

[image: Cover: Python 3 Data Visualization Using Google Gemini]

PYTHON 3
DATA VISUALIZATION
USING
GOOGLE GEMINI

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and companion files (the “Work”), you agree that this license grants permission to use the contents contained herein, including the disc, but does not give you the right of ownership to any of the textual content in the book / disc or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to ensure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book and/or disc, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” varies from state to state and might not apply to the purchaser of this product.

Companion files for this title are available by writing to the publisher at info@merclearning.com.

PYTHON 3
DATA VISUALIZATION
USING
GOOGLE GEMINI

Oswald Campesato

[image: Images]

MERCURY LEARNING AND INFORMATION

Boston, Massachusetts

Copyright ©2024 by MERCURY LEARNING AND INFORMATION.
An Imprint of DeGruyter Inc. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION

121 High Street, 3rd Floor

Boston, MA 02110

info@merclearning.com

www.merclearning.com

800-232-0223

O. Campesato. Python 3 Data Visualization Using Google Gemini.

ISBN: 978-1-50152-280-2

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2024932122

242526321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional information, please contact the Customer Service Dept. at 800-232-0223 (toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors. Companion files (figures and code listings) for this title are available by contacting info@merclearning.com. The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the files, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.

I’d like to dedicate this book to my parents
– may this bring joy and happiness into their lives.

CONTENTS

Preface

Chapter 1: Introduction to Python

Tools for Python

easy_install and pip

virtualenv

IPython

Python Installation

Setting the PATH Environment Variable (Windows Only)

Launching Python on Your Machine

The Python Interactive Interpreter

Python Identifiers

Lines, Indentation, and Multi-Line Comments

Quotations and Comments in Python

Saving Your Code in a Module

Some Standard Modules in Python

The help() and dir() Functions

Compile Time and Runtime Code Checking

Simple Data Types

Working with Numbers

Working with Other Bases

The chr() Function

The round() Function

Formatting Numbers

Working with Fractions

Unicode and UTF-8

Working with Unicode

Working with Strings

Comparing Strings

Formatting Strings

Slicing and Splicing Strings

Testing for Digits and Alphabetic Characters

Search and Replace a String in Other Strings

Remove Leading and Trailing Characters

Printing Text Without NewLine Characters

Text Alignment

Working with Dates

Converting Strings to Dates

Exception Handling in Python

Handling User Input

Command-Line Arguments

Summary

Chapter 2: Introduction to NumPy

What is NumPy?

Useful NumPy Features

What are NumPy Arrays?

Working with Loops

Appending Elements to Arrays (1)

Appending Elements to Arrays (2)

Multiplying Lists and Arrays

Doubling the Elements in a List

Lists and Exponents

Arrays and Exponents

Math Operations and Arrays

Working with “–1” Subranges with Vectors

Working with “–1” Subranges with Arrays

Other Useful NumPy Methods

Arrays and Vector Operations

NumPy and Dot Products (1)

NumPy and Dot Products (2)

NumPy and the Length of Vectors

NumPy and Other Operations

NumPy and the reshape() Method

Calculating the Mean and Standard Deviation

Code Sample with Mean and Standard Deviation

Trimmed Mean and Weighted Mean

Working with Lines in the Plane (Optional)

Plotting Randomized Points with NumPy and Matplotlib

Plotting a Quadratic with NumPy and Matplotlib

What is Linear Regression?

What is Multivariate Analysis?

What about Non-Linear Datasets?

The MSE (Mean Squared Error) Formula

Other Error Types

Non-Linear Least Squares

Calculating the MSE Manually

Find the Best-Fitting Line in NumPy

Calculating the MSE by Successive Approximation (1)

Calculating the MSE by Successive Approximation (2)

Google Colaboratory

Uploading CSV Files in Google Colaboratory

Summary

Chapter 3: Matplotlib and Visualization

What is Data Visualization?

Types of Data Visualization

What is Matplotlib?

Matplotlib Styles

Display Attribute Values

Color Values in Matplotlib

Cubed Numbers in Matplotlib

Horizontal Lines in Matplotlib

Slanted Lines in Matplotlib

Parallel Slanted Lines in Matplotlib

A Grid of Points in Matplotlib

A Dotted Grid in Matplotlib

Two Lines and a Legend in Matplotlib

Loading Images in Matplotlib

A Checkerboard in Matplotlib

Randomized Data Points in Matplotlib

A Set of Line Segments in Matplotlib

Plotting Multiple Lines in Matplotlib

Trigonometric Functions in Matplotlib

A Histogram in Matplotlib

Histogram with Data from a sqlite3 Table

Plot Bar Charts in Matplotlib

Plot a Pie Chart in Matplotlib

Heat Maps in Matplotlib

Save Plot as a PNG File

Working with SweetViz

Working with Skimpy

3D Charts in Matplotlib

Plotting Financial Data with Mplfinance

Charts and Graphs with Data from Sqlite3

Summary

Chapter 4: Seaborn for Data Visualization

Working With Seaborn

Features of Seaborn

Seaborn Dataset Names

Seaborn Built-In Datasets

The Iris Dataset in Seaborn

The Titanic Dataset in Seaborn

Extracting Data From Titanic Dataset in Seaborn (1)

Extracting Data From Titanic Dataset in Seaborn (2)

Visualizing a Pandas Dataset in Seaborn

Seaborn Heat Maps

Seaborn Pair Plots

What Is Bokeh?

Introduction to Scikit-Learn

The Digits Dataset in Scikit-learn

The Iris Dataset in Scikit-Learn

Scikit-Learn, Pandas, and the Iris Dataset

Advanced Topics in Seaborn

Summary

Chapter 5: Generative AI, Bard, and Gemini

What is Generative AI?

Key Features of Generative AI

Popular Techniques in Generative AI

What Makes Generative AI Unique

Conversational AI Versus Generative AI

Primary Objective

Applications

Technologies Used

Training and Interaction

Evaluation

Data Requirements

Is Gemini Part of Generative AI?

DeepMind

DeepMind and Games

Player of Games (PoG)

OpenAI

Cohere

Hugging Face

Hugging Face Libraries

Hugging Face Model Hub

AI21

InflectionAI

Anthropic

What is Prompt Engineering?

Prompts and Completions

Types of Prompts

Instruction Prompts

Reverse Prompts

System Prompts Versus Agent Prompts

Prompt Templates

Poorly-Worded Prompts

What is Gemini?

Gemini Ultra Versus GPT-4

Gemini Strengths

Gemini’s Weaknesses

Gemini Nano on Mobile Devices

What is Bard?

Sample Queries and Responses from Bard

Alternatives to Bard

YouChat

Pi from Inflection

CoPilot (OpenAI/Microsoft)

Codex (OpenAI)

Apple GPT

Claude 2

Summary

Chapter 6: Bard and Data Visualization

Working With Charts and Graphs

Bar Charts

Pie Charts

Line Graphs

Heatmap

Histogram

Box Plot

Pareto Chart

Radar Chart

Treemap

Waterfall Chart

Line Plots With Matplotlib

A Pie Chart Using Matplotlib

Box and Whisker Plots Using Matplotlib

Stacked Bar Charts With Matplotlib

Donut Chart Using Matplotlib

3D Surface Plots With Matplotlib

Matplotlib’s Contour Plots

Streamplot for Vector Fields

Polar Plots

Bar Charts

Scatter Plot With Regression Line

Heatmap for Correlation Matrix With Seaborn

Histograms With Seaborn

Violin Plots With Seaborn

Summary

Index

PREFACE

WHAT IS THE PRIMARY VALUE PROPOSITION FOR THIS BOOK?

This book offers a comprehensive guide to leveraging Python-based data visualization techniques with the innovative capabilities of Google Gemini. Tailored for individuals proficient in Python seeking to enhance their visualization skills, this book explores essential libraries like Pandas, Matplotlib, and Seaborn, along with insights into the innovative Gemini platform. With a focus on practicality and efficiency, it delivers a rapid yet thorough exploration of data visualization methodologies, supported by insightful Bard-generated code samples.

CONTENT HIGHLIGHTS

The first chapter contains a quick tour of basic Python 3, followed by a chapter that introduces you to NumPy. The third and fourth chapters introduce you to data visualization with Matplotlib and how to create graphics effects with Seaborn. The fifth chapter introduces you to Google Gemini, which also includes a discussion of GPT-4. The sixth and concluding chapter contains Gemini-generated Python code samples for performing various programming tasks.

WHY ARE THE CODE SAMPLES PRIMARILY IN PYTHON?

Most of the code samples are short (usually less than one page and sometimes less than half a page), and if necessary, you can easily and quickly copy/paste the code into a new Jupyter notebook. For the Python code samples that reference a CSV file, you do not need any additional code in the corresponding Jupyter notebook to access the CSV file. Moreover, the code samples execute quickly, so you won’t need to avail yourself of the free GPU that is provided in Google Colaboratory.

If you do decide to use Google Colaboratory, you can easily copy/paste the Python code into a notebook, and also use the upload feature to upload existing Jupyter notebooks. Keep in mind the following point: if the Python code references a CSV file, make sure that you include the appropriate code snippet (details are available online) to access the CSV file in the corresponding Jupyter notebook in Google Colaboratory.

WHY DOES THIS BOOK INCLUDE SKLEARN MATERIAL?

First, keep in mind that the Sklearn material in this book is minimalistic because this book is not about machine learning. Second, the Sklearn material is located in chapter 4 where you will learn about some of the Sklearn built-in datasets. If you decide to research machine learning, you will have already been introduced to some aspects of Sklearn.

WHAT DO I NEED TO KNOW FOR THIS BOOK?

Current knowledge of Python 3.x is the most helpful skill. Knowledge of other programming languages (such as Java) can also be helpful because of the exposure to programming concepts and constructs. The less technical knowledge that you have, the more diligence will be required in order to understand the assorted topics that are covered.

As for the non-technical skills, it is important to have a strong desire to learn about data visualization, along with the motivation and discipline to read and understand code samples.

DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE SAMPLES?

The primary purpose of the code samples in this book is to show you Python-based libraries for data visualization. Clarity has higher priority than writing more compact code that is more difficult to understand (and more prone to bugs). If you decide to use any of the code in this book on a production website, you ought to subject that code to the same rigorous analysis as the other parts of your code base.

HOW DO I SET UP A COMMAND SHELL?

If you are a Mac user, there are three ways to do so. The first method is to use Finder to navigate to Applications > Utilities and then double click on the Utilities application. Next, if you already have a command shell available, you can launch a new command shell by typing the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a MacBook from a command shell that is already visible simply by clicking command+n in that command shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.com/) that simulates bash commands or use another toolkit such as MKS (a commercial product). Please read the online documentation that describes the download and installation process. Note that custom aliases are not automatically set if they are defined in a file other than the main start-up file (such as .bash_login).

COMPANION FILES

All the code samples and figures in this book may be obtained by writing to the publisher at info@merclearning.com.

O. Campesato

February 2024

CHAPTER 1

INTRODUCTION TO PYTHON

This chapter contains an introduction to Python, with information about useful tools for installing modules, basic constructs, and how to work with some data types.

The first part of this chapter covers how to install Python, some environment variables, and how to use the interpreter. You will see code samples and also how to save code in text files that you can launch from the command line. The second part of this chapter shows you how to work with simple data types, such as numbers, fractions, and strings. The final part of this chapter discusses exceptions and how to use them in scripts.

NOTE The Python files in this book are for Python 3.x.

TOOLS FOR PYTHON

The Anaconda Python distribution available for Windows, Linux, and Mac is downloadable at http://continuum.io/downloads.

Anaconda is well-suited for modules such as numpy and scipy, and if you are a Windows user, Anaconda appears to be a better alternative.

easy_install and pip

Both easy_install and pip are easy to use when you need to install Python modules. Whenever you need to install a module (and there are many in this book), use either easy_install or pip with the following syntax:

easy_install <module-name>
pip install <module-name>

NOTE Python-based modules are easier to install, whereas modules with code written in C are usually faster but more difficult in terms of installation.

virtualenv

The virtualenv tool enables you to create isolated Python environments, and its home page is at http://www.virtualenv.org/en/latest/virtualenv.html.

virtualenv addresses the problem of preserving the correct dependencies and versions (and indirectly, permissions) for different applications. If you are a Python novice, you might not need virtualenv right now, but keep this tool in mind.

IPython

Another very good tool is IPython (which won a Jolt award), and its home page is at http://ipython.org/install.html. Two very nice features of IPython are tab expansion and “?” (textual assistance). An example of tab expansion is shown here:

$ python
Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec 7 2020, 12:44:01)
[Clang 12.0.0 (clang-1200.0.32.27)] on darwin
Type "help", "copyright", "credits" or "license" for more information.

IPython 0.13.2 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In [1]: di
%dirs dict dir divmod

In the preceding session, if you type the characters di, IPython responds with the following line that contains all the functions that start with the letters di:

%dirs dict dir divmod

If you enter a question mark (“?”), IPython provides textual assistance, the first part of which is here:

IPython -- An enhanced Interactive Python
===

IPython offers a combination of convenient shell features,
special commands and a history mechanism for both input
(command history) and output (results caching, similar
to Mathematica). It is intended to be a fully compatible
replacement for the standard Python interpreter, while
offering vastly improved functionality and flexibility.

The next section shows you how to check whether Python is installed on your machine, and also where you can download Python.

PYTHON INSTALLATION

Before you download anything, check if you have Python already installed on your machine (which is likely if you have a MacBook or a Linux machine) by typing the following command in a command shell:

python -V

The output for the MacBook used in this book is here:

Python 3.9.1

NOTE Install Python 3.9 (or as close as possible to this version) on your machine so that you will have the same version of Python that was used to test the Python files in this book.

If you need to install Python on your machine, navigate to the Python home page and select the downloads link or navigate directly to this website:

http://www.python.org/download/

In addition, PythonWin is available for Windows, and its home page is here:

http://www.cgl.ucsf.edu/Outreach/pc204/pythonwin.html

Use any text editor that can create, edit, and save Python scripts, and save them as plain text files (do not use Microsoft Word). After you have Python installed and configured on your machine, you are ready to work with the Python scripts in this book.

SETTING THE PATH ENVIRONMENT VARIABLE (WINDOWS ONLY)

The PATH environment variable specifies a list of directories that are searched whenever you specify an executable program from the command line. The following URL has a useful guide to setting up your environment so that the Python executable is always available in every command shell:

http://www.blog.pythonlibrary.org/2011/11/24/python-101-setting-up-python-on-windows/

LAUNCHING PYTHON ON YOUR MACHINE

There are three different ways to launch Python:

	Use the Python Interactive Interpreter.

	Launch Python scripts from the command line.

	Use an IDE.

The next section shows you how to launch the Python interpreter from the command line, and later in this chapter you will learn how to launch scripts from the command line and also about IDEs.

NOTE The emphasis in this book is to launch Python scripts from the command line or to enter code in the Python interpreter.

The Python Interactive Interpreter

Launch the interactive interpreter from the command line by opening a command shell and typing the following command:

python

You will see the following prompt (or something similar):

Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec 7 2020, 12:44:01)
[Clang 12.0.0 (clang-1200.0.32.27)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Now type the expression 2 + 7 at the prompt:

>>> 2 + 7

Python displays the following result:

9
>>>

enter quit() to exit the Python shell.

You can launch any Python script from the command line by preceding it with the word “python.” For example, if you have a script myscript.py that contains commands, launch the script as follows:

python myscript.py

As a simple illustration, suppose that the script myscript.py contains the following code:

print('Hello World from Python')
print('2 + 7 = ', 2+7)

When you launch the preceding script, you will see the following output:

Hello World from Python
2 + 7 = 9

PYTHON IDENTIFIERS

An identifier is the name of a variable, function, class, module, or other Python object, and a valid identifier conforms to the following rules:

	starts with a letter A to Z or a to z or an underscore (_)

	zero or more letters, underscores, and digits (0 to 9)

NOTE Python identifiers cannot contain characters such as @, $, and %.

Python is a case-sensitive language, so Abc and abc are different identifiers in Python. In addition, Python has the following naming conventions:

	Class names start with an uppercase letter and all other identifiers with a lowercase letter

	An initial underscore is used for private identifiers.

	Two initial underscores are used for strongly private identifiers.

A Python identifier with two initial underscores and two trailing underscore characters indicates a language-defined special name.

LINES, INDENTATION, AND MULTI-LINE COMMENTS

Unlike other programming languages (such as Java or Objective-C), Python uses indentation instead of curly braces for code blocks. Indentation must be consistent in a code block, as shown here:

if True:
 print("ABC")
 print("DEF")
else:
 print("ABC")
 print("DEF")

Multi-line statements in Python can terminate with a new line or the backslash (“\”) character, as shown here:

total = x1 + \
 x2 + \
 x3

Obviously, you can place x1, x2, and x3 on the same line, so there is no reason to use three separate lines; however, this functionality is available in case you need to add a set of variables that do not fit on a single line.

You can specify multiple statements in one line by using a semicolon (“;”) to separate each statement, as shown here:

a=10; b=5; print(a); print(a+b)

The output of the preceding code snippet is here:

10
15

NOTE The use of semi-colons and the continuation character are discouraged in Python.

QUOTATIONS AND COMMENTS IN PYTHON

Python allows single ('), double ("), and triple (''' or """) quotation marks for string literals, provided that they match at the beginning and the end of the string. You can use triple quotation marks for strings that span multiple lines. The following examples are legal Python strings:

word = 'word'
line = "This is a sentence."
para = """This is a paragraph. This paragraph contains
more than one sentence."""

A string literal that begins with the letter “r” (for “raw”) treats everything as a literal character and “escapes” the meaning of meta characters, as shown here:

a1 = r'\n'
a2 = r'\r'
a3 = r'\t'
print('a1:',a1,'a2:',a2,'a3:',a3)

The output of the preceding code block is here:

a1: \n a2: \r a3: \t

You can embed a single quotation mark in a pair of double quotation marks (and vice versa) to display a single quotation mark or double quotation marks. Another way to accomplish the same result is to precede single or double quotation marks with a backslash (“\”) character. The following code block illustrates these techniques:

b1 = "'"
b2 = '"'
b3 = '\''
b4 = "\""
print('b1:',b1,'b2:',b2)
print('b3:',b3,'b4:',b4)

The output of the preceding code block is here:

b1: ' b2: "
b3: ' b4: "

A hash sign (#) that is not inside a string literal is the character that indicates the beginning of a comment. Moreover, all characters after the # and up to the physical line end are part of the comment (and ignored by the Python interpreter). Consider the following code block:

#!/usr/bin/python
First comment
print("Hello, Python!") # second comment

This will produce following result:

Hello, Python!

A comment may be on the same line after a statement or expression:

name = "Tom Jones" # This is also comment

You can comment multiple lines as follows:

This is comment one
This is comment two
This is comment three

A blank line in Python is a line containing only whitespace, a comment, or both.

SAVING YOUR CODE IN A MODULE

Earlier you saw how to launch the Python interpreter from the command line and then enter commands. However, everything you type in the Python interpreter is only valid for the current session: if you exit the interpreter and then launch the interpreter again, your previous definitions are no longer valid. Fortunately, Python enables you to store code in a text file, as discussed in the next section.

A module in Python is a text file that contains Python statements. In the previous section, you saw how the interpreter enables you to test code snippets whose definitions are valid for the current session. If you want to retain the code snippets and other definitions, place them in a text file so that you can execute that code outside of the interpreter.

The outermost statements in a Python program are executed from top to bottom when the module is imported for the first time, which will then set up its variables and functions.

A Python module can be run directly from the command line, as shown here:

python first.py

As an illustration, place the following two statements in a text file called first.py:

x = 3
print(x)

Now type the following command:

python first.py

The output from the preceding command is 3, which is the same as executing the preceding code from the interpreter.

When a module is run directly, the special variable __name__ is set to
__main__. You will often see the following type of code in a module:

if __name__ == '__main__':
 # do something here
 print('Running directly')

The preceding code snippet enables Python to determine if a module was launched from the command line or imported into another module.

SOME STANDARD MODULES IN PYTHON

The Python Standard Library provides many modules that can simplify your own scripts. A list of the Standard Library modules is at http://www.python.org/doc/.

Some of the most important modules include cgi, math, os, pickle, random, re, socket, sys, time, and urllib.

The code samples in this book use the modules math, os, random, re, socket, sys, time, and urllib. You need to import these modules to use them in your code. For example, the following code block shows you how to import 4 standard Python modules:

OEBPS/xhtml/nav.xhtml

Table of Contents

		Cover

		Title Page

		Copyright Page

		Dedication

		Contents

		Preface

		Chapter 1: Introduction to Python

		Tools for Python

		easy_install and pip

		virtualenv

		IPython

		Python Installation

		Setting the PATH Environment Variable (Windows Only)

		Launching Python on Your Machine

		The Python Interactive Interpreter

		Python Identifiers

		Lines, Indentation, and Multi-Line Comments

		Quotations and Comments in Python

		Saving Your Code in a Module

		Some Standard Modules in Python

		The help() and dir() Functions

		Compile Time and Runtime Code Checking

		Simple Data Types

		Working with Numbers

		Working with Other Bases

		The chr() Function

		The round() Function

		Formatting Numbers

		Working with Fractions

		Unicode and UTF-8

		Working with Unicode

		Working with Strings

		Comparing Strings

		Formatting Strings

		Slicing and Splicing Strings

		Testing for Digits and Alphabetic Characters

		Search and Replace a String in Other Strings

		Remove Leading and Trailing Characters

		Printing Text Without NewLine Characters

		Text Alignment

		Working with Dates

		Converting Strings to Dates

		Exception Handling in Python

		Handling User Input

		Command-Line Arguments

		Summary

		Chapter 2: Introduction to NumPy

		What is NumPy?

		Useful NumPy Features

		What are NumPy Arrays?

		Working with Loops

		Appending Elements to Arrays (1)

		Appending Elements to Arrays (2)

		Multiplying Lists and Arrays

		Doubling the Elements in a List

		Lists and Exponents

		Arrays and Exponents

		Math Operations and Arrays

		Working with “–1” Subranges with Vectors

		Working with “–1” Subranges with Arrays

		Other Useful NumPy Methods

		Arrays and Vector Operations

		NumPy and Dot Products (1)

		NumPy and Dot Products (2)

		NumPy and the Length of Vectors

		NumPy and Other Operations

		NumPy and the reshape() Method

		Calculating the Mean and Standard Deviation

		Code Sample with Mean and Standard Deviation

		Trimmed Mean and Weighted Mean

		Working with Lines in the Plane (Optional)

		Plotting Randomized Points with NumPy and Matplotlib

		Plotting a Quadratic with NumPy and Matplotlib

		What is Linear Regression?

		What is Multivariate Analysis?

		What about Non-Linear Datasets?

		The MSE (Mean Squared Error) Formula

		Other Error Types

		Non-Linear Least Squares

		Calculating the MSE Manually

		Find the Best-Fitting Line in NumPy

		Calculating the MSE by Successive Approximation (1)

		Calculating the MSE by Successive Approximation (2)

		Google Colaboratory

		Uploading CSV Files in Google Colaboratory

		Summary

		Chapter 3: Matplotlib and Visualization

		What is Data Visualization?

		Types of Data Visualization

		What is Matplotlib?

		Matplotlib Styles

		Display Attribute Values

		Color Values in Matplotlib

		Cubed Numbers in Matplotlib

		Horizontal Lines in Matplotlib

		Slanted Lines in Matplotlib

		Parallel Slanted Lines in Matplotlib

		A Grid of Points in Matplotlib

		A Dotted Grid in Matplotlib

		Two Lines and a Legend in Matplotlib

		Loading Images in Matplotlib

		A Checkerboard in Matplotlib

		Randomized Data Points in Matplotlib

		A Set of Line Segments in Matplotlib

		Plotting Multiple Lines in Matplotlib

		Trigonometric Functions in Matplotlib

		A Histogram in Matplotlib

		Histogram with Data from a sqlite3 Table

		Plot Bar Charts in Matplotlib

		Plot a Pie Chart in Matplotlib

		Heat Maps in Matplotlib

		Save Plot as a PNG File

		Working with SweetViz

		Working with Skimpy

		3D Charts in Matplotlib

		Plotting Financial Data with Mplfinance

		Charts and Graphs with Data from Sqlite3

		Summary

		Chapter 4: Seaborn for Data Visualization

		Working With Seaborn

		Features of Seaborn

		Seaborn Dataset Names

		Seaborn Built-In Datasets

		The Iris Dataset in Seaborn

		The Titanic Dataset in Seaborn

		Extracting Data From Titanic Dataset in Seaborn (1)

		Extracting Data From Titanic Dataset in Seaborn (2)

		Visualizing a Pandas Dataset in Seaborn

		Seaborn Heat Maps

		Seaborn Pair Plots

		What Is Bokeh?

		Introduction to Scikit-Learn

		The Digits Dataset in Scikit-learn

		The Iris Dataset in Scikit-Learn

		Scikit-Learn, Pandas, and the Iris Dataset

		Advanced Topics in Seaborn

		Summary

		Chapter 5: Generative AI, Bard, and Gemini

		What is Generative AI?

		Key Features of Generative AI

		Popular Techniques in Generative AI

		What Makes Generative AI Unique

		Conversational AI Versus Generative AI

		Primary Objective

		Applications

		Technologies Used

		Training and Interaction

		Evaluation

		Data Requirements

		Is Gemini Part of Generative AI?

		DeepMind

		DeepMind and Games

		Player of Games (PoG)

		OpenAI

		Cohere

		Hugging Face

		Hugging Face Libraries

		Hugging Face Model Hub

		AI21

		InflectionAI

		Anthropic

		What is Prompt Engineering?

		Prompts and Completions

		Types of Prompts

		Instruction Prompts

		Reverse Prompts

		System Prompts Versus Agent Prompts

		Prompt Templates

		Poorly-Worded Prompts

		What is Gemini?

		Gemini Ultra Versus GPT-4

		Gemini Strengths

		Gemini’s Weaknesses

		Gemini Nano on Mobile Devices

		What is Bard?

		Sample Queries and Responses from Bard

		Alternatives to Bard

		YouChat

		Pi from Inflection

		CoPilot (OpenAI/Microsoft)

		Codex (OpenAI)

		Apple GPT

		Claude 2

		Summary

		Chapter 6: Bard and Data Visualization

		Working With Charts and Graphs

		Bar Charts

		Pie Charts

		Line Graphs

		Heatmap

		Histogram

		Box Plot

		Pareto Chart

		Radar Chart

		Treemap

		Waterfall Chart

		Line Plots With Matplotlib

		A Pie Chart Using Matplotlib

		Box and Whisker Plots Using Matplotlib

		Stacked Bar Charts With Matplotlib

		Donut Chart Using Matplotlib

		3D Surface Plots With Matplotlib

		Matplotlib’s Contour Plots

		Streamplot for Vector Fields

		Polar Plots

		Bar Charts

		Scatter Plot With Regression Line

		Heatmap for Correlation Matrix With Seaborn

		Histograms With Seaborn

		Violin Plots With Seaborn

		Summary

		Index

Guide

		Cover

		Title Page

		Copyright Page

		Dedication

		Contents

		Preface

		Chapter 1: Introduction to Python

		Index

Page List

		Cover

		i

		ii

		iii

		iv

		v

		vi

		vii

		viii

		ix

		x

		xi

		xii

		xiii

		xiv

		xv

		xvi

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

		180

		181

		182

		183

		184

OEBPS/images/9781501522802.jpg
PYyTHON 3
DATA VISUALIZATION
USING
GooGLE GEMINI

0. CAMPESATO

@ MLI GENERATIVE Al SERIES

OEBPS/images/logo.jpg

