
 [image: Git – Cover]

 Bernd Öggl, Michael Kofler

 Git

 Project Management for Developers and DevOps Teams

 [image: Logo Rheinwerk Verlag]

 Imprint

 This e-book is a publication many contributed to, specifically:

 Editor Megan Fuerst

 Acquisitions Editor Hareem Shafi

 German Edition Editors Christoph Meister, Anne Scheibe

 Translation Winema Language Services, Inc.

 Copyeditor Yvette Chin

 Cover Design Graham Geary

 Photo Credit Shutterstock: 80373751/© tovovana; iStockphoto: 157567712/© grandriver

 Production E-Book Graham Geary

 Typesetting E-Book III-satz, Germany

 We hope that you liked this e-book. Please share your feedback with us and read the
 Service Pages to find out how to contact us.

Library of Congress Cataloging-in Publication Control Number: 2022035131

 ISBN 978-1-4932-2289-6 (print)

 ISBN 978-1-4932-2290-2 (e-book)

 ISBN 978-1-4932-2291-9 (print and e-book)

© 2023 by Rheinwerk Publishing Inc., Boston (MA)

 1st edition 2023

 2nd German edition published 2022 by Rheinwerk Verlag, Bonn, Germany

 Dear Reader,

 Never have I felt a greater need for version control than when I played a game of
 pool with five children under 10.

 On a recent family vacation to a cabin in Colorado, the basement pool table was a
 big hit. When I joined my nieces and nephews for a game, I quickly realized that the
 rules would be nontraditional, to say the least. There were spontaneous guidelines for using hands (offensive)
 versus pool cues (defensive), guarding pockets, and scoring combos. Learning the rules
 was hard enough; tracking them as they changed minute-by-minute was harder.

 And then there was mediating the different versions of the game between the five kids.
 One niece’s arrangement of stripes and solids was one nephew’s target for impact.
 Despite my best efforts, fingers were pinched in the chaotic flurry of ideas.

 Working together in an organized (and peaceful) way has its challenges, regardless
 of age or subject. In the programming world, collaboration is essential. Developers
 need to write, test, and iterate on code in tandem with other team members, and the
 different versions need to be controlled to maintain organized, traceable changes
 and avoid loss of work. That’s where Git comes in—and this book.

 What did you think about Git: Project Management for Developers and DevOps Teams? Your comments and suggestions are the most useful tools to help us make our books
 the best they can be. Please feel free to contact me and share any praise or criticism
 you may have.

 Thank you for purchasing a book from Rheinwerk Publishing!

 Megan Fuerst
Editor, Rheinwerk Publishing

 meganf@rheinwerk-publishing.com
www.rheinwerk-computing.com
Rheinwerk Publishing • Boston, MA

 Notes on Usage

 This e-book is protected by copyright. By purchasing this e-book, you have agreed to accept and adhere to the copyrights.
 You are entitled to use this e-book for personal purposes. You may print and copy
 it, too, but also only for personal use. Sharing an electronic or printed copy with
 others, however, is not permitted, neither as a whole nor in parts. Of course, making
 them available on the internet or in a company network is illegal as well.

 For detailed and legally binding usage conditions, please refer to the section Legal Notes.

 This e-book copy contains a digital watermark, a signature that indicates which person may use this copy:

 Notes on the Screen Presentation

 You are reading this e-book in a file format (EPUB or Mobi) that makes the book content
 adaptable to the display options of your reading device and to your personal needs.
 That’s a great thing; but unfortunately not every device displays the content in the
 same way and the rendering of features such as pictures and tables or hyphenation
 can lead to difficulties. This e-book was optimized for the presentation on as many
 common reading devices as possible.

 If you want to zoom in on a figure (especially in iBooks on the iPad), tap the respective
 figure once. By tapping once again, you return to the previous screen. You can find
 more recommendations on the customization of the screen layout on the Service Pages.

 Table of Contents

 Dear Reader

 Notes on Usage

 Table of Contents

 Preface

 1 Git in Ten Minutes

 1.1 What Is Git?

 1.1.1 The git Command

 1.1.2 Git User Interfaces

 1.1.3 Git versus GitHub versus GitLab

 1.2 Downloading Software from GitHub

 1.2.1 Example: Hello World!

 1.2.2 Example: Python Game

 1.3 Learning to Program with Git Support

 1.3.1 Preparation Tasks

 1.3.2 Programming and Synchronizing

 1.3.3 The Git Time Machine

 2 Learning by Doing

 2.1 Installing the git Command

 2.1.1 Linux

 2.1.2 macOS

 2.1.3 Windows

 2.1.4 Changing Options Later and Performing Updates

 2.1.5 Changing the Default Editor

 2.1.6 Git Bash, cmd.exe, PowerShell, or Windows Terminal?

 2.1.7 Git Bash

 2.1.8 Git in the Windows Subsystem for Linux

 2.2 Setting Up a GitHub Account and Repositories

 2.2.1 Setting Up a GitHub Account

 2.2.2 Setting Up Repositories

 2.2.3 Giving Access to a Repository

 2.2.4 GitHub Organizations

 2.2.5 Setting Up Personal Access Tokens

 2.3 Using the git Command

 2.3.1 Setting the Name and Email Address (git config)

 2.3.2 Downloading a Repository (git clone)

 2.3.3 Adding Files (git add)

 2.3.4 Saving an Intermediate State (git commit)

 2.3.5 Adding and Changing Files, More Commits

 2.3.6 Status (git status)

 2.3.7 Excluding Files from Git Management (.gitignore file)

 2.3.8 Transferring the Repository to a Remote Server (git push)

 2.3.9 Updating the Local Repository (git pull)

 2.3.10 Uploading a Local Repository to GitHub/GitLab

 2.3.11 Branches (git checkout and git merge)

 2.3.12 Logging (git log)

 2.3.13 More Git Commands, Options, Special Cases, and Basics

 2.4 Authentication

 2.4.1 Windows Credential Manager

 2.4.2 macOS Keychain

 2.4.3 libsecret (Linux)

 2.4.4 SSH instead of HTTPS

 2.4.5 Different SSH Keys for Multiple GitHub/GitLab Accounts

 2.4.6 If It Doesn't Work

 2.5 Learning Git in a Playful Way (Githug)

 2.5.1 Requirements

 2.5.2 Game Structure

 2.6 IDEs and Editors

 2.6.1 Git GUI

 2.6.2 GitHub Desktop

 2.6.3 IntelliJ IDEA

 2.6.4 TortoiseGit

 2.6.5 Visual Studio Code

 2.6.6 Xcode

 2.7 Contributing to a Third-Party GitHub Project

 2.7.1 Forks

 2.7.2 Pull Requests

 2.8 Synchronization and Backups

 2.8.1 Git Issues

 2.8.2 Conclusion

 3 Basic Principles of Git

 3.1 Terminology

 3.1.1 About Commits

 3.1.2 Log and Logging

 3.1.3 Local and Remote Repositories

 3.1.4 Hooks, Submodules, and Subtrees

 3.2 The Git Database

 3.2.1 The .git Directory

 3.2.2 Git Object Types: Commits, BLOBs, Trees, and Tags

 3.2.3 References

 3.3 Commits

 3.3.1 The Staging Area

 3.3.2 The Commit

 3.3.3 More Details

 3.3.4 Renaming, Moving, or Deleting Files from the Repository

 3.4 Commit-Undo

 3.4.1 Not Saving a Change Permanently after All (git reset)

 3.4.2 Restoring Changes Made since the Last Commit (git restore)

 3.4.3 Viewing a File in an Old Version (git show)

 3.4.4 Viewing Changes Compared to an Old Version (git diff)

 3.4.5 Restoring a File to an Old Version (git restore)

 3.4.6 Reverting the Last Commits (git revert)

 3.4.7 Reverting the Last Commits (git reset)

 3.4.8 Switching Temporarily to an Older Commit (git checkout)

 3.4.9 Changing the Commit Message

 3.5 Branches

 3.5.1 Using Branches

 3.5.2 Problems Switching between Branches (git checkout)

 3.5.3 Determining “main” as the Default Name for New Repositories

 3.5.4 Renaming “master” to “main”

 3.5.5 Internal Details

 3.6 Merging

 3.6.1 Merging Branches (git merge)

 3.6.2 Main Merge or Feature Merge?

 3.6.3 Fast-Forward Merges

 3.6.4 Octopus Merges

 3.6.5 Merge Process

 3.6.6 Cherry-Picking

 3.7 Stashing

 3.7.1 Caching and Restoring Changes

 3.7.2 Stashing in Practice

 3.7.3 Managing Multiple Changes

 3.8 Remote Repositories

 3.8.1 Initialization Work

 3.8.2 Push and Pull

 3.8.3 Remote Branches

 3.8.4 Internal Details

 3.8.5 Multiple Remote Repositories

 3.8.6 Workflows

 3.8.7 Configuring Your Own Git Server

 3.9 Resolving Merge Conflicts

 3.9.1 Collisions in the Code

 3.9.2 Merge Tools

 3.9.3 Binary File Conflicts

 3.9.4 Merge Abort and Undo

 3.9.5 Content-Related Merge Conflicts

 3.9.6 MERGE Files

 3.10 Rebasing

 3.10.1 Example

 3.10.2 Concept

 3.10.3 Merge Conflicts during Rebasing

 3.10.4 Side Effects

 3.10.5 Pull with Rebasing

 3.10.6 Special Rebasing Cases and Undo

 3.10.7 Squashing

 3.11 Tags

 3.11.1 Listing Tags

 3.11.2 Simple Tags versus Annotated Tags

 3.11.3 Synchronizing Tags

 3.11.4 Setting Tags Subsequently

 3.11.5 Deleting Tags

 3.11.6 Modifying or Correcting Tags (Retagging)

 3.11.7 Signed Tags

 3.12 References to Commits

 3.12.1 Reference Names

 3.12.2 refname@{date} and refname@{n}

 3.12.3 Accessing Previous Versions

 3.12.4 Examples

 3.12.5 References to Files

 3.13 Internal Details of Git

 3.13.1 Object Packages

 3.13.2 SHA-1 Hash Codes

 3.13.3 The .git/index File

 3.13.4 Commands for Managing the Git Database

 4 Data Analysis in the Git Repository

 4.1 Searching Commits (git log)

 4.1.1 Clear Logging

 4.1.2 Custom Formatting (Pretty Syntax)

 4.1.3 Searching Commit Messages

 4.1.4 Searching Commits That Modify Specific Files

 4.1.5 Searching Commits of a Specific Developer

 4.1.6 Restricting the Commit Range (Range Syntax)

 4.1.7 Limiting Commits in Time

 4.1.8 Sorting Commits

 4.1.9 Tagged Commits (git tag)

 4.1.10 Reference Log (git reflog)

 4.2 Searching Files

 4.2.1 Viewing Old Versions of a File (git show)

 4.2.2 Viewing Differences between Files (git diff)

 4.2.3 Viewing Differences between Commits

 4.2.4 Searching Files (git grep)

 4.2.5 Determining the Authorship of Code (git blame)

 4.3 Searching for Errors (git bisect)

 4.4 Statistics and Visualization

 4.4.1 Simple Number Games (git shortlog)

 4.4.2 Statistical Tools and Scripts

 4.4.3 Visualizing Branches

 4.4.4 GitGraph.js

 5 GitHub

 5.1 Pull Requests

 5.1.1 Pull Requests on a Team

 5.1.2 Pull Requests in Public Projects

 5.2 Actions

 5.2.1 YAML Syntax

 5.2.2 Notification to Slack

 5.2.3 The Continuous Integration Pipeline

 5.3 Package Manager (GitHub Packages)

 5.3.1 Example

 5.4 Automatic Security Scans

 5.4.1 Node.js Security

 5.5 Other GitHub Features

 5.5.1 Collaboration

 5.5.2 Issues

 5.5.3 Discussions and Teams

 5.5.4 Wiki

 5.5.5 Gists

 5.5.6 GitHub Pages

 5.6 GitHub Command-Line Interface

 5.6.1 Installation

 5.6.2 Examples of Use

 5.7 Codespaces

 6 GitLab

 6.1 On-Premise versus Cloud

 6.2 Installation

 6.2.1 Installing GitLab Runner

 6.2.2 Backup

 6.3 The First Project

 6.4 Pipelines

 6.4.1 Auto DevOps

 6.4.2 Manual Pipelines

 6.4.3 Test Stage in the Manual Pipeline

 6.4.4 Release Stage in the Manual Pipeline

 6.4.5 Debugging Pipelines

 6.5 Merge Requests

 6.6 Web IDE

 6.7 Gitpod

 7 Azure DevOps, Bitbucket, Gitea, and Gitolite

 7.1 Azure DevOps

 7.1.1 Trying Out Azure DevOps

 7.1.2 Test Plans

 7.1.3 Conclusion

 7.2 Bitbucket

 7.3 Gitea

 7.3.1 Trying Out Gitea

 7.3.2 Server Installation with Docker

 7.3.3 Server Installation on Ubuntu 20.04

 7.3.4 A First Example with Gitea

 7.4 Gitolite

 7.4.1 Installation

 7.4.2 Application

 8 Workflows

 8.1 Instructions for the Team

 8.2 Solo Development

 8.2.1 Conclusion

 8.3 Feature Branches for Teams

 8.3.1 New Function, New Branch

 8.3.2 Example

 8.3.3 Code Review

 8.3.4 Merge

 8.3.5 Rebasing

 8.3.6 Conclusion

 8.4 Merge/Pull Requests

 8.4.1 Forks

 8.4.2 Conclusion

 8.5 Long-Running Branches: Gitflow

 8.5.1 Main, Develop, Feature

 8.5.2 Hot Bugfixes

 8.5.3 Bugfixes in the develop Branch

 8.5.4 Another New Function

 8.5.5 Conclusion

 8.6 Trunk-Based Development

 8.6.1 Continuous Integration

 8.6.2 Release-Ready

 8.6.3 Continuous Deployment

 8.6.4 Feature Flags

 8.6.5 Conclusion

 8.7 Which Workflow Is the Right One?

 9 Working Techniques

 9.1 Hooks

 9.1.1 Hooks in Real Life

 9.1.2 Explanation of the Sample Script

 9.1.3 More Hooks

 9.1.4 Hooks versus Actions/Pipelines

 9.2 Concise Commit Messages

 9.2.1 Multiline Commit Messages in the Console

 9.2.2 Commit Title and Text

 9.2.3 Character Set and Language

 9.2.4 Links to Issues or Pull Requests

 9.2.5 Commit Messages of the Angular Project

 9.2.6 Conclusion

 9.3 Submodules and Subtrees

 9.3.1 Copying

 9.3.2 Using the Package Manager

 9.3.3 Submodules

 9.3.4 Subtrees

 9.3.5 Internal Details

 9.3.6 Subtree Split

 9.3.7 Monorepos

 9.4 Bash and Zsh

 9.4.1 Git Aliases

 9.4.2 Autocompletion in Bash

 9.4.3 Oh My Zsh!

 9.5 Two-Factor Authentication

 9.5.1 Enabling Two-Factor Authentication on GitHub

 9.5.2 Hardware Security Keys

 9.5.3 Applying Two-Factor Authentication

 10 Git in Real Life

 10.1 Etckeeper

 10.1.1 Usage Example

 10.1.2 Installation and Configuration

 10.2 Managing Dotfiles with Git

 10.2.1 Dotfiles

 10.2.2 Dotfiles under Git Control

 10.2.3 git-dir and work-tree

 10.2.4 Setting Up Dotfiles on a New Computer

 10.2.5 Shell Commands

 10.2.6 Vim Configuration

 10.2.7 Miscellaneous

 10.3 Accessing Apache Subversion (git-svn)

 10.3.1 Application

 10.3.2 Subversion Commits

 10.4 Migrating from Apache Subversion to Git

 10.4.1 Authors

 10.4.2 Import

 10.4.3 Tags and Branches

 10.5 Blog with Git and Hugo

 10.5.1 From WordPress to Hugo

 10.5.2 Hugo

 10.5.3 Hugo Themes as Git Submodules

 10.5.4 Filling a Blog with Content

 10.5.5 Git LFS

 10.5.6 Deploying with Netlify

 10.5.7 Deploying with a GitHub Action and GitHub Pages

 11 Git Problems and Their Solutions

 11.1 Git Error Messages (Root Cause and Solution)

 11.1.1 Repository Not Found

 11.1.2 Please Tell Me Who You Are (git commit)

 11.1.3 Authentication Failed (git pull, git push)

 11.1.4 Invalid User Name or Password (git clone, git pull, git push)

 11.1.5 Permission Denied, Public Key (git clone, git pull, git push)

 11.1.6 Permission Denied, Unable to Access <repo> (git push)

 11.1.7 Changes Not Staged for Commit (git commit)

 11.1.8 Your Local Changes Would Be Overwritten (git checkout, git switch)

 11.1.9 Your Branch Is Ahead of a Remote/Branch by n Commits (git pull, git status)

 11.1.10 You’re in a Detached HEAD State (git checkout)

 11.1.11 Pathspec Did Not Match Any Files Known to Git (git checkout)

 11.1.12 Please Enter a Commit Message to Explain Why This Merge Is Necessary (git
 pull)

 11.1.13 Pulling without Specifying How to Reconcile Divergent Branches Is Discouraged
 (git pull)

 11.1.14 Cannot Pull with Rebase: You Have Unstaged/Uncommitted Changes (git pull)

 11.1.15 There Is No Tracking Information for the Current Branch (git pull)

 11.1.16 Your Local Changes Would Be Overwritten (git merge, git pull)

 11.1.17 Failed to Push Some Refs to <somerepo.git> (git push)

 11.1.18 The Current Branch <name> Has No Upstream Branch (git push)

 11.1.19 Merge Failed, Merge Conflict in <file> (git merge, etc.)

 11.2 Saving Empty Directories

 11.3 Merge for a Single File

 11.3.1 git merge-file

 11.3.2 git checkout

 11.4 Deleting Files Permanently from Git

 11.4.1 Local Changes Only, without Push (git rm)

 11.4.2 Previously Uploaded Changes, with Push (git filter-branch)

 11.4.3 Previously Uploaded Changes, after Push (git filter-repo)

 11.4.4 Previously Uploaded Changes, after Push (BFG Repo Cleaner)

 11.5 Splitting a Project

 11.6 Moving Commits to a Different Branch

 11.6.1 git reset

 11.6.2 git cherrypick

 12 Command Reference

 12.1 The git Command

 12.1.1 Porcelain versus Plumbing

 12.1.2 General Options

 12.1.3 git add

 12.1.4 git bisect

 12.1.5 git blame

 12.1.6 git branch

 12.1.7 git checkout

 12.1.8 git cherry-pick

 12.1.9 git clean

 12.1.10 git clone

 12.1.11 git commit

 12.1.12 git config

 12.1.13 git diff

 12.1.14 git fetch

 12.1.15 git gc

 12.1.16 git gui

 12.1.17 git grep

 12.1.18 git init

 12.1.19 git log

 12.1.20 git ls-files

 12.1.21 git merge

 12.1.22 git merge-base

 12.1.23 git merge-file

 12.1.24 git mergetool

 12.1.25 git mv

 12.1.26 git pull

 12.1.27 git push

 12.1.28 git rebase

 12.1.29 git reflog

 12.1.30 git remote

 12.1.31 git reset

 12.1.32 git restore

 12.1.33 git rev-list

 12.1.34 git revert

 12.1.35 git rm

 12.1.36 git shortlog

 12.1.37 git show

 12.1.38 git stage

 12.1.39 git status

 12.1.40 git submodule

 12.1.41 git subtree

 12.1.42 git switch

 12.1.43 git tag

 12.2 Revision Syntax

 12.2.1 Commit Ranges (rev1..rev2 versus rev1…rev2)

 12.3 git Configuration

 12.3.1 Configuration File .git/config

 12.3.2 Basic Settings

 12.3.3 Configuration File .gitignore

 12.3.4 Configuration File .gitmodules

 12.3.5 Configuration File .gitattributes

 The Authors

 Index

 Service Pages

 Legal Notes

 Preface

 Whenever several people work together on a software project, a system is needed to store all the changes made in a traceable way. Such a version control system must also give all developers access to the entire project. Each programmer knows what the others have done recently; developers can try out the code of the others and test the code’s interaction with their own changes.

 In the past, many version control systems were used, such as Concurrent Versions System (CVS), Apache Subversion (SVN), or Microsoft Visual SourceSafe (VSS). In the last decade, however, Git has become the de facto standard.

 The GitHub web platform played a significant role in this success, making learning and using Git much easier. Countless open-source projects use the free GitHub offering for project hosting. Commercial customers who didn’t want to publish their source code pay for this service. GitHub is not the only Git platform, of course: Major competitors include GitLab, Azure DevOps Services, and Bitbucket. Microsoft bought GitHub in 2018 for $7.5 billion. Unlike other acquisitions, this development hasn’t hurt GitHub’s popularity so far.

 The Story of Git

 Git came into being because Linus Torvalds needed a new version management system for the further development of the Linux kernel. The developer community had previously used the BitKeeper program. Torvalds was basically satisfied with the program, but a license change necessitated a switch. Of the open-source programs available at the time, none met his high standards.

 So, the Linux chief developer briefly stopped his main work and created the basic framework for Git in just two weeks. The name Git stands for stupid or moron, and the help page man git also refers to the program as the stupid content tracker.

 That this definition was an understatement became clear only gradually, long after Torvalds had given up on further development of Git and put it out of his hands. Not only did kernel developers quickly and easily switch their work to Git, but in the years that followed, more and more software projects outside the open-source world switched to Git as well.

 Git made its final breakthrough when web platforms such as GitHub and GitLab became established. These websites simplify the hosting of Git projects enormously and have become an indispensable part of everyday Git life. (Even the Linux kernel is now on GitHub!)

 Ironically, Torvalds’ main goal in designing Git was to create a decentralized version control system. But the centralized approach of GitHub and others made Git attractive for developers outside the guru league.

 Some rate the importance of Git as highly as that of Linux. Torvalds has thus twice succeeded in completely turning the software universe on its head.

 Everyone Uses It, but No One Understands It

 With all the enthusiasm, Git was clearly designed by professionals for professionals. We don’t want to give you the impression in this book that Git is easy because it isn’t. You’ll need to keep in mind the following considerations:

 	
 Often, more than one way exists to reach a goal. For readers already familiar with Git, this idea is useful, but if you’re just learning Git, this diversity can be confusing.

 	
 Many open-source projects are accused of being poorly documented. You really can’t say that about Git. On the contrary, every git command and every possible application is explained in man pages as well as on the website (https://git-scm.com/docs) in such granularity and with so many conceivable special cases that you can get lost in the details.

 	
 Complicating matters further, some terms carry many different meanings, and easily confused subcommands might perform widely divergent tasks. Some terms have different meanings depending on their context or are used inconsistently in the documentation.

 We have a confession: Despite years of using Git, we still learned a lot while writing this book!

 About This Book

 Of course, you can use Git in a minimalistic way. However, small deviations from the daily routine can then lead to surprising and often incomprehensible side effects or errors.

 Every Git beginner knows that feeling when a git command returns an incomprehensible error message: In a cold sweat, you wonder whether you’ve just permanently destroyed a repository for all your developers and try to find someone to persuade Git to continue working after all with the right commands.

 Thus, describing Git without going into depth isn’t useful. Only a good understanding of how Git works gives you the confidence you’ll need to cleanly fix merge conflicts or other problems.

 At the same time, however, we knew that this book could only work if we gave priority to the essential functions. Despite its over 400 pages, this book is not the all-encompassing guide to Git. We cannot consider every single special case or introduce every Git subcommand, no matter how exotic. We’ve therefore tried to separate the wheat from the chaff in this book.

 This book is divided into manageable chapters that you can read as needed, like building blocks:

 	
 After a short introduction in Chapter 1, we’ll introduce the use of Git in Chapter 2 through Chapter 4. We’ll focus on the use of Git at the command level and only marginally discuss platforms such as GitHub or other user interfaces (UIs).
For Git beginners, we recommend starting with these first four chapters. Even if you have some Git experience, you should definitely take a few hours to read Chapter 3 and try out some of the techniques we present (merging, rebasing, etc.) in a test repository.

 	
 The next three chapters introduce the most important Git platforms. Especially for complex projects, these platforms provide useful additional functions, for instance, to perform automatic tests or to implement continuous integration (CI).

 Of course, we also show you how to host your own Git repository. With GitLab, Gitea, or Gitolite, this goal can be realized relatively easily.

 	
 Then, we’ll turn from the basics to the practical:

 	
 In Chapter 8, we’ll describe popular patterns for guiding the work of numerous developers into orderly paths (branches) with Git.

 	
 Chapter 9 focuses on advanced Git features, such as hooks, submodules, subtrees, and two-factor authentication, which are all supported by major Git platforms.

 	
 Chapter 10 shows how you can use version configuration files (dotfiles) or the entire /etc directory with Git on Linux systems, how to switch a project from SVN to Git, and how to realize a simple website quickly and easily with Git and Hugo.

 	
 Chapter 11 helps you break the deadlock on hard-to-understand error messages. In this chapter, you’ll also find instructions on implementing special requests, for example, removing large files from a Git repository or performing a merge operation on a selected file only.

 	
 To close the book, Chapter 12 briefly summarizes the most important git commands and their options. In this chapter, we followed the motto “Less is more.” Our goal was not a complete reference, but rather a guide to the “essence of Git”.

 Sample Repositories

 Some examples from this book are available on GitHub at the following link:

 https://github.com/git-compendium

 A Note to Readers

 We realize that you may not begin reading this book with great enthusiasm: Perhaps you need to use Git for a project. Your goal might not be Git as such—you want to produce code to drive your project. You may not really have the time or inclination to learn about Git; you just want to know enough to use Git without errors.

 We understand that motivation. Nevertheless, we strongly recommend that you invest a few hours more than planned to get to know Git systematically.

 We promise you: You’ll win this time back later! Poor understanding of Git inevitably means that you’ll need to keep searching the internet for solutions to problems you’ve already encountered (often under time pressure).

 Although your current focus is primarily on your project, Git skills are a long-term core competency that you’ll need as a developer in many future projects. With this need in mind, we wish you much success with Git!

 Michael Kofler (https://kofler.info)
Bernd Öggl (https://webman.at)

 1 Git in Ten Minutes
In this mini chapter, we want to introduce you to Git without overwhelming you with too many details. We explain what Git is for and what you can do with it, even if you don’t know the concepts behind Git yet.
The title of this chapter is admittedly a bit sensational: We’ve calculated the time quite optimistically, but “Git in ten minutes” definitely sounds better than “Git in 25 minutes,” doesn’t it?

 1.1 What Is Git?

 Git is a decentralized version control program. In software projects, Git remembers the changes made by various developers. Later, you can track who made which changes and when (and ultimately who was responsible for a catastrophic security bug discovered two years later....).

 Basically, you can use Git for any kind of project where only you or a whole team repeatedly modify, add, or delete various files. We even managed the Markdown files and images for this book with Git.

 Git works especially well when a project consists of many relatively small text files. Although Git can handle binary files, tracking changes within such files is difficult. In this respect, Git isn’t ideal for tracking changes in Microsoft Office documents, in audio and video files, or in virtual machine (VM) images.

 1.1.1 The git Command

 In the terminal or in PowerShell, you can control Git by using the git command. Numerous options available with this command allow you to download Git projects from external repositories like GitHub, save changed files in a “commit” and upload them again, switch between different branches of a software project (e.g., main and develop), undo changes, and more. A repository is a collection of all the files that make up a project, containing not only the current version, but also all previous versions and all development branches.

 “Git” or “git”?

 In this book, we use both the term “Git” and the command git. In addition to uppercase and lowercase, the font also makes our meaning clear: “Git” refers to the version control system in its entirety, including its concepts and ideas. git, on the other hand, stands for the command to use these functions.

 This distinction is important because some of Git’s features are available to you without the git command—for example, in integrated development environments (IDEs), editors, or web interfaces. So, you can use Git in many ways. The git command is only one way (but for special functions, it’s the most important one!).

 1.1.2 Git User Interfaces

 Many chapters in this book focus on the git command. However, you can also use at least a subset of the Git functions via convenient interfaces. All popular IDEs (Microsoft Visual Studio, Xcode, IntelliJ IDEA, Android Studio, etc.) and many editors (Atom, Sublime Text, Visual Studio Code [VS Code], etc.) provide menu commands for performing elementary Git operations in a straightforward manner. Web interfaces include GitHub or GitLab. Not only do these user interfaces (UIs) enable you to manage Git projects and, for example, track the changes made in a file, but you can also use various additional functions for issue/bug management, automated tests, and more.

 In this book, we’ll introduce you to Git functions through some editors or IDEs as examples in Chapter 2. However, for all the charm that comes from comfortable Git graphical user interfaces (GUIs), one thing must be clear: If you don’t understand Git, you’ll hit a dead end sooner or later (more likely sooner) when using even the most wonderful tools.

 1.1.3 Git versus GitHub versus GitLab

 Basically, Git is a standalone tool that doesn’t rely on central repositories. In practice, however, external Git repositories such as GitHub or GitLab are ubiquitous. Modern web interfaces facilitate both the entry and the administration of projects. These platforms greatly simplify data exchange between members of a development team, serve as an additional backup, and provide various additional functions (documentation, bug tracker, quality assurance [QA], etc.). For public projects, these repositories also act as an information and download page for anyone interested in the project.

 Among Git hosting providers, GitHub, which was acquired by Microsoft in 2018, currently has the largest market share. You could always set up open-source projects at GitHub for free. In April 2020, many restrictions also fell on private projects due to competitive pressure. (In a private project, the source code is only visible to selected people.) As a result, even relatively large projects can be stored on GitHub for free. GitHub offers commercial users many additional features for a fee—that’s its business model.

 Many alternatives to GitHub are available. The best known is the company GitLab, which offers rather similar functions—also either for free or commercially, depending on requirements. As with GitHub, the free features are quite generous. The real special feature of GitLab is that the source code of the program is freely available. Thus, you can set up GitLab on its own server—a great advantage for organizations or companies uncomfortable with handing over all their intellectual property. In addition, running your own Git server can reduce ongoing costs. But don’t forget your own costs for administration, server operation, network traffic, and backups!

 Other providers for Git hosting or for corresponding software include Azure Repos, Bitbucket, Gitea, and Gitolite (the last two for running on a custom server). In this book, we assume that you have a (free) account with GitHub, GitLab, or another Git provider. Some basic functions of GitHub are described in introductory chapters. Separate chapters are then devoted to features for advanced users and for setting up GitLab on your own server.

 Git Hosts Aren’t an Alternative to Git, but a Supplement

 We’d like to clarify one point especially for beginners to Git: Providers like GitHub or GitLab don’t replace basic Git concepts or the git command. Rather, these providers have built upon the ideas provided by Git to offer additional functions that have proven enormously useful in practice, while also lowering the barriers to entry. A free account with a Git provider and the git command on your computer form the ideal playground for learning how Git works.

 1.2 Downloading Software from GitHub

 The first time you encountered Git, perhaps you landed on the GitHub portal while searching for a program. There you can choose between several download options: For beginners, the easiest option is to download the whole project as a ZIP file. However, if you want to learn Git or use its features, you should get familiar with git commands. With the git clone command, you can download a copy of the Git project to your own computer, thus creating a “clone” of the project, so to speak.

 Requirements

 In the following sections, we assume that the git command is already installed on your computer. If not the case, refer to Chapter 2, Section 2.1.

 For this first example, on the other hand, registering with GitHub isn’t necessary. git clone works for public projects without any registration.

 In the GitHub download dialog box, the Clone with HTTPS variant is active by default. (The SSH option shown in Figure 1.1 is only available if you have a GitHub account and are logged on. We’ll discuss communication via SSH in Chapter 2, Section 2.4.) Now, copy the URL to the clipboard by clicking the button and paste the URL into the terminal, Git Bash, or PowerShell after git clone:

 git clone https://github.com/<author>/<project>.git

 [image: Download Dialog Box on GitHub]

 Figure 1.1
 Download Dialog Box on GitHub

 git clone creates a new project directory in the current directory and unpacks all files for the Git project in that project directory. Not as simple as downloading the project, you now need to get it up and running: Depending on the project, you may now need to compile the code, load it into an IDE, or run it with other tools. The decisive factor in this step is that all the requirements are met on your computer that are usually summarized in the documentation for the project (i.e., that you’ve installed the necessary programming languages, compilers, libraries, etc. in their correct versions).

 1.2.1 Example: Hello World!

 On the https://github.com/git-compendium page, we’ve compiled some examples for this book. The simplest example is named hello-world. You can download it to your computer with the following command:

 git clone https://github.com/git-compendium/hello-world.git

 If you then go to the local project directory via cd, you’ll find four files: README.md, index.html, style.css, and git.jpg. You can view the resulting web page in your web browser:

 cd hello-world

ls/dir
 git.jpg index.html README.md style.css

 1.2.2 Example: Python Game

 Recently, one of the authors was looking for a simple game implemented in Python—not to pass the time, but as inspiration for his son who is just learning to program with Python. In the process, he came across this repository:

 https://github.com/Seitoh63/PySpaceInvaders

 To ensure that this repository will still work even if the original developer deletes it, we created a copy (in GitHub language, a fork) available at the following address:

 https://github.com/git-compendium/PySpaceInvaders

 The game is a variant of the Space Invaders game popular in the 1980s. With about 1,200 lines, the codebase is not tiny, but it is still manageable. Provided that Python 3 and git are already installed on your computer, three commands are enough to download and try the game:

 git clone https://github.com/git-compendium/PySpaceInvaders.git
cd PySpaceInvaders
python3 main.py

 The game requires the Pygame library in a current version. If the error No module named pygame arises when starting the game, you’ll need to install the missing library. The pip3 (macOS, Linux) or pip (Windows) command supplied with Python can help in this context:

 pip3 install pygame (macOS, Linux)
pip install pygame (Windows)

 1.3 Learning to Program with Git Support

 Imagine you want to learn Python (or any other language). Over the course of a few weeks, you try out new functions and create various small sample programs. And as always when learning something new, you make a lot of mistakes. Suddenly, an example that was already working no longer runs.

 Now, you see to why you should put your sample programs under version control and sync them with GitHub. Doing so will allow you to reconstruct all the changes you’ve made over time. At the same time, you’ll now have an external backup.

 1.3.1 Preparation Tasks

 Again, we assume that you already have git installed (see Chapter 2, Section 2.1). In a terminal or cmd.exe, you need to run two commands so that Git knows your name and email address. This data is stored in each commit. (You don’t have to provide real data now if you don’t want to.)

 git config --global user.name "Henry Hollow"
git config --global user.email "hollow@my-company.com"

 You’ll also set up a free account at https://github.com along with the new, private repository, hello-python. (“Private” means that only you have access to the files it contains. If you encounter any problems while getting started on GitHub, refer to Chapter 2, Section 2.2.)

 Now, you still need an editor. We suggest using the free program Visual Studio Code (VS Code), which has particularly good Git support. After installation, press (F1) to open the command palette and run Git • Clone. In the small dialog box, you must enter the URL of your repository in the following format:

 https://github.com/<accountname>/hello-python.git

 Don’t forget the .git extension when copying the URL from the web browser. If you’re accessing GitHub for the first time in VS Code, you’ll need to authenticate. VS Code redirects you to the GitHub website for this purpose. The process is a little bit tricky and doesn’t always succeed on the first try. As soon as everything works, VS Code remembers the identification token acquired in this way and can use it to access your account in the future.

 Reauthenticating

 If you’ve previously used VS Code for another GitHub account, you’ll only have access to that account’s repositories as well as to public repositories. Before you can access another account’s private repository, you must delete the previously stored authentication credentials.

 On Linux, you can execute the Sign Out command in VS Code via the Accounts icon (usually the second-to-last icon in the sidebar). On Windows, you must start the Windows Credential Management program, go to the Windows Credentials dialog box, and delete the git:https://github.com entry. This step will cause VS Code to ask you to authenticate again the next time you connect.

 Generally, Git and VS Code work best if you always use the same account. More details on the many authentication options available with Git follow in Chapter 2, Section 2.4.

 VS Code finally asks you for the directory where you want to store the files of the repository locally. For example, select the Documents folder on Windows. VS Code creates a new subdirectory and uses it as the project directory.

 1.3.2 Programming and Synchronizing

 The EXPLORER view in the VS Code sidebar now shows the project directory, which is empty for now except for a README file. Now, you can add the first file (e.g., hello-world.py) via the context menu, enter the first lines of code, and try out the program. (This example assumes you’ve installed Python on your computer and the Python extension in VS Code.)

 When the first program is running to your satisfaction, now is the right time for your first commit. With this action, you’ll save the current state of all files of the project.

 Before committing, you must explicitly mark for commit all files that have been changed or newly added to the project. For this step, open the SOURCE CONTROL sidebar by pressing (Ctrl)+(Shift)+(G) or by clicking on the Source Control menu icon (see Figure 1.2 1). In the SOURCE CONTROL sidebar, click the plus button (Stage Changes), as shown in Figure 1.2 2, for all files that should be part of the commit.

 [image: All New/Changed Files Should Be Included in the Commit]

 Figure 1.2
 All New/Changed Files Should Be Included in the Commit

 Then, in the Message field, enter a short text summarizing the most recent changes made to the code 3. Pressing (Ctrl)+(Enter) executes the commit. If you forget to mark files for commit, VS Code will ask if it should simply include all new and changed files in the commit.

 With the commit, VS Code has simply created a local snapshot of all your files. If you want your commits to be backed up to the external Git repository as well (i.e., GitHub in our case), click the three dots (...) menu button in the SOURCE CONTROL sidebar 4 and execute the Pull, Push • Sync command. Behind the scenes, this step runs both git pull and git push. So, any changes occurred in the external repository that haven’t yet been downloaded to your machine will be downloaded at the same time. What the git pull and git push commands mean in detail will be described in Chapter 3.

 1.3.3 The Git Time Machine

 The advantages of Git become clear when you want to test an example again after some time and problems arise. You can’t exactly tell when the error happened. In VS Code EXPLORER view, execute the Open Timeline context menu command on the affected file. VS Code not only shows all commits where the affected file has been changed; clicking on the commit also immediately makes clear what changes have been made.

 [image: Timeline Showing the History of All Changes of a File]

 Figure 1.3
 Timeline Showing the History of All Changes of a File

 However, VS Code doesn’t give you an immediate way to restore an old version of a file. The GitLens extension provides this function, however. Alternatively, you could also familiarize yourself with the git restore command (outside of VS Code). But we’re already getting ahead of ourselves for this first chapter!

 2 Learning by Doing
This chapter continues what we started in the previous chapter: Through concrete examples, we’ll show you the practical application of Git. In contrast to the introductory chapter, however, we’ll now dive a bit deeper and introduce you to a whole range of tools. In detail, we’ll cover the following topics:

 	
 Installing Git

 	
 Setting up a GitHub account

 	
 Applying the git command

 	
 Authentication (HTTPS versus SSH, credential caching)

 	
 Git graphical user interfaces (GUIs)

 	
 Collaboration on third-party GitHub projects (pull requests)

 	
 Synchronization and backup policies

Before we get started, we’ll whet your appetite for Chapter 3 where we explain the basic concepts behind Git. To understand how Git really works (and that’s what you’re reading this book for, right?), there’s no way around these basics. While this chapter still talks a lot about graphical tools, the next chapter focuses entirely on using the git command in a terminal window.

 2.1 Installing the git Command

 This entire book is based on the assumption that you have a sufficiently up-to-date version of the git command. Also, many of the editors and integrated development environments (IDEs) presented in this book will draw on this command. This section summarizes how you can install git.

 Download links and additional installation tips can be found at the following link:

 https://git-scm.com/downloads

 Git without Installation

 Some IDEs (e.g., Microsoft Visual Studio or Xcode) include Git libraries or the git command directly. As long as you work exclusively with these IDEs, you don’t need to explicitly install the git command.

 Furthermore, you can also try out basic Git functions directly on some web platforms such as https://github.com or https://gitlab.com. (All files remain in the repositories of the Git host, so they do not reside on your computer.)

 However, for using this book, you should definitely have the ability to add git as a standalone command. Test in a terminal or in PowerShell whether git --version works. If it doesn’t, install git!

 2.1.1 Linux

 On Linux, you can install git using the relevant package management tool:

 apt install git # Debian, Raspbian, Ubuntu
dnf install git # Fedora/RHEL and clones
zypper install git # SUSE/openSUSE

 Instead of git, you can also install git-all on some distributions (e.g., Debian, Ubuntu). This option provides you with various additional tools besides the git command (e.g., the GUI git-gui) as well as tools that graphically compare two versions of a file or visualize the branches of a repository. However, an additional 50 packages are associated with git-all. For this reason, we recommend starting with the basic git package first and then installing other packages only when needed.

 git --version enables you to determine whether git is working and in which version:

 git --version
 git version 2.32.0

 2.1.2 macOS

 On macOS, you have access to git as part of Xcode, provided you install its command-line tool. If necessary, you can initiate the installation of these tools using the following command:

 xcode-select --install

 If you do not want to install Xcode, you should set up Homebrew on your Mac (see https://brew.sh). Then, install the git command in the following way:

 brew install git

 2.1.3 Windows

 On Windows, things are (as always) a bit more complicated: The setup program, which you can download from https://git-scm.com/downloads, not only sets up the git command, but also installs a terminal environment (Git Bash) with the most important components known from the Linux world, including the bash shell and commands such as ls, find, grep, tar, gzip, etc. Also included is the Git GUI, a simple user interface (UI) of rather dubious utility.

 [image: One of the Countless Configuration Dialog Boxes of the Git Setup Program for Windows]

 Figure 2.1
 One of the Countless Configuration Dialog Boxes of the Git Setup Program for Windows

 During the setup process, you must answer all possible questions and select from several options right from the start. You won’t go wrong if you simply accept the preset options except for the editor. Nevertheless, we’ve taken the trouble to document the dialog boxes in this chapter, which are often difficult to understand for beginners:

 	
 Installation location
By default, the git command and associated tools are installed in the C:\Program Files\Git directory. If necessary, you can select another directory.

 	
 Installation scope
In the next dialog box, select the components to install in addition to the actual git command. By default, these components include Git Bash, the Git GUI, and the large-file support (LFS) extension (see Chapter 10, Section 10.5). You also specify whether and where icons should be set up and which links to file extensions should be created.

 	
 Editor
When executing some git commands, an editor starts automatically where you can, for example, enter an explanation for a merge operation or edit a configuration file. By default, git on Windows uses the Git Bash editor, namely, vim. However, only Linux veterans will appreciate its charm. If you aren’t familiar with this editor, you should definitely set another editor in this dialog box. Choices include Notepad++ and Visual Studio Code (VS Code) (or VS Code’s open-source variant VSCodium).
Note that this setting isn’t about the editor you use to edit the code of your software projects—no restrictions in that regard exist. This setting is exclusively about if the git command itself wants to start an editor.

 	
 Default branch name
In the past, the branch master was automatically set up along with each new Git repository. Today, main is common. In this dialog box, you can freely define the name of the default branch.

 	
 PATH environment variable
The next dialog box is about how the setup program sets the PATH environment variable. This variable determines in which directories cmd.exe or PowerShell will search for programs:

 	
 The Use Git from Git Bash only option leaves PATH unchanged. For this reason, you can run git only in Git Bash, but not in cmd.exe or PowerShell.

 	
 The default setting Git from the command line and also from 3rd-party software is recommended. This option extends PATH by the path to the git command. The git command can then be invoked in cmd.exe, in PowerShell, and in Git Bash, and it can also be used by external tools.

 	
 The final option is Use Git and optional Unix tools from the Command Prompt. In this case, the directory with all Linux tools of the Git Bash is also added to PATH. This choice has an advantage in that you can use Linux commands like ls, tar, and more in cmd.exe, PowerShell, or the terminal. However, one disadvantage is that standard Windows commands, such as find or sort, will no longer work as usual because their incompatible Linux variants are used instead.

 	
 SSH
Many git commands require an interaction with SSH. In this dialog box, you’ll define which SSH client git should use. By default, git uses the SSH client provided as part of Git Bash (C:\Program Files\Git\usr\bin\ssh.exe).

 If PuTTY is installed on the computer, you may prefer this program.

 Finally, you can use any preinstalled SSH client, provided that the program has the name ssh.exe and is located in a directory enumerated in PATH. In this way, you can use the proprietary SSH client in Windows (i.e., C:\Windows\System32\OpenSSH\ssh.exe, which you can install via the system settings module Apps & Features).

 	
 HTTPS
Unless SSH is involved, git communicates via HTTPS. In the corresponding dialog box, you can set which encryption library should be used. By default, git uses the supplied OpenSSL library, which in turn uses certificates from the C:\Program Files\Git\etc\pki directory. Alternatively, git can also use libraries provided by Windows. This feature is especially useful in a corporate environment so that git can access the certificate authority (CA) certificates that are distributed to all of your company’s machines via Active Directory.

 	
 End of line
Windows and macOS/Linux use different characters in text files to indicate the end of a line: A combination of carriage return (CR) plus line feed (LF) on Windows, (i.e., CRLF); LF only on MacOS/Linux.

 By default, Git on Windows is configured to adapt text files to Windows conventions when downloading and back to macOS/Linux conventions when uploading (setting core.autocrlf = true). Keep this option if you want your projects to work across different platforms. You can find the relevant background information on this topic at the following link:

 https://docs.github.com/en/github/using-git/configuring-git-to-handle-line-endings

 	
 Terminal for Git Bash
By default, Git Bash uses the MinTTY program to display the window where you enter commands. This program is called a terminal emulator and provides more functions than the Windows program cmd.exe, which you can use as an alternative. The option is only relevant if you use Git Bash.

 	
 Git pull behavior
The git pull command is used to pull changes stored in the external repository into the local repository. When merging files (via the merge process), different procedures are possible. By default, fast-forward is used in simple cases; if that option isn’t possible, you must confirm a merge commit. Alternatively, you can choose the rebase procedure or Only ever fast-forward in this configuration dialog box. (With this third option, git pull will result in an error if fast-forward isn’t possible.)
You’re probably out of your depth with this decision point simply because you lack the necessary background knowledge. We’ll cover this topic in greater detail in the next chapter (starting with Chapter 3, Section 3.6). Leave the option as the default setting Fast-forward or merge for the time being.

 	
 Additional options
In the final step, you can set some special options:

 	
 Enable Git Credential Manager is set by default. This setting is absolutely necessary so that you can log in to GitHub with a token. This setting corresponds to the credential.helper=manager-core entry by git config.

 Why this setting is optional at all is a mystery. In the past, a separate Git Credential Manager for Windows served as an alternative to the Git Credential Manager. However, this software is obsolete and isn’t even included with current Git versions.

 	
 Enable file system caching is set by default and accelerates Git.

 	
 Enable symbolic links allows symbolic cross-references between files. On Linux and macOS, such links are a basic feature of the file system. Windows also has a similar function, which is disabled by default. For more information, refer to the following link:

 https://github.com/git-for-windows/git/wiki/Symbolic-Links

 2.1.4 Changing Options Later and Performing Updates

 Of course, you’re not bound eternally to the initial settings you’ve made. One way to change these options is to simply run the setup program again. However, this approach will perform a complete reinstallation of Git.

 Internally, your global settings are stored in C:\Program Files\Git\etc\gitconfig. Instead of performing a new installation, you can also change the settings stored in that directory using the git config command (which we’ll describe next). More information about where Git settings are stored and how they can be changed is summarized in Chapter 12, Section 12.3. To update Git, you must download the latest version of the setup program and repeat the installation steps. In this case, you can access all the configuration dialogs again (unless you select the Only show new options option).

 2.1.5 Changing the Default Editor

 Git starts the Vim editor by default when you need to enter some text or modify a configuration file. If you’re familiar with this editor, all is well. Otherwise, you should set another editor. On macOS or Linux, you can change this setting by running the following command, replacing /usr/bin/nano with the path to your favorite editor:

 git config --global core.editor "/usr/bin/nano"

 On Windows, the command for the VS Code editor is slightly different. Thanks to the --wait option, git waits until you have closed the file in question in the editor before it continues to process the command:

 git config --global core.editor "code --wait"

 To test the setting, you must change to a repository directory and run git config --edit. This command should start the editor you just set. Tips for configuring other editors (e.g., Notepad++ or Sublime Text) can be found at the following link:

 https://docs.github.com/en/get-started/getting-started-with-git/associating-text-editors-with-git.

 Exiting Vim

 Maybe you landed on this page only when it was already too late, so Git shows you a text in the program Vim and you have no idea how to leave the editor. Press (Esc). Then, enter “:q!” and press (Enter) again to exit the program without saving changes to the file. You can replace :q! with :wq! if you want to save the changes you’ve made.

 2.1.6 Git Bash, cmd.exe, PowerShell, or Windows Terminal?

 On Linux and macOS, the matter is clear: If you’re command oriented, you can open a terminal window and run git in that window. On Windows, on the other hand, up to four variants are available:

 	
 cmd.exe
Traditionally, the cmd.exe program (i.e., the command prompt) provides the option to execute single text commands on Windows. cmd.exe exudes all the charm of Microsoft Disk Operating System (MS-DOS).

 	
 PowerShell
In PowerShell, Microsoft has implemented contemporary techniques for executing commands. However, the efficient operation of PowerShell requires you to learn its peculiarities. Some tips on configuring PowerShell for optimal git command integration can be found in the official Git documentation:
https://git-scm.com/book/en/v2/Appendix-A%3A-Git-in-Other-Environments-Git-in-PowerShell.

 	
 Windows Terminal
Meanwhile, Microsoft provides its developers with a “real” terminal. In Windows 11, the program is even installed by default. Note that Windows Terminal is only a graphical interface within which the traditional command interpreter (cmd.exe) or the PowerShell is still executed.

 	
 Git Bash
Git Bash, installed together with the git command, is especially useful for developers who have already worked with Linux. A brief description of Git Bash follows in the next section.
Since the authors of this book have a Linux background, we’ve mostly worked in Git Bash on Windows, but you don’t have to do the same.

 2.1.7 Git Bash

 Git Bash is a shell environment that’s usually installed with Git on Windows. The window doesn’t look any more visually appealing than cmd.exe but does provides you with all the elementary Linux commands.

 To list the files in the current directory, you must use ls instead of dir. To quickly scroll through a text file, you should call less instead of bothering with more. (As long as no Linux commands of the same name exist, you can continue to use MS-DOS commands.) The biggest advantage of Git Bash is the integration of the ssh command, which you’ll often need when interacting with Git.

 Unfortunately, however, one shortcoming is quite serious: The ubiquitous man command to read the online documentation is missing. However, with git clone --help, for example, you can open the man page for git-clone. Of course, this approach works the same for all other Git subcommands.

 [image: Running Git Commands in Git Bash]

 Figure 2.2
 Running Git Commands in Git Bash

 Compared to cmd.exe, other keyboard shortcuts also work: (Ctrl)+(A) moves the cursor to the beginning of the line, (Ctrl)+(E) to the end, etc. The middle mouse button function adopted from Linux is extremely useful: This button inserts the current clipboard contents at the cursor position.

 Of course, Git Bash is Unicode compatible, using UTF-8 encoding by default. This encoding makes editing text files in projects where developers work on different platforms easier.

 2.1.8 Git in the Windows Subsystem for Linux

 An alternative way to use the git command is with the Windows Subsystem for Linux (WSL). This tool allows you to install Linux first and then install the git command in it. However, this approach is only useful if you want to edit the projects downloaded with git primarily in a Linux environment (and not with Windows programs).

 2.2 Setting Up a GitHub Account and Repositories

 Basically, the git command can be used without an external hub. But the ability to synchronize files between your own computer and an external repository for initial testing can make your first steps and later understanding of Git much better. Also, the web interface helps visually track changes to files and switch between different versions and branches of your project.

 Git beyond GitHub

 Don’t worry, this book is not a GitHub book! We’ll also discuss other Git platforms in later chapters and describe the use of git without the use of a commercial host entirely. But for your first steps, learning elementary working techniques in the currently most popular environment is useful.

 If for some reason you have an aversion to GitHub, you can just as easily reproduce the examples in this chapter using GitLab or another platform of your choice. The examples in this chapter use only the most basic functions of Git. All the additional features provided by GitHub, GitLab, Bitbucket, and others don’t matter at all for the time being.

 2.2.1 Setting Up a GitHub Account

 To set up a free GitHub account, you must complete the signup form at https://github.com. Only three data points are required: an account name (user name), an email address, and a sufficiently long/secure password. The account name will be visible later in all your GitHub links. So, try to find a name that makes as much sense as possible and will last for a long time. Apart from letters and numbers, the only special character allowed is a hyphen.

 Subsequently, you must solve a simple puzzle (to make sure that you aren’t a bot), and you can provide some voluntary information about your professional background and programming experience. Finally, your email address will be verified. You can also personalize your account with a photo or avatar, a link to your website, etc. later on—but all this data is optional. (At a minimum, when applying for a job, “dressing up” your GitHub account might be worthwhile. In the IT world, your GitHub page is almost like a business card.)

 2.2.2 Setting Up Repositories

 In simple terms, a repository (literally, “warehouse”) is the collection of all the files that make up a project including old/changed versions of those files. Along with a repository, you can also manage additional data in GitHub (issues, documentation in wiki format, etc.), but this additional data represents GitHub-specific extensions and have nothing to do with Git in any strict sense. The most important option when setting up a new repository concerns public access:

 	
 With Public, the repository is visible to everyone. Anyone can read its files or download them using git clone (but cannot modify them).

 	
 Private indicates repositories that only you and developers selected by you have access (see the next section). In the past, you needed a paid GitHub account for private repositories. Gradually, GitHub has dropped this restriction, and as of April 2020, even private repositories allow any number of collaborators (i.e., people with write permissions).

 Of course, you can change the visibility of a repository later. But be careful never to store confidential data (e.g., passwords) in a public repository.

 [image: Setting Up a GitHub Repository]

 Figure 2.3
 Setting Up a GitHub Repository

 A common practice is to create a README file in Markdown format in the new repository right away. Then, the repository immediately contains at least one file, and as a result, you can try out git clone immediately.

 The address of the repository is a combination of https://github.com, the account name, and the project name, for example:

 https://github.com/<accountname>/<reponame>

 2.2.3 Giving Access to a Repository

 Whether a repository is private or public, only you can change its content at the beginning. Of course, if you want multiple people to work together on your project, they first need their own GitHub accounts. You must also invite them to collaborate, and they must agree. To issue invitations, first select the repository in question and then open the Settings • Collaborators page. There, clicking Add people leads to a dialog box where you can enter the email addresses of the target collaborators.

 [image: Managing the People Who Have Access to a Repository]

 Figure 2.4
 Managing the People Who Have Access to a Repository

 Collaboration without Access Rights

 The approach outlined so far is not the only way to contribute to a GitHub project. An alternative is to set up a copy of a third-party project in your own account (called a fork), make changes in that fork, and then offer these changes to the external project in the form of what’s called a pull request. Especially for repositories of large, public projects, this approach makes more sense than adding more and more people to a repository. We’ll describe this approach in detail in Section 2.7.

 2.2.4 GitHub Organizations

 In GitHub, an organization refers to an account to which multiple people have access. GitHub provides the option to form an organization via Settings • Organizations.

 Within an organization, you can then set up repositories again (to which all members of the organization automatically have access). The repository name within an organization is accessible via the following link:

 https://github.com/<organizationname>/<reponame>

 Organizations are a simple yet effective mechanism for collaborating on multiple repositories. At the same time, organizations provide an easy way to obtain “nice” GitHub URLs without setting up your own account. As a logical consequence, you can only use names for organizations that don’t match active account names.

 2.2.5 Setting Up Personal Access Tokens

 To log on to the GitHub website, you must enter your account name or email address and a password. (If you’ve enabled two-factor authentication, another code will be required at logon; see Chapter 9, Section 9.5.)

 In the past, the combination of name/email plus password was also sufficient to authenticate Git operations, whether they were performed in an editor, in an IDE, or manually using the git command. For security reasons, since 2020, this option no longer works.

 Now, Git operations require a different type of authentication, with various variants to choose from: tokens, OAuth, or SSH keys (see Section 2.4). Which method you should use depends on which operating system you’re running, how you invoke Git (at the command level or in a GUI), and which protocol you use (HTTPS or SSH).

 In this section, we’ll show you how to set up personal access tokens. These tokens are particularly suitable for your first experiments with the git command on Linux or macOS. Once set up, tokens can be applied instead of passwords. However, tokens often have expiration dates or can authorize only a subset of operations. A safety gain results from these restrictions: If the GitHub password gets into the wrong hands, the entire account is compromised. If, on the other hand, the incident only affects one token, then the possible damage is limited; in addition, the token can be deleted quickly if necessary.

 Personal access tokens can be managed in the GitHub web interface via Settings • Developer settings. To create a new token for executing git commands, go to Settings • Developer settings • Personal access tokens in the GitHub web interface. In this dialog box, click the Generate new token button, assign a name to the token, set its validity period, and define its scope. If the token is only for basic Git operations, selecting the action scope repo is sufficient.

 When you click Generate token, the token code is displayed only once. You can copy this code and save it for further use. In the GitHub web interface, you have no way to view the token’s code again later. You can then only delete the token. After all, you’ll be reminded by mail before a token expires, and then you can extend its validity period. (The token can then be reused without any changes.)

 [image: Setting Up a New Personal Access Token]

 Figure 2.5
 Setting Up a New Personal Access Token

 2.3 Using the git Command

 You can try using the git command only locally, without using any external Git server like GitHub or GitLab. However, we suggest that, for your first experiments, you should first set up an account on a Git platform as well as create a private repository including an initial README file (as described in the previous section).

 The reason for this approach is that many of Git’s features become obvious only when you have at least two repositories: a local one and an external one. (Remember: A repository is the collection of all files of your project including old versions, backups of deleted files, etc.)

 2.3.1 Setting the Name and Email Address (git config)

 Before you can get started, git needs to know your name and email address. This data will later be stored along with each commit. The email address should (but doesn’t have to) be the same as the address you specified on your Git platform.

 git config --global user.name "Henry Hollow"
git config --global user.email "hollow@a-company.com"

 The data specified using git config --global applies as the default setting for all Git repositories on your machine. This data is stored in .gitconfig in your home directory.

 If necessary, you can adjust the settings in each of your repositories to be different from the default data. For this task, use cd to change to the directory in question and run git config again, but this time without the --global option.

 Hiding the Email Address

 GitHub (as well as various other Git platforms) provides the option of hiding your email address. You must select the option Keep my email addresses private under Settings • Emails. In this case, you should use git config to set the following email address locally:

 git config --global user.email "<accountname>@users.noreply.github.com"

 2.3.2 Downloading a Repository (git clone)

 As a basis for the following examples, you’ll need to set up a new repository in your GitHub account. The repository initially exists only there, not yet on your computer. To create a local copy of the repository, you must open a terminal window, change to any directory, and run git clone, specifying the URL of your repository as a parameter. Thus, replace https://github.com/MichaelKofler/first-test.git with the address of your own repository.

 For your experiments, use a local directory that is not synchronized between multiple computers via the cloud or with other tools! Synchronization tools can upset Git (see Section 2.8).

 cd my-work-directory

git clone https://github.com/MichaelKofler/first-test.git
 Clone after 'first-test' ...
 Username for 'https://github.com': <account-name>
 Password for 'https://user-name@github.com': <token-code>
 remote: Enumerating objects: 3, done.
 remote: Counting objects: 100% (3/3), done.
 remote: Compressing objects: 100% (2/2), done.
 remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
 Unpack objects: 100% (3/3), done.

cd first-test

ls (or dir in cmd.exe)
 README.md

 During the initial execution of git clone to access a private repository, you must authenticate yourself. On macOS and Linux, you would enter the account name (or, if you have defined a GitHub organization in your account, the name of the organization) and the previously generated code of your personal access token.

 On Windows, on the other hand, a window appears with three authentication variants to choose from. We recommend you use the Sign in with your browser option. A web browser window will then appear to log on to your GitHub account. (If you’re currently logged on, this step can be omitted.) Then, using the OAuth process, GitHub provides an authentication code that is stored by the Windows Credential Manager. This approach has an advantage in that later git commands (e.g., git push) won’t require repeated authentication.

 After successful authentication, git clone creates a new directory with the same name as the repository, downloads all files from the external repository to it, and creates the .git/config file. The local configuration settings are stored in that file (see Chapter 12, Section 12.3).

 [image: GitHub Authentication on Windows]

 Figure 2.6
 GitHub Authentication on Windows

 Don’t Forget “cd”!

 git clone creates a new directory. All further git commands are to be executed in this directory. So, don’t forget cd directory; otherwise, git will complain that it doesn’t recognize a Git repository in the current directory.

 2.3.3 Adding Files (git add)

 Your repository is still empty except for the README file. Using any editor (that doesn’t need any Git functions), you can now add files to your project. For this example, we assume that you want to develop a Java program that consists of several classes. You start with the Main class, which for now contains only the main method and outputs Hello World!. (We haven’t included the code here; it is not important. You can use any programming language you’re familiar with to construct as simple a project as possible, consisting of several files.)

 For Git, having the Main.java file stored in the directory of your Git project isn’t enough. You must explicitly add the file to the repository or subsequently mark the changed state for inclusion in the next commit. For this step, run git add in the following way:

 git add Main.java

 2.3.4 Saving an Intermediate State (git commit)

 When you’ve completed a work step or a new feature in your project, you should save the entire state of the project. This step is what git commit is for. A commit is a kind of snapshot you can restore later if needed.

 For each commit, you must use -m 'message' to specify a message that briefly summarizes all the changes. The commit message should be short but meaningful, containing especially valuable information for other developers and that can serve as the basis for a targeted search. (We provide tips on formulating concise commit messages in Chapter 9, Section 9.2.)

 git commit -m 'initial commit, hello world'
 [main 3cd6219] inital commit
 1 file changed, 5 insertions(+)

 Many Small Commits Are Better Than One Big One

 A golden rule when dealing with Git: Several small commits are better than a few big ones! This advice is even more true when several developers are working on a project.

 Of course, you can exaggerate everything. A few commits per day may be reasonable for projects you’re actively working on; however, performing a commit every 5 minutes rarely makes sense.

 2.3.5 Adding and Changing Files, More Commits

 You can now gradually add more files to your project or modify existing files, as in the following example:

 git add Main.java Rectangle.java

git commit -m 'added Rectangle class'
 [main 0d2f90d] added Rectangle class
 2 files changed, 18 insertions(+)

 Remember that, before each commit, you must add not only the new files, but also modified ones. Instead of git add, you can also use the perfectly equivalent git stage command.

 You can omit git add/stage if you pass the additional -a option to commit. This approach will automatically take into account any files already under Git control that have changed since the last commit. (If you’ve added new files, however, they won’t be included in the commit. In this case, you still need git add.)

 git commit -a -m 'implemented getPerimeter for Rectangle class'
 [main 7c87e9c] implemented getPerimeter for Rectangle class
 1 file changed, 4 insertions(+)

 Caution, “git commit” Only Works Locally

 If you’ve worked with other version control programs, especially Apache Subversion (SVN), you may have mentally associated a commit with an upload to an external repository. But Git behaves differently in this respect.

 git commit performs the commit only in the local repository. No data is transferred to an external repository. The git push and git pull commands are responsible for synchronization with external repositories, which we’ll introduce in Section 2.3.8 and Section 2.3.9.

 2.3.6 Status (git status)

 If you’ve lost track of which files are under Git control, which ones have been changed since the last commit, etc., you should run git status. This command provides a good overview of the state of your repository, as shown in the following example:

 git status

 On branch main
 Your branch is ahead of 'origin/main' by 2 commits.
 (use "git push" to publish your local commits)

 Untracked files:
 (use "git add <file>..." to include in what will be committed)

 Circle.java
 Main.class
 Main.java~
 Rectangle.class

 nothing added to commit but untracked files present
 (use "git add" to track)

 In plain language, this output means the following statements are true:

 	
 The active branch is main. (We’ll come to branches in Section 2.3.11.)

 	
 You’ve made two commits in your local repository that aren’t yet known in the remote repository (i.e., on GitHub in this example).

 	
 Four files aren’t under the control of Git. Concerning the Circle.java file, you’ve probably forgotten about git add so far. The remaining three files are compilations or backups.

 Status Messages

 If you use Git on Windows, English-language messages are the default. On Linux or macOS, the messages may be in a different language. Not using English is OK unless you specifically need to search for an error message on the internet. In this case, you should re-execute the command but prefix it with LANGUAGE=en:

 LANGUAGE=en git status

 Alternatively, you can change the language to English for the entire course of the session with export LANGUAGE=en. The export command remains valid until you close the terminal window.

 2.3.7 Excluding Files from Git Management (.gitignore file)

 Often, a useful approach is to explicitly place certain files or file types outside of Git. This choice applies, for example, to all files generated by the compiler, backup files of the respective editor, files containing confidential information (passwords), and so on.

 Using the .gitignore file, you can avoid mistakenly placing these files under version control or having irrelevant output get in the way of clarity in git status. For this task, specify names or patterns line-by-line in .gitignore for files to indicate which files you want the git command to simply ignore. For a sample project, a .gitignore file might include the following lines:

 # .gitignore file in the repository directory
*.class
*~

 We’ll cover the syntax of .gitignore in more detail in Chapter 12, Section 12.3. The easiest way to verify that the file is working is to run git status again. Don’t forget to add the .gitignore file itself to the repository via git add!

 2.3.8 Transferring the Repository to a Remote Server (git push)

 The git push command transfers commits in the local repository to an external repository, thus “pushing” local updates to the server (remote). Ideally, the command simply works in the following way:

 git push
 Username for 'https://github.com': <account-name>
 Password for 'https://user-name@github.com': <token-code>
 Enumerating objects: 3, done.
 Counting objects: 100% (3/3), done.
 Delta compression using up to 12 threads
 Compressing objects: 100% (2/2), done.
 Writing objects: 100% (2/2), 269 bytes | 269.00 KiB/s, done.
 Total 2 (delta 1), reused 0 (delta 0)
 remote: Resolving deltas: 100% (1/1), completed with 1 local
 object.
 To github.com:<account>/<repo>
 8360a94..7bb8255 main -> main

 Depending on the operating system you’re working on and how you authenticated with git clone, git pull will again ask for the GitHub account name and the corresponding password or token. Windows provides more comfort in this respect: By default, Git’s built-in credential manager communicates with Windows Credential Manager and obtains stored authentication data from it. You can learn how to prevent the annoying password query on Linux and macOS in Section 2.4.

 For git push to work, the command must know which branch of the repository to process and to which external server to transfer the data. The required information has been stored by git clone in the .git/config file. If you want to use other data, you’ll need to pass appropriate parameters to git push. The following command sends the changes in the main branch to the server that was used in the initial git clone command (i.e., to origin). If you followed this example, git push and git push origin main are equivalent.

 git push origin main

 “git pull” before “git push”

 In this example, we excluded the possibility that someone else has made changes that may be in the remote repository but are not yet in your local repository.

 In practice, however, several developers often work on one project. Thus, another programmer can easily make changes to the code in the meantime. If git push detects this case, the whole thing will fail. For this reason, you should get in the habit of always running the git pull command, as described in the following section, before typing git push.

 2.3.9 Updating the Local Repository (git pull)

 The counterpart to git push is git pull. This command downloads changes known in the external repository to your local machine. To try out the command, you can log on to the GitHub website, visit your test repository, modify a file there, and complete the process with a commit. Then, run git pull on your local machine, as shown in the following example:

 git pull
 Username for 'https://github.com': <account-name>
 Password for 'https://user-name@github.com': <token-code>
 remote: Enumerating objects: 5, done.
 remote: Counting objects: 100% (5/5), done.
 remote: Compressing objects: 100% (3/3), done.
 remote: Total 3 (delta 2), reused 0 (delta 0), pack-reused 0
 Unpack objects: 100% (3/3), done.
 From https://github.com/<account>/<repo>
 750ab9a..a6e075b main -> origin/main
 Updating 750ab9a..a6e075b
 Fast-forward
 Main.java | 1 +
 1 file changed, 1 insertion(+)

 Merge Conflicts

 What happens when two developers edit a file at the same time? In this case, when you merge the changes, a conflict will occur that needs to be resolved. The execution of git pull aborts, and you’ll need to resolve the conflict manually. In Chapter 3, Section 3.9, we’ll describe how you can resolve this conflict and which tools can help you.

 2.3.10 Uploading a Local Repository to GitHub/GitLab

 In this section so far, we’ve assumed that you have first set up a repository on GitHub or another Git platform, have downloaded the (still almost empty) repository to your local machine using git clone, and gradually have filled it with files—all while uploading all changes back to GitHub (via git push). Especially for Git beginners, this approach is the easiest.

 In practice, however, the other way around is often required: You already have a directory of code and want to upload it to a Git platform in its current state and subsequently synchronize it regularly. We’ll cover this process next.

 First, make the local directory a Git repository by simply running git init. This command will create a .git directory. However, the repository is still empty.

 cd project directory
git init
 Initialized empty Git repository in
 /home/kofler/project-directory/.git/

 In the next step, add the desired files to the repository using git add and then perform a first commit:

 git add file1 file2 file3 ...
git commit -m 'initial commit'

 You can continue to use Git without restrictions (i.e., make additional commits, create and reassemble branches, etc.). Git isn’t at all dependent on synchronization with an external repository.

 However, you can’t put team projects into practice in this way. If solo work is your intention, or if you just want to use GitHub as a project backup, you should set up a new repository on the Git platform. (This action can’t be performed via the git command.)

 The name of the repository doesn’t need to be the same as your project directory. Under no circumstances should you activate the Initialize this repository with a README option. If you do, the merging of the external and local repositories will fail.

 Depending on whether you want to communicate via HTTPS or SSH (see Section 2.4), you must now run git remote add origin and specify the URL or SSH address of the external repository. With git remote -v, you can verify whether or not this command worked:

 OEBPS/bilderklein/klein01_002.png

OEBPS/bilderklein/klein01_001.png
Gotofile Add file <> Code ~

Local Codespaces

6 Clone 6]

HTTPS SSH Gitkub CLI

https://github.con/git-buch/hello-worl | ()

Use Git or checkout with SVN using the web URL.

[?) Download ZIP

OEBPS/keys/TheAntiquaB-W4SemiLightItalic.otf

OEBPS/keys/TheAntiquaB-W4SemiLight.otf

OEBPS/bilderklein/klein02_002.png
e ————
o) origin aster
B 7o - comfgic-buch/hel o

updniing 21dba3n. S9N
Pt fotwara

Trderchia 1 4
TR B 3 nsertions (1. 1 detetionc)

045010 ISt ~/ocuments g hub-clones Meo-word (esster)
s o st

5010 MINGHS1 ~/Docunents /g3 thub-clanes el o-word (ssster)

OEBPS/bilderklein/klein02_001.png
456123512 Setup

L — o
[

O Checkout Windowsstyle, commit Uyl line ndings.

Gt convet Fto GRLF whechecking o e s When comiting
e, GRLF il bt comrted o 17 For s llom e,
s s h recommended st on Windows Ceoeutogi i st o e,

O Checkout as s, commit Unestyleline endings
Gt not pesfom any convesio when chedng ot et s, When

niting o s, CRLF vl b convetd o L, For 05 1afor rojcs,
{831 h fecommendodstingon U Core i 5 st o “put,

© Checkout as s, comit as-s
Gl not peform any comvrsions hen chcking ut o amiting

en s Chosing s ptio .t ecommend for G5 o,
Polecs Care amoa e 1o T,

oo smcnew ot |tk =

OEBPS/bilderklein/klein01_003.png

OEBPS/common/logo.png
® Rheinwerk

OEBPS/common/cover.jpg
Bernd Oggl
Michael Kofler

OEBPS/keys/RheinwerkCalloutTS2.otf

OEBPS/keys/RheinwerkCallout.otf

OEBPS/keys/KeyboardUniversal.otf

OEBPS/keys/TheAntiquaB-W6SemiBold.otf

OEBPS/keys/TheAntiquaB-W6SemiBoldItalic.otf

OEBPS/bilderklein/klein02_006.png
Connect to GitHub.

GitHub
Signin

Browser/Device Token

ign in with your brow:

Sign in with a code

Don't have an account? Sign Up

OEBPS/bilderklein/klein02_005.png
New personal access foken

OEBPS/bilderklein/klein02_004.png
8 MichoelKoer myfirstrepo e Ot ¥me dee

oo omm

H
i

LRI

B O Do O iwn @

Wiho has access

OEBPS/bilderklein/klein02_003.png
Create a new repository

© versaator [e v
LS —————————)
[e—

R = oo

o o e

i st ¥ 0 b o Chag ot e 05

