelationalen Datenbanksysteme (ORDBMS) von den großen Datenbankherstellern vorangetrieben und haben den SQL:2003-Standard beeinflusst. Ein wichtige Rolle spielt dabei insbesondere die Verwaltung raumbezogener Daten oder Geodaten (engl. Spatial Data) zur Unterstützung von Geoinformationssystemen.

Auch die Verbreitung von XML hat großen Einfluss auf die Datenbankentwicklung. Neben Datenbanksystemen, die direkt XML-Dokumente verwalten können (sogenannte native XML-Datenbanksysteme), unterstützen einige der aktuellen kommerziellen DBMS auch die Speicherung und Verarbeitung von XML-Daten in Form spezieller Datentypen. Weiterhin sind XML-Konzepte auch in neuere Versionen des SQL-Standards eingeflossen (SQL:2003 bis SQL:2008: SQL/XML).

Zur Verarbeitung von kontinuierlich erzeugten Daten wurden in den letzten Jahren Datenstrommanagementsysteme vorgeschlagen. Hierbei handelt es sich um Systeme, die kontinuierliche Anfragen auf sogenannten Datenströmen verarbeiten können.

Schließlich besteht in vielen Szenarien die Aufgabe, verteilt vorliegende und auf unterschiedliche Weise strukturierte Daten zu verknüpfen. Eine der Herausforderungen in derartigen Daten- oder Informationsintegrationssystemen ist die Überwindung der Heterogenität – der unterschiedlichen Ausprägung auf System-, Datenmodell-, Schema- und Datenrepräsentationsebene.

Obwohl – oder gerade weil – SQL die dominierende Sprache der Datenbankwelt ist, werden unter dem Sammelbegriff NoSQL verstärkt Datenbanksysteme diskutiert und realisiert, die sich bewusst nicht als SQL-Systeme sehen. NoSQL steht dabei meist für Not only SQL, auch wenn das Kürzel zuerst für no SQL stand. Verbunden ist mit dem Begriff NoSQL einerseits die Kritik an dem strikten, stark formalisierten Datenmodell von SQL, das nur schwer flexible Ad-hoc-Nutzung zulässt und beispielsweise bei der Speicherung von Dokumenten oder Netzwerkgraphen eine umständliche Modellierung erfordert. Andererseits wird SQL auch für die umständliche Erweiterbarkeit der Datenbankfunktionalität kritisiert, etwa wenn man Graphenalgorithmen auf Netzwerkgraphen realisieren möchte.

Unter NoSQL werden unterschiedlichste Systeme subsumiert. Einige Systeme zeichnen sich durch ein einfaches, aber flexibles Datenmodell aus und verzichten auf eine volle Datenbanksprache im Sinne von SQL. Andere Systeme, etwa Dokumentenspeicher oder Graph-Datenbanken, haben ein ähnlich komplexes Datenmodell nutzen aber andere Sprachansätze. Auch die bereits erwähnten objektorientierten und XML-Datenbanken werden inzwischen als NoSQL-Systeme bezeichnet, obwohl es beide deutlich länger als den Begriff No- SQL gibt. Auch hier reagieren aber die Hersteller von relationalen Datenbanksystemen und die Standardisierer der relationalen Datenbanksprache SQL: Mit SQL:2016 gibt es erstmals die Möglichkeit, auch schwachstrukturierte Daten wie in NoSQL-Systemen zu verwalten.

1.2.3 Wann kommt was?

Wie finden sich die bisher nur kurz angerissenen Konzepte in diesem Buch wieder? Viele der diskutierten Aspekte werden im vorliegenden Buch ausführlich behandelt. Aspekte, die sich eher den internen Realisierungen zuordnen lassen, sind dem Buch „Datenbanken: Implementierungskonzepte“ von Saake, Sattler und Heuer [SSH11] (das sich einer Vorlesung „Datenbanken II“ zuordnen lässt) vorbehalten.

Die bereits angerissenen Themen können wie folgt den Kapiteln und Abschnitten des vorliegenden Buchs zugeordnet werden:

• Eine Einführung in das derzeit in der Praxis am häufigsten eingesetzte Datenbankmodell, das Relationenmodell, geben wir in Kapitel 2.

• Allgemeine Architekturfragen sind Inhalt von Kapitel 3.

• Die Frage der Datendefinition ist eng mit dem Konzept des Datenbankmodells verbunden. Diese Aufgabe gehört zu den wichtigsten Tätigkeiten beim Einsatz von DBMS und wird darum in diesem Buch sehr intensiv behandelt. Kapitel 4 führt die Grundlagen von Datenbankmodellen ein und stellt mit dem Entity-Relationship-Modell ein konkretes Modell für den Entwurf von Datenbanken vor. Die Kapitel 6, 7 und 9 diskutieren die Probleme des Datenbankentwurfs, wobei Kapitel 7 die theoretischen Grundlagen für den Entwurf relationaler Datenbanken liefert und Kapitel 9 diese dann später vertieft. Die Datendefinition für relationale Datenbanken wird in Kapitel 8 behandelt, weitere Datenbankmodelle sind Gegenstand des dritten Teils mit den Kapiteln 17 bis 22.

• Das Problem der Sichtdefinition wird in Kapitel 15 intensiver diskutiert. In den Kapiteln 13 und 16 werden des Weiteren Transaktionen, Integritätssicherung und Aspekte der Zugriffskontrolle behandelt.

• Sprachen für Anfragen und Änderungen sind naturgemäß ein wichtiger Aspekt. Die Datenbanksprache SQL wird in den Kapiteln 8 (relationaler Teil) und 11 (erweiterte Konzepte) vorgestellt. Formale Grundlagen sind Gegenstand von Kapitel 5 (speziell Relationenalgebra) bzw. 10 (Relationenkalküle und erweiterte Anfragemodelle), weitere Datenbanksprachen werden in Kapitel 12 behandelt.

• Der Bereich der Datenbankanwendungsprogrammierung wird in Kapitel 14 behandelt.

• Eine Reihe von Themen, die sich eher der Implementierung von DBMS zuordnen lassen, werden im vorliegenden Buch nicht behandelt, sondern sind einem anderen Buch der Autoren vorbehalten. Insbesondere die interne Dateiorganisation ist den „Datenbanken-Implementierungstechniken“ zugeordnet und wird in [SSH11] in den Kapiteln 5 und 6 ausführlich behandelt. Dies gilt ebenfalls für die Themenfelder Zugriff auf Speichermedien, Auswertung und Optimierung von Anfragen. Eine ausführliche Diskussion dieser Konzepte erfolgt in den Kapiteln 7 und 8 von [SSH11].

1.3 Beispielanwendung

In diesem Buch greifen wir größtenteils auf dasselbe Beispiel zurück, das einen kleinen Teil der Möglichkeiten einer Datenbankanwendung anhand einer kleinen Weinkellerverwaltung beschreiben soll. Unsere Anwendung umfasst folgende Objekttypen, zu denen Informationen in einem Datenbanksystem gespeichert werden3:

• Zu jedem Wein wollen wir folgende Eigenschaften verwalten: den Namen, die Farbe (rot, weiß, rosé), den Jahrgang sowie den Restzuckergehalt (die Restsüße).

• Ein Erzeuger ist ein Weinproduzent, von dem wir den Namen (das Weingut) und die Adresse bzw. die Region (wie das Napa Valley in Kalifornien, das Barossa Valley in Australien oder Saint Émilion in Frankreich) speichern.

• Das Anbaugebiet ist die geographische Region, in der ein Wein mit dem Namen der Region angebaut wird, so z.B. Bordeaux in Frankreich, Kalifornien oder der Rheingau in Deutschland. Demzufolge werden die Eigenschaften Name und Land benötigt.

• Eine Rebsorte ist durch den Namen und die Farbe gekennzeichnet, beispielsweise Zinfandel (rot), Riesling (weiß) oder Cabernet Sauvignon (rot).

• Ein Gericht ist eine Speise mit einem Namen (z.B. Rinderbraten, Kalbsleber) und einer Beilage wie Pommes Frites, Thüringer Klößen oder Risotto.

• Ein Kritiker ist ein Weinexperte, zu dem wir den Namen und die Organisation (Firma, Verlag usw.) verwalten.

Die genannten Objekttypen stehen miteinander in vielfältigen Beziehungen, die ebenfalls in der Datenbank verwaltet werden sollen:

• Ein Erzeuger produziert Weine, beispielsweise produziert das (fiktive) Weingut „Helena“ einen Zinfandel.

• Weiterhin ist ein Erzeuger in einem Anbaugebiet angesiedelt. So sitzt das Weingut „Helena“ im kalifornischen Napa Valley.

• Ein Wein wird aus einer oder mehreren Rebsorten hergestellt, etwa der kalifornische Opus One aus „Cabernet Sauvignon“, „Cabernet Franc“ und „Merlot“.

• Ein Weinkritiker empfiehlt einen Wein zu einem Gericht, z.B. einen bestimmten Bordeaux-Wein zu Rinderbraten.

Im Anhang A werden Darstellungen der modellierten Anwendungsdaten sowohl in einem abstrakteren Modell, dem Entity-Relationship-Modell, kurz ER-Modell (siehe Kapitel 7), als auch im Relationenmodell angegeben. Dort sind auch einige Beispieldaten aufgeführt. Für die verschiedenen Namen von Objekten, Beziehungen und Eigenschaften werden wir gegebenenfalls auch Abkürzungen verwenden, falls wir dies zur Darstellung aus Platzgründen benötigen.

Natürlich ist eine einzelne Beispielanwendung nicht für alle Problembereiche gleichermaßen zur Veranschaulichung geeignet, so dass wir in einigen Abschnitten kleinere Ergänzungen, Vereinfachungen oder Änderungen vornehmen, wenn damit die jeweiligen Konzepte besser verdeutlicht werden können.

1.4 Vertiefende Literatur

Die Grundkonzepte von Datenbanksystemen sind in vielen Lehrbüchern aufbereitet, die wir an dieser Stelle nicht alle explizit aufzählen wollen. Stellvertretend seien hier nur einige der Klassiker erwähnt: es sind die Bücher Garcia- Molina, Ullman und Widom [GUW09], Elmasri und Navathe [EN17], Silberschatz, Korth und Sudarshan [SKS10], Ramakrishnan und Gehrke [RG03], Kemper [Kem15] und Maier [Mai83]. Vertiefende Literatur zu den einzelnen Themenkomplexen werden in den einzelnen Abschnitten angegeben. Auch die historische Entwicklung wird zum Teil in diesen Lehrbüchern abgehandelt und spiegelt sich in den wechselnden Themenschwerpunkten der großen Datenbanktagungen und -zeitschriften wider.

Die Standardisierung der Drei-Ebenen-Architektur und der verschiedenen Datenbanksprachen durch ANSI-SPARC kann in [TK78, Dat86a] oder [LD87] nachgelesen werden. Die neun Aufgaben eines Datenbanksystems – die Codd’schen Regeln – wurden von Codd in [Cod82] definiert.

1.5 Übungsaufgaben

Übung 1-1 Vergleichen Sie die Dateiverwaltung eines Betriebssystems, etwa ein Dateisystem von UNIX/Linux oder einer neueren Windows-Version, mit einem Datenbankmanagementsystem! Welche Funktionalität stimmt überein, wo liegen die Unterschiede?

Übung 1-2 Überlegen Sie sich umgangssprachlich formulierte Anfragen und Änderungsoperationen, die Ihrer Meinung nach in einer Bibliotheksanwendung häufig anfallen.

2

Relationale Datenbanken – Daten in Tabellen

Relationale Datenbanken sind die dominierende Form der strukturierten Datenhaltung in aktuellen Anwendungssystemen. Viele Themen dieses Buches beziehen sich auf Modelle, Theorie und Sprachen für relationale Datenbanken. Dieses Kapitel gibt einen kurzen Überblick über Kernkonzepte derartiger Datenbanken, um den Einstieg in die einzelnen vertiefenden Themenblöcke zu vereinfachen, indem der Leser bereits das große Gesamtbild vor Augen haben kann.

2.1 Relationen für tabellarische Daten

Im täglichen Leben liegen viele Daten in Tabellen vor – seien es Spielergebnisse einer Bundesliga, Kontoauszüge oder Prüfungseinschreibungslisten. Daher liegt es nahe, sich zu überlegen, ob Tabellen als universelle Datenbankstruktur gut geeignet sind. Tatsächlich gilt dies für die meisten Daten, insbesondere für Daten, die kommerziellen Anwendungen zugrunde liegen und dort automatisch verarbeitet werden müssen.

Das relationale Datenbankmodell setzt nun genau diese Idee um: eine Datenbank ist hier eine Menge von Tabellen. Mathematisch kann man Tabellen als Darstellung von Relationen auffassen – daher die Namensgebung.

Abbildung 2.1 zeigt zwei Tabellen, die Daten aus unserer Beispielanwendung beinhalten. Eine Tabelle enthält Zeilen, die jeweils Informationen über einen Wein zusammenfassen. In der zweiten Tabelle werden Informationen über Weingüter, die diese Weine herstellen, gespeichert.

[image:]

Abbildung 2.1: Relationen über Weine und deren Erzeuger

Im Gegensatz zu Datensätzen, die in üblichen Programmiersprachen verarbeitet werden, sind in dieser tabellarischen Speicherung keine Referenzen möglich. Will man also wissen, in welcher Region ein Wein hergestellt wurde, muss man in der Tabelle WEINE den Namen des Weinguts nehmen, um in der zweiten Tabelle ERZEUGER die Region nachschlagen zu können.

2.1.1 Begriffe im Relationenmodell

Basierend auf den Beispieltabellen aus Abbildung 2.1 können wir nun die grundlegenden Begriffe der tabellarischen Datenhaltung einführen. Abbildung 2.2 verdeutlicht die Nutzung dieser Begriffe anhand der visuellen Darstellung.

• Eine gespeicherte Tabelle wird als Relation bezeichnet. Der Relationenname steht der tabellarischen Darstellung voran. Die Begriffe Relationenname und Relation werden oft synonym genutzt. Ein Beispiel für einen Relationennamen ist ERZEUGER aus Abbildung 2.1.

• Der „Tabellenkopf“ legt die Anzahl, Bezeichnung und Typisierung der Spalten fest. Er wird als Relationenschema bezeichnet.

• Eine Spaltenüberschrift im Tabellenkopf legt ein Attribut fest. Gezeigt wird hierbei der Attributname, weitere Festlegungen wie der Datentyp etc. werden in der graphischen Darstellung oft ausgeblendet. Ein Beispiel für ein Attribut ist Weingut in der Tabelle ERZEUGER.

[image:]

Abbildung 2.2: Begriffe bei tabellarische Daten

• Eine Zeile der Tabelle bezeichnen wir als Tupel.

• Die Menge aller Einträge, also aller gespeicherten Tupel, bildet die Relation an sich.

• Ein Eintrag in ein Feld eines Tupels ist ein konkreter Attributwert. Ein Beispiel für einen Attributwert des Attributs Weingut in der Tabelle ERZEUGER ist ‘Creek’.

Wir hatten ja bereits erwähnt, dass es in relationalen Datenbanken keine Referenzen auf Datenobjekte gibt. Wir müssen daher einen anderen Weg finden, um Verbindungen zwischen Datenobjekten eindeutig zu halten. Diesem Zwecke dienen spezielle Integritätsbedingungen, die wir im Folgenden einführen werden.

2.1.2 Integritätsbedingungen: Schlüssel

Die erste von uns eingefügte Integritätsbedingung ist die Schlüsselbedingung. Die Schlüsselbedingung besagt, dass die Attributwerte einer Spalte die gespeicherten Tupel eindeutig identifizieren. Diese Eigenschaft bezeichnen wir als Schlüsseleigenschaft.

In unserem Beispiel gilt, dass die Weingut-Werte in der Tabelle ERZEUGER diese Eigenschaft haben. Schlüsselattribute können in der graphischen Darstellung durch Unterstreichen gekennzeichnet werden, wie in Abbildung 2.3 gezeigt.

[image:]

Abbildung 2.3: Relation mit Schlüsselattribut

Auch Attributkombinationen können Schlüssel sein, etwa in einer Datenbank über Personen die Kombination aus Name, Vorname und Geburtsdatum. Für eine Tabelle kann es mehrere mögliche Schlüssel geben, etwa die Personalausweisnummer und die Matrikelnummer in einer Studierendenverwaltung für eine Tabelle STUDIERENDE. Hier wird dann ein Schlüssel als Primärschlüssel ausgewählt; nur dieser Schlüssel wird durch Unterstreichen visualisiert, um die Darstellung eindeutig zu halten.

Beide eben genannten Beispiele zeigen übrigens, dass die Festlegung der Schlüssel oft eine Entwurfsentscheidung ist, und nicht aus der Realität abgeleitet werden kann.

2.1.3 Integritätsbedingungen: Fremdschlüssel

Mit der Einführung der Schlüsselbedingung haben wir nun die Möglichkeit, Einträge in einer gespeicherten Tabelle eindeutig zu identifizieren. Mit anderen Worten, die Schlüsselwerte einer Tabelle können in einer anderen (oder derselben!) Tabelle als eindeutige Verweise genutzt werden.

Derartige Verweise bezeichnen wir als Fremdschlüssel. Wir fordern weiterhin, dass diese Verweise nicht „ins Leere führen“, also tatsächlich zu einem gespeicherten Datenobjekt gehören. Diese Eigenschaft bezeichnen wir als referentielle Integrität.

In unseren Beispiel dienen die Weingut-Werte in Tabelle WEINE als Verweise auf Tupel der ERZEUGER-Tabelle. Die Abbildung 2.4 verdeutlicht dies.

In unserem Beispiel wird die referentielle Integrität durch die Angabe Weingut → ERZEUGER im Tabellenkopf ausgedrückt. Eine andere, verbreitete Visualisierung ist die Verbindung zweier Attribute in zwei Tabellen mit einem Pfeil. Die Bedingung ist nun, dass jeder in der Tabelle WEINE auftauchende Weingut-Wert tatsächlich in der Tabelle ERZEUGER als Schlüsselwert eines Tupels auftritt. Die Schlüsselbedingung in der Tabelle ERZEUGER gewährleistet nun, dass es sich wirklich um eine eindeutige Referenz handelt.

Wie kommt nun die merkwürdige Bezeichnung Fremdschlüssel zustande? Es handelt sich ja bei Weingut in der Tabelle WEINE gerade nicht um einen Schlüssel, da es ja mehrere Weine zu einem Weingut gibt. Die Bezeichnung kommt nun daher, dass ein Fremdschlüssel ein Schlüssel in einer „fremden“ Tabelle sein muss.

[image:]

Abbildung 2.4: Beispiel für referentielle Integrität

2.2 Datendefinition in SQL

SQL ist das „intergalactic data speak“ der relationalen Datenbanken. SQL ist bewusst so entworfen worden, dass es Befehlssätzen der englischen Sprache nachempfunden wurde — ursprünglich stand das erste Sprachkürzel SEQUEL für „structured english query language“.

Wir haben bereits das relationale Datenbankmodell kennengelernt, und können uns nun ansehen, wie Tabellen in SQL definiert werden. Diesen Teil von SQL nennt man Datendefinitionssprache (kurz DDL für „data definition language“).

Die Anweisung create table beginnt der Sprachphilosophie von SQL konsequenterweise mit den Befehlsworten „create table“ als englischsprachiger Anweisung. Danach folgt eine klassische Strukturdeklaration analog zu einer Programmiersprache:

[image:]

Die Wirkung dieses Kommandos ist sowohl die Ablage des Relationenschemas im Data Dictionary als auch die Vorbereitung einer „leeren Basisrelation“ in der Datenbank.

Tabellen können nicht nur angelegt werden, sondern auch wieder entfernt werden. Das Löschen einer Tabelle erfolgt mittels der Anweisung drop table.

Der Effekt ist das komplette Löschen einer Tabelle — sowohl der Inhalt der Tabelle als auch der Eintrag im Data Dictionary wird gelöscht:

[image:]

Bevor wir uns die Deklaration einer Tabelle am Beispiel ansehen, werden wir kurz die möglichen Wertebereiche für Attributwerte in SQL diskutieren.

2.2.1 Mögliche Wertebereiche in SQL

Relationale Datenbanken und somit auch SQL wurden ursprünglich für finanzielle und betriebswirtschaftliche Anwendungen entwickelt – numerische Werte, Geldwerte, Datumsangaben und Zeichenketten sind daher zentrale Wertebereiche für Tabellen. Wir werden später eine umfangreiche Liste der Wertebereiche in SQL vorstellen – für unser kleines Weinhandelsbeispiel benötigen wir nur die folgenden:

• integer (oder auch integer4, int) für ganze Zahlen, sowie

• character varying(n) (oder kurz varchar(n)) für Zeichenketten variabler Länge bis zur Maximallänge n.

2.2.2 Beispiele für die Datendeklaration

Als einfaches Beispiel für create table betrachten wir die Deklaration der Tabelle WEINE:

[image:]

Neben dem Einsatz der Definition von Wertebereichen für Attribute zeigt unser Beispiel die Definition einer Schlüsselbedingung. Die Angabe primary key kennzeichnet die Spalte WeinID als Schlüsselattribut der Tabelle WEINE.

Nicht nur Schlüsselbedingungen können deklariert werden, sondern auch Fremdschlüsselbedingungen. Das folgende Beispiel der Deklaration der Tabelle WEINE zeigt ein create table mit Angabe eines Fremdschlüssels.

[image:]

Die Angabe foreign key kennzeichnet die Spalte Weingut als Fremdschlüssel. Dabei muss die „Zieltabelle“ der Referenzierung explizit angegeben werden.

2.2.3 Nullwerte

Eine Angabe bei der Tabellendeklaration haben wir bisher nicht erläutert. Die Angabe not null schließt in bestimmten Spalten sogenannte Nullwerte als Attributwerte aus. Ein Nullwert heißt soviel wie „nicht bekannt“ oder „nicht zutreffend“, und zeigt einen fehlenden Wert an. Nullwert kommt dabei nicht von der (deutschen) Null, sondern von dem englischen Wort null und bezeichnet also nicht die Zahl 0 (englisch „zero“). In unserem Beispiel muss jeder Wein einen Namen haben, während Farbe und Jahrgang nicht unbedingt angegeben sein müssen.

Die Kennzeichnung von Nullwerten erfolgt in SQL durch das Schlüsselwort null; in theoretischen Beispielen wird eher die mathematische Notation ⊥ genutzt. Die Angabe null repräsentiert die Bedeutung „Wert unbekannt“, „Wert nicht anwendbar“ oder „Wert existiert nicht“, gehört aber zu keinem Wertebereich. Die Angabe null kann in allen Spalten auftauchen, außer in Schlüsselattributen und den mit not null gekennzeichneten Spalten.

2.3 Grundoperationen: Die Relationenalgebra

Nachdem wir nun Tabellen als Datenstruktur für Datenbankinhalte kennengelernt haben, wenden wir uns nun den Möglichkeiten zu, aus Datenbanken Informationen zu extrahieren. Hierzu betrachten wir zuerst Basisoperationen auf Tabellen, die die Berechnung von neuen Ergebnistabellen aus gespeicherten Datenbanktabellen erlauben. Diese Operationen werden zur sogenannten Relationenalgebra zusammengefasst.

In der Mathematik ist eine Algebra definiert durch einen Wertebereich sowie darauf definierten Operationen. Bei Datenbankanfragen entsprechen die Tabellen der Datenbank den Werten, die Operationen sind dann Funktionen zum Berechnen der Anfrageergebnisse. Da alle Operationen als Eingabe jeweils Tabellen haben und als Ergebnis eine neue Tabelle berechnen, sind diese Operationen beliebig kombinierbar (und erlauben durch Schachtelung komplexe Anfragen).

Die theoretischen Grundlagen von Tabellen sind Relationen, also Mengen von Tupeln mit benannten Attributen. Einige Operationen sind daher naheliegend: Wir können die üblichen Mengenoperationen auf Mengen von Tupeln anwenden, etwa die Vereinigungsmenge oder Schnittmenge bilden, und können Attribute umbenennen. Dies reicht natürlich nicht aus, um beliebige Anfragen umzusetzen.

Erstaunlicherweise reichen drei weitere Operationen aus, um die meisten Anfragen zu realisieren: die Projektion, die Selektion und der Verbund. Zusammen mit den genannten einfachen Mengenoperationen und der Umbenennung von Spalten konstituieren diese Operationen die Relationenalgebra.

[image:]

Abbildung 2.5: Projektion, Selektion und Verbund

Abbildung 2.5 verdeutlicht die Bedeutung der drei neuen Operationen: Die Projektion wählt Spalten aus, die Selektion als Gegenstück dazu Tupel, und der Verbund verschmilzt die Tupel zweier Relationen basierend auf übereinstimmenden Werten gleichbenannter Spalten. Wir werden nun alle genannten Operationen an Beispielen erläutern.

2.3.1 Selektion σ

Als erste Operation betrachten wir die Selektion. Als Operationssymbol dient der kleine griechische Buchstabe Sigma, also σ. Die Selektion dient der Auswahl von Zeilen einer Tabelle anhand eines Selektionsprädikats. Das Selektionsprädikat wird dabei rechts unten am Operatorsymbol notiert. Ein Beispiel ist die folgende Anwendung der Selektion, die Weine mit Jahrgängen größer 2015 selektiert.

[image:]

Abbildung 2.6 zeigt das Ergebnis dieser Selektion.

Als Selektionsprädikate treten üblicherweise einfache Bedingungen auf, also Vergleiche von Attributwerten mit Konstanten, beziehungsweise auch der Vergleich zweier Attribute (etwa der Vergleich eines Herstellungsdatums mit dem Verkaufsdatum).

[image:]

Abbildung 2.6: Ergebnis einer Selektion

2.3.2 Projektion π

Die Projektion dient der Auswahl von Spalten durch Angabe einer Attributliste. Als Operationssymbol wird der kleine griechische Buchstabe Pi genutzt, also π. Die Attributliste wird wieder rechts unten am Operatorsymbol notiert, wobei die Attributnamen durch Kommata separiert werden.

Als Bespiel betrachten wir die Auswahl einer einzelnen Spalte Region aus der ERZEUGER-Tabelle:

[image:]

In Abbildung 2.6 ist das Ergebnis dieser Projektion abgebildet.

[image:]

Abbildung 2.7: Ergebnis einer Projektion

Da es sich bei Relationen um Mengen von Tupeln handelt, entfernt die Projektion ansonsten doppelte Tupel automatisch.

2.3.3 Natürlicher Verbund [image:]

Der Verbund (engl. join) verknüpft Tabellen über gleichbenannte Spalten, indem er jeweils zwei Tupel verschmilzt, falls sie dort gleiche Werte aufweisen. Als Operatorsymbol wird das Symbol [image:] genutzt. Wir bezeichnen diesen Verbund als natürlichen Verbund, da es natürlich erscheint, gleichbenannte Spalten zur Verknüpfung heranzuziehen, da gleichbenannte Spalten in der Regel dieselbe Bedeutung haben. Natürlich gilt Letzteres nicht immer – man denke an Namen von Personen und an Namen von Produkten.

Als Beispiel für den natürlichen Verbund betrachten wir den folgenden Ausdruck der Relationenalgebra:

[image:]

In Abbildung 2.8 ist das Ergebnis der Verbundberechnung abgebildet. Wir haben einige Attribute von WEIN durch Pünktchen nur angedeutet, da die Tabelle sonst zu breit geworden wäre.

[image:]

Abbildung 2.8: Ergebnis eines Verbunds

Zur Verbundberechnung werden die Werte in der Spalte Weingut herangezogen, die in beiden Eingabetabellen gleichbenannt ist. Zwei Tupel werden verschmolzen, wenn die Werte in dieser Spalte übereinstimmen.

Im Ergebnis des Beispiel-Verbunds taucht jeder Wein nur einmal auf – dies liegt daran, dass das gemeinsame Attribut Weingut in ERZEUGER ein Schlüssel ist. Das Weingut „Château La Pointe“ ist im Ergebnis verschwunden da Tupel, die keinen Partner finden (sogenannte dangling tuples), nicht im Ergebnis aufgenommen werden. Umgekehrt kann kein WEIN verschwinden, da die Fremdschlüsselbedingung in diesem Fall dafür sorgt, dass ein passender ERZEUGER existiert.

Das folgende Beispiel zeigt dass die Operatoren kombiniert werden können, um komplexe Anfragen formulieren zu können.

[image:]

Das Ergebnis dieser Anfrage ist in Abbildung 2.9 abgebildet.

[image:]

Abbildung 2.9: Ergebnis eines komplexen Algebraausdrucks

2.3.4 Umbenennung ß

Die Anpassung von Attributnamen erfolgt mittels des Umbenennung-Operators. Wieder wird ein griechischer Buchstabe als Operatorsymbol genutzt, hier nun der kleine griechische Buchstabe Beta, also ß.

Abbildung 2.10 zeigt zwei Tabellen, die derart angeglichen werden sollen, dass beide denselben Attributnamen für ihre eine Spalte haben.

[image:]

Abbildung 2.10: Zwei durch Umbenennung anzugleichende Tabellen

Das Angleichen kann nun wie folgt geschehen:

[image:]

Dieses Beispiel zeigt auch die Syntax der Angabe des alten und des neuen Attributnamens.

2.3.5 Mengenoperationen

Die Mengenoperationen Vereinigung, Differenz und Durchschnitt sind die aus der Schulmathematik bekannten Operationen. Wir werden die drei Operationen der Reihe nach kurz vorstellen.

Die Vereinigung r1 ∪ r2 von zwei Relationen r1 und r2 ergibt die Gesamtheit der beiden Tupelmengen. Eine Vereinigung kann nur erfolgen, wenn die Attributmengen beider Relationen identisch sind.

Als Beispiel vereinigen wir die beiden durch Umbenennung angeglichenen Tabellen aus Abbildung 2.10.

[image:]

Abbildung 2.11 zeigt links das Ergebnis dieser Beispielanfrage.

Die Differenz r1 – r2 eliminiert die Tupel aus der ersten Relation, die auch in der zweiten Relation vorkommen. Wir nutzen das selbe Beispiel für eine illustrierende Anfrage:

[image:]

[image:]

Abbildung 2.11: Ergebnisse von Vereinigung, Differenz und Schnittmenge

In der Abbildung 2.11 ist das Ergebnis dieser Beispielanfrage in der Mitte zu sehen.

Der Durchschnitt r1 ∩ r2 als dritte Mengenoperation ergibt die Tupel, die in beiden Relationen gemeinsam vorkommen:

[image:]

In der Abbildung 2.11 ist das Ergebnis dieser Beispielanfrage rechts zu sehen.

2.4 Qualität entworfener Tabellen

Relationale Tabellen lassen sich leicht definieren – man muss ja nur einfach die Attribute einer Tabelle auflisten. Nicht alle definierten Tabellen sind dabei von gleicher Qualität. In diesem Abschnitt werden wir anhand einfacher Beispiele motivieren, welche Qualitätsdefizite bei relationalen Tabellen auftreten, und mit welchem formalen Methoden wir diese Defizite erkennen und beseitigen können.

Die Qualitätsmaße für Tabellen sind dabei als Normalformen bekannt. Bekannt sind insbesondere die erste bis vierte Normalform, obwohl es eine Reihe weiterer Normalformen gibt. Die erste Normalform ist dabei nicht schwer zu überprüfen und eigentlich nur die Vorbedingung, damit Defizite automatisch erkennt werden können:

• Eine Tabelle ist in erster Normalform, wenn alle Attributwerte elementare Datenwerte darstellen, und keine, auch keine versteckte, Struktur aufweisen.

Verboten sind somit Listen, Aufzählungen, Vektoren, Matrizen etc. als Attributwerte – auch wenn sie in einer, ansonsten ja erlaubten, Zeichenkette versteckt kodiert sind (etwa als kommaseparierte Aufzählung).

Wir werden in diesem Überblickskapitel nicht detailliert auf die weiteren Normalformen eingehen, sondern werden sie, insbesondere die dritte Normalform, an einem Beispiel verdeutlichen.

[image:]

Abbildung 2.12: Erweiterte WEINE2-Tabelle mit Redundanz

In Abbildung 2.12 haben wir die Daten unserer ursprünglichen WEINE-Tabelle um die bisher in der separaten Tabelle ERZEUGER gespeicherten Informationen über das Anbaugebiet und die Region erweitert. Diese neue Tabelle WEINE2 entspricht dem im letzten Abschnitt diskutierten natürlichen Verbund der beiden ursprünglichen Tabellen. In der Tabelle WEINE2 sind dieselben Daten gespeichert wie vorher in den beiden separaten Tabellen – bis auf die Informationen zu dem Weingut, für das kein Wein gespeichert ist und das deshalb beim natürlichen Verbund wegfällt.

Allerdings zeigt diese neue Speicherung der Daten ein neues Risiko. Die Information, in welchem Anbaugebiet und in welcher Region ein Weingut liegt, ist nun redundant, also mehrfach, gespeichert. Die Angabe, dass das Weingut Creek in Südaustralien liegt, wird zweimal gespeichert. Warum bezeichnen wir dies als Risiko? Um dies zu zeigen, fügen wir einen weiteren Wein in unsere Tabelle ein. Abbildung 2.13 zeigt die entstandene Tabelle.

[image:]

Abbildung 2.13: Problematisches Einfügen in die neue WEINE2-Tabelle

Durch das Einfügen des Primitivo-Weines haben wir – wahrscheinlich aus Versehen – eine inkorrekte Information in die Datenbank eingespeist. Das Weingut Creek liegt bei diesem Wein nun in Italien! In der ursprünglichen Speicherung in zwei Tabellen war dies nicht möglich, da Weingut der Schlüssel für die ERZEUGER-Tabelle war.

Wie können wir nun derartige Redundanzen erkennen? In unserem Beispiel liegt es daran, dass das Weingut eindeutig ein Anbaugebiet und eine Region festlegen soll. Ist in zwei Tupeln der Tabelle also dasselbe Weingut eingetragen, müssen auch die Werte von Anbaugebiet und Region übereinstimmen.

Wir werden derartige Abhängigkeiten zwischen Attributen als funktionale Abhängigkeiten kennenlernen. Funktionale Abhängigkeiten werden wir wie folgt notieren:

[image:]

Schlüsselbedingungen stellen spezielle funktionale Abhängigkeiten dar.

Wir können nun Redundanzen vermeiden, wenn wir alle funktionalen Abhängigkeiten durch Schlüsselbedingungen kontrollieren. In der ursprünglichen Speicherung erfolgte dies für die genannte funktionale Abhängigkeit, da sie die Schlüsselbedingung in der Tabelle ERZEUGER formalisiert.

Allerdings stellen wir bei genauerer Analyse fest, dass eine weitere funktionale Abhängigkeit existiert:

[image:]

Wollen wir auch diese funktionale Abhängigkeit durch Schlüssel kontrollieren, müssen wir auch unsere Tabelle ERZEUGER aufteilen und die Daten in drei Tabellen speichern, wie in Abbildung 2.14 gezeigt.

[image:]

Abbildung 2.14: Wein-Daten in drei Relationen gespeichert

Die Speicherung in drei Relationen beseitigt eine weitere Redundanz der ursprünglichen Speicherung in zwei Tabellen: Dort war die Information, dass das Napa Valley in Kalifornien angesiedelt ist, zweimal gespeichert.

Die Ursache unserer Redundanzen war, dass die Region durch das Anbaugebiet eindeutig festgelegt ist, das Anbaugebiet durch das Weingut, und dieses wiederum durch die WeinID. Wir bezeichnen derartige Ketten von Abhängigkeiten als transitive Abhängigkeiten. Wir werden später die dritte Normalform als Qualitätskriterium für Tabellen kennen lernen, die genau derartige transitive Abhängigkeiten als problematische Strukturen eliminiert.

2.5 SQL als Anfragesprache

SQL ist die unangefochtene Standardsprache für relationale Datenbanken. Der Entwurf der Sprache folgt nicht den Richtlinien des Entwurfs moderner Programmiersprachen. Stattdessen war das Ziel nahe an der (englischen!) gesprochenen Sprache zu bleiben, aber trotzdem formal eindeutige Aussagen zu beschreiben. Daher ist der Aufbau von Anweisungen in SQL an englischen Befehlssätzen orientiert, aber Details oft an Gepflogenheiten von Programmiersprachen angelehnt.

Auf Englisch könnte man etwa folgenden Auftrag als Befehlssatz formulieren: „Please select names and colours from those wines where the vintage is 2017!“.

Die korrespondierende Anfrage in SQL lautet wie folgt (allerdings mit deutschen Relations- und Attributnamen):

[image:]

Diese Anfrage in SQL realisiert eine Selektion und eine Projektion der Relationenalgebra auf einer einzelnen Tabelle. Man sollte dabei beachten, dass das SQL-Schlüsselwort select hier den Teil der Projektion einleitet, und nicht die Selektion.

Auf das höfliche „Please“ wurde einem Computer gegenüber verzichtet – ansonsten ist die Ähnlichkeit frappierend. Für Attributsauflistungen und für Bedingungen wurde auf bewährte Notationen von Programmiersprachen zurückgegriffen (kommaseparierte Listen und prädikatenlogische Ausdrücke).

Im Gegensatz zur Mengensemantik der relationalen Algebra hat SQL eine Multimengensemantik – Duplikate in Tabellen werden in SQL nicht automatisch unterdrückt. Soll die Mengensemantik erzwungen werden, geschieht dies durch die Angabe distinct wie im folgenden Beispiel:

[image:]

Im Gegensatz zur relationalen Algebra ist die Standardform der Verknüpfung von zwei Tabellen durch Verschmelzen von Tupeln das Kreuzprodukt.

[image:]

Beim Kreuzprodukt wird jedes Tupel der ersten Relation mit jedem Tupel der zweiten kombiniert. In unserem Beispiel taucht das Attribut Weingut tatsächlich zweimal in den Ergebnistupeln auf – notiert als WEINE.Weingut und als ERZEUGER.Weingut. Ein Abgleich der Werte von Weingut erfolgt dabei nicht.

In den ersten Versionen von SQL war das Kreuzprodukt als einzige derartige Operation vorgesehen. In den aktuellen Versionen ist der natürliche Verbund durch den Operator natural join ebenfalls möglich:

[image:]

Wird dieser Operator nicht genutzt, kann der Verbund alternativ durch Angabe einer expliziten Verbundbedingung realisiert werden:

[image:]

Diese Notation ist natürlich fehleranfälliger, wenn mehrere Tabellen verknüpft werden sollen, da schon mal leicht eine Verbundbedingung vergessen werden kann. Trotzdem wird diese Variante als Basisvariante sehr oft von Anwendungsprogrammierern genutzt.

Genau wie bei der Relationenalgebra liegt die Stärke von SQL darin, komplexe Anfragen durch die Kombination von Bedingungen zu formulieren. Betrachten wir den folgenden Ausdruck in der Relationenalgebra:

[image:]

Die korrespondierende Anfrage in SQL lautet nun wie folgt:

[image:]

Dieses Beispiel zeigt gut, wie die Basisoperationen Selektion, Projektion und Verbund in SQL realisiert werden.

Auch die Mengenoperationen der Relationenalgebra sind in SQL integriert. Die Vereinigung in SQL wird explizit mit union notiert. Die Differenzbildung hingegen wird oft durch geschachtelte Anfragen realisiert wie im folgenden Beispiel:

[image:]

Wir werden später in Kapitel 8 die Sprache SQL vollständiger und im Detail vorstellen. Hier fahren wir nun mit denjenigen SQL-Sprachmitteln fort, die Änderungen der gespeicherten Daten erlauben.

2.6 Änderungsoperationen in SQL

Tabellen sind eine einfache Datenstruktur, in der Tupel isoliert geändert werden können – sofern die Integritätsbedingungen nicht verletzt werden. In SQL gibt es daher genau drei grundlegende Änderungsoperationen:

• Die insert-Operation realisiert das Einfügen eines oder mehrerer Tupel in eine Tabelle.

• Mittels update wird das Ändern von einem oder mehreren Tupeln durchgeführt.

• Als dritte Operation ermöglicht delete das Löschen eines oder mehrerer Tupel.

Lokale und globale Integritätsbedingungen müssen bei allen Änderungsoperationen automatisch vom System überprüft werden. So darf eine Einfügeoperation nicht die Schlüsselbedingung verletzen, und ein Update darf keine Verletzung einer Fremdschlüsselbeziehung nach sich ziehen.

Wir werden uns die Realisierung dieser drei grundlegenden Änderungsoperationen in SQL nun genauer ansehen.

2.6.1 Die update-Anweisung

Die erste von uns betrachtete Änderungsoperation ist das update zum Ändern von Attributwerten gespeicherter Tupel. Der Philosophie von SQL folgend sind per se erst einmal alle Änderungsoperationen Operationen auf Mengen von Tupeln. Teil einer Änderung ist somit die Qualifikation derjenigen Tupel, die zu ändern sind.

Die Syntax des Update-Operators lautet dabei wie folgt:

[image:]

Die folgende Anweisung zeigt ein einfaches Beispiel für update, in dem die Preise für einige Weine erhöht werden (ausgewählt nach dem Jahrgang):

[image:]

[image:]

Abbildung 2.15: Tabelle WEINE vor und nach dem Update

Die Abbildung 2.15 zeigt die Tabelle WEINE vor und nach der Änderung. Die beiden geänderten Werte sind durch einen Kasten hervorgehoben.

Man beachte, dass die =-Symbole hinter dem set keine logische Gleichheit, sondern eine Zuweisung eines neuen Wertes bedeuten. Alle rechts des Symbols auftauchenden Attributnamen beziehen sich hierbei auf den alten Wert vor der Änderung.

Wie bereits diskutiert, sind Änderungsoperationen immer Änderungen auf Mengen von Tupeln. Möchte man genau ein Tupel ändern, spricht man von einer Eintupel-Operation. Derartige Operationen kann (und muss!) man mittels eines Primärschlüsselvergleichs erreichen:

[image:]

Gibt man keine Selektionsbedingung an, erfolgt automatisch die Änderung der gesamten Relation:

2.6.2 Die delete-Anweisung

Das Löschen von Daten folgt derselben Philosophie – gelöscht wird immer eine Menge von Tupeln, die mit einer Selektion ausgewählt wird. Die Syntax ist ebenfalls einfach gehalten:

[image:]

Wollen wir das Löschen genau eines Tupels in der WEINE-Relation durchführen, müssen wir auch beim Löschen das Schlüsselattribut WeinID nutzen.

[image:]

Der Standardfall ist aber wieder das Löschen mehrerer Tupel, zum Beispiel das Löschen aller Weißweine:

[image:]

Auch hier führt das Weglassen der Selektionsbedingung direkt zum Löschen der gesamten Relation:

[image:]

Zu beachten ist Folgendes: Löschoperationen können zur Verletzung von Integritätsbedingungen führen. Als Beispiel erfolgt eine Verletzung der Fremdschlüsseleigenschaft in unserem Beispiel, falls es noch Weine von einem Erzeuger aus Hessen gibt:

[image:]

Natürlich können auch die anderen Änderungsoperationen zur Verletzung von Integritätsbedingungen führen. Wir nennen die potenzielle Verletzung der Fremdschlüsselbedingung durch Löschen nur exemplarisch für diese Art der Verletzungen. Das Datenbankmanagementsystem muss daher bei allen Änderungen die Aufrechterhaltung der Integrität gewährleisten.

2.6.3 Die insert-Anweisung

Wir können in SQL einfach direkt Daten durch die Nennung der neuen Werte einfügen, oder Daten aus anderen Tabellen der Datenbank nutzen, um sie in einem anderen Kontext einzufügen (etwa alle Weinkritiker als potenzielle Kunden einfügen).

Für die erste Variante lautet die Syntax wie folgt:

[image:]

Die optionale Listung der Attributnamen erfolgt insbesondere, um sich bei der Reihenfolge der Attribute sicher zu sein, und um nicht alle Attribute mit Werten versehen zu müssen. Die optionale Attributliste ermöglicht daher das Einfügen von unvollständigen Tupeln, sofern die Datendefinition der Tabelle sie erlaubt.

Als erstes insert-Beispiel fügen wir ein unvollständiges Tupel in die ERZEUGER-Tabelle ein.

[image:]

Da nicht alle Attribute angegeben sind, wird der Wert des fehlenden Attributs Anbaugebiet auf null gesetzt.

Ist man sich über die Reihenfolge der Attribute sicher, kann man auf die Angabe der Attributliste verzichten:

[image:]

Die zweite Variante, also das Einfügen von berechneten Daten, erfolgt einfach durch Angabe einer SQL-Anfrage, die Daten von passender Struktur berechnet. Die Syntax lautet dabei wie folgt:

[image:]

Als Beispiel fügen wir passende Daten aus einer Lieferantentabelle in WEINE ein, wobei dort fehlende Informationen durch Konstanten ergänzt werden.

[image:]

2.7 Sichten in SQL

Häufig vorkommende Datenbankanfragen können unter einem Sichtnamen als virtuelle Tabelle gespeichert werden. Allgemein bezeichnen wir derartige virtuelle Tabellen als Sichten. Sichten können aus verschiedenen Gründen angelegt werden, etwa um die Datenbankbeschreibung zu strukturieren, oft benötigte Anfragemuster dauerhaft zur Verfügung zu stellen, oder um Bereiche der Datenbank aus Datenschutzgründen auszublenden.

Die zugehörige SQL-Klausel wird mit create view eingeleitet. Als Beispiel möchten wir die Tabelle KALIFORNIEN_WEINE definieren, die alle kalifornischen Weine enthalten soll:

[image:]

Das Ergebnis dieser als Sichtdefinition gespeicherten Anfrage ist die in Abbildung 2.16 abgebildete Relation.

[image:]

Abbildung 2.16: Definition der Sicht KALIFORNIEN_WEINE

Diese berechnete Tabelle ist nun über den Sichtnamen KALIFORNIEN_WEINE genauso ansprechbar wie WEINE oder ERZEUGER. Darüber hinaus werden Änderungen auf diesen beiden Tabellen automatisch in der Sichtrelation berücksichtigt.

2.8 Wie geht es weiter?

In diesem Kapitel haben wir erste Grundkonzepte relationaler Datenbanken an kurzen Beispielen kennengelernt. Die folgenden Kapitel werden dies nun vertiefen.

Begonnen haben wir mit einer Vorstellung von Tabellen als Grundstruktur der relationalen Datenbanken. Das Kapitel 5 vertieft dieses Modell und beschreibt die theoretische Untersetzung der hier behandelten Konzepte. Die anschließende Umsetzung der Tabellendefinition in SQL wird in Kapitel 8 in Abschnitt 8.1 in vollem Umfang vorgestellt.

Die Relationenalgebra wird im Zusammenhang der Formalisierung des Relationenmodells in Kapitel 5 diskutiert. Qualitätskriterien für relationale Datenbanken, hier verbunden mit funktionalen Abhängigkeiten und Normalformen, sind Thema in Kapitel 7.

SQL-Anfragen werden in der Basisversion in Kapitel 8 in Abschnitt 8.2 vorgestellt und später in Kapitel 11 mit weiteren Einzelheiten und Sprachkonzepten vertieft. Änderungsoperationen in SQL werden ebenfalls in Kapitel 8 in Abschnitt 8.3 behandelt. Die Sichtdefinition in SQL ist Gegenstand von Kapitel 15.

2.9 Übungsaufgaben

Übung 2-1 Schlagen Sie Tabellen vor, um Ihre Sammlung an Science-Fiction-Filmen zu verwalten, und füllen Sie diese mit Daten für 10 Filme. Was könnten Kandidaten für Schlüsselattribute sein? Wenn es mehrere Tabellen sind, welche Fremdschlüsselbedingungen existieren?

Übung 2-2 Die drei Relationen aus Abbildung 2.14 von Seite 30 sollen in SQL deklariert werden (inklusive der Angaben zur referentiellen Integrität).

Übung 2-3 Fügen Sie zwei Weine in die Tabellen der Datenbank ein. Einer der Weine sollte dabei von einem noch nicht gespeicherten Weingut produziert werden.

Teil I

Kernkonzepte relationaler Datenbanken

3

Architekturen von Datenbanksystemen

In diesem Kapitel werden wir die prinzipielle Architektur eines Datenbanksystems vorstellen. Datenbankarchitekturen kann man aus verschiedenen Blickwinkeln betrachten:

• Die Schemaarchitektur beschreibt den Zusammenhang zwischen dem konzeptuellen, internen und externen Schema. Außerdem ordnet sie die Datenbank-Anwendungsprogramme in diese Schemata ein.

• Die Systemarchitektur beschreibt den Aufbau eines Datenbanksystems aus Komponenten, Bausteinen oder Werkzeugen. In Standardisierungsvorschlägen werden die Schnittstellen zwischen diesen Komponenten genormt, nicht jedoch die Komponenten selbst.

• Die Anwendungsarchitektur beschreibt die Einbindung des Datenbanksystems in eine konkrete Applikation, etwa einen Web-Shop, eine ERP-Anwendung oder ein entscheidungsunterstützendes Data-Warehouse-System. Insbesondere wird dabei die Aufteilung der Funktionalität des Gesamtsystems auf die einzelnen Komponenten und deren Verbindung festgelegt.

Die Schemaarchitektur beschreibt im Wesentlichen drei Schemata:

• Das konzeptuelle Schema, welches das Ergebnis der Datenmodellierung, des Datenbankentwurfs und der Datendefinition ist. Diese drei Bereiche sind Thema der nächsten Kapitel.

• Das interne Schema legt die Dateiorganisationen und Zugriffspfade für das konzeptuelle Schema fest. Die Realisierung des internen Schemas ist Gegenstand des zweiten Bandes [SSH11].

• Das externe Schema ist das Ergebnis der Sichtdefinition und legt Benutzersichten auf das globale, konzeptuelle Schema fest. In der Regel handelt es sich nicht nur um ein externes Schema, sondern um mehrere anwendungsspezifische externe Schemata. Sichten werden in Kapitel 15 behandelt.

• Die Anwendungsprogramme sind das Ergebnis der Datenbankanwendungsprogrammierung und arbeiten idealerweise auf den externen Schemata.

Die Systemarchitektur enthält die folgenden Arten von Komponenten, die in einem Datenbanksystem nötig sind:

• Die Definitionskomponenten zur Datendefinition auf der konzeptuellen Ebene, zur Definition der Dateiorganisation auf der internen Ebene und zur Sichtdefinition auf der externen Ebene.

• Die Programmierkomponenten zur Datenbankprogrammierung mit Datenbankoperationen, die in herkömmliche Programmiersprachen eingebettet werden.

• Die Benutzerkomponenten wie beispielsweise erstellte Datenbankanwendungsprogramme, interaktive Anfrage- und Änderungswerkzeuge.

• Die Transformationskomponenten zur Optimierung, Auswertung und Plattenzugriffssteuerung für Datenbankoperationen und zur Transformation der Ergebnisdaten von der internen in die externe (Benutzer-)Darstellung.

Die Anwendungsarchitektur wird das Abarbeiten eines Datenbankanwendungsprogramms genauer beschreiben und außerdem eine anwendungsbezogene Sicht auf die Werkzeuge geben, mit denen man eine Datenbankumgebung für ein spezielles Problem erstellen kann.

3.1 Schemaarchitektur und Datenunabhängigkeit

Ein wesentlicher Aspekt bei Datenbankanwendungen ist die Unterstützung der Datenunabhängigkeit durch das Datenbankmanagementsystem. Sowohl Datenbanken als auch Anwendungssysteme haben in der Regel eine lange Lebensdauer, während der sowohl die Realisierung der Datenspeicherung als auch externe Schnittstellen aus verschiedensten Gründen modifiziert oder erweitert werden. Das Konzept der Datenunabhängigkeit hat das Ziel, eine (oft langlebige) Datenbank von notwendigen Änderungen der Anwendung abzukoppeln (und umgekehrt).

Die Datenunabhängigkeit kann in zwei Aspekte aufgeteilt werden:

• Die Implementierungsunabhängigkeit oder auch physische Datenunabhängigkeit bedeutet, dass die konzeptuelle Sicht auf einen Datenbestand unabhängig von der für die Speicherung der Daten gewählten Datenstruktur besteht.

• Die Anwendungsunabhängigkeit oder auch logische Datenunabhängigkeit hingegen koppelt die Datenbank von Änderungen und Erweiterungen der Anwendungsschnittstellen ab. Gleichzeitig ermöglicht die logische Datenunabhängigkeit, die Benutzersichten (also das externe Schema) möglichst stabil gegen Änderungen in der konzeptuellen Gesamtsicht eines Unternehmens (konzeptuelles Schema) zu machen.

Zur Unterstützung der Datenunabhängigkeit in Datenbanksystemen wurde bereits in den 70er Jahren von der ANSI/X3/SPARC1 Study Group on Database Management Systems eine Drei-Ebenen-Schemaarchitektur als Ergebnis einer mehrjährigen Studie vorgeschlagen [Dat86a, TK78, LD87]. ANSI ist das Kürzel für die amerikanische Standardisierungsbehörde American National Standards Institute. Die dort vorgeschlagene Aufteilung in drei Ebenen ist im Datenbankbereich inzwischen allgemein akzeptiert. Abbildung 3.1 zeigt die diesem ANSI-Vorschlag folgende, prinzipielle Schemaarchitektur.

Die ANSI-Schemaarchitektur teilt ein Datenbankschema in drei aufeinander aufbauende Ebenen auf. Von unten nach oben werden die folgenden Ebenen vorgeschlagen:

• Das interne Schema beschreibt die systemspezifische Realisierung der Datenbank, etwa die eingerichteten Zugriffspfade. Die Beschreibung des internen Schemas ist abhängig vom verwendeten Basissystem und der von diesem angebotenen Sprachschnittstelle.

• Das konzeptuelle Schema beinhaltet eine implementierungsunabhängige Modellierung der gesamten Datenbank in einem systemunabhängigen Datenmodell, zum Beispiel dem ER-Modell oder dem relationalen Modell. Das konzeptuelle Schema beschreibt die Struktur der Datenbank vollständig.

• Basierend auf dem konzeptuellen Schema können mehrere externe Schemata definiert werden, die anwendungsspezifische (Teil-)Sichten auf den gesamten Datenbestand festlegen.

Oft beschreiben externe Sichten einen anwendungsspezifischen Ausschnitt des konzeptuellen Schemas unter Benutzung desselben Datenmodells. Es ist aber auch möglich, unterschiedliche Datenbankmodelle für verschiedene externe Schemata zu verwenden.

[image:]

Abbildung 3.1: Drei-Ebenen-Schemaarchitektur für Datenbanken

Die Sprachmittel und typischen Konzepte auf den verschiedenen Ebenen werden im Folgenden exemplarisch anhand einer kleinen Beispielanwendung vorgestellt.

Zwischen den verschiedenen Schemaebenen müssen Abbildungen festgelegt werden, die die Transformation von Datenbankzuständen, Anfragen und Änderungsoperationen zwischen den Ebenen ermöglichen. Da diese Transformationen vom Datenbankmanagementsystem durchgeführt werden, müssen diese Abbildungen in einer formalen Beschreibungssprache mit festgelegter Semantik notiert werden.

Die Aufgabe der Abbildungen zwischen den Ebenen kann in zwei Problembereiche aufgeteilt werden:

• Die Anfragebearbeitung erfordert eine Übersetzung von Anfragen und Änderungsoperationen, die bezüglich der externen Schemata formuliert wurden, in Operationen auf den internen Datenstrukturen (über den Zwischenschritt der konzeptuellen Ebene).

• Die Datendarstellung erfordert eine Transformation in der umgekehrten Richtung: Die internen Datenstrukturen von Anfrageergebnissen müssen derart transformiert werden, dass sie den Beschreibungskonzepten der externen Darstellungen entsprechen.

Drei-Ebenen-Architektur am Beispiel

Wir wollen die Basisidee der Drei-Ebenen-Architektur von Datenbankschemata im Folgenden wieder anhand einer kleinen Beispielmodellierung zu unserer Weindatenbank diskutieren. Die konzeptuelle Gesamtsicht ist im relationalen Datenbankmodell beschrieben.

Die konzeptuelle Gesamtsicht

Die konzeptuelle Gesamtsicht erfolgt in relationaler Darstellung. Die Datenbank ist in zwei Relationen gespeichert, wie in Abbildung 3.2 dargestellt.

[image:]

Abbildung 3.2: Konzeptuelle Beispieldatenbank in Relationendarstellung

Schlüssel, also identifizierende Attribute in Relationen, werden durch Unterstreichung gekennzeichnet. Bezüge zwischen Relationen, die sogenannten Fremdschlüssel als Verweise auf Schlüssel, sind in der Beispielrelation mit dem Bezug zu dem Schlüssel einer anderen Relation in Form eines Pfeils → angegeben.

Externe Sichten

Eine mögliche Anwendungssicht wäre dadurch gegeben, dass die Daten in einer Relation dargestellt werden, wobei die Attribute WeinID und Jahrgang ausgeblendet werden sollen (wie in Abbildung 3.3 gezeigt).

Diese externe Sicht kann in SQL-Datenbanksystemen einfach durch eine Sichtdefinition (vgl. Kapitel 15) realisiert werden.

Dieses erste Beispiel definiert eine flache Tabelle als Sicht auf andere flache Tabellen, verlässt also den verwendeten Beschreibungsrahmen des Relationenmodells im gewissen Sinne nicht. Aber auch Sichten in einem anderen

[image:]

Abbildung 3.3: Externe Sicht auf zwei Relationen, dargestellt als eine Relation

Datenbankmodell sind möglich, etwa als eine hierarchisch aufgebaute Relation wie in Abbildung 3.4.

[image:]

Abbildung 3.4: Externe Sicht als hierarchisch aufgebaute Relation

Diese externe Darstellung ist in den meisten SQL-Datenbanken nicht möglich, entspricht aber der hierarchischen Darstellung von Tabellen, wie sie in vielen Anwendungen üblich ist. Eine derartige Datenrepräsentation ist allerdings in objektrelationalen Datenbanken möglich, die wir später noch kennenlernen werden.

Interne Darstellung

Für die interne Darstellung kann ein Datenbankmanagementsystem optimierte Datenstrukturen verwenden. Abbildung 3.5 zeigt eine mögliche Variante: die ERZEUGER-Tupel sind über das Attribut Weingut als Schlüssel in einem Mehrwegebaum organisiert. Die Datensätze selbst sind zusammen mit den zugehörigen Tupeln der Relation WEINE auf Blöcken gespeichert.

Eine derartige Organisation wird auch als Clusterspeicherung bezeichnet und zeigt, wie stark die interne Realisierung von der konzeptuellen Darstellung abweichen kann.

[image:]

Abbildung 3.5: Interne Realisierung durch Baumzugriffsstruktur und Clusterung

Eine detaillierte Einführung in diverse Formen der Speicherung und Indexunterstützung relationaler Tabellen liefert der zweite Band dieser Reihe [SSH11].

3.2 Systemarchitekturen

Systemarchitekturen beschreiben die Komponenten eines Datenbanksystems. Es gibt zwei wichtige Architekturvorschläge, die in diesem Abschnitt vorgestellt werden sollen:

• Die ANSI-SPARC-Architektur als detaillierte Version unserer etwas groben Drei-Ebenen-Architektur.

• Die Fünf-Schichten-Architektur als detaillierte Version der Transformationskomponenten der Drei-Ebenen-Architektur.

Nach diesen beiden Architekturvorschlägen werden wir auf die Architekturen konkreter Datenbanksysteme und Pseudo-Datenbanksysteme eingehen.

3.2.1 ANSI-SPARC-Architektur

Im ANSI-SPARC-Normvorschlag wurde neben der Drei-Ebenen-Schemaarchitektur auch eine Drei-Ebenen-Systemarchitektur vorgestellt. Abbildung 3.6 gibt einen Überblick über die prinzipielle Aufteilung eines Datenbankmanagementsystems in Funktionsmodule, angelehnt an drei Abstraktionsebenen. Die externe Ebene beschreibt die Sicht, die eine konkrete Anwendung auf die gespeicherten Daten hat. Da mehrere angepasste externe Sichten auf eine Datenbank existieren können, gibt die konzeptuelle Ebene eine logische und einheitliche Gesamtsicht auf den Datenbestand. Die interne Ebene beschreibt die tatsächliche interne Realisierung der Datenspeicherung.

[image:]

Abbildung 3.6: Vereinfachte Architektur eines DBMS

Der endgültige Vorschlag stammt aus dem Jahre 1978 und verfeinert die grundlegende Architektur um

• eine detailliertere interne Ebene, insbesondere mit Berücksichtigung der diversen Betriebssystemkomponenten,

• weitere interaktive und Programmierkomponenten auf der externen Ebene wie etwa Berichtgeneratoren und

• eine genaue Bezeichnung und Normierung der Schnittstellen zwischen den einzelnen Komponenten.

Wir haben uns dazu entschlossen, hier die Originalbegriffe der damaligen Standardisierung zu übernehmen, obwohl in der heutigen Zeit einige Begriffe sicher anders gewählt werden würden. So nutzen moderne DBMS nicht mehr ausschließlich Platten als Speichermedien, und statt dem Begriff „Maske“ würde man modernere Konzepte wie aus Modellen generierte GUI-Eingabefenster nennen.

Eine genauere Darstellung entnehme man der Originalliteratur [TK78, Dat86a] oder [LD87]. Die in Abbildung 3.6 aufgeführten Komponenten kann man folgendermaßen klassifizieren (siehe auch Abbildung 3.7):

[image:]

Abbildung 3.7: Klassifikation von Komponenten eines DBMS

• Die Definitionskomponenten bieten Datenbank-, System- und Anwendungsadministratoren die Möglichkeit zur Datendefinition, Definition der Dateiorganisationsformen und Zugriffspfade sowie Sichtdefinition.

• Die Programmierkomponenten beinhalten eine vollständige Entwicklungsumgebung in einer höheren Programmiersprache, einer 4GL2 oder einer graphischen Sprache, die Datenbankoperationen und in den meisten Fällen auch Werkzeuge zur Definition von Menüs, Masken und anderen Primitiven einer graphischen Benutzeroberfläche integriert.

• Die Benutzerkomponenten umfassen die interaktiven Anfrage- und Änderungs- (oder Update-)Werkzeuge für anspruchsvolle Laien und die vorgefertigten Datenbankanwendungsprogramme für den unbedarften Benutzer („Parametric User“, die in der Abbildung mit P1 bis Pn bezeichnet werden).

• Die Transformationskomponenten wandeln Anfrage- und Änderungsoperationen schrittweise über Optimierung und Auswertung in Plattenzugriffsoperationen um. Umgekehrt werden die in Blöcken der Platte organisierten Bytes in die externe Benutzerdarstellung (im Relationenmodell: Tabellen) transformiert.

• Zentraler Kern des ganzen Systems ist das Data Dictionary (der Schemakatalog oder das Datenwörterbuch), das die Daten aus den Definitionskomponenten aufnimmt und die Programmier-, Benutzer- und Transformationskomponenten mit diesen Informationen versorgt.

Gerade die Transformationskomponenten sind in der Drei-Ebenen-Architektur noch etwas ungenau beschrieben. Die in Abschnitt 3.2.3 folgende Fünf-Schichten-Architektur wird die schrittweise Transformation von Operationen und Daten genauer darlegen.

Wir werden jetzt aber zunächst beispielhaft eine Relationenalgebra- oder SQL-Anfrage auf ihrem Weg durch die verschiedenen Ebenen des Systems verfolgen.

3.2.2 Der Weg einer Anfrage

In relationalen Datenbanksystemen wird eine Anfrage üblicherweise in der Standardsprache SQL formuliert. Wie in [SSH11] noch genauer beschrieben wird, wird eine SQL-Anfrage in einen aus internen Operatoren bestehenden Operatorbaum transformiert, der auf der internen Ebene eines Datenbanksystems ausgeführt werden kann. Zur Vereinfachung betrachten wir hier die im letzten Kapitel eingeführte Relationenalgebra als Basis für die Abarbeitung der Anfrage.

Optimierer

Eine wichtige Komponente eines DBMS ist der Optimierer, da Anfragen unabhängig von der internen Detailrealisierung der Datenstrukturen formuliert werden sollen. Das DBMS muss Anfragen selbst optimieren, um eine effiziente Ausführung zu ermöglichen.

Für unsere Beispielbetrachtung stellt sich also das folgende Problem: Finde einen Relationenalgebra-Ausdruck, der äquivalent ist („das gleiche Ergebnis liefert“) zu einem vorgegebenen, der aber effizienter auszuwerten ist.

Eine Möglichkeit der Optimierung ist die sogenannte algebraische Optimierung. Hierbei werden Algebraausdrücke nach bestimmten Regeln in äquivalente Ausdrücke umgeformt. Betrachten wir etwa die beiden folgenden Algebraterme:

[image:]

Man kann sich leicht klarmachen, dass die beiden Ausdrücke für jede gegebene Datenbank die gleichen Ergebnisse liefern, sie also äquivalent sind. Die algebraische Optimierung nutzt derartige Äquivalenzen, um jeweils Umformungen vorzunehmen, die zu äquivalenten, aber effizienteren Ausführungen führen.

Hierbei werden heuristische Strategien eingesetzt, etwa die allgemeine Strategie: „Führe Selektionen möglichst früh aus, da sie die Tupelanzahlen in Relationen verkleinern.“

Betrachten wir unser Beispiel und nehmen dabei an, dass WEINE 5.000 Tupel und ERZEUGER 500 Tupel enthält. Der Verbund soll in Form ineinander geschachtelter Schleifen ausgeführt werden, wobei jedes Tupel der ERZEUGER-Relation mit jedem Tupel der WEINE-Relation verglichen wird. Der Aufwand dafür beträgt bei Relationengrößen (Anzahl der Tupel) n bzw. m, und somit n • m. Gehen wir weiterhin davon aus, dass wir insgesamt Erzeuger aus 20 verschiedenen Anbaugebieten erfasst haben, die jeweils ungefähr gleich viele Weine produzieren.

Unter diesen Annahmen ergeben sich für die beiden obigen Varianten etwa folgende Aufwände (grob gemessen an der Anzahl von Zugriffen auf Einzeltupel):

1. Im ersten Fall erhalten wir 500 • 5.000 = 2.500.000 Operationen für die [image:]-Ausführung. Da nur Weine erfasst sind, die auch einen Erzeuger haben (also deren Erzeugernummer in der ERZEUGER-Relation vorkommt), liefert der Verbund 5.000 Tupel, auf welche die σ-Operation angewendet wird und die unter der obigen Annahme 1/20 der Tupel aus WEINE als Ergebnis produziert. Insgesamt erhalten wir somit 2.500.000 + 5.000 = 2.505.000 Operationen.

2. Im zweiten Fall erfordert die Ausführung der Selektion auf der ERZEUGER-Relation 500 Zugriffe. Entsprechend unserer Annahme erfüllen durchschnittlich 500/20 = 25 Tupel in ERZEUGER die Bedingung Anbaugebiet = 'Rheingau'. Demzufolge benötigt die Ausführung des Verbundes nun 25 • 5.000 = 125.000 Operationen. Insgesamt werden somit 125.500 Operationen benötigt.

Diese beiden unterschiedlichen Ausführungen führen in diesem Beispiel zu Aufwandsabschätzungen, die um den Faktor 20 differieren.

Datenbankoptimierer werden in Kapitel 8 von [SSH11] intensiv diskutiert.

Interne Strukturen

Die interne Ebene legt die Dateiorganisationsformen fest, die bei der Speicherung von Relationen eingesetzt werden. Eine Relation kann intern als Datei zum Beispiel wie folgt abgespeichert werden:

• als Heap (dt. „Haufen“), also ungeordnet bzw. in der Reihenfolge des Einfügens,

• sequenziell, also geordnet nach einer bestimmten Spalte oder Spaltenkombination,

• hashorganisiert, also gestreut gespeichert, wobei die Adressberechnung durch eine numerische Formel, die Hashfunktion, erfolgt,

• baumartig, d.h. die Tupel sind hierbei in einem Suchbaum angeordnet oder

• als weitere, hier nicht ausgeführte Speicherstrukturen.

Neben der Speicherung der Relation können zusätzliche Zugriffspfade angelegt werden, die den Zugriff nach bestimmten Kriterien beschleunigen können. Etwa kann die Relation WEINE intern sequenziell nach dem Attribut Name abgelegt sein, ein zusätzlich aufgebauter baumartiger Zugriffspfad aber auch den Zugriff über das produzierende Weingut beschleunigen.

Zwischen der Realisierung verschiedener Dateiorganisationen bzw. Zugriffspfade soll beliebig gewechselt werden können, ohne dass dies Auswirkungen auf der konzeptuellen und externen Ebene haben darf.

Man muss beim Einsatz zugriffsunterstützender Strukturen immer beachten: Je schneller die Anfragen aufgrund zusätzlicher Zugriffsstrukturen werden, desto langsamer werden Datenbankänderungen, da die Zugriffsstrukturen jeweils an die neuen Daten angepasst werden müssen.

Kapitel 4 von [SSH11] behandelt ausführlich die verschiedenen Datenorganisationsformen, die in klassischen Datenbanksystemen zum Einsatz kommen.

Zugriffe auf Plattenseiten

Jede Operation des (voroptimierten) Anfrageausdrucks (etwa σ, π, [image:] usw.) muss nun in eine optimale Folge von Seitenzugriffen umgesetzt werden. Dabei werden Zugriffspfade und Dateiorganisationen ausgenutzt, wenn es dem System sinnvoll erscheint. Die Reihenfolge der Zugriffe wird nach vorliegenden Zugriffspfaden bestimmt. Betrachten wir dazu ein Beispiel:

[image:]

Nehmen wir nun an, dass für den Zugriff über Name ein Zugriffspfad definiert ist, hingegen auf dem Attribut Jahrgang nicht. Das System muss jetzt die Reihenfolge der Selektionen ändern, um eine effizientere Ausführung zu garantieren.

3.2.3 Fünf-Schichten-Architektur

Nach Ideen von Senko [Sen73] wurde als Weiterentwicklung von Härder [Här87] im Rahmen des IBM-Prototyps System R die folgende Systemarchitektur eingeführt.

Die Fünf-Schichten-Architektur basiert auf einer genaueren Beschreibung der in einem Datenbankmanagementsystem enthaltenen Transformationskomponenten. Diese realisiert eine schrittweise Transformation von Anfragen und Änderungen von der abstrakten Datenbankmodellebene bis hinunter zu Zugriffen auf die Speichermedien. Abbildung 3.8 zeigt die einzelnen Transformationskomponenten mit den zugehörigen Aufgaben sowie die zwischen den Komponenten geltenden Schnittstellen. Die Aufgaben der höheren Komponenten sind dort jeweils unterteilt in Aufgaben der Anfragetransformation (links) sowie der Datensicherung (rechts).

[image:]

Abbildung 3.8: Funktionsorientierte Sicht auf die Fünf-Schichten-Architektur

Die mengenorientierte Schnittstelle realisiert eine deklarative Datenmanipulationssprache auf Tabellen, Sichten und Zeilen einer Tabelle. Eine typische Sprache für diese Abstraktionsebene ist SQL mit mengenorientiertem Zugriff auf Relationen.

Die Anweisungen der MOS werden durch das Datensystem auf die satzorientierte Schnittstelle SOS umgesetzt. Die SOS realisiert einen navigierenden Zugriff auf einer internen Darstellung der Relationen. Manipulierte Objekte der SOS sind typisierte Datensätze und interne Relationen (geordnete Listen von Datensätzen mit Duplikaten) sowie logische Zugriffspfade, die sogenannten Indexe, und temporäre Zugriffsstrukturen, die Scans. Aufgaben des Datensystems sind die Übersetzung und Optimierung etwa von SQL-Anfragen auf die SOS unter Ausnutzen der Zugriffspfade sowie die Realisierung der Zugriffsund Integritätskontrolle.

Das Zugriffssystem übernimmt die Transformation auf die interne Satzschnittstelle ISS. Hier werden interne Tupel einheitlich verwaltet, also ohne Typisierung aufgrund unterschiedlicher Relationstypen wie in der SOS. Auf der ISS werden die Speicherstrukturen der Zugriffspfade implementiert, etwa konkrete Operationen auf B+-Bäumen und Hashtabellen. Neben der Umsetzung der SOS auf diese implementierungsnähere Darstellung realisiert das Zugriffssystem Operationen wie die Sortierung und den Mehrbenutzerbetrieb mit Transaktionen.

Das Speichersystem hat die Aufgabe, die Datenstrukturen und Operationen der ISS auf internen Seiten eines virtuellen linearen Adressraums zu realisieren. Dieser interne Adressraum wird durch die Operationen der Systempufferschnittstelle manipuliert. Typische Objekte sind interne Seiten und Seitenadressen, zugehörige Operationen sind etwa Freigeben und Bereitstellen von Seiten. Neben den typischen Operationen zur Verwaltung eines internen Seitenpuffers mit Seitenwechselstrategien realisiert das Speichersystem die Sperrverwaltung für den Mehrbenutzerbetrieb sowie das Schreiben des Logbuchs für das Recovery.

Die Pufferverwaltung bildet die internen Seiten auf die Blöcke der Dateischnittstelle DS des Betriebssystems ab, das die Externspeicherverwaltung übernimmt. Die Umsetzung der Operationen der Dateischnittstelle auf die Geräteschnittstelle erfolgt nun nicht mehr durch Komponenten des DBMS, sondern durch das Betriebssystem.

Die Fünf-Schichten-Architektur ist nur ein Vorschlag für eine Aufteilung in Transformationsschritte, der auf den ursprünglichen Prototyp-Entwicklungen für relationale DBMS basiert. Die Architektur kann etwa verkürzt werden, indem Zugriffssystem und Speichersystem in einer Komponente zusammengefasst werden. Einige ältere Datenbankmodelle, aber auch einige der Ende des letzten Jahrhunderts modernen objektorientierten DBMS (siehe Kapitel 19) sowie einige der derzeit aktuellen NoSQL-Datenbanksysteme (siehe Kapitel 21), bieten keine mengenorientierte Schnittstelle an und überlassen deren Aufgaben dem Anwendungsprogrammierer. Auch können einige Aufgaben der tieferen Ebenen alternativ auf den höheren Ebenen realisiert werden; ein Beispiel wäre die Realisierung eines Objektpuffers im Zugriffssystem anstelle eines Seitenpuffers.

Auch die Zuordnung der Datensicherungsmaßnahmen zu den Ebenen ist nicht zwingend vorgegeben. Die Sperrverwaltung kann zum Beispiel auf höheren Ebenen angesiedelt werden, während alternativ die Zugriffskontrolle implementierungsnäher modelliert werden könnte.

Abschließend soll noch bemerkt werden, dass alle in diesem Unterabschnitt angesprochenen Komponenten der Fünf-Schichten-Architektur im zweiten Band [SSH11] dieses Lehrbuches weitaus ausführlicher behandelt werden: Der zweite Band widmet sich ausschließlich diesen Implementierungstechniken von Datenbanksystemen, während sich der vorliegende Band eher auf den Entwurf von Datenbankanwendungen und die Benutzung von Datenbanksystemen konzentriert.

3.2.4 Konkrete Systemarchitekturen

In diesem Abschnitt wollen wir die Umsetzung der im vorigen Abschnitt beschriebenen idealisierten Systemarchitektur in konkreten Systemen kommerzieller Hersteller vorstellen. Wir beschränken uns dabei auf relationale Datenbankmanagementsysteme (RDBMS), die einerseits heute den Markt dominieren und andererseits in den aktuellen Versionen auch Erweiterungen über das Relationenmodell hinaus bieten, etwa zur Verwaltung objektorienterter Daten, von XML-Dokumenten oder Multimedia-Daten.

Gegenwärtig sind eine ganze Reihe von RDBMS auf dem Markt verfügbar. Zu den wichtigsten Systemen zählen die kommerziellen Vertreter wie IBM DB2 V.11, Oracle12c, Microsoft SQL Server 2016, Ingres 10.2, SAP Adaptive Server Enterprise sowie die Open-Source-Systeme PostgreSQL, MySQL und Firebird. Gemeinsame Merkmale dieser Systeme sind:

• eine Drei-Ebenen-Architektur nach ANSI-SPARC,

• eine einheitliche Datenbanksprache (Structured Query Language, kurz SQL),

• eine Einbettung dieser Sprache in Programmiersprachen wie C/C++ oder Java,

• diverse Werkzeuge für die Definition, Anfrage und Darstellung von Daten und den Entwurf von Datenbankanwendungsprogrammen und der Benutzerinteraktion sowie

• kontrollierter Mehrbenutzerbetrieb, Zugriffskontrolle und Datensicherheitsmechanismen.

System R und DB2

Das erste relationale Datenbanksystem war der im kalifornischen Entwicklungslabor Anfang der 70er Jahre entstandene Forschungsprototyp System R. Dieses System umfasste ca. 80.000 Zeilen PL/1-, PL/S- und Assembler-Code und kam mit einer Codegröße von etwa 1,2 MByte aus! Als Datenbanksprache wurde SEQUEL unterstützt – eine Sprache, die nachhaltig die Standardisierung von SQL beeinflusst hat. Aus den Erfahrungen mit diesem System hat IBM später zwei kommerzielle Systeme entwickelt:

• DB2 zunächst für IBM-Rechner unter MVS, inzwischen aber auch für Windows und Unix bzw. Linux,

• SQL/DS (SQL/Data System) für IBM-Rechner unter DOS/VSE oder VM/CMS.

Abbildung 3.9 zeigt die Systemarchitektur von DB2, die auf einem Client-Server-Ansatz basiert. Hierbei kommunizieren die Clients über geeignete Netzwerkprotokolle oder gemeinsamen Speicher mit dem Datenbankserver. Dieser besteht aus mehreren Prozessen bzw. Agenten, die auch als Engine Dispatchable Units (EDU) bezeichnet werden. Der erste Kommunikationspartner für eine Clientanwendung ist dabei der Listener-Prozess, der eingehende Verbindungsanforderungen an den Koordinationsagenten weiterleitet. Dieser führt alle Datenbankanforderungen im Auftrag der jeweiligen Anwendung aus. Im Fall einer Parallelverarbeitung auf einer geeigneten Hardwareplattform werden die parallel auszuführenden Teilanfragen noch an spezielle Subagenten delegiert, die in einem Pool verwaltet werden.

[image:]

Abbildung 3.9: Architektur von IBM DB2

Zu den eigentlichen Datenbankprozessen gehören der (in Abbildung 3.9 nicht dargestellte) System-Controller-Prozess zur Steuerung aller anderen Funktionen sowie die folgenden Prozesse, die pro DB2-Instanz laufen:

• Der I/O-Prefetcher übernimmt das Vorablesen von Seiten in den Puffer.

• Der Page-Cleaner-Prozess ist für das Zurückschreiben von modifizierten Seiten aus dem Puffer auf die Festplatte verantwortlich.

• Der Log-Reader-Prozess behandelt die Logeinträge für die Transaktionsverwaltung und das Recovery im Falle des Abbruchs einer Transaktion.

• Der Log-Writer-Prozess ist für das Schreiben der Log-Einträge in das Logbuch verantwortlich.

• Die Erkennung der Verklemmung von Transaktionen durch gegenseitiges Sperren übernimmt ein weiterer Prozess.

Darüber hinaus gibt es noch weitere Prozesse, etwa zur Archivierung von Logdateien, zur Überwachung der laufenden Prozesse auf abnormale Beendigung sowie zur parallelen und verteilten Verarbeitung. Alle serverseitigen Prozesse kommunizieren über einen gemeinsamen Speicherbereich – dem Database Global Memory.

OEBPS/images/48.jpg
Externe Ebene Konzeptuelle Ebene Interne Ebene

Anfragen

Auswemmg Plattenzugriff

Updates

Operationen

Einbettung

Masken

organisation

OEBPS/images/c24a.jpg
Cjahrgang-201s(WEINE)

OEBPS/images/logo.jpg
mitp

OEBPS/images/bowtie.jpg

OEBPS/images/56.jpg
DB2Instanz —D—n—(

Sub-
ogenten

Tog) RedologPuffer _DatenbankPuffer

log-

Witer

OEBPS/images/t9.jpg
Kiirzel | Begriff Erlauterung

DB Datenbank Strukturierter, von einem DBMS
verwalteter Datenbestand

DBMS | Datenbankmanagementsystem | Software zur Verwaltung
von Datenbanken

DBS Datenbanksystem DBMS + Datenbank(en)

OEBPS/images/c35f.jpg
delete Trom ERZEUGER
where Anbaugebiet = ’Hessen’

OEBPS/images/30.jpg
WEINE | Name Farbe | Jahrgang | Weingut
La Rose Grand Cru | Rot 2013 | Chaleau La Fose
Creek Shiraz Rot 2018 | Creek
Zinfandel Rot 2019 | Helena
Pinot Noir Rot 2016 | Creek
Pinot Noir Rot 2014 | Helena
Riesling Reserve | Wein 2014 | Maller
Chardonnay WeiB, 2017 | Bighom

ERZEUGER2 [Weingut Anbaugebiet
Crook Barossa Valey
Helena Napa Valley
ChateaulLa Rose | Saint-Emilion
Chateau La Pointe | Pomerol
Maller Rheingau
Bighorn Napa Valley

LOKATION [Anbaugebiet | Region

Napa Valley
Saint-Emilion
Pomerol
Rheingau

Barossa Valley | Sudaustralien

Kalifornien
Bordeaux
Bordeaux
Hessen

OEBPS/images/c22d.jpg
create table WEINE (
WeinID int,
Name varchar(20) not null,
Farbe varchar(10),
Jahrgang int,
Weingut varchar(20),
primary key (WeinID),
foreign key (Weingut)
references ERZEUGER(Weingut))

OEBPS/images/ii.jpg
mitp

Hinweis des Verlages zum Urheberrecht und
Digitalen Rechtemanagement (DRM)

Der Verlag raumt Ihnen mit dem Kauf des ebooks das
Recht ein, die Inhalte im Rahmen des geltenden
Urheberrechts zu nutzen. Dieses Werk, einschlieBlich
aller seiner Teile, ist urheberrechtlich geschiitzt. Jede
Verwertung auBerhalb der engen Grenzen des Urhe-
berrechtsgesetzes ist ohne Zustimmung des Verlages
unzulassig und strafbar. Dies gilt insbesondere fiir Ver-
vielfaltigungen, Ubersetzungen, Mikroverfilmungen und
Einspeicherung und Verarbeitung in elektronischen
Systemen.

Der Verlag schiitzt seine ebooks vor Missbrauch des
Urheberrechts durch ein digitales Rechtemanagement.
Bei Kauf im Webshop des Verlages werden die ebooks
mit einem nicht sichtbaren digitalen Wasserzeichen
individuell pro Nutzer signiert.

Bei Kauf in anderen ebook-Webshops erfolgt die Signa-
tur durch die Shopbetreiber. Angaben zu diesem DRM
finden Sie auf den Seiten der jeweiligen Anbieter.

OEBPS/images/26a.jpg
WeinID | Name Weingut | Anbaugebiet | Region

1042 La Rose Grand Cru Ch.LaRose | SaintEmilion | Bordeaux
2168 | Creek Shiraz Creek. Barossa Valley | Sidaustralien
3456 | Zinfandel Helena Napa Valley | Kalifornien
2171 | Pinot Noir Creek Barossa Valley | Sidaustralien
3478 | Pinot Noir Helena Napa Valley | Kalifornien
4711 | Riesling Reserve Maller Rheingau Hessen

4961 | Chardonnay Bighom Napa Valley | Kalifornien

OEBPS/images/c32b.jpg
select *
from WEINE natural join ERZEUGER

OEBPS/images/c36e.jpg
insert into WEINE (
select ProdID, ProdName, 'Rot’, ProdJahr, ’Chiteau Lafitte’
from LIEFERANT where LName = ’'Wein-Kontor’)

OEBPS/images/c31b.jpg
select distinct Name from WEINE

OEBPS/images/20.jpg
ERZEUGER

Weingut Anbaugebiet | Region
Creek Barossa Valley | Stdaustralien
Helena Napa Valley | Kalifornien
ChateauLa Rose | Saint-Emilion | Bordeaux
Chateau La Pointe | Pomerol Bordeaux
Muller Rheingau Hessen
Bighorn Napa Valley | Kalifornien

OEBPS/images/47.jpg
m 0 Baumzugriff Gber Weingut

Helena [Miller

[chateau ... [Creek

Barossa Valley| South Australia

Kalifornien

Nopa Valley

Zinfondel
Pinot Noir

Crook Shiraz | Rot | 2018
Pinot Noir_| Rot | 2016

2019
2014

CliiterSaichiring von Wi Und BREEOREH

OEBPS/images/c22c.jpg
create table WEINE (
WeinID int primary key,
Name varchar(20) not null,
Farbe varchar(10),
Jahrgang int,
Weingut varchar(20))

OEBPS/images/c35e.jpg
delete Trom WEINE

OEBPS/images/viii.jpg
i

Oy’S/
VA
i

£
A

OEBPS/images/27a.jpg
WEINLISTE

EMPFEHLUNG

Wein

La Rose Grand Cru
Greek Shiraz
Zinfandel

Pinot Noir

Riesling Reserve

La Rose Grand Cru
Riesling Reserve
Merlot Selection
Sauvignon Blanc

OEBPS/images/c32a.jpg
select *
from WEINE, ERZEUGER

OEBPS/images/26b.jpg
Name Farbe | Weingut
Zinfandel | Rot | Helena
Chardonnay | Wei | Bighorn

OEBPS/images/21.jpg
WEINE | WeinID | Name Farbe | Jahrgang | Weingut — ERZEUGER
042 | LaRose .. Rot 2013 | Chateau La Rose
2168 | Creek Shiraz Rot 2018 | Creek
3456 | Zinfandel Rot 2019 | Helena
2171 | Pinot Noir Rot 2016 | Creek
3478 | Pinot Noir Rot 2014 | Helena
4711 | Riesling Reserve | Wei 2014 | Miller
4961 _| Chardonnay Weit 2017__| Bighorn
ERZEUGER | Weingut Anbaugebiet | Region
Creek Barossa Valley | Sudaustralien
Helena Napa Valley | Kalifornien
Chéteau La Rose | Saint-Emilion | Bordeaux
Chateau La Pointe | Pomerol Bordeaux
Mialler Rheingau Hessen
Bighorn Napa Valley | Kalifornien

OEBPS/images/c36d.jpg
insert
into basisrelation [(attribut,, ..., attribut,)]
SOL<anfrags

OEBPS/images/c35d.jpg
delete Trom WEINE
vhere Farbe = "WeiR’

OEBPS/images/29.jpg
WEINE2

WeinID | Name Farbe | Jahrg. | Weingut Anbaug . Region
1042 | LaRose Rot 2013 | Chateau LR. | Saint-Emilion | Bordeaux
2168 | Creek Shiraz | Rot 2018 | Creek Barossa Valley | Sidaustralien
3456 | Zinfandel Aot 2019 | Helena Napa Valley | Kalfornien
2171 | PinotNoir | Rot 2016 | Creek Barossa Valley | Sidaustralien
3478 | PinotNoir | Rot 2014 | Helena Napa Valley | Kalifor
4711 | Riesling Res. | Weis | 2014 | Maller Rheingau Hessen
4961 | Chardonnay | Weis | 2017 | Bighorn Napa Valley | Kalifornien

OEBPS/images/c37a.jpg
create view KALIFORNIEN_WEINE as

select Name, Farbe, Jahrgang, WEINE.Weingut

from WEINE, ERZEUGER

where Region = ‘Kalifornien’ and
WEINE.Weingut = ERZEUGER.Weingut

OEBPS/images/45.jpg
WEINE

ERZEUGER

WeinID | Name Farbe | Jahrgang | Weingut — ERZEUGER
1042 | LaRose Grand Gru | Rot 2013 | Chateau La Rose
2168 | Creek Shiraz Rot 2018 | Creek
3456 | Zinfandel Rot 2019 | Helena
2171 | Pinot Noir Rot 2016 | Creek
3478 | Pinot Noir Rot 2014 | Helena
4711 | Riesling Reserve | Weis 2014 | Miller
4961 _| Chardonnay WeiB 2017 | Bighom

Weingut Anbaugebiet | Region

Creek Barossa Valley | Sudaustralien

Helena Napa Valley | Kalifornien

ChateauLa Rose | Saint-Emilion | Bordeaux

Chéteau La Pointe | Pomerol Bordeaux

Miler Rheingau Hessen

Bighorn Napa Valley | Kalifornien

OEBPS/images/c26a.jpg

OEBPS/images/28.jpg
Name

La Rose Grand Gru
Creek Shiraz
Zinfandel

Pinot Noir

Riesling Reserve
Merlot Selection
Sauvignon Blanc

Creek Shiraz
Zinfandel
Pinot Noir

Name

La Rose Grand Cru
Riesling Reserve

OEBPS/images/c31a.jpg
select Name, Farbe
from WEINE
where Jahrgang = 2017

OEBPS/images/c32d.jpg
TN ame,Farbe, Weingut { OJahrgang>2015 (WEINE) M ORegion="Kalifornien’ (ERZEUGER))

OEBPS/images/46b.jpg
Region Anbaugebiet | Weingut Wein
Nane Farbe
Sidaustralien | Barossa Valley | Greek Greek Shiraz Rot
Pinot Noir Rot
Kalifornien | Napa Valley | Helena Zinfandel Rot
Pinot Noi Rot
Bighorn Chardonnay Wiy
Bordeaux Saint-Emilion | Chateau La Rose | La Rose Grand Cru_| Rot
Pomerol Chateau La Pointe
Hessen Rheingau Miller Riesling Reserve | WeiB

OEBPS/images/cover.jpg
ttttttt

-4

’ .‘v AY

“> '~W

N .
t}& A‘A‘\‘

Datenbanken

Konzepte und Sprachen

SO

OEBPS/images/c35c.jpg
delete Trom WEINE
where WeinID = 4711

OEBPS/images/44.jpg
externes

externes

Schema 1 Schaing N

DUy

konzeptuelles
Schema

qi0agel

internes
Schema

Bun|jajsiopusioq

OEBPS/images/c50a.jpg
1. Ganbaugebiet-"Rheingau’ (ERZEUGER > WEINE)

2. (GAnbaugebiet—'Rheingau’ (ERZEUGER)) b WEINE

OEBPS/images/c27c.jpg
WEINLISTE — Pyame. Wein(EMPFEHLUNG)

OEBPS/images/2.jpg
Individualsoftware

Anwendungssoftware

Basissoftware

Systomsofiware

Boriobs-
systom

OEBPS/images/c32c.jpg
select =
from WEINE, ERZEUGER
where WEINE.Weingut = ERZEUGER.Weinqut

OEBPS/images/c27a.jpg
BName+« Wein (EMPFEHLUNG)

OEBPS/images/18.jpg
WEINE

ERZEUGER

Name Farbe | Jahrgang | Weingut
LaRose Grand Cru | Rot 2013 | Chateau La Rose
Creek Shiraz Rot 2018 | Creek
Zinfandel Rot 2019 | Helena
Pinot Noir Rot 2016 | Creek
Pinot Noir Rot 2014 | Helena
Riesling Reserve | Wei 2014 | Miller
Chardonnay Wi 2017 | Bighomn
Weingut Anbaugebiet | Region

Creek Barossa Valley | Sidaustralien
Helena Napa Valley | Kalifornien
Chateau La Rose | Saint-Emilion | Bordeaux
Chateau La Pointe | Pomerol Bordeaux
Miller Rheingau Hessen
Bighorn Napa Valley | Kalifornien

OEBPS/images/c21a.jpg
create table basisrelationenname (
spaltenname; wertebereich; [not null],

spaltennase, wertebereich; [mot mulll)

OEBPS/images/6a.jpg
Anwendung 1

Dateiverwaltungs-
system 1

Anwendung n

Dateiverwaltungs-
system |

OEBPS/images/c34c.jpg
update WEINE
set Preis = 7.99
here WeinID = 3456

OEBPS/images/c35b.jpg
delete
from basisrelation
[where bedingung |

OEBPS/images/c27b.jpg
WEINLISTEU Pyame. Wein(EMPFEHLUNG)

OEBPS/images/c52a.jpg
OName-'Pinot Noir' (OJahrgang-2015(WEINE))

OEBPS/images/c34b.jpg
update WEINE
set Preis = Preis = 1.1
where Jahrgang < 2015

OEBPS/images/6b.jpg
Datenbank

OEBPS/images/29b.jpg
WEINE2

Name Jahrg. | Weingut Anbaug. Region
TaRose . 2013 | Chateau LA. | SantEmiion | Bordeaux
Creek Shiraz 2018 | Creek Barossa Valley | Sidaustralien
Zinfandel 2019 | Helena NapaValley | Kalfornien
Pinot Noir 2016 | Creek Barossa Valley | Sidausiralien
Pinot Noir 2014 | Helena Napa Valley | Kalfornien
Riesiing Res. 2014 | Maller Rheingau Hessen
Chardonnay 2017 | Bighom NapaValley | Kalfornien
Primitivo 2018 | Creek Toskana Italien

OEBPS/images/c26b.jpg
TN ame,Farbe, Weingut { OJahrgang=2015 (WEINE) ™M ORegion="Kalifornien’ (ERZEUGER))

OEBPS/images/34.jpg
WEINE

WETNE

WeinID | Name Jahrgang | Weingut | Preis
2168 | Creok Shiraz 2018 | Creek 799
3456 | Zinfandel 2019 | Helena 599
2171 | Pinot Noir 2016 | Creek 10.99
3478 | Pinot Noir 2014 | Helena | 19.99
4711 | Riesling Reserve | 2014 | Mller 14.99
4961 _| Chardonnay 2017 | Bighom | 990

WeinId | Name Jahrgang | Weingut | Preis
2168 | Creck Shiraz 2018 | Creek 798
3456 | Zinfandel 2019 | Helena 599
2171 | Pinot Noir 2016 | Creek 1099
3478 | Pinot Noir 2014 | Helena | [2199
4711 | Riesling Reserve | 2014 | Maller 1649
4961 | Chardonnay 2017 | Bighom 590

OEBPS/images/c32e.jpg
select Name, Farbe, WEINE.Welngut
from WEINE, ERZEUGER
where Jahrgang > 2015 and
Region = 'Kalifornien’ and
WEINE.Weingut = ERZEUGER.Weingut

OEBPS/images/46a.jpg
Name Farbe | Weingut Anbaugebiet | Region
LaRose Grand Cru | Rot | Chateau La Rose | Saint-Emiion | Bordeaux
Creek Shiraz Rot | Greek Barossa Valley | Sidaustralien
Zinfandel Rot | Helena Napa Valley | Kalifornien
Pinot Noir Rot | Creek Barossa Valley | Sidaustralien
Pinot Noir Rot | Helena Napa Valley | Kalifornien
Riesling Reserve | WeiB | Mialler Rheingau Hessen
Chardonnay Wei | Bighorn Napa Valley | Kalifornien

OEBPS/images/x.jpg

OEBPS/images/vii.jpg
|Konzepte und Sprachen

OEBPS/images/24.jpg
Projektion

al | b2

w2 | b2 | [[b3 ek nzlbz)

o2 | b3 | et

OEBPS/images/37.jpg
KALIFORNIEN_WEINE

Name Farbe | Jahrgang | Weingut
Zinfandel | Rot 2019 | Helena
Pinot Noir | Rot 2014 | Helena
Chardonnay | Weif 2017 | Bighorn

OEBPS/images/5.jpg

OEBPS/images/vi.jpg
Ancres Hever,Guner ke
Datenbanken:
Konzepte

und Sprachen'
2. akuualserts und erweterte Auflge

 Der fundierte Einstieg
in Datenbanken

@ Schwerpunkt: Datenbank-
entwurf und Datenbanksprachen

 Inklusive aktueller Trends:
SQL-99, JDBC, OLAR Textsuche

OEBPS/images/c30b.jpg
Anbaugebiet — Hegion

OEBPS/images/c28a.jpg
WEINLISTE M Pyame. Wein(EMPFEHLUNG)

OEBPS/images/c36c.jpg
insert into ERZEUGER
values (’'Chateau Lafitte’, ’'Medoc’, ’Bordeaux’)

OEBPS/images/25b.jpg
Region

Stdaustralien
Kalifornien
Bordeaux
Hessen

OEBPS/images/c36a.jpg
insert
into basisrelation

[(attribut,, ..., attribut,)]
values (konstante,, ..., konstante,)

OEBPS/images/49.jpg
Transformationskomponenten

Programmier-
komponenten

g
g
£
£
§
2

Definitionskomponenten

OEBPS/images/c22a.jpg
drop table basisrelationenname

OEBPS/images/19.jpg
Relationenname

WEINE | Nane Farbe | Jahrgang | Weingut
La Rose Grand Cru | ot 2018 | Chateau La Rose
Greek Shiraz Rot 2018 | Creek

Tupel — Zinfandel Rot 2019 | Helena
Pinot Noir Rot 2016 | Creek
Pinot Noir Rot 2014 | Helena
Riesling Reserve | Weid | 2014 | Miller =
Chardonnay Weis | 2017 | Bighorn

Aftributiname)

T Relationen-
schema

Relation

Attributwert

OEBPS/images/c25a.jpg
TRegion(ERZEUGER)

OEBPS/images/c30a.jpg
Wweingut — Anbaugebiet. Region

OEBPS/images/c33a.jpg
select *

from WINZER

where Name not in (
select Nachname
from KRITIKER)

OEBPS/images/c33b.jpg
update basisrelation
set attribut; = ausdruck,

attribut, = ausdruck,
[where bedingung |

OEBPS/images/c36b.jpg
insert into ERZEUGER (Weingut, Region)
values (’'Wairau Hills', 'Marlborough’)

OEBPS/images/53.jpg
Schitttelle

Ubersetzun
Datensystem Zugritpfagwabl
Satorionforts " g
Schitstlle Logische Zugriffspfads,
Zugriffssystem Schemakatalog, Sortierung,

Transaktionsverwallung

s
Satzschniftstelle Speicherungsstrukturen, Zugriffs-

Speichersystem pladverwaltung, Sperr-

verwaltung, Logging, Recovery

Pufferverwaltung
Betriebssystem

Geréteschnitistelle !

Saandsidar

Systempuff
schnitistelle

Systempufferverwaltung,
Seitenersetzung, Seifenzuordnung

Externspeicherverwaltung,
Speicherzuordnung

OEBPS/images/25a.jpg
WeinID | Name Farbe | Jahrgang | Weingut
2168 | Creek Shiraz | Rot 2018 | Creek
3456 | Zinfandel Rot 2019 | Helena
2171 | PinotNoir | Rot 2016 | Creek
4961 | Chardonnay | Weifl 2017 | Bighorn

