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PREFACE




WHAT IS THE PRIMARY VALUE PROPOSITION FOR THIS BOOK?


This book offers a comprehensive guide to leveraging Python-based data visualization techniques with the innovative capabilities of Google Gemini. Tailored for individuals proficient in Python seeking to enhance their visualization skills, this book explores essential libraries like Pandas, Matplotlib, and Seaborn, along with insights into the innovative Gemini platform. With a focus on practicality and efficiency, it delivers a rapid yet thorough exploration of data visualization methodologies, supported by insightful Bard-generated code samples.




CONTENT HIGHLIGHTS


The first chapter contains a quick tour of basic Python 3, followed by a chapter that introduces you to NumPy. The third and fourth chapters introduce you to data visualization with Matplotlib and how to create graphics effects with Seaborn. The fifth chapter introduces you to Google Gemini, which also includes a discussion of GPT-4. The sixth and concluding chapter contains Gemini-generated Python code samples for performing various programming tasks.




WHY ARE THE CODE SAMPLES PRIMARILY IN PYTHON?


Most of the code samples are short (usually less than one page and sometimes less than half a page), and if necessary, you can easily and quickly copy/paste the code into a new Jupyter notebook. For the Python code samples that reference a CSV file, you do not need any additional code in the corresponding Jupyter notebook to access the CSV file. Moreover, the code samples execute quickly, so you won’t need to avail yourself of the free GPU that is provided in Google Colaboratory.

If you do decide to use Google Colaboratory, you can easily copy/paste the Python code into a notebook, and also use the upload feature to upload existing Jupyter notebooks. Keep in mind the following point: if the Python code references a CSV file, make sure that you include the appropriate code snippet (details are available online) to access the CSV file in the corresponding Jupyter notebook in Google Colaboratory.




WHY DOES THIS BOOK INCLUDE SKLEARN MATERIAL?


First, keep in mind that the Sklearn material in this book is minimalistic because this book is not about machine learning. Second, the Sklearn material is located in chapter 4 where you will learn about some of the Sklearn built-in datasets. If you decide to research machine learning, you will have already been introduced to some aspects of Sklearn.




WHAT DO I NEED TO KNOW FOR THIS BOOK?


Current knowledge of Python 3.x is the most helpful skill. Knowledge of other programming languages (such as Java) can also be helpful because of the exposure to programming concepts and constructs. The less technical knowledge that you have, the more diligence will be required in order to understand the assorted topics that are covered.

As for the non-technical skills, it is important to have a strong desire to learn about data visualization, along with the motivation and discipline to read and understand code samples.




DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE SAMPLES?


The primary purpose of the code samples in this book is to show you Python-based libraries for data visualization. Clarity has higher priority than writing more compact code that is more difficult to understand (and more prone to bugs). If you decide to use any of the code in this book on a production website, you ought to subject that code to the same rigorous analysis as the other parts of your code base.




HOW DO I SET UP A COMMAND SHELL?


If you are a Mac user, there are three ways to do so. The first method is to use Finder to navigate to Applications > Utilities and then double click on the Utilities application. Next, if you already have a command shell available, you can launch a new command shell by typing the following command:


open /Applications/Utilities/Terminal.app


A second method for Mac users is to open a new command shell on a MacBook from a command shell that is already visible simply by clicking command+n in that command shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.com/) that simulates bash commands or use another toolkit such as MKS (a commercial product). Please read the online documentation that describes the download and installation process. Note that custom aliases are not automatically set if they are defined in a file other than the main start-up file (such as .bash_login).




COMPANION FILES


All the code samples and figures in this book may be obtained by writing to the publisher at info@merclearning.com.

O. Campesato

February 2024






CHAPTER 1

INTRODUCTION TO PYTHON


This chapter contains an introduction to Python, with information about useful tools for installing modules, basic constructs, and how to work with some data types.

The first part of this chapter covers how to install Python, some environment variables, and how to use the interpreter. You will see code samples and also how to save code in text files that you can launch from the command line. The second part of this chapter shows you how to work with simple data types, such as numbers, fractions, and strings. The final part of this chapter discusses exceptions and how to use them in scripts.

NOTE The Python files in this book are for Python 3.x.



TOOLS FOR PYTHON


The Anaconda Python distribution available for Windows, Linux, and Mac is downloadable at http://continuum.io/downloads.

Anaconda is well-suited for modules such as numpy and scipy, and if you are a Windows user, Anaconda appears to be a better alternative.



easy_install and pip


Both easy_install and pip are easy to use when you need to install Python modules. Whenever you need to install a module (and there are many in this book), use either easy_install or pip with the following syntax:

easy_install <module-name>
pip install <module-name>


NOTE Python-based modules are easier to install, whereas modules with code written in C are usually faster but more difficult in terms of installation.




virtualenv


The virtualenv tool enables you to create isolated Python environments, and its home page is at http://www.virtualenv.org/en/latest/virtualenv.html.

virtualenv addresses the problem of preserving the correct dependencies and versions (and indirectly, permissions) for different applications. If you are a Python novice, you might not need virtualenv right now, but keep this tool in mind.




IPython


Another very good tool is IPython (which won a Jolt award), and its home page is at http://ipython.org/install.html. Two very nice features of IPython are tab expansion and “?” (textual assistance). An example of tab expansion is shown here:

$ python
Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec 7 2020, 12:44:01)
[Clang 12.0.0 (clang-1200.0.32.27)] on darwin
Type "help", "copyright", "credits" or "license" for more information.

IPython 0.13.2 -- An enhanced Interactive Python.
?         -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help      -> Python's own help system.
object?   -> Details about 'object', use 'object??' for extra details.

In [1]: di
%dirs   dict    dir     divmod


In the preceding session, if you type the characters di, IPython responds with the following line that contains all the functions that start with the letters di:

%dirs   dict    dir     divmod


If you enter a question mark (“?”), IPython provides textual assistance, the first part of which is here:

IPython -- An enhanced Interactive Python
=========================================

IPython offers a combination of convenient shell features,
special commands and a history mechanism for both input
(command history) and output (results caching, similar
to Mathematica). It is intended to be a fully compatible
replacement for the standard Python interpreter, while
offering vastly improved functionality and flexibility.


The next section shows you how to check whether Python is installed on your machine, and also where you can download Python.





PYTHON INSTALLATION


Before you download anything, check if you have Python already installed on your machine (which is likely if you have a MacBook or a Linux machine) by typing the following command in a command shell:

python -V


The output for the MacBook used in this book is here:

Python 3.9.1


NOTE Install Python 3.9 (or as close as possible to this version) on your machine so that you will have the same version of Python that was used to test the Python files in this book.

If you need to install Python on your machine, navigate to the Python home page and select the downloads link or navigate directly to this website:

http://www.python.org/download/

In addition, PythonWin is available for Windows, and its home page is here:

http://www.cgl.ucsf.edu/Outreach/pc204/pythonwin.html

Use any text editor that can create, edit, and save Python scripts, and save them as plain text files (do not use Microsoft Word). After you have Python installed and configured on your machine, you are ready to work with the Python scripts in this book.




SETTING THE PATH ENVIRONMENT VARIABLE (WINDOWS ONLY)


The PATH environment variable specifies a list of directories that are searched whenever you specify an executable program from the command line. The following URL has a useful guide to setting up your environment so that the Python executable is always available in every command shell:

http://www.blog.pythonlibrary.org/2011/11/24/python-101-setting-up-python-on-windows/




LAUNCHING PYTHON ON YOUR MACHINE


There are three different ways to launch Python:


	Use the Python Interactive Interpreter.

	Launch Python scripts from the command line.

	Use an IDE.



The next section shows you how to launch the Python interpreter from the command line, and later in this chapter you will learn how to launch scripts from the command line and also about IDEs.

NOTE The emphasis in this book is to launch Python scripts from the command line or to enter code in the Python interpreter.



The Python Interactive Interpreter


Launch the interactive interpreter from the command line by opening a command shell and typing the following command:

python


You will see the following prompt (or something similar):

Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec  7 2020, 12:44:01)
[Clang 12.0.0 (clang-1200.0.32.27)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>


Now type the expression 2 + 7 at the prompt:

>>> 2 + 7


Python displays the following result:

9
>>>


enter quit() to exit the Python shell.

You can launch any Python script from the command line by preceding it with the word “python.” For example, if you have a script myscript.py that contains commands, launch the script as follows:

python myscript.py


As a simple illustration, suppose that the script myscript.py contains the following code:

print('Hello World from Python')
print('2 + 7 = ', 2+7)


When you launch the preceding script, you will see the following output:

Hello World from Python
2 + 7 =  9






PYTHON IDENTIFIERS


An identifier is the name of a variable, function, class, module, or other Python object, and a valid identifier conforms to the following rules:


	starts with a letter A to Z or a to z or an underscore (_)

	zero or more letters, underscores, and digits (0 to 9)



NOTE Python identifiers cannot contain characters such as @, $, and %.

Python is a case-sensitive language, so Abc and abc are different identifiers in Python. In addition, Python has the following naming conventions:


	Class names start with an uppercase letter and all other identifiers with a lowercase letter

	An initial underscore is used for private identifiers.

	Two initial underscores are used for strongly private identifiers.



A Python identifier with two initial underscores and two trailing underscore characters indicates a language-defined special name.




LINES, INDENTATION, AND MULTI-LINE COMMENTS


Unlike other programming languages (such as Java or Objective-C), Python uses indentation instead of curly braces for code blocks. Indentation must be consistent in a code block, as shown here:

if True:
    print("ABC")
    print("DEF")
else:
    print("ABC")
    print("DEF")


Multi-line statements in Python can terminate with a new line or the backslash (“\”) character, as shown here:

total = x1 + \
        x2 + \
        x3


Obviously, you can place x1, x2, and x3 on the same line, so there is no reason to use three separate lines; however, this functionality is available in case you need to add a set of variables that do not fit on a single line.

You can specify multiple statements in one line by using a semicolon (“;”) to separate each statement, as shown here:

a=10; b=5; print(a); print(a+b)


The output of the preceding code snippet is here:

10
15


NOTE The use of semi-colons and the continuation character are discouraged in Python.




QUOTATIONS AND COMMENTS IN PYTHON


Python allows single ('), double ("), and triple (''' or """) quotation marks for string literals, provided that they match at the beginning and the end of the string. You can use triple quotation marks for strings that span multiple lines. The following examples are legal Python strings:

word = 'word'
line = "This is a sentence."
para = """This is a paragraph. This paragraph contains
more than one sentence."""


A string literal that begins with the letter “r” (for “raw”) treats everything as a literal character and “escapes” the meaning of meta characters, as shown here:

a1 = r'\n'
a2 = r'\r'
a3 = r'\t'
print('a1:',a1,'a2:',a2,'a3:',a3)


The output of the preceding code block is here:

a1: \n a2: \r a3: \t


You can embed a single quotation mark in a pair of double quotation marks (and vice versa) to display a single quotation mark or double quotation marks. Another way to accomplish the same result is to precede single or double quotation marks with a backslash (“\”) character. The following code block illustrates these techniques:

b1 = "'"
b2 = '"'
b3 = '\''
b4 = "\""
print('b1:',b1,'b2:',b2)
print('b3:',b3,'b4:',b4)


The output of the preceding code block is here:

b1: ' b2: "
b3: ' b4: "


A hash sign (#) that is not inside a string literal is the character that indicates the beginning of a comment. Moreover, all characters after the # and up to the physical line end are part of the comment (and ignored by the Python interpreter). Consider the following code block:

#!/usr/bin/python
# First comment
print("Hello, Python!")  # second comment


This will produce following result:

Hello, Python!


A comment may be on the same line after a statement or expression:

name = "Tom Jones" # This is also comment


You can comment multiple lines as follows:

# This is comment one
# This is comment two
# This is comment three


A blank line in Python is a line containing only whitespace, a comment, or both.




SAVING YOUR CODE IN A MODULE


Earlier you saw how to launch the Python interpreter from the command line and then enter commands. However, everything you type in the Python interpreter is only valid for the current session: if you exit the interpreter and then launch the interpreter again, your previous definitions are no longer valid. Fortunately, Python enables you to store code in a text file, as discussed in the next section.

A module in Python is a text file that contains Python statements. In the previous section, you saw how the interpreter enables you to test code snippets whose definitions are valid for the current session. If you want to retain the code snippets and other definitions, place them in a text file so that you can execute that code outside of the interpreter.

The outermost statements in a Python program are executed from top to bottom when the module is imported for the first time, which will then set up its variables and functions.

A Python module can be run directly from the command line, as shown here:

python first.py


As an illustration, place the following two statements in a text file called first.py:

x = 3
print(x)


Now type the following command:

python first.py


The output from the preceding command is 3, which is the same as executing the preceding code from the interpreter.

When a module is run directly, the special variable __name__ is set to
__main__. You will often see the following type of code in a module:

if __name__ == '__main__':
    # do something here
    print('Running directly')


The preceding code snippet enables Python to determine if a module was launched from the command line or imported into another module.




SOME STANDARD MODULES IN PYTHON


The Python Standard Library provides many modules that can simplify your own scripts. A list of the Standard Library modules is at http://www.python.org/doc/.

Some of the most important modules include cgi, math, os, pickle, random, re, socket, sys, time, and urllib.

The code samples in this book use the modules math, os, random, re, socket, sys, time, and urllib. You need to import these modules to use them in your code. For example, the following code block shows you how to import 4 standard Python modules:
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