

 [image: cover.png]

 C# 12 and .NET 8 – Modern Cross-Platform Development Fundamentals

 Eighth Edition

 Start building websites and services with ASP.NET Core 8, Blazor, and EF Core 8

 Mark J. Price

 [image:]

 BIRMINGHAM—MUMBAI

	

 C# 12 and .NET 8 – Modern Cross-Platform Development Fundamentals

 Eighth Edition

 Copyright © 2023 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Senior Publishing Product Manager: Suman Sen

 Acquisition Editor – Peer Reviews: Tejas Mhasvekar

 Project Editor: Janice Gonsalves

 Content Development Editor: Shazeen Iqbal

 Copy Editor: Safis Editing

 Technical Editor: Karan Sonawane

 Proofreader: Safis Editing

 Indexer: Tejal Soni

 Presentation Designer: Pranit Padwal

 Developer Relations Marketing Executive: Priyadarshini Sharma

 First published: March 2016

 Second edition: March 2017

 Third edition: November 2017

 Fourth edition: October 2019

 Fifth edition: November 2020

 Sixth edition: November 2021

 Seventh edition: November 2022

 Eighth edition: November 2023

 Production reference: 2171123

 Published by Packt Publishing Ltd.

 Grosvenor House

 11 St Paul’s Square

 Birmingham

 B3 1RB, UK.

 ISBN 978-1-83763-587-0

 www.packt.com

	

 Contributors

 About the author

 Mark J. Price is a Microsoft Specialist: Programming in C# and Architecting Microsoft Azure Solutions, with over 20 years of experience. Since 1993, he has passed more than 80 Microsoft programming exams and specializes in preparing others to pass them. Between 2001 and 2003, Mark was employed to write official courseware for Microsoft in Redmond, USA. His team wrote the first training courses for C# while it was still an early alpha version. While with Microsoft, he taught “train-the-trainer” classes to get Microsoft Certified Trainers up-to-speed on C# and .NET. Mark has spent most of his career training a wide variety of students from 16-year-old apprentices to 70-year-old retirees, with the majority being professional developers. Mark holds a Computer Science BSc. Hons. Degree.

 Thank you to all my readers. Your support means I get to write these books and celebrate your successes.

 Special thanks to the readers who give me actionable feedback via my GitHub repository, email, and interact with me and the book communities on Discord. You help make my books even better with every edition.

 Extra special thanks to Troy, a reader who became a colleague and more importantly, a good friend.

	

 About the reviewer

 Troy Martin is a self-taught developer of over 10 years, focusing mainly on C# the last several of those years. Deeply passionate about programming, he has over 20 certifications in various languages and game development engines. He is currently engaged in developing his first solo game development project and strives to help others achieve their own programming goals.

 I’d like to thank my wonderful girlfriend, Haley, who has stood by me even through the worst of times; I love you, Penne!

 Also, my deepest thanks to Mark Price, the author himself, who has been a wonderful and incredibly informative friend throughout this process.

	

 Learn more on Discord

 To join the Discord community for this book – where you can share feedback, ask questions to the author, and learn about new releases – follow the QR code below:

 https://packt.link/csharp12dotnet8

 [image:]

 Contents

 	Preface

 	Where to find the code solutions

 	What this book covers

 	What you need for this book

 	Get in touch

 	Hello, C#! Welcome, .NET!

 	Introducing this book and its contents

 	Setting up your development environment

 	Understanding .NET

 	Building console apps using Visual Studio 2022

 	Building console apps using Visual Studio Code

 	Making good use of the GitHub repository for this book

 	Looking for help

 	Practicing and exploring

 	Summary

 	Learn more on Discord

 	Speaking C#

 	Introducing the C# language

 	Discovering your C# compiler version

 	Understanding C# grammar and vocabulary

 	Working with variables

 	Exploring more about console apps

 	Understanding async and await

 	Practicing and exploring

 	Summary

 	Controlling Flow, Converting Types, and Handling Exceptions

 	Operating on variables

 	Understanding selection statements

 	Understanding iteration statements

 	Storing multiple values in an array

 	Casting and converting between types

 	Handling exceptions

 	Checking for overflow

 	Practicing and exploring

 	Summary

 	Writing, Debugging, and Testing Functions

 	Writing functions

 	Debugging during development

 	Hot reloading during development

 	Logging during development and runtime

 	Unit testing

 	Throwing and catching exceptions in functions

 	Practicing and exploring

 	Summary

 	Building Your Own Types with Object-Oriented Programming

 	Talking about OOP

 	Building class libraries

 	Storing data in fields

 	Working with methods and tuples

 	Controlling access with properties and indexers

 	Pattern matching with objects

 	Working with record types

 	Practicing and exploring

 	Summary

 	Implementing Interfaces and Inheriting Classes

 	Setting up a class library and console application

 	Static methods and overloading operators

 	Making types safely reusable with generics

 	Raising and handling events

 	Implementing interfaces

 	Managing memory with reference and value types

 	Working with null values

 	Inheriting from classes

 	Casting within inheritance hierarchies

 	Inheriting and extending .NET types

 	Summarizing custom type choices

 	Practicing and exploring

 	Summary

 	Packaging and Distributing .NET Types

 	The road to .NET 8

 	Understanding .NET components

 	Publishing your code for deployment

 	Native ahead-of-time compilation

 	Decompiling .NET assemblies

 	Packaging your libraries for NuGet distribution

 	Working with preview features

 	Practicing and exploring

 	Summary

 	Working with Common .NET Types

 	Working with numbers

 	Working with text

 	Pattern matching with regular expressions

 	Storing multiple objects in collections

 	Working with spans, indexes, and ranges

 	Practicing and exploring

 	Summary

 	Working with Files, Streams, and Serialization

 	Managing the filesystem

 	Reading and writing with streams

 	Encoding and decoding text

 	Serializing object graphs

 	Working with environment variables

 	Practicing and exploring

 	Summary

 	Working with Data Using Entity Framework Core

 	Understanding modern databases

 	Setting up EF Core in a .NET project

 	Defining EF Core models

 	Querying EF Core models

 	Loading and tracking patterns with EF Core

 	Modifying data with EF Core

 	Practicing and exploring

 	Summary

 	Querying and Manipulating Data Using LINQ

 	Writing LINQ expressions

 	LINQ in practice

 	Sorting and more

 	Using LINQ with EF Core

 	Joining, grouping, and lookups

 	Aggregating and paging sequences

 	Practicing and exploring

 	Summary

 	Introducing Web Development Using ASP.NET Core

 	Understanding ASP.NET Core

 	Structuring projects

 	Building an entity model for use in the rest of the book

 	Understanding web development

 	Practicing and exploring

 	Summary

 	Building Websites Using ASP.NET Core Razor Pages

 	Exploring ASP.NET Core

 	Exploring ASP.NET Core Razor Pages

 	Using Entity Framework Core with ASP.NET Core

 	Configuring services and the HTTP request pipeline

 	Practicing and exploring

 	Summary

 	Building and Consuming Web Services

 	Building web services using the ASP.NET Core Web API

 	Creating a web service for the Northwind database

 	Documenting and testing web services

 	Consuming web services using HTTP clients

 	Practicing and exploring

 	Summary

 	Building User Interfaces Using Blazor

 	History of Blazor

 	Reviewing the Blazor Web App project template

 	Building components using Blazor

 	Enabling client-side execution using WebAssembly

 	Practicing and exploring

 	Summary

 	Epilogue

 	Next steps on your C# and .NET learning journey

 	The ninth edition, coming November 2024

 	Good luck!

 	Index

 Landmarks

 	
 Cover

 	
 Index

 Preface

 There are programming books that are thousands of pages long that aim to be comprehensive references to the C# language, the .NET libraries, and app models like websites, services, and desktop and mobile apps.

 This book is different. It is concise and aims to be a brisk, fun read that is packed with practical hands-on walk-throughs of each subject. The breadth of the overarching narrative comes at the cost of some depth, but you will find many signposts to explore further if you wish.

 This book is simultaneously a step-by-step guide to learning modern C# and proven practices using cross-platform .NET, and a brief introduction to the fundamentals of web development, along with the creation of websites and services that can be built with these technologies. This book is most suitable for beginners to C# and .NET, as well as programmers who have worked with C# in the past but may feel left behind by the changes in the past few years.

 If you already have experience with older versions of the C# language, then in the first topic of Chapter 2, Speaking C#, you can review the tables of new language features in an online section and jump straight to them.

 If you already have experience with older versions of the .NET libraries, then in the first topic of Chapter 7, Packaging and Distributing .NET Types, you can review the tables of the new library features in an online section and jump straight to them.

 I will point out the cool corners and gotchas of C# and .NET so that you can impress colleagues and get productive fast. Rather than slowing down and boring some readers by explaining every little thing, I will assume that you are smart enough to Google an explanation for topics that are related but not necessary to include in a beginner-to-intermediate guide that has limited space in a printed book.

 Some chapters have links to additional related online-only content for those readers who would like more details. For example, Chapter 1, Hello, C#! Welcome, .NET!, has an online section about the history and background of .NET.

 Where to find the code solutions

 You can download solutions for the step-by-step guided tasks and exercises from the GitHub repository at the following link: https://github.com/markjprice/cs12dotnet8.

 If you don’t know how to download or clone a GitHub repository, then I provide instructions at the end of Chapter 1, Hello, C#! Welcome, .NET!.

 What this book covers

 Chapter 1, Hello, C#! Welcome, .NET!, is about setting up your development environment to use either Visual Studio 2022 or Visual Studio Code with C# Dev Kit. Then you will learn how to use them to create the simplest application possible with C# and .NET. For simplified console apps, you will see the use of the top-level program feature introduced in C# 9, which is then used by default in the project templates for C# 10 onwards. You will also learn about some good places to look for help, including AI tools like ChatGPT and GitHub Copilot, and ways to contact me to get help with an issue or give me feedback to improve the book today through its GitHub repository and in future print editions.

 Chapter 2, Speaking C#, introduces the versions of C# and has tables showing which version introduced new features in an online section. I will explain the grammar and vocabulary that you will use every day to write the source code for your applications. In particular, you will learn how to declare and work with variables of different types.

 Chapter 3, Controlling Flow, Converting Types, and Handling Exceptions, covers using operators to perform simple actions on variables, including comparisons, writing code that makes decisions, pattern matching, repeating a block of statements, and converting between types. This chapter also covers writing code defensively to handle exceptions when they inevitably occur, including using guard clauses like ThrowIfLessThan on the ArgumentOutOfRangeException class introduced with .NET 8.

 Chapter 4, Writing, Debugging, and Testing Functions, is about following the Don’t Repeat Yourself (DRY) principle by writing reusable functions using both imperative and functional implementation styles. You will also learn how to use debugging tools to track down and remove bugs, use Hot Reload to make changes while your app is running, monitor your code while it executes to diagnose problems, and rigorously test your code to remove bugs, ensuring stability and reliability before it gets deployed into production.

 Chapter 5, Building Your Own Types with Object-Oriented Programming, discusses all the different categories of members that a type like a class can have, including fields to store data and methods to perform actions. You will use Object-Oriented Programming (OOP) concepts, such as aggregation and encapsulation, and how to manage namespaces for types, including the ability to alias any type introduced with C# 12. You will learn language features such as tuple syntax support and out variables, local functions, and default literals and inferred tuple names. You will also learn how to define and work with immutable types using the record keyword, init-only properties, and with expressions, introduced in C# 9. Finally, we look at how C# 11 introduced the required keyword to help avoid the overuse of constructors to control initialization, and how C# 12 introduced primary constructors for non-record types.

 Chapter 6, Implementing Interfaces and Inheriting Classes, explains deriving new types from existing ones using OOP. You will learn how to define operators, delegates, and events, how to implement interfaces about base and derived classes, how to override a member of a type, how to use polymorphism, how to create extension methods, how to cast between classes in an inheritance hierarchy, and about the big changes in C# 8 with the introduction of nullable reference types, along with the switch to make this the default in C# 10 and later. In an optional online-only section, you can learn how analyzers can help you write better code.

 Chapter 7, Packaging and Distributing .NET Types, introduces the versions of .NET and includes tables showing which version introduced new library features in an online section. I will then present the .NET types that are compliant with .NET Standard and explain how they relate to C#. Throughout this chapter, you will learn how to write and compile code on any of the supported operating systems, including the Windows, macOS, and Linux variants. You will learn how to package, deploy, and distribute your own apps and libraries. In two optional online-only sections, you can learn how to use legacy .NET Framework libraries in .NET libraries, about the possibility of porting legacy .NET Framework code bases to modern .NET, and about source generators and how to create them.

 Chapter 8, Working with Common .NET Types, discusses the types that allow your code to perform common practical tasks, such as manipulating numbers and text, storing items in collections, and, in an optional online-only section, working with a network using low-level types. You will also learn about regular expressions and the improvements that make writing them easier, as well as how to use source generators to improve their performance.

 Chapter 9, Working with Files, Streams, and Serialization, covers interacting with a filesystem, reading and writing to files and streams, text encoding, and serialization formats like JSON and XML, including the improved functionality and performance of the System.Text.Json classes. If you use Linux, then you will be interested in how to programmatically work with tar archives, which you can learn about in an online-only section.

 Chapter 10, Working with Data Using Entity Framework Core, explains reading and writing to relational databases, such as SQL Server and SQLite, using the object-relational mapping (ORM) technology named Entity Framework Core (EF Core). You will learn how to define entity models that map to existing tables in a database using Database First models. In two optional online-only sections, you can also learn how to define Code First models that can create tables and databases at runtime, and how to group multiple changes together using transactions.

 Chapter 11, Querying and Manipulating Data Using LINQ, teaches you about Language INtegrated Queries (LINQ)—language extensions that add the ability to work with sequences of items and filter, sort, and project them into different outputs. This chapter includes LINQ methods introduced in .NET 6, like TryGetNonEnumeratedCount and DistinctBy, and in .NET 7, like Order and OrderDescending. Optional online-only sections cover using multiple threads with parallel LINQ, working with LINQ to XML, and creating your own LINQ extension methods.

 Chapter 12, Introducing Web Development Using ASP.NET Core, introduces you to the types of web applications that can be built using C# and .NET. You will also build an EF Core model to represent the database for a fictional organization named Northwind that will be used throughout the rest of the chapters in the book. Finally, you will be introduced to common web technologies.

 Chapter 13, Building Websites Using ASP.NET Core Razor Pages, is about learning the basics of building websites with a modern HTTP architecture on the server side, using ASP.NET Core. You will learn how to implement the ASP.NET Core feature known as Razor Pages, which simplifies creating dynamic web pages for small websites. Additionally, the chapter covers building the HTTP request and response pipeline. In two optional online-only sections, you’ll see how to use Razor class libraries to reuse Razor Pages, and you’ll gain insight into enabling HTTP/3 in your website project.

 Online Chapter, Building Websites Using the Model-View-Controller Pattern, is about learning how to build large, complex websites in a way that is easy to unit-test and manage with teams of programmers, using ASP.NET Core MVC. You will learn about startup configuration, authentication, routes, models, views, and controllers. You will learn about a feature eagerly anticipated by the .NET community called output caching that was finally implemented in ASP.NET Core 7. You can read this at https://packt.link/WKg6b

 Chapter 14, Building and Consuming Web Services, explains building backend REST architecture web services using the ASP.NET Core Web API. We will cover how to document and test them using OpenAPI. Then we will see how to properly consume them using factory-instantiated HTTP clients. In two optional online-only sections, you will be introduced to advanced features like health checks, adding security HTTP headers, and minimal APIs, and how they can use native ahead-of-time (AOT) compilation during the publishing process to improve startup time and memory footprint.

 Chapter 15, Building User Interfaces Using Blazor, introduces how to build web user interface components using Blazor that can be executed either on the server side or inside the web browser. You will see how to build components that are easy to switch between the client and the server, with the new hosting model introduced with .NET 8.

 Epilogue describes your options for further study about C# and .NET.

 Appendix, Answers to the Test Your Knowledge Questions, has the answers to the test questions at the end of each chapter. You can read the appendix at the following link: https://packt.link/NTPzz.

 What you need for this book

 You can develop and deploy C# and .NET apps using Visual Studio Code and the command-line tools on most operating systems, including Windows, macOS, and many varieties of Linux. An operating system that supports Visual Studio Code and an internet connection is all you need to follow along with this book.

 If you prefer alternatives, then the choice is yours whether to use Visual Studio 2022, or a third-party tool like JetBrains Rider.

 Downloading the color images of this book

 We also provide you with a PDF file that has color images of the screenshots and diagrams used in this book. The color images will help you better understand the changes in the output.

 You can download this file from https://packt.link/gbp/9781837635870.

 Conventions

 In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

 CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “The Controllers, Models, and Views folders contain ASP.NET Core classes and the .cshtml files for execution on the server.”

 A block of code is set as follows:

 // storing items at index positions
names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

 When we wish to draw your attention to a particular part of a code block, the relevant lines or items are highlighted:

 // storing items at index positions
names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

 Any command-line input or output is written as follows:

 dotnet new console

 Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in menus or dialog boxes. For example: “Clicking on the Next button moves you to the next screen.”

 Important notes and links to external sources for further reading appear in a box like this.

 Good Practice: Recommendations for how to program like an expert appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, select your book, click on the Errata Submission Form link, and enter the details.

 Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name.

 Please contact us at copyright@packt.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

	

 Share your thoughts

 Once you’ve read C# 12 and .NET 8 - Modern Cross-Platform Development Fundamentals, Eighth Edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

 Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

		
			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there; you can get exclusive access to discounts, newsletters, and great free content in your inbox daily.

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below:

			

			[image: Qr code Description automatically generated]
			https://packt.link/free-ebook/9781837635870

			
					Submit your proof of purchase.

					That’s it! We’ll send your free PDF and other benefits to your email directly.

			

		

	

 1

 Hello, C#! Welcome, .NET!

 In this first chapter, the goals are setting up your development environment; understanding the similarities and differences between modern .NET, .NET Core, .NET Framework, Mono, Xamarin, and .NET Standard; creating the simplest application possible with C# 12 and .NET 8 using various code editors; and then discovering good places to look for help.

 This chapter covers the following topics:

 	Introducing this book and its contents

 	Setting up your development environment

 	Understanding .NET

 	Building console apps using Visual Studio 2022

 	Building console apps using Visual Studio Code

 	Making good use of the GitHub repository for this book

 	Looking for help

 Introducing this book and its contents

 Let’s get started by introducing you to the code solutions and structure of this book.

 Getting code solutions for this book

 The GitHub repository for this book has solutions using full application projects for all code tasks and exercises, found at the following link:

 https://github.com/markjprice/cs12dotnet8

 After navigating to the GitHub repository in your web browser, press the . (dot) key on your keyboard, or manually change .com to .dev in the link to convert the repository into a live code editor based on Visual Studio Code using GitHub Codespaces, as shown in Figure 1.1:

 [image:]
 Figure 1.1: GitHub Codespaces live editing the book’s GitHub repository

 We provide you with a PDF file that has color images of the screenshots and diagrams used in this book. You can download this file from https://packt.link/gbp/9781837635870.

 Visual Studio Code in a web browser is great to run alongside your chosen local code editor as you work through the book’s coding tasks. You can compare your code to the solution code and easily copy and paste parts if needed.

 You do not need to use or know anything about Git to get the solution code of this book. You can download a ZIP file containing all the code solutions by using the following direct link and then extract the ZIP file into your local filesystem: https://github.com/markjprice/cs12dotnet8/archive/refs/heads/main.zip.

 .NET terms used in this book

 Throughout this book, I use the term modern .NET to refer to .NET 8 and its predecessors like .NET 6 that derive from .NET Core. I use the term legacy .NET to refer to .NET Framework, Mono, Xamarin, and .NET Standard.

 Modern .NET is a unification of those legacy platforms and standards.

 The structure and style of this book

 After this first chapter, the book can be divided into three parts: language, libraries, and web development.

 First, the grammar and vocabulary of the C# language; second, the types available in the .NET libraries for building app features; and third, the fundamentals of cross-platform websites, services, and browser apps that you can build using C# and .NET.

 Most people learn complex topics best by imitation and repetition rather than reading a detailed explanation of the theory; therefore, I will not overload you with detailed explanations of every step throughout this book. The idea is to get you to write some code and see it run.

 You don’t need to know all the nitty-gritty details immediately. That will be something that comes with time as you build your own apps and go beyond what any book can teach you.

 In the words of Samuel Johnson, author of the English dictionary in 1755, I have committed “a few wild blunders, and risible absurdities, from which no work of such multiplicity is free.” I take sole responsibility for these and hope you appreciate the challenge of my attempt to lash the wind by writing this book about rapidly evolving technologies like C# and .NET, and the apps that you can build with them.

 If you have a complaint about this book, then please contact me before writing a negative review on Amazon. Authors cannot respond to Amazon reviews so I cannot contact you to resolve the problem and help you or listen to your feedback and try to do better in the next edition. Please ask a question on the Discord channel for this book at https://packt.link/csharp12dotnet8, email me at markjprice@gmail.com, or raise an issue in the GitHub repository for the book at the following link: https://github.com/markjprice/cs12dotnet8/issues.

 Topics covered by this book

 The following topics are covered in this book:

 	Language fundamentals: Fundamental features of the C# language, from declaring variables to writing functions and object-oriented programming.

 	Library fundamentals: Fundamental features of the .NET base class library as well as some important optional packages for common tasks like database access.

 	Web development fundamentals: Fundamental features of the ASP.NET Core framework for server-side and client-side website and web service development.

 Topics covered by Apps and Services with .NET 8

 The following topics are available in a companion book, Apps and Services with .NET 8:

 	Data: SQL Server, Azure Cosmos DB.

 	Specialized libraries: Dates, times, time zones, and internationalization; common third-party libraries for image handling, logging, mapping, and generating PDFs; multitasking and concurrency; and many more.

 	Services: Caching, queuing, background services, gRPC, GraphQL, Azure Functions, SignalR, and minimal APIs.

 	User interfaces: ASP.NET Core, Blazor, and .NET MAUI.

 This book, C# 12 and .NET 8 – Modern Cross-Platform Development Fundamentals, is best read linearly, chapter by chapter, because it builds up fundamental skills and knowledge.

 The companion book, Apps and Services with .NET 8, can be read more like a cookbook, so if you are especially interested in building gRPC services, then you could read that chapter without the preceding chapters about minimal API services.

 To see a list of all books I have published with Packt, you can use the following link:

 https://subscription.packtpub.com/search?query=mark+j.+price

 A similar list is available on Amazon:

 https://www.amazon.com/Mark-J-Price/e/B071DW3QGN/

 You can search other book-selling sites for my books too.

 Setting up your development environment

 Before you start programming, you’ll need a code editor for C#. Microsoft has a family of code editors and Integrated Development Environments (IDEs), which include:

 	Visual Studio 2022 for Windows

 	Visual Studio Code for Windows, Mac, or Linux

 	Visual Studio Code for the Web or GitHub Codespaces

 Third parties have created their own C# code editors, for example, JetBrains Rider, which is available for Windows, Mac, or Linux but does have a license cost. JetBrains Rider is popular with more experienced .NET developers.

 Warning! Although JetBrains is a fantastic company with great products, both Rider and the ReSharper extension for Visual Studio are software, and all software has bugs and quirky behavior. For example, they might show errors like “Cannot resolve symbol” in your Razor Pages, Razor views, and Blazor components. Yet you can build and run those files because there is no actual problem. If you have installed the Unity Support plugin then it will complain about boxing operations (which are a genuine problem for Unity game developers), but in projects that are not Unity so the warning does not apply.

 Choosing the appropriate tool and application type for learning

 What is the best tool and application type for learning C# and .NET?

 When learning, the best tool is one that helps you write code and configuration but does not hide what is really happening. IDEs provide graphical user interfaces that are friendly to use, but what are they doing for you underneath? A more basic code editor that is closer to the action while providing help to write your code can be better while you are learning.

 Having said that, you can make the argument that the best tool is the one you are already familiar with or that you or your team will use as your daily development tool. For that reason, I want you to be free to choose any C# code editor or IDE to complete the coding tasks in this book, including Visual Studio Code, Visual Studio 2022, or even JetBrains Rider.

 In this book, I give detailed step-by-step instructions in Chapter 1 for how to create multiple projects in both Visual Studio 2022 for Windows and Visual Studio Code. There are also links to online instructions for other code editors, as shown at the following link: https://github.com/markjprice/cs12dotnet8/blob/main/docs/code-editors/README.md.

 In subsequent chapters, I will only give the names of projects along with general instructions, so you can use whichever tool you prefer.

 The best application type for learning the C# language constructs and many of the .NET libraries is one that does not distract with unnecessary application code. For example, there is no need to create an entire Windows desktop application or a website just to learn how to write a switch statement.

 For that reason, I believe the best method for learning the C# and .NET topics in Chapters 1 to 11 is to build console apps. Then, in Chapters 12 to 16, you will build websites, services, and web browser apps.

 Pros and cons of the Polyglot Notebooks extension

 The Polyglot Notebooks extension for Visual Studio Code provides an easy and safe place to write simple code snippets for experimenting and learning. For example, data scientists use them to analyze and visualize data. Students use them to learn how to write small pieces of code for language constructs and to explore APIs.

 Polyglot Notebooks enables you to create a single notebook file that mixes “cells” of Markdown (richly formatted text) and code using C# and other related languages, such as PowerShell, F#, and SQL (for databases). The extension does this by hosting an instance of the .NET Interactive engine.

 The old legacy name for the Polyglot Notebooks extension was the .NET Interactive Notebooks extension but it was renamed because it is not limited to only .NET languages like C# and F#. The extension retains its original identifier, ms-dotnettools.dotnet-interactive-vscode.

 Polyglot Notebooks has some limitations:

 	It cannot be used to create websites, services, and apps.

 	You cannot use Console class methods like ReadLine or ReadKey to get input from the user. (But there are alternative methods that you will learn if you complete the optional online-only exercise at the end of this chapter.)

 	Notebooks cannot have arguments passed to them.

 	It does not allow you to define your own namespaces.

 	It does not have any debugging tools (yet).

 At the end of this chapter, you will have the opportunity to complete an optional exercise to practice using Polyglot Notebooks.

 Visual Studio Code for cross-platform development

 The most modern and lightweight code editor to choose from, and the only one from Microsoft that is cross-platform, is Visual Studio Code. It can run on all common operating systems, including Windows, macOS, and many varieties of Linux, including Red Hat Enterprise Linux (RHEL) and Ubuntu.

 Visual Studio Code is a good choice for modern cross-platform development because it has an extensive and growing set of extensions to support many languages beyond C#. The most important extension for C# and .NET developers is the C# Dev Kit that was released in preview in June 2023 because it turns Visual Studio Code from a general-purpose code editor into a tool optimized for C# and .NET developers.

 More Information: You can read about the C# Dev Kit extension in the official announcement at the following link: https://devblogs.microsoft.com/visualstudio/announcing-csharp-dev-kit-for-visual-studio-code/.

 Being cross-platform and lightweight, Visual Studio Code and its extensions can be installed on all platforms that your apps will be deployed to for quick bug fixes and so on. Choosing Visual Studio Code means a developer can use a cross-platform code editor to develop cross-platform apps. Visual Studio Code is supported on ARM processors so that you can develop on Apple Silicon computers and Raspberry Pi computers.

 Visual Studio Code has strong support for web development, although it currently has weak support for mobile and desktop development.

 Visual Studio Code is by far the most popular code editor or IDE, with over 73% of professional developers selecting it in the Stack Overflow 2023 survey that you can read at the following link: https://survey.stackoverflow.co/2023/.

 GitHub Codespaces for development in the cloud

 GitHub Codespaces is a fully configured development environment based on Visual Studio Code that can be spun up in an environment hosted in the cloud and accessed through any web browser. It supports Git repos, extensions, and a built-in command-line interface so you can edit, run, and test from any device.

 More Information: You can learn more about GitHub Codespaces at the following link: https://github.com/features/codespaces.

 Visual Studio 2022 for general development

 Visual Studio 2022 for Windows can create most types of applications, including console apps, websites, web services, and desktop apps. Although you can use Visual Studio 2022 for Windows to write a cross-platform mobile app, you still need macOS and Xcode to compile it.

 It only runs on Windows 10 version 1909 or later, Home, Professional, Education, or Enterprise; or on Windows 11 version 21H2 or later, Home, Pro, Pro Education, Pro for Workstations, Enterprise, or Education. Windows Server 2016 and later are also supported. 32-bit operating systems and Windows S mode are not supported.

 Warning! Visual Studio 2022 for Mac does not officially support .NET 8 and it will reach end-of-life in August 2024. If you have been using Visual Studio 2022 for Mac then you should switch to Visual Studio Code for Mac, JetBrains Rider for Mac, or use Visual Studio 2022 for Windows in a virtual machine on your local computer or in the cloud using a technology like Microsoft Dev Box. The retirement announcement can be read here: https://devblogs.microsoft.com/visualstudio/visual-studio-for-mac-retirement-announcement/.

 What I used

 To write and test the code for this book, I used the following hardware and software:

 	Visual Studio 2022 for Windows on:
 	Windows 11 on an HP Spectre (Intel) laptop

 	Visual Studio Code on:
 	macOS on an Apple Silicon Mac mini (M1) desktop

 	Windows 11 on an HP Spectre (Intel) laptop

 	JetBrains Rider on:
 	macOS on an Apple Silicon Mac mini (M1) desktop

 	Windows 11 on an HP Spectre (Intel) laptop

 I hope that you have access to a variety of hardware and software too, because seeing the differences in platforms deepens your understanding of development challenges, although any one of the above combinations is enough to learn the fundamentals of C# and .NET and how to build practical apps and websites.

 You can learn how to write code with C# and .NET using a Raspberry Pi 400 with Ubuntu Desktop 64-bit by reading an extra article that I wrote at the following link: https://github.com/markjprice/cs12dotnet8/tree/main/docs/raspberry-pi-ubuntu64.

 Deploying cross-platform

 Your choice of code editor and operating system for development does not limit where your code gets deployed.

 .NET 8 supports the following platforms for deployment:

 	Windows: Windows 10 version 1607 or later. Windows 11 version 22000 or later. Windows Server 2012 R2 SP1 or later. Nano Server version 1809 or later.

 	Mac: macOS Catalina version 10.15 or later and in the Rosetta 2 x64 emulator.

 	Linux: Alpine Linux 3.17 or later. Debian 11 or later. Fedora 37 or later. openSUSE 15 or later. Oracle Linux 8 or later. RHEL 8 or later. SUSE Enterprise Linux 12 SP2 or later. Ubuntu 20.04 or later.

 	Android: API 21 or later.

 	iOS and tvOS: 11.0 or later.

 	Mac Catalyst: 10.15 or later. 11.0 or later on ARM64.

 Warning! .NET support for Windows 7 and 8.1 ended in January 2023: https://github.com/dotnet/core/issues/7556.

 Windows Arm64 support in .NET 5 and later means you can develop on, and deploy to, Windows Arm devices like Microsoft’s Windows Dev Kit 2023 (formerly known as Project Volterra) and Surface Pro X.

 You can review the latest supported operating systems and versions at the following link: https://github.com/dotnet/core/blob/main/release-notes/8.0/supported-os.md.

 Downloading and installing Visual Studio 2022

 Many professional .NET developers use Visual Studio 2022 for Windows in their day-to-day development work. Even if you choose to use Visual Studio Code to complete the coding tasks in this book, you might want to familiarize yourself with Visual Studio 2022 for Windows too. It is not until you have written a decent amount of code with a tool that you can really judge if it fits your needs.

 If you do not have a Windows computer, then you can skip this section and continue to the next section where you will download and install Visual Studio Code on macOS or Linux.

 Since October 2014, Microsoft has made a professional-quality edition of Visual Studio available to students, open-source contributors, and individuals for free. It is called Community Edition. Any of the editions are suitable for this book. If you have not already installed it, let’s do so now:

 	Download Microsoft Visual Studio 2022 version 17.8 or later for Windows from the following link: https://visualstudio.microsoft.com/downloads/.

 	Run the installer to start the installation.

 	On the Workloads tab, select the following:
 	ASP.NET and web development.

 	.NET desktop development (because this includes console apps).

 	Desktop development with C++ with all default components (because this enables publishing console apps and web services that start faster and have smaller memory footprints).

 	Click Install and wait for the installer to acquire the selected software and install it.

 	When the installation is complete, click Launch.

 	The first time that you run Visual Studio, you will be prompted to sign in. If you have a Microsoft account, you can use that account. If you don’t, then register for a new one at the following link: https://signup.live.com/.

 	The first time that you run Visual Studio, you will be prompted to configure your environment. For Development Settings, choose Visual C#. For the color theme, I chose Blue, but you can choose whatever tickles your fancy.

 	If you want to customize your keyboard shortcuts, navigate to Tools | Options…, and then select the Keyboard section.

 Keyboard shortcuts for Visual Studio 2022 for Windows

 In this book, I will avoid showing keyboard shortcuts since they are often customized. Where they are consistent across code editors and commonly used, I will try to show them.

 If you want to identify and customize your keyboard shortcuts, then you can, as shown at the following link: https://learn.microsoft.com/en-us/visualstudio/ide/identifying-and-customizing-keyboard-shortcuts-in-visual-studio.

 Downloading and installing Visual Studio Code

 Visual Studio Code has rapidly improved over the past couple of years and has pleasantly surprised Microsoft with its popularity. If you are brave and like to live on the bleeding edge, then there is the Insiders edition, which is a daily build of the next version.

 Even if you plan to only use Visual Studio 2022 for Windows for development, I recommend that you download and install Visual Studio Code and try the coding tasks in this chapter using it, and then decide if you want to stick with just using Visual Studio 2022 for the rest of the book.

 Let’s now download and install Visual Studio Code, the .NET SDK, and the C# Dev Kit extension:

 	Download and install either the Stable build or the Insiders edition of Visual Studio Code from the following link: https://code.visualstudio.com/.
 More Information: If you need more help installing Visual Studio Code, you can read the official setup guide at the following link: https://code.visualstudio.com/docs/setup/setup-overview.

 	Download and install the .NET SDK for version 8.0 and at least one other version like 6.0 or 7.0 from the following link: https://www.microsoft.com/net/download.
 In real life, you are extremely unlikely to only have one .NET SDK version installed on your computer. To learn how to control which .NET SDK version is used to build a project, we need multiple versions installed. .NET 6, .NET 7, and .NET 8 are supported versions at the time of publishing in November 2023. You can safely install multiple SDKs side by side. The most recent SDK will be used to build your projects.

 	To install the C# Dev Kit extension with a user interface, you must first launch the Visual Studio Code application.

 	In Visual Studio Code, click the Extensions icon or navigate to View | Extensions.

 	C# Dev Kit is one of the most popular extensions available, so you should see it at the top of the list, or you can enter C# in the search box.
 C# Dev Kit has a dependency on the C# extension version 2.0 or later, so you do not have to install the C# extension separately. Note that C# extension version 2.0 or later no longer uses OmniSharp since it has a new Language Service Protocol (LSP) host. C# Dev Kit also has dependencies on the .NET Install Tool for Extension Authors and IntelliCode for C# Dev Kit extensions so they will be installed too.

 	Click Install and wait for supporting packages to download and install.
 Good Practice: Be sure to read the license agreement for C# Dev Kit. It has a more restrictive license than the C# extension: https://aka.ms/vs/csdevkit/license.

 Installing other extensions

 In later chapters of this book, you will use more Visual Studio Code extensions. If you want to install them now, all the extensions that we will use are shown in Table 1.1:

 	
 Extension name and identifier

 	
 Description

 	
 C# Dev Kit

 ms-dotnettools.csdevkit

 	
 Official C# extension from Microsoft. Manage your code with a solution explorer and test your code with integrated unit test discovery and execution.

 Includes the C# and IntelliCode for C# Dev Kit extensions.

 	
 C#

 ms-dotnettools.csharp

 	
 C# editing support, including syntax highlighting, IntelliSense, Go To Definition, Find All References, debugging support for .NET, and support for csproj projects on Windows, macOS, and Linux.

 	
 IntelliCode for C# Dev Kit

 ms-dotnettools.vscodeintellicode-csharp

 	
 Provides AI-assisted development features for Python, TypeScript/JavaScript, C#, and Java developers.

 	
 MSBuild project tools

 tintoy.msbuild-project-tools

 	
 Provides IntelliSense for MSBuild project files, including autocomplete for <PackageReference> elements.

 	
 Polyglot Notebooks

 ms-dotnettools.dotnet-interactive-vscode

 	
 This extension adds support for using .NET and other languages in a notebook. It has a dependency on the Jupyter extension (ms-toolsai.jupyter), which itself has dependencies.

 	
 ilspy-vscode

 icsharpcode.ilspy-vscode

 	
 Decompile MSIL assemblies – support for modern .NET, .NET Framework, .NET Core, and .NET Standard.

 	
 REST Client

 humao.rest-client

 	
 Send an HTTP request and view the response directly in Visual Studio Code.

 Table 1.1: Visual Studio Code extensions used in this book

 Managing Visual Studio Code extensions at the command prompt

 You can install a Visual Studio Code extension at the command prompt or terminal, as shown in Table 1.2:

 	
 Command

 	
 Description

 	
 code --list-extensions

 	
 List installed extensions.

 	
 code --install-extension <extension-id>

 	
 Install the specified extension.

 	
 code --uninstall-extension <extension-id>

 	
 Uninstall the specified extension.

 Table 1.2: Commands to list, install, and uninstall extensions

 For example, to install the C# Dev Kit extension, enter the following at the command prompt:

 code --install-extension ms-dotnettools.csdevkit

 I have created PowerShell scripts to install and uninstall the Visual Studio Code extensions in the preceding table. You can find them at the following link: https://github.com/markjprice/cs12dotnet8/tree/main/scripts/extension-scripts/.

 Understanding Visual Studio Code versions

 Microsoft releases a new feature version of Visual Studio Code (almost) every month and bug-fix versions more frequently. For example:

 	Version 1.79.0, May 2023 feature release

 	Version 1.79.1, May 2023 bug fix release

 The version used in this book is 1.82.1, August 2023 bug fix release, but the version of Visual Studio Code is less important than the version of the C# Dev Kit or C# extension that you install. I recommend C# extension v2.8.23 or later and C# Dev Kit v0.5.150 or later.

 While the C# extension is not required, it provides IntelliSense as you type, code navigation, and debugging features, so it’s something that’s very handy to install and keep updated to support the latest C# language features.

 Keyboard shortcuts for Visual Studio Code

 If you want to customize your keyboard shortcuts for Visual Studio Code, then you can, as shown at the following link: https://code.visualstudio.com/docs/getstarted/keybindings.

 I recommend that you download a PDF of Visual Studio Code keyboard shortcuts for your operating system from the following list:

 	Windows: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf

 	macOS: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf

 	Linux: https://code.visualstudio.com/shortcuts/keyboard-shortcuts-linux.pdf

 Understanding .NET

 “Those who cannot remember the past are condemned to repeat it.”

 – George Santayana

 .NET, .NET Core, .NET Framework, and Xamarin are related and overlapping platforms for developers used to build applications and services.

 If you are not familiar with the history of .NET, then I introduce you to each of these .NET concepts at the following link:

 https://github.com/markjprice/cs12dotnet8/blob/main/docs/ch01-dotnet-history.md

 Understanding .NET support

 .NET versions are either Long Term Support (LTS), Standard Term Support (STS) (formerly known as Current), or Preview, as described in the following list:

 	LTS releases are a good choice for applications that you do not intend to update frequently, although you must update the .NET runtime for your production code monthly. LTS releases are supported by Microsoft for 3 years after General Availability (GA), or 1 year after the next LTS release ships, whichever is longer.

 	STS releases include features that may change based on feedback. These are a good choice for applications that you are actively developing because they provide access to the latest improvements. STS releases are supported by Microsoft for 18 months after GA, or 6 months after the next STS or LTS release ships, whichever is longer.

 	Preview releases are for public testing. These are a good choice for adventurous programmers who want to live on the bleeding edge, or programming book authors who need to have early access to new language features, libraries, and app and service platforms. Preview releases are not usually supported by Microsoft, but some preview or Release Candidate (RC) releases may be declared Go Live, meaning they are supported by Microsoft in production.

 STS and LTS releases receive critical patches throughout their lifetime for security and reliability.

 Good Practice: You must stay up to date with the latest patches to get support. For example, if a system is running on .NET runtime version 8.0.0 and then version 8.0.1 is released, you must install version 8.0.1 to get support. These updates are released on the second Tuesday of each month, aka Patch Tuesday.

 To better understand your choices of STS and LTS releases, it is helpful to see it visually, with 3-year-long black bars for LTS releases, and 1½-year-long gray bars for STS releases, as shown in Figure 1.2:

 [image: A picture containing text, screenshot, number, font Description automatically generated]
 Figure 1.2: Support durations for recent and planned STS and LTS releases

 During the lifetime of .NET 8, two older versions will reach end-of-life and two new versions will be released. I have tried to be cognizant that you might choose to use .NET 9 or .NET 10 with this book; although, obviously, the book cannot cover new features of those future versions!

 End of support or end of life (EOL) means the date after which bug fixes, security updates, or technical assistance are no longer available from Microsoft.

 If you need long-term support from Microsoft, then choose .NET 8 today and stick with it even after .NET 9 releases in 2024. This is because .NET 9 will be an STS release, and it will therefore lose support in May 2026, before .NET 8 does in November 2026. As soon as .NET 10 is released, start upgrading your .NET 8 projects to it. You will have a year to do so before .NET 8 reaches its end of life.

 Good Practice: Remember that with all releases, you must upgrade to bug-fix releases like .NET runtime 8.0.1 and .NET SDK 8.0.101, which are expected to release in December 2023, because updates are released every month.

 At the time of publishing in November 2023, all versions of modern .NET have reached their end of life except those shown in the following list, which are ordered by their end-of-life dates:

 	.NET 7 will reach end-of-life on May 14, 2024.

 	.NET 6 will reach end-of-life on November 12, 2024.

 	.NET 8 will reach end-of-life on November 10, 2026.

 You can check which .NET versions are currently supported and when they will reach end-of-life at the following link: https://github.com/dotnet/core/blob/main/releases.md.

 Understanding .NET support phases

 The lifetime of a version of .NET passes through several phases, during which they have varying levels of support, as described in the following list:

 	Preview: Not supported. .NET 8 Preview 1 to Preview 7 were in this support phase from February 2023 to August 2023.

 	Go Live: Supported until GA, then becomes immediately unsupported so you must upgrade to the final release version as soon as it is available. .NET 8 Release Candidate 1 and Release Candidate 2 were in this support phase in September and October 2023.

 	Active: .NET 8 will be in this support phase from November 2023 to May 2026.

 	Maintenance: Supported only with security fixes for the last 6 months of its lifetime. .NET 8 will be in this support phase from May 2026 to November 2026.

 	End-of-life: Not supported. .NET 8 will reach its end of life in November 2026.

 Understanding .NET runtime and .NET SDK versions

 If you have not built a standalone app, then the .NET runtime is the minimum needed to install so that an operating system can run a .NET application. The .NET SDK includes the .NET runtime as well as the compilers and other tools needed to build .NET code and apps.

 .NET runtime versioning follows semantic versioning, that is, a major increment indicates breaking changes, minor increments indicate new features, and patch increments indicate bug fixes.

 .NET SDK versioning does not follow semantic versioning. The major and minor version numbers are tied to the runtime version it is matched with. The third number follows a convention that indicates the minor and patch versions of the SDK. The minor number is multiplied by 100 and added to the patch number.

 You can see an example of this in Table 1.3:

 	
 Change

 	
 Runtime

 	
 SDK

 	
 Initial release

 	
 8.0.0

 	
 8.0.100

 	
 SDK bug fix

 	
 8.0.0

 	
 8.0.101

 	
 Runtime and SDK bug fix

 	
 8.0.1

 	
 8.0.102

 	
 SDK new feature

 	
 8.0.1

 	
 8.0.200

 Table 1.3: Examples of changes and versions for a .NET runtime and SDK

 Listing and removing versions of .NET

 .NET runtime updates are compatible with a major version such as 8.x, and updated releases of the .NET SDK maintain the ability to build applications that target previous versions of the runtime, which enables the safe removal of older versions.

 You can see which SDKs and runtimes are currently installed using the following commands:

 dotnet --list-sdks
dotnet --list-runtimes
dotnet --info

 Good Practice: To make it easier to enter commands at the command prompt or terminal, the following link lists all commands throughout the book as a single statement that can be easily copied and pasted: https://github.com/markjprice/cs12dotnet8/blob/main/docs/command-lines.md.

 On Windows, use the Apps & features section to remove .NET SDKs.

 On Linux, there is no single mechanism, but you can learn more at the following link:

 https://learn.microsoft.com/en-us/dotnet/core/install/remove-runtime-sdk-versions?pivots=os-linux

 You could use a third-party tool like Dots, the friendly .NET SDK manager, found at the following link: https://johnnys.news/2023/01/Dots-a-dotnet-SDK-manager. At the time of writing, you must build the app from source on its GitHub repository, so I only recommend that for advanced developers.

 Understanding intermediate language

 The C# compiler (named Roslyn) used by the dotnet CLI tool converts your C# source code into intermediate language (IL) code and stores the IL in an assembly (a DLL or EXE file). IL code statements are like assembly language instructions, which are executed by .NET’s virtual machine, known as CoreCLR.

 At runtime, CoreCLR loads the IL code from the assembly, the just-in-time (JIT) compiler compiles it into native CPU instructions, and then it is executed by the CPU on your machine.

 The benefit of this two-step compilation process is that Microsoft can create Common language runtimes (CLRs) for Linux and macOS, as well as for Windows. The same IL code runs everywhere because of the second compilation step, which generates code for the native operating system and CPU instruction set.

 Regardless of which language the source code is written in, for example, C#, Visual Basic, or F#, all .NET applications use IL code for their instructions stored in an assembly. Microsoft and others provide disassembler tools that can open an assembly and reveal this IL code, such as the ILSpy .NET Decompiler extension. You will learn more about this in Chapter 7, Packaging and Distributing .NET Types.

 Comparing .NET technologies

 We can summarize and compare the current .NET technologies as shown in Table 1.4:

 	
 Technology

 	
 Description

 	
 Host operating systems

 	
 Modern .NET

 	
 A modern feature set, with full C# 8 to C# 12 language support. It can be used to port existing apps or create new desktop, mobile, and web apps and services. It can target older .NET platforms.

 	
 Windows, macOS, Linux, Android, iOS, tvOS, Tizen

 	
 .NET Framework

 	
 A legacy feature set with limited C# 8 support and no C# 9 or later support. It should be used to maintain existing applications only.

 	
 Windows only

 	
 Xamarin

 	
 Mobile and desktop apps only.

 	
 Android, iOS, macOS

 Table 1.4: Comparison of .NET technologies

 Managing multiple projects using code editors

 Visual Studio 2022 for Windows, JetBrains Rider, and even Visual Studio Code (with the C# Dev Kit extension installed) all have a concept called a solution that allows you to open and manage multiple projects simultaneously. We will use a solution to manage the two projects that you will create in this chapter.

 Building console apps using Visual Studio 2022

 The goal of this section is to showcase how to build a console app using Visual Studio 2022 for Windows.

 If you do not have a Windows computer or want to use Visual Studio Code, then you can skip this section since the code will be the same; just the tooling experience is different. But I recommend that you review this section because it does explain some of the code and how top-level programs work, and that information applies to all code editors.

 This section is also available in the GitHub repository (so it can be updated after publishing if needed) at the following link:

 https://github.com/markjprice/cs12dotnet8/blob/main/docs/code-editors/vs4win.md

 If you want to see similar instructions for using JetBrains Rider, they are available in the GitHub repository at the following link:

 https://github.com/markjprice/cs12dotnet8/blob/main/docs/code-editors/rider.md

 Writing code using Visual Studio 2022

 Let’s get started writing code:

 	Start Visual Studio 2022. You might see an experimental new Welcome tab that replaces the old model dialog box, as shown in Figure 1.3.

 	In the Welcome tab, click New Project, or if you are using a version with the Visual Studio 2022 modal dialog box, then in the Get started section, click Create a new project:

 [image: A screenshot of a computer Description automatically generated with medium confidence]
 Figure 1.3: Welcome tab with buttons like New Project

 	In the Create a new project dialog, select the C# language to filter the project templates, and then enter console in the Search for templates box, and select Console App, making sure that you have chosen the cross-platform project template, not the one for .NET Framework, which is Windows-only, and the C# project template rather than another language, such as Visual Basic or TypeScript, so that it is selected as shown in Figure 1.4:

 [image: A screenshot of a computer Description automatically generated with medium confidence]
 Figure 1.4: Selecting the C# Console App project template for modern cross-platform .NET

 	Click Next.

 	In the Configure your new project dialog, enter HelloCS for the project name, C:\cs12dotnet8 for the location, and Chapter01 for the solution name.
 More screenshots of Visual Studio 2022 when creating new projects can be found in the GitHub repository at the following link: https://github.com/markjprice/cs12dotnet8/blob/main/docs/ch01-project-options.md.

 	Click Next.

 	In the Additional information dialog, in the Framework drop-down list, note that your .NET SDK choices indicate if that version is Standard Term Support, Long Term Support, Preview, or Out of support, and then select .NET 8.0 (Long Term Support).
 You can install as many .NET SDK versions as you like. If you are missing a .NET SDK version, then you can install it from the following link: https://dotnet.microsoft.com/en-us/download/dotnet.

 	Leave the check box labeled Do not use top-level statements cleared. (Later in this chapter, you will create a console app that selects this option so you can see the difference.)

 	Leave the check box labeled Enable native AOT publish cleared. You will learn what this option does in Chapter 7, Packaging and Distributing .NET Types.

 	Click Create.

 	If you cannot see Solution Explorer, then navigate to View | Solution Explorer.

 	If code is not shown, then in Solution Explorer, double-click the file named Program.cs to open it, and note that Solution Explorer shows the HelloCS project, as shown in Figure 1.5:

 [image: A screenshot of a computer Description automatically generated with medium confidence]
 Figure 1.5: Editing Program.cs in Visual Studio 2022

 	In Program.cs, note the code consists of only a comment and a single statement, as shown in the following code:
 // See https://aka.ms/new-console-template for more information
Console.WriteLine("Hello, World!");

 This template uses the top-level program feature introduced in C# 9, which I will explain later in this chapter. As the comment in the code says, you can read more about this template at the following link: https://aka.ms/new-console-template.

 	In Program.cs, modify line 2 so that the text that is being written to the console says Hello, C#!.

 All code examples and commands that the reader must review or type are shown in plain text so you will never have to read code or commands from a screenshot like in Figure 1.5, which might be too small or too faint in print.

 Compiling and running code using Visual Studio

 The next task is to compile and run the code:

 	In Visual Studio, navigate to Debug | Start Without Debugging.
 Good Practice: When you start a project in Visual Studio 2022, you can choose whether to attach a debugger or not. If you do not need to debug, then it is better not to attach one because attaching a debugger requires more resources and slows everything down. Attaching a debugger also limits you to only starting one project. If you want to run more than one project, each with a debugger attached, then you must start multiple instances of Visual Studio. In the toolbar, click the green outline triangle button (to the right of HelloCS in the top bar Figure 1.5) to start without debugging instead of the green solid triangle button (to the left of HelloCS in the top bar Figure 1.5), unless you need to debug.

 	The output in the console window will show the result of running your application, as shown in Figure 1.6:

 [image: A screenshot of a computer Description automatically generated with medium confidence]
 Figure 1.6: Running the console app on Windows

 	Press any key to close the console app window and return to Visual Studio.

 	Optionally, close the Properties pane to make more vertical space for Solution Explorer.

 	Double-click the HelloCS project and note the HelloCS.csproj project file shows that this project has its target framework set to net8.0, as shown in Figure 1.7.

 	In the Solution Explorer toolbar, toggle on the Show All Files button, [image:], and note that the compiler-generated bin and obj folders are visible, as shown in Figure 1.7:

 [image: A screenshot of a computer Description automatically generated]
 Figure 1.7: Showing the compiler-generated folders and files

 Understanding the compiler-generated folders and files

 Two compiler-generated folders were created, named obj and bin, as described in the following list:

 	The obj folder contains one compiled object file for each source code file. These objects haven’t been linked together into a final executable yet.

 	The bin folder contains the binary executable for the application or class library. We will look at this in more detail in Chapter 7, Packaging and Distributing .NET Types.

 You do not need to look inside these folders or understand their files yet (but feel free to browse around if you are curious).

 Just be aware that the compiler needs to create temporary folders and files to do its work. You could delete these folders and their files, and they will be automatically recreated the next time you “build” or run the project. Developers often delete these temporary folders and files to “clean” a project. Visual Studio even has a command on the Build menu named Clean Solution that deletes some of these temporary files for you. The equivalent command with Visual Studio Code is dotnet clean.

 Understanding top-level programs

 If you have seen older .NET projects before, then you might have expected more code, even just to output a simple message. This project has minimal statements because some of the required code is written for you by the compiler when you target .NET 6 or later.

 If you had created the project with .NET SDK 5 or earlier, or if you had selected the check box labeled Do not use top-level statements, then the Program.cs file would have more statements, as shown in the following code:

 using System;
namespace HelloCS
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello, World!");
 }
 }
}

 During compilation with .NET SDK 6 or later, all the boilerplate code to define the Program class and its Main method is generated and wrapped around the statements you write.

 This uses a feature introduced in .NET 5 called top-level programs, but it was not until .NET 6 that Microsoft updated the project template for console apps to use top-level statements by default. Then in .NET 7 or later, Microsoft added options to use the older style if you prefer:

 	If you are using Visual Studio 2022, select the check box labeled Do not use top-level statements.

 	If you are using the dotnet CLI at the command prompt, add a switch:
 dotnet new console --use-program-main

 Warning! One functional difference is that the auto-generated code does not define a namespace, so the Program class is implicitly defined in an empty namespace with no name instead of a namespace that matches the name of the project.

 Requirements for top-level programs

 Key points to remember about top-level programs include the following:

 	There can be only one file like this in a project.

 	Any using statements must be at the top of the file.

 	If you declare any classes or other types, they must be at the bottom of the file.

 	Although you should name the method Main if you explicitly define it, the method is named <Main>$ when created by the compiler.

 Implicitly imported namespaces

 The using System; statement at the top of the file imports the System namespace. This enables the Console.WriteLine statement to work. Why do we not have to import it in our project?

 The trick is that we do still need to import the System namespace, but it is now done for us using a combination of features introduced in C# 10 and .NET 6. Let’s see how:

 	In Solution Explorer, expand the obj folder, expand the Debug folder, expand the net8.0 folder, and open the file named HelloCS.GlobalUsings.g.cs.

 	Note that this file is automatically created by the compiler for projects that target .NET 6 or later, and that it uses a feature introduced in C# 10 called global namespace imports, which imports some commonly used namespaces like System for use in all code files, as shown in the following code:
 // <autogenerated />
global using global::System;
global using global::System.Collections.Generic;
global using global::System.IO;
global using global::System.Linq;
global using global::System.Net.Http;
global using global::System.Threading;
global using global::System.Threading.Tasks;

 	In Solution Explorer, click the Show All Files button to hide the bin and obj folders.

 I will explain more about the implicit imports feature in the next chapter. For now, just note that a significant change that happened between .NET 5 and .NET 6 is that many of the project templates, like the one for console apps, use new SDK and language features to hide what is really happening.

 Revealing the hidden code by throwing an exception

 Now let’s discover how the hidden code has been written:

 	In Program.cs, after the statement that outputs the message, add a statement to throw a new exception, as shown in the following code:
 throw new Exception();

 	In Visual Studio, navigate to Debug | Start Without Debugging. (Do not start the project with debugging or the exception will be caught by the debugger!)

 	The output in the console window will show the result of running your application, including that a hidden Program class was defined by the compiler with a method named <Main>$ that has a parameter named args for passing in arguments, as shown in Figure 1.8:

 [image: A screenshot of a computer Description automatically generated with medium confidence]
 Figure 1.8: Throwing an exception to reveal the hidden Program.<Main>$ method

 	Press any key to close the console app window and return to Visual Studio.

 Revealing the namespace for the Program class

 Now, let’s discover what namespace the Program class has been defined within:

 	In Program.cs, before the statement that throws an exception, add statements to get the name of the namespace of the Program class, and then write it to the console, as shown in the following code:
 string name = typeof(Program).Namespace ?? "None!";
Console.WriteLine($"Namespace: {name}");

 ?? is the null-coalescing operator. The first statement means, “If the namespace of Program is null, then return None!; otherwise, return the name.” You will see more explanations of these keywords and operators throughout the book. For now, just enter the code and run it to see what it does.

 	In Visual Studio, navigate to Debug | Start Without Debugging.

 	The output in the console window will show the result of running your application, including that the hidden Program class was defined without a namespace, as shown in the following output:
 Namespace: None!

 	Press any key to close the console app window and return to Visual Studio.

 Adding a second project using Visual Studio 2022

 Let’s add a second project to our solution to explore how to work with multiple projects:

 	In Visual Studio, navigate to File | Add | New Project….
 Warning! The above step adds a new project to the existing solution. Do NOT navigate to File | New | Project…, which instead is meant to be used to create a new project and solution (although the dialog box has a dropdown to choose to add to an existing solution too).

 	In the Add a new project dialog, in Recent project templates, select Console App [C#] and then click Next.

 	In the Configure your new project dialog, for Project name, enter AboutMyEnvironment, leave the location as C:\cs12dotnet8\Chapter01, and then click Next.

 	In the Additional information dialog, select .NET 8.0 (Long Term Support) and select the Do not use top-level statements check box.
 Warning! Make sure you have selected the Do not use top-level statements check box, so we get to see the older style of Program.cs.

 	Click Create.

 	In the AboutMyEnvironment project, in Program.cs, note the statements to define a namespace that matches the project name, an internal class named Program, and a static method named Main with a parameter named args that returns nothing (void), as shown in the following code:
 namespace AboutMyEnvironment
{
 internal class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello, World!");
 }
 }
}

 	In Program.cs, in the Main method, replace the existing Console.WriteLine statement with statements to output the current directory, the version of the operating system, and the namespace of the Program class, as shown in the following code:
 Console.WriteLine(Environment.CurrentDirectory);
Console.WriteLine(Environment.OSVersion.VersionString);
Console.WriteLine("Namespace: {0}", typeof(Program).Namespace);

 	In Solution Explorer, right-click the Chapter01 solution, and then select Configure Startup Projects….

 	In the Solution ‘Chapter01’ Property Pages dialog box, set Startup Project to Current selection, and then click OK.

 	In Solution Explorer, click the AboutMyEnvironment project (or any file or folder within it), and note that Visual Studio indicates that AboutMyEnvironment is now the startup project by making the project name bold.
 Good Practice: I recommend this way of setting the startup project because it then makes it very easy to switch startup projects by simply clicking a project (or any file in a project) to make it the startup project. Although you can right-click a project and set it as a startup project, if you then want to run a different project, you must manually change it again. Simply clicking anywhere in the project is easier. In most chapters, you will only need to run one project at a time. In Chapter 14, Building and Consuming Web Services, I will show you how to configure multiple startup projects.

 	Navigate to Debug | Start Without Debugging to run the AboutMyEnvironment project, and note the result, as shown in the following output and in Figure 1.9:
 C:\cs12dotnet8\Chapter01\AboutMyEnvironment\bin\Debug\net8.0
Microsoft Windows NT 10.0.22621.0
Namespace: AboutMyEnvironment

 [image:]
 Figure 1.9: Running a console app in a Visual Studio solution with two projects

 Windows 11 is just branding. Its official name is Windows NT, and its major version number is still 10! But its patch version is 22000 or higher.

 	Press any key to close the console app window and return to Visual Studio.

 When using Visual Studio 2022 for Windows to run a console app, it executes the app from the <projectname>\bin\Debug\net8.0 folder. It will be important to remember this when we work with the filesystem in later chapters. When using Visual Studio Code, or more accurately, the dotnet CLI, it has different behavior, as you are about to see.

 Building console apps using Visual Studio Code

 The goal of this section is to showcase how to build a console app using Visual Studio Code and the dotnet CLI.

 If you never want to try Visual Studio Code or the dotnet command-line tool, then please feel free to skip this section, and then continue with the Making good use of the GitHub repository for this book section.

 Both the instructions and screenshots in this section are for Windows, but the same actions will work with Visual Studio Code on the macOS and Linux variants.

 The main differences will be native command-line actions such as deleting a file: both the command and the path are likely to be different on Windows or macOS and Linux. Luckily, the dotnet CLI tool itself and its commands are identical on all platforms.

 Writing code using Visual Studio Code

 Let’s get started writing code!

 	Start your favorite tool for working with the filesystem, for example, File Explorer on Windows or Finder on Mac.

 	Navigate to your C: drive on Windows, your user folder on macOS or Linux (mine are named markjprice and home/markjprice), or any directory or drive in which you want to save your projects.

 	Create a new folder named cs12dotnet8. (If you completed the section for Visual Studio 2022, then this folder will already exist.)

 	In the cs12dotnet8 folder, create a new folder named Chapter01-vscode.
 If you did not complete the section for Visual Studio 2022, then you could name this folder Chapter01, but I will assume you will want to complete both sections and therefore need to use a non-conflicting name.

 	In the Chapter01-vscode folder, open the command prompt or terminal. For example, on Windows, right-click on the folder and then select Open in Terminal.

 	At the command prompt or terminal, use the dotnet CLI to create a new solution named Chapter01, as shown in the following command:
 dotnet new sln --name Chapter01

 You can use either -n or --name as the switch to specify a name. The default would match the name of the folder, for example, Chapter01-vscode.

 	Note the result, as shown in the following output:
 The template "Solution File" was created successfully.

 	At the command prompt or terminal, use the dotnet CLI to create a new subfolder and project for a console app named HelloCS, as shown in the following command:
 dotnet new console --output HelloCS

 You can use either -o or --output as the switch to specify the folder and project name. The dotnet new console command targets your latest .NET SDK version by default. To target a different version, use the -f or --framework switch to specify a target framework. For example, to target .NET 6, use the following command: dotnet new console -f net6.0

 	At the command prompt or terminal, use the dotnet CLI to add the project to the solution, as shown in the following command:
 dotnet sln add HelloCS

 	Note the results, as shown in the following output:
 Project `HelloCS\HelloCS.csproj` added to the solution.

 	At the command prompt or terminal, start Visual Studio Code and open the current folder indicated with a . (dot), as shown in the following command:
 code .

 	If you are prompted, Do you trust the authors of the files in this folder?, then select the Trust the authors of all files in the parent folder ‘cs12dotnet8’ check box and then click Yes, I trust the authors.

 	In Visual Studio Code, in EXPLORER, in the CHAPTER01-VSCODE folder view, expand the HelloCS folder, and you will see that the dotnet command-line tool created two files, HelloCS.csproj and Program.cs, and bin and obj folders, as shown in Figure 1.10:

 [image:]
 Figure 1.10: EXPLORER shows that two files and a folder have been created

 	Navigate to View | Output.

 	In the OUTPUT pane, select C# Dev Kit and note the tool has recognized and processed the solution, as shown in Figure 1.11:

 [image:]
 Figure 1.11: C# Dev Kit processing a solution file

 	At the bottom of EXPLORER, note the SOLUTION EXPLORER.

 	Drag SOLUTION EXPLORER to the top of the EXPLORER pane and expand it.

 	In SOLUTION EXPLORER, expand the HelloCS project, and then click the file named Program.cs to open it in the editor window.

 	In Program.cs, modify line 2 so that the text that is being written to the console says Hello, C#!.

 Good Practice: Navigate to File | Auto Save. This toggle will save the annoyance of remembering to save before rebuilding your application each time.

 Compiling and running code using the dotnet CLI

 The next task is to compile and run the code:

 	In SOLUTION EXPLORER, right-click on any file in the HelloCS project and choose Open In Integrated Terminal.

 	In TERMINAL, enter the following command: dotnet run.

 	The output in the TERMINAL window will show the result of running your application, as shown in Figure 1.12:

 [image:]
 Figure 1.12: The output of running your first console app in Visual Studio Code

 	In Program.cs, after the statement that outputs the message, add statements to get the name of the namespace of the Program class, write it to the console, and then throw a new exception, as shown in the following code:
 string name = typeof(Program).Namespace ?? "None!";
Console.WriteLine($"Namespace: {name}");
throw new Exception();

 	In TERMINAL, enter the following command: dotnet run.
 In TERMINAL, you can press the up and down arrows to loop through previous commands and then press the left and right arrows to edit the command before pressing Enter to run them.

 	The output in the TERMINAL window will show the result of running your application, including that a hidden Program class was defined by the compiler with a method named <Main>$ that has a parameter named args for passing in arguments, and that it does not have a namespace, as shown in the following output:
 Hello, C#!
Namespace: None!
Unhandled exception. System.Exception: Exception of type 'System.Exception' was thrown.
 at Program.<Main>$(String[] args) in C:\cs12dotnet8\Chapter01-vscode\HelloCS\Program.cs:line 7

 Adding a second project using Visual Studio Code

 Let’s add a second project to explore how to work with multiple projects:

 	In TERMINAL, change to the Chapter01-vscode directory, as shown in the following command:
 cd ..

 	In TERMINAL, enter the command to create a new console app project named AboutMyEnvironment using the older non-top-level program style, as shown in the following command:
 dotnet new console -o AboutMyEnvironment --use-program-main

 Good Practice: Be careful when entering commands in TERMINAL. Be sure that you are in the correct folder before entering potentially destructive commands!

 	In TERMINAL, use the dotnet CLI to add the new project folder to the solution, as shown in the following command:
 dotnet sln add AboutMyEnvironment

 	Note the results, as shown in the following output:
 Project `AboutMyEnvironment\AboutMyEnvironment.csproj` added to the solution.

 	In SOLUTION EXPLORER, in the AboutMyEnvironment project, open Program.cs, and then in the Main method, change the existing statement to output the current directory, the operating system version string, and the namespace of the Program class, as shown in the following code:
 Console.WriteLine(Environment.CurrentDirectory);
Console.WriteLine(Environment.OSVersion.VersionString);
Console.WriteLine("Namespace: {0}", typeof(Program).Namespace);

 	In SOLUTION EXPLORER, right-click on any file in the AboutMyEnvironment project and choose Open In Integrated Terminal.

 	In TERMINAL, enter the command to run the project, as shown in the following command: dotnet run.

 	Note the output in the TERMINAL window, as shown in the following output and in Figure 1.13:
 C:\cs12dotnet8\Chapter01-vscode\AboutMyEnvironment
Microsoft Windows NT 10.0.22621.0
Namespace: AboutMyEnvironment

 [image:]
 Figure 1.13: Running a console app in Visual Studio Code with two projects

 Once you open multiple terminal windows, you can toggle between them by clicking their names in the panel on the right-hand side of TERMINAL. By default, the name will be one of the common shells like pwsh, powershell, zsh, or bash. Right-click and choose Rename to set something else.

 When using Visual Studio Code, or more accurately, the dotnet CLI, to run a console app, it executes the app from the <projectname> folder. When using Visual Studio 2022 for Windows, it executes the app from the <projectname>\bin\Debug\net8.0 folder. It will be important to remember this when we work with the filesystem in later chapters.

 If you were to run the program on macOS Ventura, the environment operating system would be different, as shown in the following output:

 Unix 13.5.2

 Good Practice: Although the source code, like the .csproj and .cs files, is identical, the bin and obj folders that are automatically generated by the compiler could have mismatches that give you errors. If you want to open the same project in both Visual Studio 2022 and Visual Studio Code, delete the temporary bin and obj folders before opening the project in the other code editor. This potential problem is why I asked you to create a different folder for the Visual Studio Code projects in this chapter.

 Summary of steps for Visual Studio Code

 Follow these steps to create a solution and projects using Visual Studio Code:

 	Create a folder for the solution, for example, Chapter01

 	Create a solution file in the folder: dotnet new sln

 	Create a folder and project using a template: dotnet new console -o HelloCS

 	Add the folder and its project to the solution: dotnet sln add HelloCS

 	Repeat steps 3 and 4 to create and add any other projects.

 	Open the folder containing the solution using Visual Studio Code: code .

 Summary of other project types used in this book

 A Console App / console project is just one type of project template. In this book, you will also create projects using the following project templates, as shown in Table 1.5:

 	
 Visual Studio 2022

 	
 dotnet new

 	
 JetBrains Rider - Type

 	
 Console App

 	
 console

 	
 Console Application

 	
 Class Library

 	
 classlib

 	
 Class Library

 	
 xUnit Test Project

 	
 xunit

 	
 Unit Test Project - xUnit

 	
 ASP.NET Core Empty

 	
 web

 	
 ASP.NET Core Web Application - Empty

 	
 Razor Class Library

 	
 razorclasslib

 	
 ASP.NET Core Web Application - Razor Class Library

 	
 ASP.NET Core Web App (Model-View-Controller)

 	
 mvc

 	
 ASP.NET Core Web Application - Web App (Model-View-Controller)

 	
 ASP.NET Core Web API

 	
 webapi

 	
 ASP.NET Core Web Application - Web API

 	
 ASP.NET Core Web API (native AOT)

 	
 webapiaot

 	
 ASP.NET Core Web Application - Web API (native AOT)

 	
 Blazor Web App

 	
 blazor

 	
 ASP.NET Core Web Application - Blazor Web App

 Table 1.5: Project template names for various code editors

 The steps for adding any type of new project to a solution are the same. Only the type name of the project template differs, and sometimes some command-line switches to control options. I will always specify what those switches and options should be if they differ from the defaults.

 A summary of project template defaults, options, and switches can be found here: https://github.com/markjprice/cs12dotnet8/blob/main/docs/ch01-project-options.md.

 Making good use of the GitHub repository for this book

 Git is a commonly used source code management system. GitHub is a company, website, and desktop application that makes it easier to manage Git. Microsoft purchased GitHub in 2018, so it will continue to get closer integration with Microsoft tools.

 I created a GitHub repository for this book, and I use it for the following:

 	To store the solution code for the book that can be maintained after the print publication date.

 	To provide extra materials that extend the book, like errata fixes, small improvements, lists of useful links, and optional sections about topics that cannot fit in the printed book.

 	To provide a place for readers to get in touch with me if they have issues with the book.

 Good Practice: I strongly recommend that all readers review the errata, improvements, post-publication changes, and common errors pages before attempting any coding task in this book. You can find them at the following link: https://github.com/markjprice/cs12dotnet8/blob/main/docs/errata/errata.md.

 Understanding the solution code on GitHub

 The solution code in the GitHub repository for this book includes folders for each chapter that can be opened with any of the following code editors:

 	Visual Studio 2022 or JetBrains Rider: Open the .sln solution file.

 	Visual Studio Code: Open the folder that contains the solution file.

 Chapters 1 to 11 each have their own solution file named ChapterXX.sln where XX is the chapter number. Chapters 12 to 15 share a single solution file named PracticalApps.sln.

 All the code solutions can be found at the following link:

 https://github.com/markjprice/cs12dotnet8/tree/main/code

 Good Practice: If you need to, return to this chapter to remind yourself how to create and manage multiple projects in the code editor of your choice. The GitHub repository has step-by-step instructions for three code editors (Visual Studio 2022, Visual Studio Code, and JetBrains Rider), along with additional screenshots: https://github.com/markjprice/cs12dotnet8/tree/main/docs/code-editors/.

 Raising issues with the book

 If you get stuck following any of the instructions in this book, or if you spot a mistake in the text or the code in the solutions, please raise an issue in the GitHub repository:

 	Use your favorite browser to navigate to the following link: https://github.com/markjprice/cs12dotnet8/issues.

 	Click New Issue.

 	Enter as much detail as possible that will help me to diagnose the issue. For example:
 	The specific section title, page number, and step number.

 	Your code editor, for example, Visual Studio 2022, Visual Studio Code, or something else, including the version number.

 	As much of your code and configuration that you feel is relevant and necessary.

 	A description of the expected behavior and the behavior experienced.

 	Screenshots (you can drag and drop image files into the Issue box).

 The following is less relevant but might be useful:

 	Your operating system, for example, Windows 11 64-bit, or macOS Ventura version 13.5.2

 	Your hardware, for example, Intel, Apple Silicon, or ARM CPU

 I cannot always respond immediately to issues. But I want all my readers to be successful with my book, so if I can help you (and others) without too much trouble, then I will gladly do so.

 Giving me feedback

 If you’d like to give me more general feedback about the book, then either email me at markjprice@gmail.com or ask me a question on Discord in the book channel. You can provide the feedback anonymously, or if you would like a response from me, then you can supply an email address. I will only use this email address to answer your feedback.

 Please join me and your fellow readers on Discord using this invite: https://packt.link/csharp12dotnet8.

 I recommend that you add the preceding link to your favorite bookmarks.

 I love to hear from my readers about what they like about my book, as well as suggestions for improvements and how they are working with C# and .NET, so don’t be shy. Please get in touch!

 Thank you in advance for your thoughtful and constructive feedback.

 Avoiding common mistakes

 After working through the step-by-step tasks in this book, readers often then strike out on their own and attempt to write similar code, but sometimes they hit problems and either raise an issue in the GitHub repository or post a question to the Discord channel for the book.

 From these, I have noted some common mistakes, so I maintain a page in the repository to highlight and explain these potential traps and how to fix them:

 https://github.com/markjprice/cs12dotnet8/blob/main/docs/errata/common-mistakes.md

 Downloading solution code from the GitHub repository

 If you just want to download all the solution files without using Git, click the green Code button and then select Download ZIP, as shown in Figure 1.14:

 [image:]
 Figure 1.14: Downloading the repository as a ZIP file

 Good Practice: It is best to clone or download the code solutions to a short folder path, like C:\cs12dotnet8\ or C:\book\, to avoid build-generated files exceeding the maximum path length. You should also avoid special characters like #. For example, do not use a folder name like C:\C# projects\. That folder name might work for a simple console app project but once you start adding features that automatically generate code, you are likely to have strange issues. Keep your folder names short and simple.

 Using Git with Visual Studio Code and the command prompt

 Visual Studio Code has integrations with Git, but it will use your operating system’s Git installation, so you must install Git 2.0 or later first before you get these features.

 You can install Git from the following link: https://git-scm.com/download.

 If you like to use a GUI, you can download GitHub Desktop from the following link: https://desktop.github.com.

 Cloning the book solution code repository

 Let’s clone the book solution code repository. In the steps that follow, you will use the Visual Studio Code terminal, but you could enter the commands at any command prompt or terminal window:

 	Create a folder named Repos-vscode in your user or Documents folder, or wherever you want to store your Git repositories.

 	Open the Repos-vscode folder at the command prompt or terminal, and then enter the following command:
 git clone https://github.com/markjprice/cs12dotnet8.git

 Note that cloning all the solutions for all the chapters will take a minute or so, so please be patient.

 Looking for help

 This section is all about how to find quality information about programming on the web.

 Reading the documentation on Microsoft Learn

 The definitive resource for getting help with Microsoft developer tools and platforms is in the technical documentation on Microsoft Learn, and you can find it at the following link: https://learn.microsoft.com/en-us/docs.

 Documentation links in this book

 The official Microsoft documentation for .NET needs to cover all versions. The default version shown in the documentation is always the most recent GA version.

 For example, between November 2023 and November 2024, the default version of .NET shown in documentation pages will be 8.0. Between November 2024 and November 2025, the default version of .NET will be 9.0. The following link will automatically direct to the current version depending on the current date:

 https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.stringsyntaxattribute

 To view the documentation page specifically for .NET 7, append ?view=net-7.0 to the end of a link. For example, use the following link:

 https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.stringsyntaxattribute?view=net-7.0

 All documentation links in this book do not specify a version, so after November 2024, they will show the documentation pages for .NET 9.0. If you want to force the documentation to show the version for .NET 8.0, then append ?view=net-8.0 to the end of a link.

 You can check what versions a .NET feature supports by appending #applies-to to the end of a link, for example:

 https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.codeanalysis.stringsyntaxattribute#applies-to

 We can therefore see that the StringSyntax attribute is only available in .NET 7 or later.

 Getting help for the dotnet tool

 At the command prompt, you can ask the dotnet tool for help with its commands. The syntax is:

 dotnet help <command>

 This will cause your web browser to open a page in the documentation about the specified command. Common dotnet commands include new, build, run, and many more.

 Warning! The dotnet help new command worked with .NET Core 3.1 to .NET 6, but it returns an error with .NET 7 or later: Specified command 'new' is not a valid SDK command. Specify a valid SDK command. For more information, run dotnet help. Hopefully, they will fix that bug soon!

 Another type of help is command-line documentation. It follows this syntax:

 dotnet <command> -?|-h|--help

 For example, dotnet new -? or dotnet new -h or dotnet new --help outputs documentation about the new command at the command prompt.

 As you should now expect, dotnet help help opens a web browser for the help command, and dotnet help -h outputs documentation for the help command at the command prompt!

 Let’s try some examples:

 	To open the official documentation in a web browser window for the dotnet build command, enter the following at the command prompt or in the Visual Studio Code terminal, and note the page opened in your web browser, as shown in Figure 1.15:
 dotnet help build

 [image: A screenshot of a computer Description automatically generated with medium confidence]
 Figure 1.15: Web page documentation for the dotnet build command

 	To get help output at the command prompt, use the -? or -h or --help flag, as shown in the following command:
 dotnet build -?

 	You will see the following partial output:
 Description:
 .NET Builder
Usage:
 dotnet build [<PROJECT | SOLUTION>...] [options]
Arguments:
 <PROJECT | SOLUTION> The project or solution file to operate on. If a file is not specified, the command will search the current directory for one.
Options:
 --ucr, --use-current-runtime Use current runtime as the target runtime.
 -f, --framework <FRAMEWORK> The target framework to build for. The target framework must also be specified in the project file.
...
 -?, -h, --help Show command line help.

 	Repeat both types of help request for the following commands: add, help, list, new, and run, remembering that new might not show its web page due to a bug introduced in .NET 7.

 Getting definitions of types and their members

 One of the most useful features of a code editor is Go To Definition (F12). It is available in Visual Studio Code, Visual Studio 2022, and JetBrains Rider. It will show what the public definition of the type or member looks like by reading the metadata in the compiled assembly.

 Some tools, such as ILSpy .NET Decompiler, will even reverse-engineer from the metadata and IL code back into C# or another language for you.

 A similar and related feature is named Go To Implementation (Ctrl + F12). Instead of reading the metadata or decompiling, this will show the actual source code if that is embedded using the optional source link feature.

 Warning! Go To Definition should go to the decompiled metadata for a member or type. But if you have previously viewed the source link, then it goes to the source link. Go To Implementation should go to the source link implementation for a member or type. But if you have disabled the source link, then it goes to the decompiled metadata.

 Let’s see how to use the Go To Definition feature:

 	In your preferred code editor, open the solution/folder named Chapter01. If you are using Visual Studio 2022:

 	Navigate to Tools | Options.

 	In the search box, enter navigation to source.

 	Select Text Editor | C# | Advanced.

 	Clear the Enable navigation to Source Link and Embedded sources check box, and then click OK, as shown in Figure 1.16:

 [image: A screenshot of a computer Description automatically generated with medium confidence]
 Figure 1.16: Disabling Source Link for the Go To Definition feature

 Definitions can be either reverse-engineered from metadata or loaded from the original source code if that is enabled. Personally, I find the code from metadata more useful, as you are about to see. At the end of this section, try switching the Source Link option back on to see the difference.

 	In the HelloCS project, at the bottom of Program.cs, enter the following statement to declare an integer variable named z:
 int z;

 	Click on int, right-click on int, and then choose Go To Definition in Visual Studio 2022 or Visual Studio Code. In JetBrains Rider, choose Go to | Go to Declaration or Usages.

 	In the code window that appears, you can see how the int data type is defined, as shown in Figure 1.17: [image: A screenshot of a computer Description automatically generated with medium confidence]
 Figure 1.17: The int data type metadata

 You can see that int:

 	Is defined using the struct keyword.

 	Is in the System.Runtime assembly.

 	Is in the System namespace.

 	Is named Int32.

 	Is therefore an alias for the System.Int32 type.

 	Implements interfaces such as IComparable.

 	Has constant values for its maximum and minimum values.

 	Has methods such as Parse. (Not visible in Figure 1.17.)
 Right now, the Go To Definition feature is not that useful to you because you do not yet know what all of this information means. By the end of the first part of this book, which consists of Chapters 2 to 6 and teaches you about the C# language, you will know enough for this feature to become very handy.

 	In the code editor window, scroll down to find the Parse method with a single string parameter, as shown in the following code:
 public static Int32 Parse(string s)

 	Expand the code and review the comments that document this method, as shown in Figure 1.18:

 [image: A screenshot of a computer Description automatically generated]
 Figure 1.18: The comments for the Parse method with a single string parameter

 In the comments, you will see that Microsoft has documented the following:

 	A summary that describes the method.

 	Parameters like the string value that can be passed to the method.

 	The return value of the method, including its data type.

 	Three exceptions that might occur if you call this method, including ArgumentNullException, FormatException, and OverflowException. Now, we know that we could choose to wrap a call to this method in a try statement and which exceptions to catch.

 Hopefully, you are getting impatient to learn what all this means!

 Be patient for a little longer. You are almost at the end of this chapter, and in the next chapter, you will dive into the details of the C# language. But first, let’s see where else you can look for help.

 Configuring inline aka inlay hints

 Throughout the code in this book, when calling a method, I often explicitly specify named parameters to help the reader learn what is going on. For example, I have specified the names of the parameters format and arg0 in the following code:

 Console.WriteLine(format: "Value is {0}.", arg0: 19.8);

 Inline hints, aka inlay hints, show the names of parameters without you having to type them, as shown in Figure 1.19:

 [image:]
 Figure 1.19: Configuring inline hints, aka inlay hints

 Most code editors have this feature that you can enable permanently or only when a key combination like Alt + F1 or Ctrl is held down:

 	In Visual Studio 2022, navigate to Tools | Options, navigate to Text Editor | C# | Advanced, scroll down to the Inline Hints section, select the Display inline parameter hint names check box, and then click OK.

 	In Visual Studio Code, navigate to File | Preferences | Settings, search for inlay, select the C# filter, and then select the Display inline parameter name hints check box.

 	In JetBrains Rider, in Settings, navigate to Editor | Inlay Hints | C# | Parameter Name Hints.

 Looking for answers on Stack Overflow

 Stack Overflow is the most popular third-party website for getting answers to difficult programming questions. Let’s see an example:

 	Start your favorite web browser.

 	Navigate to stackoverflow.com; in the search box, enter securestring and note the search results, which are shown in Figure 1.20:

 [image:]
 Figure 1.20: Stack Overflow search results for securestring

 Searching for answers using Google

 You can search Google with advanced search options to increase the likelihood of finding what you need:

 	Navigate to Google at the following link: https://www.google.com/.

 	Search for information about garbage collection using a simple Google query and note that you will probably see a lot of ads for garbage collection services in your local area before you see the Wikipedia definition of garbage collection in computer science.

 	Improve the search by restricting it to a useful site such as Stack Overflow, and by removing languages that we might not care about, such as C++, Rust, and Python, or by adding C# and .NET explicitly, as shown in the following search query:
 garbage collection site:stackoverflow.com +C# -Java

 Searching the .NET source code

 Sometimes you can learn a lot from seeing how the Microsoft teams have implemented .NET. The source for the entire code base for .NET is available in public GitHub repositories. For example, you might know that there is a built-in attribute to validate an email address. Let’s search the repositories for the word “email” and see if we can find out how it works:

 	Use your preferred web browser to navigate to https://github.com/search.

 	Click advanced search.

 	In the search box, type email.

 	In the In these respositories box, type dotnet/runtime. (Other repositories you might want to search include dotnet/core, dotnet/aspnetcore, dotnet/wpf, and dotnet/winforms).

 	In the Written in this language box, select C#.

 	At the top right of the page, note how the advanced query has been written for you. Click Search, and then click the Code filter and note the results include EmailAddressAttribute, as shown in Figure 1.21:

 [image:]
 Figure 1.21: Advanced search for email in the dotnet/runtime repository

 	Click the source file and note it implements email validation by checking that the string value contains an @ symbol but not as the first or last character, as shown in the following code:
 // only return true if there is only 1 '@' character
// and it is neither the first nor the last character
int index = valueAsString.IndexOf('@');
return
 index > 0 &&
 index != valueAsString.Length - 1 &&
 index == valueAsString.LastIndexOf('@');

 	Close the browser.

 For your convenience, you can do a quick search for other terms by replacing the search term email in the following link: https://github.com/search?q=%22email%22+repo%3Adotnet%2Fruntime+language%3AC%23&type=code&ref=advsearch.

 Subscribing to the official .NET blog

 To keep up to date with .NET, an excellent blog to subscribe to is the official .NET blog, written by the .NET engineering teams, and you can find it at the following link: https://devblogs.microsoft.com/dotnet/.

 Watching Scott Hanselman’s videos

 Scott Hanselman from Microsoft has an excellent YouTube channel about computer stuff they didn’t teach you at school: http://computerstufftheydidntteachyou.com/.

 I recommend it to everyone working with computers.

 AI tools like ChatGPT and GitHub Copilot

 One of the biggest changes in coding and development in the past year is the emergence of generative artificial intelligence (AI) tools that can help with coding tasks like completing a code statement, implementing an entire function, writing unit tests, and suggesting debugging fixes for existing code.

 You can read what developers say about AI tools in the 2023 Stack Overflow Developer Survey. “44% of them use AI tools in their development process now, and 26% plan to soon.”: https://stackoverflow.blog/2023/06/14/hype-or-not-developers-have-something-to-say-about-ai/.

 ChatGPT currently has two models: 3.5 (free) and 4.0 ($20 per month).

 Let’s say you need to write a C# function to validate an email address. You might go to ChatGPT and enter the following prompt:

 write a c# function to validate an email address

 It responds with a complete class with methods, as shown in Figure 1.22:

 [image: A screenshot of a computer Description automatically generated]
 Figure 1.22: ChatGPT writes a function to validate an email address

 It then provides an explanation of the code and examples of how to call the function, as shown in the following code:

 bool isValid = EmailValidator.IsValidEmail("test@example.com");
Console.WriteLine(isValid ? "Valid" : "Invalid");

 But is a general-purpose generative AI like ChatGPT the best partner for a C# programmer?

 Microsoft has a service specifically for programmers, named GitHub Copilot, that can help autocomplete code directly in your code editor. It is being enhanced with more intelligence using GPT-4. It has plugins for code editors including Visual Studio 2022, Visual Studio Code, and JetBrains IntelliJ-based IDEs.

 Personally, I really like the Copilot branding. It makes it clear that you are the pilot. You are ultimately responsible for “flying the plane.” But for the easy or boring bits, you can hand it over to your co-pilot for a bit, while being actively ready to take back control if needed.

 GitHub Copilot is free for students, teachers, and some open-source project maintainers. For everyone else, it has a 30-day free trial and then it costs $10 per month or $100 per year for individuals. Once you have an account, you can then sign up for waiting lists to get the more advanced experimental GitHub Copilot X features.

 You should check online which Copilot features are available for various code editors. As you can imagine, this is a fast-changing world and a lot of what I might write in the book today will be out of date by the time you read it: https://github.com/features/copilot.

 JetBrains has its own equivalent, named AI Assistant, which you can read about at the following link: https://blog.jetbrains.com/idea/2023/06/ai-assistant-in-jetbrains-ides/.

 So, what can GitHub Copilot do for you today?

 Imagine that you have just added a new class file named Product.cs. You click inside the Product class, press Enter to insert a blank line, and then pause for a second as you think about what you need to type…and GitHub Copilot generates some sample code in gray, as shown in Figure 1.23:

 [image:]
 Figure 1.23: GitHub Copilot suggesting how to define a Product class

 At this point, you can glance over the code and, if it is close to what you want, just press Tab to insert it all, or press Alt + . (dot) to toggle between other suggestions.

 Sometimes it is too far off what you need, and you’ll be better off ignoring its suggestion completely and just writing it yourself. But usually, there’s something there that’s usable or reminds you of the syntax you need to use. And sometimes, it feels like magic, writing dozens of lines of exactly what you need.

 Microsoft feeds its AI tools with code from public GitHub repositories, including all the repositories I have created since 2016 for all the editions of this book. This means that it can suggest code completions for the readers of this book that are surprisingly accurate predictions, including my frequent use of pop culture references in my code. It’s like I, Mark J. Price, am the “ghost in the machine” guiding your coding.

 It’s easy to imagine a custom ChatGPT that has ingested all the official Microsoft .NET documentation, every public blog article written about .NET, and perhaps even hundreds of books about .NET, and having a conversation with it to find a bug or suggest how to solve a programming problem.

 You can sign up for GitHub Copilot at the following link: https://github.com/github-copilot/signup/.

 Disabling tools when they get in the way

 Although these tools can be helpful, they can also get in your way, especially when learning, because they sometimes do work for you without telling you. If you do not do that work for yourself at least a few times, you won’t learn fully.

 To configure IntelliSense for C# in Visual Studio 2022:

 	Navigate to Tools | Options.

 	In the Options dialog box tree view, navigate to Text Editor | C# | IntelliSense.

 	Click the ? button in the caption bar to view the documentation. To configure GitHub Copilot X in Visual Studio 2022:

 	Navigate to Tools | Options.

 	In the Options dialog box tree view, navigate to GitHub | Copilot.

 	Set Enable Globally to True or False, and then click OK.

 To disable GitHub Copilot X in Visual Studio Code:

 	In the status bar, on the right, to the left of the notification icon, click the GitHub Copilot icon.

 	In the popup, click Disable Globally.

 	To enable, click the GitHub Copilot icon again and then click Enable Globally.
 For help with JetBrains Rider IntelliSense, please see the following link: https://www.jetbrains.com/help/rider/Auto-Completing_Code.html.

 Practicing and exploring

 Let’s now test your knowledge and understanding by trying to answer some questions, getting some hands-on practice, and going into the topics covered throughout this chapter in greater detail.

 Exercise 1.1 – Test your knowledge

 Try to answer the following questions, remembering that although most answers can be found in this chapter, you should do some online research or code writing to answer others:

 	Is Visual Studio 2022 better than Visual Studio Code?

 	Are .NET 5 and later better than .NET Framework?

 	What is .NET Standard and why is it still important?

 	Why can a programmer use different languages, for example, C# and F#, to write applications that run on .NET?

 	What is a top-level program and how do you access any command-line arguments?

 	What is the name of the entry point method of a .NET console app and how should it be explicitly declared if you are not using the top-level program feature?

 	What namespace is the Program class defined in with a top-level program?

 	Where would you look for help for a C# keyword?

 	Where would you look first for solutions to common programming problems?

 	What should you do after getting an AI to write code for you?

 Appendix, Answers to the Test Your Knowledge Questions, is available to download from a link in the README in the GitHub repository: https://github.com/markjprice/cs12dotnet8.

 Exercise 1.2 – Practice C# anywhere with a browser

 You don’t need to download and install Visual Studio Code or even Visual Studio 2022 to write C#. You can start coding online at any of the following links:

 	Visual Studio Code for Web: https://vscode.dev/

 	SharpLab: https://sharplab.io/

 	C# Online Compiler | .NET Fiddle: https://dotnetfiddle.net/

 	W3Schools C# Online Compiler: https://www.w3schools.com/cs/cs_compiler.php

 Exercise 1.3 – Explore topics

 A book is a curated experience. I have tried to find the right balance of topics to include in the printed book. Other content that I have written can be found in the GitHub repository for this book.

 I believe that this book covers all the fundamental knowledge and skills a C# and .NET developer should have or be aware of. Some longer examples are best included as links to Microsoft documentation or third-party article authors.

 Use the links on the following page to learn more details about the topics covered in this chapter:

 https://github.com/markjprice/cs12dotnet8/blob/main/docs/book-links.md#chapter-1---hello-c-welcome-net

 Exercise 1.4 – Explore Polyglot Notebooks

 Complete the following online-only section to explore how you can use Polyglot Notebooks with its .NET Interactive engine:

 https://github.com/markjprice/cs12dotnet8/blob/main/docs/ch01-polyglot-notebooks.md

 Exercise 1.5 – Explore themes of modern .NET

 Microsoft has created a website using Blazor that shows the major themes of modern .NET: https://themesof.net/.

 Exercise 1.6 – Free Code Camp and C# certification

 For many years, Microsoft had an exam for C# 5, Exam 70-483: Programming in C#. I taught hundreds of developers the skills needed to get qualified and pass it. Sadly, that exam was retired a few years ago.

 In August 2023, Microsoft announced a new foundational certification for C# alongside a free 35-hour online course. You can read more about how to qualify for the certification at the following link:

 https://www.freecodecamp.org/learn/foundational-c-sharp-with-microsoft/

 Exercise 1.7 – Alpha versions of .NET

 You can (but probably shouldn’t) download future versions of .NET including alpha versions from the following link:

 https://github.com/dotnet/installer#table

 For example, in August 2023, you could download .NET SDK 9 alpha, which included an early release candidate of the .NET 8 runtime, although so few people did so that Edge gave a warning and tried to stop you, as shown in Figure 1.24:

 [image:]
 Figure 1.24: Download page for alpha versions of .NET

 Warning! Alpha versions are designed to be used only internally by Microsoft employees. Beta versions (official previews) are designed to be used externally and are publicized in Microsoft blog posts. Personally, I would not download an alpha of .NET 9 until December 2023 when it might have some new features compared to .NET 8. Once official previews of .NET 9 become available in February 2024, I recommend using those instead.

 For more about using .NET 9 or 10 with this book, please see the following link: https://github.com/markjprice/cs12dotnet8/blob/main/docs/dotnet9.md.

 Summary

 In this chapter, we:

 	Set up your development environment.

 	Discussed the similarities and differences between modern .NET, .NET Core, .NET Framework, Xamarin, and .NET Standard in an online article.

 	Used Visual Studio 2022 and Visual Studio Code with the .NET SDK CLI to create a couple of simple console apps grouped in a solution.

 	Learned how to download the solution code for this book from its GitHub repository.

 	Learned how to find help. This could be in the traditional way, by using help command switches, documentation, and articles, or the modern way, by having a conversation with a coding expert AI, or using an AI-based tool to perform “grunt work.”

 In the next chapter, you will learn how to “speak” C#.

 Learn more on Discord

 To join the Discord community for this book – where you can share feedback, ask questions to the author, and learn about new releases – follow the QR code below:

 https://packt.link/csharp12dotnet8

 [image:]

 2

 Speaking C#

 This chapter is all about the basics of the C# programming language. Over the course of this chapter, you’ll learn how to write statements using the grammar of C#, as well as being introduced to some of the common vocabulary that you will use every day. In addition to this, by the end of the chapter, you’ll feel confident in knowing how to temporarily store and work with information in your computer’s memory.

 This chapter covers the following topics:

 	Introducing the C# language

 	Discovering your C# compiler version

 	Understanding C# grammar and vocabulary

 	Working with variables

 	Exploring more about console apps

 	Understanding async and await

 Introducing the C# language

 This part of the book is about the C# language—the grammar and vocabulary that you will use every day to write the source code for your applications.

 Programming languages have many similarities to human languages, except that in programming languages, you can make up your own words, just like Dr. Seuss!

 In a book written by Dr. Seuss in 1950, If I Ran the Zoo, he states this:

 “And then, just to show them, I’ll sail to Ka-Troo And Bring Back an It-Kutch, a Preep, and a Proo, A Nerkle, a Nerd, and a Seersucker, too!”

 C# language versions and features

 This part of the book covers the C# programming language and is written primarily for beginners, so it covers the fundamental topics that all developers need to know, including declaring variables, storing data, and how to define your own custom data types.

 This book covers features of the C# language from version 1 up to the latest version, 12.

 If you already have some familiarity with older versions of C# and are excited to find out about the new features in the most recent versions of C#, I have made it easier for you to jump around by listing language versions and their important new features below, along with the chapter number and topic title where you can learn about them.

 You can read this information in the GitHub repository at the following link: https://github.com/markjprice/cs12dotnet8/blob/main/docs/ch02-features.md

 Understanding C# standards

 Over the years, Microsoft has submitted a few versions of C# to standards bodies, as shown in Table 2.1:

 	
 C# version

 	
 ECMA standard

 	
 ISO/IEC standard

 	
 1.0

 	
 ECMA-334:2003

 	
 ISO/IEC 23270:2003

 	
 2.0

 	
 ECMA-334:2006

 	
 ISO/IEC 23270:2006

 	
 5.0

 	
 ECMA-334:2017

 	
 ISO/IEC 23270:2018

 	
 6.0

 	
 ECMA-334:2022

 	
 ISO/IEC 23270:2022

 Table 2.1: ECMA standards for C#

 The ECMA standard for C# 7.3 is still a draft. So don’t even think about when C# versions 8 to 12 might be ECMA standards! Microsoft made C# open source in 2014. You can read the latest C# standard document at the following link: https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/specifications.

 More practically useful than the ECMA standards are the public GitHub repositories for making the work on C# and related technologies as open as possible, as shown in Table 2.2:

 	
 Description

 	
 Link

 	
 C# language design

 	
 https://github.com/dotnet/csharplang

 	
 Compiler implementation

 	
 https://github.com/dotnet/roslyn

 	
 Standard to describe the language

 	
 https://github.com/dotnet/csharpstandard

 Table 2.2: Public GitHub repositories for C#

 Discovering your C# compiler version

 The .NET language compiler for C# and Visual Basic, also known as Roslyn, along with a separate compiler for F#, is distributed as part of the .NET SDK. To use a specific version of C#, you must have at least that version of the .NET SDK installed, as shown in Table 2.3:

 	
 .NET SDK

 	
 Roslyn compiler

 	
 Default C# language

 	
 1.0.4

 	
 2.0-2.2

 	
 7.0

 	
 1.1.4

 	
 2.3-2.4

 	
 7.1

 	
 2.1.2

 	
 2.6-2.7

 	
 7.2

 	
 2.1.200

 	
 2.8-2.10

 	
 7.3

 	
 3.0

 	
 3.0-3.4

 	
 8.0

 	
 5.0

 	
 3.8

 	
 9.0

 	
 6.0

 	
 4.0

 	
 10.0

 	
 7.0

 	
 4.4

 	
 11.0

 	
 8.0

 	
 4.8

 	
 12.0

 Table 2.3: .NET SDK versions and their C# compiler versions

 When you create class libraries, you can choose to target .NET Standard as well as versions of modern .NET. They have default C# language versions, as shown in Table 2.4:

 	
 .NET Standard

 	
 C#

 	
 2.0

 	
 7.3

 	
 2.1

 	
 8.0

 Table 2.4: .NET Standard versions and their default C# compiler versions

 Although you must have a minimum version of the .NET SDK installed to have access to a specific compiler version, the projects that you create can target older versions of .NET and still use a modern compiler version. For example, if you have the .NET 7 SDK or later installed, then you can use C# 11 language features in a console app that targets .NET Core 3.0.

 How to output the SDK version

 Let’s see what .NET SDK and C# language compiler versions you have available:

 	On Windows, start Windows Terminal or Command Prompt. On macOS, start Terminal.

 	To determine which version of the .NET SDK you have available, enter the following command:
 dotnet --version

 	Note that the version at the time of publishing is 8.0.100, indicating that it is the initial version of the SDK without any bug fixes or new features yet, as shown in the following output:
 8.0.100

 Enabling a specific language version compiler

 Developer tools like Visual Studio and the dotnet command-line interface assume that you want to use the latest major version of a C# language compiler by default. Before C# 8 was released, C# 7 was the latest major version and was used by default.

 To use the improvements in a C# point release like 7.1, 7.2, or 7.3, you had to add a <LangVersion> configuration element to the project file, as shown in the following markup:

 <LangVersion>7.3</LangVersion>

 After the release of C# 12 with .NET 8, if Microsoft releases a C# 12.1 compiler and you want to use its new language features, then you will have to add a configuration element to your project file, as shown in the following markup:

 <LangVersion>12.1</LangVersion>

 Potential values for the <LangVersion> are shown in Table 2.5:

 	
 <LangVersion>

 	
 Description

 	
 7, 7.1, 7.2, 7.3, 8, 9, 10, 11, 12

 	
 Entering a specific version number will use that compiler if it has been installed.

 	
 latestmajor

 	
 Uses the highest major number, for example, 7.0 in August 2019, 8 in October 2019, 9 in November 2020, 10 in November 2021, 11 in November 2022, and 12 in November 2023.

 	
 latest

 	
 Uses the highest major and highest minor number, for example, 7.2 in 2017, 7.3 in 2018, 8 in 2019, and perhaps 12.1 in H1 2024.

 	
 preview

 	
 Uses the highest available preview version, for example, 12.0 in July 2023 with .NET 8 Preview 6 installed.

 Table 2.5: LangVersion settings for a project file

 Using future C# compiler versions

 In February 2024, Microsoft is likely to release the first preview of .NET 9 with a C# 13 compiler. You will be able to install its SDK from the following link:

 https://dotnet.microsoft.com/en-us/download/dotnet/9.0

 The link will give a 404 Missing resource error until February 2024, so do not bother using it until then!

 After you’ve installed a .NET 9 SDK preview, you will be able to use it to create new projects and explore the new language features in C# 13. After creating a new project, you can edit the .csproj file and add the <LangVersion> element set to preview to use the preview C# 13 compiler, as shown highlighted in the following markup:

 <Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net9.0</TargetFramework>
 <LangVersion>preview</LangVersion>
 </PropertyGroup>
</Project>

 Switching the C# compiler for .NET 8 to a future version

 .NET 8 is an LTS release, so Microsoft must support developers who continue to use .NET 8 for three years. But that does not mean that you are stuck with the C# 12 compiler for three years!

 In November 2024, Microsoft is likely to release .NET 9, including a C# 13 compiler with new features. Although future versions of .NET 8 are likely to include preview versions of the C# 13 compiler, to be properly supported by Microsoft, you should only set <LangVersion> to preview for exploration, not production projects, because it is not supported by Microsoft, and it is more likely to have bugs. Microsoft makes previews available because they want to hear feedback. You can be a part of C#’s development and improvement.

 Once the .NET 9 SDK is made generally available in November 2024, you will be able to get the best of both worlds. You can use the .NET 9 SDK and its C# 13 compiler while your projects continue to target .NET 8. To do so, set the target framework to net8.0 and add a <LangVersion> element set to 13, as shown highlighted in the following markup:

 <Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net8.0</TargetFramework>
 <ImplicitUsings>enable</ImplicitUsings>
 <Nullable>enable</Nullable>
 <LangVersion>13</LangVersion>
 </PropertyGroup>
</Project>

 The preceding project targets net8.0, so it is supported until November 2026 when run on a monthly patched version of the .NET 8 runtime. If the preceding project is built using .NET 9 SDK, then it can have the <LangVersion> set to 13, meaning C# 13.

 If you target net9.0, which new projects will by default if you have installed the .NET 9 SDK, then the default language will be C# 13 so it would not need to be explicitly set.

 In February 2025, Microsoft is likely to release the first preview of .NET 10, and, in November 2025, it will likely release .NET 10 for general availability in production. You will be able to install its SDK from the following link and explore C# 14 in the same way as described above for C# 13 with .NET 9:

 https://dotnet.microsoft.com/en-us/download/dotnet/10.0

 Again, the preceding link is for future use! It will give a 404 Missing resource error until February 2025, so do not bother using it until then.

 Warning! Some C# language features depend on changes in the underlying .NET libraries. Even if you use the latest SDK with the latest compiler, you might not be able to use all the new language features while targeting an older version of .NET. For example, C# 11 introduced the required keyword, but it cannot be used in a project that targets .NET 6 because that language feature requires new attributes that are only available in .NET 7. Luckily, the compiler will warn you if you try to use a C# feature that is not supported. Just be prepared for that eventuality.

 Showing the compiler version

 We will start by writing code that shows the compiler version:

 	If you’ve completed Chapter 1, Hello, C#! Welcome, .NET!, then you will already have a cs12dotnet8 folder. If not, then you’ll need to create it.

 	Use your preferred code editor to create a new project, as defined in the following list:
 	Project template: Console App [C#] / console

 	Project file and folder: Vocabulary

 	Solution file and folder: Chapter02

 	Do not use top-level statements: Cleared

 	Enable native AOT publish: Cleared

 Good Practice: If you have forgotten how, or did not complete the previous chapter, then step-by-step instructions for creating a solution with multiple projects are given in Chapter 1, Hello, C#! Welcome, .NET!.

 	In the Vocabulary project, in Program.cs, after the comment, add a statement to show the C# version as an error, as shown in the following code:
 #error version

 	Run the console app:
 	If you are using Visual Studio 2022, then navigate to Debug | Start Without Debugging. When prompted to continue and run the last successful build, click No.

 	If you are using Visual Studio Code, then in a terminal for the Vocabulary folder, enter the dotnet run command. Note that we are expecting a compiler error, so do not panic when you see it!

 	Note that the compiler version and the language version appear as compiler error message number CS8304, as shown in Figure 2.1: [image:]
 Figure 2.1: A compiler error that shows the C# language version

 The error message in the Visual Studio Code PROBLEMS window or Visual Studio Error List window says Compiler version: '4.8.0...' with language version default (12.0).

 	Comment out the statement that causes the error, as shown in the following code:
 // #error version

 	Note that the compiler error messages disappear.

 Understanding C# grammar and vocabulary

 Let’s start by looking at the basics of the grammar and vocabulary of C#. Throughout this chapter, you will create multiple console apps, with each one showing related features of the C# language.

 Understanding C# grammar

 The grammar of C# includes statements and blocks. To document your code, you can use comments.

 Good Practice: Comments should not be the only way that you document your code. Choosing sensible names for variables and functions, writing unit tests, and creating actual documents are other ways to document your code.

 Statements

 In English, we indicate the end of a sentence with a full stop. A sentence can be composed of multiple words and phrases, with the order of words being part of the grammar. For example, in English, we say “the black cat.”

 The adjective, black, comes before the noun, cat. Whereas French grammar has a different order; the adjective comes after the noun: “le chat noir.” What’s important to take away from this is that the order matters.

 C# indicates the end of a statement with a semicolon. A statement can be composed of multiple types, variables, and expressions made up of tokens. Each token is separated by white space or some other recognizably different token, like an operator, for example, = or +.

 For example, in the following statement, decimal is a type, totalPrice is a variable, and subtotal + salesTax is an expression:

 decimal totalPrice = subtotal + salesTax;

 The expression is made up of an operand named subtotal, an operator +, and another operand named salesTax. The order of operands and operators matters because the order affects the meaning and result.

 Comments

 Comments are the primary method of documenting your code to increase an understanding of how it works, for other developers to read, or for you to read even when you come back to it months later.

 In Chapter 4, Writing, Debugging, and Testing Functions, you will learn about XML comments that start with three slashes, ///, and work with a tool to generate web pages to document your code.

 You can add comments to explain your code using a double slash, //. The compiler will ignore everything after the // until the end of the line, as shown in the following code:

 // Sales tax must be added to the subtotal.
var totalPrice = subtotal + salesTax;

 To write a multiline comment, use /* at the beginning and */ at the end of the comment, as shown in the following code:

 /*
This is a
multi-line comment.
*/

 Although /* */ is mostly used for multiline comments, it is also useful for commenting in the middle of a statement, as shown in the following code:

 decimal totalPrice = subtotal /* for this item */ + salesTax;

 Good Practice: Well-designed code, including function signatures with well-named parameters and class encapsulation, can be somewhat self-documenting. When you find yourself putting too many comments and explanations in your code, ask yourself: can I rewrite, aka refactor, this code to make it more understandable without long comments?

 Your code editor has commands to make it easier to add and remove comment characters, as shown in the following list:

 	Visual Studio 2022: Navigate to Edit | Advanced | Comment Selection or Uncomment Selection.

 	Visual Studio Code: Navigate to Edit | Toggle Line Comment or Toggle Block Comment.

 	JetBrains Rider: Navigate to Code | Comment with Line Comment or Comment with Block Comment.

 Good Practice: You comment code by adding descriptive text above or after code statements. You comment out code by adding comment characters before or around statements to make them inactive. Uncommenting means removing the comment characters.

 Blocks

 In English, we indicate a new paragraph by starting a new line. C# indicates a block of code with the use of curly brackets, { }.

 Blocks start with a declaration to indicate what is being defined. For example, a block can define the start and end of many language constructs, including namespaces, classes, methods, or statements like foreach.

 You will learn more about namespaces, classes, and methods later in this chapter and subsequent chapters, but to briefly introduce some of those concepts now:

 	A namespace contains types like classes to group them together.

 	A class contains the members of an object, including methods.

 	A method contains statements that implement an action that an object can take.

 Code editors like Visual Studio 2022 and Visual Studio Code provide a handy feature to collapse and expand blocks by toggling the [-] or [+] or an arrow symbol pointing down or right when you move your mouse cursor over the left margin of the code, as shown in Figure 2.2:

 [image:]
 Figure 2.2: Code editors with expanded and collapsed blocks

 Regions

 You can define your own labeled regions around any statements you want and then most code editors will allow you to collapse and expand them in the same way as blocks, as shown in the following code:

 #region Three variables that store the number 2 million.
int decimalNotation = 2_000_000;
int binaryNotation = 0b_0001_1110_1000_0100_1000_0000;
int hexadecimalNotation = 0x_001E_8480;
#endregion

 In this way, regions can be treated as commented blocks that can be collapsed to show a summary of what the block does.

 I will use #region blocks throughout the solution code in the GitHub repository, especially for the early chapters before we start defining functions that act as natural collapsible regions, but I won’t show them in the print book, to save space. Use your own judgment to decide if you want to use regions in your own code.

 Examples of statements and blocks

 In a simple console app that does not use the top-level program feature, I’ve added some comments to the statements and blocks, as shown in the following code:

 using System; // A semicolon indicates the end of a statement.
namespace Basics
{ // An open brace indicates the start of a block.
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World!"); // A statement.
 }
 }
} // A close brace indicates the end of a block.

 Note that C# uses a brace style where both the open and close braces are on their own line and are at the same indentation level, as shown in the following code:

 if (x < 3)
{
 // Do something if x is less than 3.
}

 Other languages like JavaScript use curly braces but format them differently. They put the open curly brace at the end of the declaration statement, as shown in the following code:

 if (x < 3) {
 // Do something if x is less than 3.
}

 You can use whatever style you prefer because the compiler does not care.

 Sometimes, to save vertical space in a print book, I use the JavaScript brace style, but mostly I stick with the C# brace style. I use two spaces instead of the more common four spaces for indenting because my code will be printed in a book and therefore has narrow width available.

 More Information: The official coding style conventions can be found at the following link: https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/coding-style/coding-conventions.

 Regardless of any official guidelines, I recommend that you conform to whatever standards have been adopted by your development team unless you are a solo developer, in which case as long as your code compiles, you can use any conventions you like. Be kind to your future self though by being consistent one way or the other!

 Good Practice: The brace style used in the Microsoft official documentation is the most commonly used for C#. For example, see the for statement, as found at the following link: https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/iteration-statements.

 Formatting code using white space

 White space includes the space, tab, and newline characters. You can use white space to format your code however you like because extra white space has no effect on the compiler.

 The following four statements are all equivalent:

 int sum = 1 + 2; // Most developers would prefer this format.
int
sum=1+
2; // One statement over three lines.
int sum= 1 +2;int sum=1+2; // Two statements on one line.

 The only white space character required in the preceding statements is one between int and sum to tell the compiler they are separate tokens. Any single white space character, for example a space, tab, or newline would be acceptable.

 More Information: You can read the formal definition of C# white space at the following link: https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/lexical-structure#634-white-space.

 Understanding C# vocabulary

 The C# vocabulary is made up of keywords, symbol characters, and types.

 Some of the predefined, reserved keywords that you will see in this book and use frequently include using, namespace, class, static, int, string, double, bool, if, switch, break, while, do, for, foreach, this, and true.

 Some of the symbol characters that you will see include ", ', +, -, *, /, %, @, and $.

 There are other contextual keywords that only have a special meaning in a specific context, like and, or, not, record, and init.

 However, that still means that there are only about 100 actual C# keywords in the language.

 Good Practice: C# keywords use all lowercase. Although you can use all lowercase for your own type names, you should not. With C# 11 and later, the compiler will give a warning if you do, as shown in the following output: Warning CS8981 The type name 'person' only contains lower-cased ascii characters. Such names may become reserved for the language.

 Comparing programming languages to human languages

 The English language has more than 250,000 distinct words, so how does C# get away with only having about 100 keywords? Moreover, why is C# so difficult to learn if it has only 0.0416% of the number of words in the English language?

 One of the key differences between a human language and a programming language is that developers need to be able to define the new “words” with new meanings. Apart from the (about) 100 keywords in the C# language, this book will teach you about some of the hundreds of thousands of “words” that other developers have defined, but you will also learn how to define your own “words.”

 Programmers all over the world must learn English because most programming languages use English words such as “if” and “break.” There are programming languages that use other human languages, such as Arabic, but they are rare. If you are interested in learning more, this YouTube video shows a demonstration of an Arabic programming language: https://youtu.be/dkO8cdwf6v8.

 Changing the color scheme for C# syntax

 By default, Visual Studio 2022 and Visual Studio Code show C# keywords in blue to make them easier to differentiate from other code, which defaults to black. Both tools allow you to customize the color scheme.

 In Visual Studio 2022:

 	Navigate to Tools | Options.

 	In the Options dialog box, in the Environment section, select Fonts and Colors, and then select the display items that you would like to customize. You can also search for the section instead of browsing for it.

 In Visual Studio Code:

 	Navigate to File | Preferences | Theme | Color Theme. It is in the Code menu on macOS.

 	Select a color theme. For reference, I’ll use the Light+ (default light) color theme so that the screenshots look better in a printed book.

 In JetBrains Rider:

 	Navigate to File | Settings | Editor | Color Scheme.

 Help for writing correct code

 Plain text editors such as Notepad don’t help you write correct English. Likewise, Notepad won’t help you write the correct C# either.

 Microsoft Word can help you write English by highlighting spelling mistakes with red squiggles, with Word saying that “icecream” should be ice-cream or ice cream, and grammatical errors with blue squiggles, such as a sentence should have an uppercase first letter.

 Similarly, Visual Studio 2022 and Visual Studio Code’s C# extension help you write C# code by highlighting spelling mistakes, such as the method name needing to be WriteLine with an uppercase L, and grammatical errors, such as statements that must end with a semicolon.

 The C# extension constantly watches what you type and gives you feedback by highlighting problems with colored squiggly lines, like that of Microsoft Word.

 Let’s see it in action:

 	In Program.cs, change the L in the WriteLine method to lowercase.

 	Delete the semicolon at the end of the statement.

 	In Visual Studio Code, navigate to View | Problems; in Visual Studio 2022, navigate to View | Error List; or in JetBrains Rider, navigate to View | Tool Windows | Problems, and note that a red squiggle appears under the code mistakes and details are shown, as you can see in Figure 2.3:

 [image: Graphical user interface, text, application, Word Description automatically generated]
 Figure 2.3: The Error List window showing two compile errors

 	Fix the two coding errors.

 Importing namespaces

 System is a namespace, which is like an address for a type. To refer to someone’s location exactly, you might use Oxford.HighStreet.BobSmith, which tells us to look for a person named Bob Smith on the High Street in the city of Oxford.

 System.Console.WriteLine tells the compiler to look for a method named WriteLine in a type named Console in a namespace named System.

 To simplify our code, the Console App project template for every version of .NET before 6.0 added a statement at the top of the code file to tell the compiler to always look in the System namespace for types that haven’t been prefixed with their namespace, as shown in the following code:

 using System; // Import the System namespace.

 We call this importing the namespace. The effect of importing a namespace is that all available types in that namespace will be available to your program without needing to enter the namespace prefix. All available types in that namespace will be seen in IntelliSense while you write code.

 Implicitly and globally importing namespaces

 Traditionally, every .cs file that needs to import namespaces would have to start with using statements to import those namespaces. Namespaces like System and System.Linq are needed in almost all .cs files, so the first few lines of every .cs file often had at least a few using statements, as shown in the following code:

 using System;
using System.Linq;
using System.Collections.Generic;

 When creating websites and services using ASP.NET Core, there are often dozens of namespaces that each file would have to import.

 C# 10 introduced a new keyword combination and .NET SDK 6 introduced a new project setting that works together to simplify importing common namespaces.

 The global using keyword combination means you only need to import a namespace in one .cs file and it will be available throughout all .cs files instead of having to import the namespace at the top of every file that needs it. You could put global using statements in the Program.cs file, but I recommend creating a separate file for those statements named something like GlobalUsings.cs with the contents being all your global using statements, as shown in the following code:

 global using System;
global using System.Linq;
global using System.Collections.Generic;

 Good Practice: As developers get used to this new C# feature, I expect one naming convention for this file to become the de facto standard. As you are about to see, the related .NET SDK feature uses a similar naming convention.

 Any projects that target .NET 6 or later, and therefore use the C# 10 or later compiler, generate a <ProjectName>.GlobalUsings.g.cs file in the obj\Debug\net8.0 folder to implicitly globally import some common namespaces like System. The specific list of implicitly imported namespaces depends on which SDK you target, as shown in Table 2.6:

 	
 SDK

 	
 Implicitly imported namespaces

 	
 Microsoft.NET.Sdk

 	
 System

 System.Collections.Generic

 System.IO

 System.Linq

 System.Net.Http

 System.Threading

 System.Threading.Tasks

 	
 Microsoft.NET.Sdk.Web

 	
 Same as Microsoft.NET.Sdk and:

 System.Net.Http.Json

 Microsoft.AspNetCore.Builder

 Microsoft.AspNetCore.Hosting

 Microsoft.AspNetCore.Http

 Microsoft.AspNetCore.Routing

 Microsoft.Extensions.Configuration

 Microsoft.Extensions.DependencyInjection

 Microsoft.Extensions.Hosting

 Microsoft.Extensions.Logging

 	
 Microsoft.NET.Sdk.Worker

 	
 Same as Microsoft.NET.Sdk and:

 Microsoft.Extensions.Configuration

 Microsoft.Extensions.DependencyInjection

 Microsoft.Extensions.Hosting

 Microsoft.Extensions.Logging

 Table 2.6: .NET SDKs and their implicitly imported namespaces

 Let’s see the current autogenerated implicit imports file:

 	In Solution Explorer, toggle on the Show All Files button, and note the compiler-generated bin and obj folders are now visible.

 	In the Vocabulary project, expand the obj folder, expand the Debug folder, expand the net8.0 folder, and then open the file named Vocabulary.GlobalUsings.g.cs.
 The naming convention for this file is <ProjectName>.GlobalUsings.g.cs. Note the g for generated to differentiate it from developer-written code files.

 	Remember that this file is automatically created by the compiler for projects that target .NET 6 and later, and that it imports some commonly used namespaces including System.Threading, as shown in the following code:
 // <autogenerated />
global using global::System;
global using global::System.Collections.Generic;
global using global::System.IO;
global using global::System.Linq;
global using global::System.Net.Http;
global using global::System.Threading;
global using global::System.Threading.Tasks;

 	Close the Vocabulary.GlobalUsings.g.cs file.

 	In Solution Explorer, open the Vocabulary.csproj project file, and then add additional entries to the project file to control which namespaces are implicitly imported, as shown highlighted in the following markup:
 <Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <OutputType>Exe</OutputType>
 <TargetFramework>net8.0</TargetFramework>
 <Nullable>enable</Nullable>
 <ImplicitUsings>enable</ImplicitUsings>
 </PropertyGroup>
 <ItemGroup>
 <Using Remove="System.Threading" />
 <Using Include="System.Numerics" />
 <Using Include="System.Console" Static="true" />
 <Using Include="System.Environment" Alias="Env" />
 </ItemGroup>
</Project>

 Note that <ItemGroup> is different from <ImportGroup>. Be sure to use the correct one! Also, note that the order of elements in a project group or item group does not matter. For example, <Nullable> can be before or after <ImplicitUsings>.

 	Save the changes to the project file.

 	Expand the obj folder, expand the Debug folder, expand the net8.0 folder, and open the file named Vocabulary.GlobalUsings.g.cs.

 	Note this file now imports System.Numerics instead of System.Threading, the Environment class has been imported and aliased to Env, and we have statically imported the Console class, as shown highlighted in the following code:
 // <autogenerated />
global using global::System;
global using global::System.Collections.Generic;
global using global::System.IO;
global using global::System.Linq;
global using global::System.Net.Http;
global using global::System.Numerics;
global using global::System.Threading.Tasks;
global using Env = global::System.Environment;
global using static global::System.Console;

 	In Program.cs, add a statement to output a message from the computer and note that because we statically imported the Console class, we can call its methods like WriteLine without prefixing them with Console, and we can reference the Environment class using its alias Env, as shown in the following code:
 WriteLine($"Computer named {Env.MachineName} says \"No.\"");

 	Run the project and note the message, as shown in the following output:
 Computer named DAVROS says "No."

 Your computer name will be different unless you name your computers after characters from Doctor Who like I do.

 You can disable the implicitly imported namespaces feature for all SDKs by removing the <ImplicitUsings> element completely from the project file, or changing its value to disable, as shown in the following markup:

 <ImplicitUsings>disable</ImplicitUsings>

 Good Practice: You might choose to do this if you want to manually create a single file with all the global using statements instead of potentially having one generated automatically and others created manually. But my recommendation is to leave the feature enabled and modify the project file to change what is included in the auto-generated class file in the obj folder hierarchy.

 Verbs are methods

 In English, verbs are doing or action words, like “run” and “jump.” In C#, doing or action words are called methods. There are hundreds of thousands of methods available to C#. In English, verbs change how they are written based on when in time the action happens. For example, Amir was jumping in the past, Beth jumps in the present, they jumped in the past, and Charlie will jump in the future.

 In C#, methods such as WriteLine change how they are called or executed based on the specifics of the action. This is called overloading, which we’ll cover in more detail in Chapter 5, Building Your Own Types with Object-Oriented Programming. But for now, consider the following example:

 // Outputs the current line terminator.
// By default, this is a carriage-return and line feed.
Console.WriteLine();
// Outputs the greeting and the current line terminator.
Console.WriteLine("Hello Ahmed");
// Outputs a formatted number and date and the current line terminator.
Console.WriteLine(
 "Temperature on {0:D} is {1}°C.", DateTime.Today, 23.4);

 When I show code snippets without numbered step-by-step instructions, I do not expect you to enter them as code, so they won’t execute out of context.

 A different and not quite exact analogy is that some verbs are spelled the same but have different effects depending on the context, for example, you can lose a game, lose your place in a book, or lose your keys.

 Nouns are types, variables, fields, and properties

 In English, nouns are names that refer to things. For example, Fido is the name of a dog. The word “dog” tells us the type of thing that Fido is, and so to order Fido to fetch a ball, we would use his name.

 In C#, their equivalents are types, variables, fields, and properties. For example:

 	Animal and Car are types; they are nouns for categorizing things.

 	Head and Engine might be fields or properties; they are nouns that belong to Animal and Car.

 	Fido and Bob are variables; they are nouns for referring to a specific object.

 There are tens of thousands of types available to C#, though have you noticed how I didn’t say, “There are tens of thousands of types in C#”? The difference is subtle but important. The language of C# only has a few keywords for types, such as string and int, and strictly speaking, C# doesn’t define any types. Keywords such as string that look like types are aliases, which represent types provided by the platform on which C# runs.

 It’s important to know that C# cannot exist alone; after all, it’s a language that runs on variants of .NET. In theory, someone could write a compiler for C# that uses a different platform, with different underlying types. In practice, the platform for C# is .NET, which provides tens of thousands of types to C#, including System.Int32, which is the C# keyword alias int maps to, as well as many more complex types, such as System.Xml.Linq.XDocument.

 It’s worth taking note that the term type is often confused with class. Have you ever played the parlor game Twenty Questions, also known as Animal, Vegetable, or Mineral? In the game, everything can be categorized as an animal, vegetable, or mineral. In C#, every type can be categorized as a class, struct, enum, interface, or delegate. You will learn what these mean in Chapter 6, Implementing Interfaces and Inheriting Classes. As an example, the C# keyword string is a class, but int is a struct. So, it is best to use the term type to refer to both.

 Revealing the extent of the C# vocabulary

 We know that there are more than 100 keywords in C#, but how many types are there? Let’s write some code to find out how many types (and their methods) are available to C# in our simple console app.

 Don’t worry about exactly how this code works for now, but know that it uses a technique called reflection:

 	Comment out all the existing statements in Program.cs.

 	We’ll start by importing the System.Reflection namespace at the top of the Program.cs file so that we can use some of the types in that namespace like Assembly and TypeName, as shown in the following code:
 using System.Reflection; // To use Assembly, TypeName, and so on.

 Good Practice: We could use the implicit imports and global using features to import this namespace for all .cs files in this project, but since there is only one file, it is better to import the namespace in the one file in which it is needed.

 	Write statements to get the compiled console app and loop through all the types that it has access to, outputting the names and number of methods each has, as shown in the following code:
 // Get the assembly that is the entry point for this app.
Assembly? myApp = Assembly.GetEntryAssembly();
// If the previous line returned nothing then end the app.
if (myApp is null) return;
// Loop through the assemblies that my app references.
foreach (AssemblyName name in myApp.GetReferencedAssemblies())
{
 // Load the assembly so we can read its details.
 Assembly a = Assembly.Load(name);
 // Declare a variable to count the number of methods.
 int methodCount = 0;
 // Loop through all the types in the assembly.
 foreach (TypeInfo t in a.DefinedTypes)
 {
 // Add up the counts of all the methods.
 methodCount += t.GetMethods().Length;
 }
 // Output the count of types and their methods.
 WriteLine("{0:N0} types with {1:N0} methods in {2} assembly.",
 arg0: a.DefinedTypes.Count(),
 arg1: methodCount,
 arg2: name.Name);
}

 N0 is uppercase N followed by the digit zero. It is not uppercase N followed by uppercase O. It means “format a number (N) with zero (0) decimal places.”

 	Run the project. You will see the actual number of types and methods that are available to you in the simplest application when running on your operating system (OS). The number of types and methods displayed will be different depending on the OS that you are using, as shown in the following output on Windows:
 0 types with 0 methods in System.Runtime assembly.
41 types with 639 methods in System.Console assembly.
112 types with 1,190 methods in System.Linq assembly.

 Why does the System.Runtime assembly contain zero types? This assembly is special because it contains only type-forwarders rather than actual types. A type-forwarder represents a type that has been implemented outside of .NET or for some other advanced reason.

 	Add statements to the top of the file (after importing the System.Reflection namespace) to declare some variables, as shown in the following code:
 // Declare some unused variables using types in
// additional assemblies to make them load too.
System.Data.DataSet ds = new();
HttpClient client = new();

 	Run the console app again and view the results, which should look like the following outputs:
 0 types with 0 methods in System.Runtime assembly.
406 types with 7,139 methods in System.Data.Common assembly.
425 types with 4,681 methods in System.Net.Http assembly.
41 types with 639 methods in System.Console assembly.
112 types with 1,190 methods in System.Linq assembly.

 Now, you have a better sense of why learning C# is a challenge – because there are so many types and methods to learn. Methods are only one category of a member that a type can have, and you and other programmers are constantly defining new types and members!

 Example of asking ChatGPT to explain code

 The code we wrote in the Vocabulary project is a good example of when you might want to ask ChatGPT to explain something. If you enter a prompt of “Explain the following code:” followed by the code, here’s what it responded with at the time of writing in July 2023:

 “This C# code performs an analysis of the assemblies (essentially libraries or modules) referenced by the current application. It tallies up the total number of types and methods in each referenced assembly.

 Let’s break down the code in more detail:

 	System.Reflection namespace is used to work with assemblies, modules, types, methods, and so on, at runtime.

 	The System.Data.DataSet and HttpClient instances are declared but not used. The comment implies that these are declared to ensure their respective assemblies are loaded for the subsequent analysis. Creating instances of classes from certain assemblies can cause those assemblies to be loaded into memory.

 	Assembly.GetEntryAssembly() gets the assembly that is the entry point of the application.

 	If myApp is null (meaning there’s no entry assembly, which should be impossible in a normally running .NET app), the application exits.

 	The foreach loop iterates over each assembly name in the referenced assemblies of the entry point assembly.

 	Assembly.Load(name) loads an assembly given the assembly name. This allows you to interact with the assembly programmatically.

 	A counter variable methodCount is declared and initialized to 0. This is used to count the total number of methods in the assembly.

 	Another nested foreach loop then iterates over each type in the assembly.

 	For each type, it gets the number of methods (t.GetMethods().Length) and adds it to the methodCount.

 	Finally, the number of types and their methods in the assembly are output to the console using WriteLine(). The {0:N0} format specifier in the string is a placeholder for a number (0 refers to the argument index, N is for number format, and 0 after N specifies the number of decimal places).

 So, in essence, this script counts how many types and methods exist in each assembly referenced by the application. This might be useful to understand the complexity or size of the dependencies the application has.”

 And now back to the flesh and blood Mark: That’s a pretty good explanation with no mistakes or hallucinations!

 Good Practice: Tools like GitHub Copilot and ChatGPT are especially useful for programmers when they are learning new things. And a good programmer is always learning new things! These tools are not just for writing code for you. They can explain existing code written by others and even suggest improvements.

 Working with variables

 All applications process data. Data comes in, data is processed, and then data goes out.

 Data usually comes into our program from files, databases, or user input, and it can be put temporarily into variables, which will be stored in the memory of the running program. When the program ends, the data in memory is lost. Data is usually output to files and databases, or to the screen or a printer. When using variables, you should think about, firstly, how much space the variable takes up in the memory, and, secondly, how fast it can be processed.

 We control this by picking an appropriate type. You can think of simple common types such as int and double as being different-sized storage boxes, where a smaller box would take less memory but may not be as fast at being processed; for example, adding 16-bit numbers might not be processed as quickly as adding 64-bit numbers on a 64-bit operating system. Some of these boxes may be stacked close by, and some may be thrown into a big heap further away.

 Naming things and assigning values

 There are naming conventions for things, and it is a good practice to follow them, as shown in Table 2.7:

 	
 Naming convention

 	
 Examples

 	
 Used for

 	
 Camel case

 	
 cost, orderDetail, and dateOfBirth

 	
 Local variables, private fields.

 	
 Title case aka Pascal case

 	
 String, Int32, Cost, DateOfBirth, and Run

 	
 Types, non-private fields, and other members like methods.

 Table 2.7: Naming conventions and what they should be used for

 Some C# programmers like to prefix the names of private fields with an underscore, for example, _dateOfBirth instead of dateOfBirth. The naming of private members of all kinds is not formally defined because they will not be visible outside the class, so writing them with or without an underscore prefix are both valid.

 Good Practice: Following a consistent set of naming conventions will enable your code to be easily understood by other developers (and yourself in the future!).

 The following code block shows an example of declaring a named local variable and assigning a value to it with the = symbol. You should note that you can output the name of a variable using a keyword introduced in C# 6, nameof:

 // Let the heightInMetres variable become equal to the value 1.88.
double heightInMetres = 1.88;
Console.WriteLine($"The variable {nameof(heightInMetres)} has the value
{heightInMetres}.");

 Warning! The message in double quotes in the preceding code wraps onto a second line because the width of a printed page is too narrow. When entering a statement like this in your code editor, type it all in a single line.

 In C# 12, nameof can now access instance data from a static context. You will learn the difference between instance and static data in Chapter 5, Building Your Own Types with Object-Oriented Programming.

 Literal values

 When you assign to a variable, you often, but not always, assign a literal value. But what is a literal value? A literal is a notation that represents a fixed value. Data types have different notations for their literal values, and over the next few sections, you will see examples of using literal notation to assign values to variables.

 More Information: You can read the formal definition of literals in the C# language specification: https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/lexical-structure#645-literals.

 Storing text

 For text, a single letter, such as an A, is stored as a char type.

 Good Practice: Actually, it can be more complicated than that. Egyptian Hieroglyph A002 (U+13001) needs two System.Char values (known as surrogate pairs) to represent it: \uD80C and \uDC01. Do not always assume one char equals one letter or you could introduce hard-to-notice bugs into your code.

 A char is assigned using single quotes around the literal value, or assigning the return value of a function call, as shown in the following code:

 char letter = 'A'; // Assigning literal characters.
char digit = '1';
char symbol = '$';
char userChoice = GetChar(); // Assigning from a fictitious function.

 For text, multiple letters, such as Bob, are stored as a string type and are assigned using double quotes around the literal value, or by assigning the return value of a function call or constructor, as shown in the following code:

 string firstName = "Bob"; // Assigning literal strings.
string lastName = "Smith";
string phoneNumber = "(215) 555-4256";
// Assigning a string returned from the string class constructor.
string horizontalLine = new('-', count: 74); // 74 hyphens.
// Assigning a string returned from a fictitious function.
string address = GetAddressFromDatabase(id: 563);
// Assigning an emoji by converting from Unicode.
string grinningEmoji = char.ConvertFromUtf32(0x1F600);

 Outputting emojis

 To output emojis at a command prompt on Windows, you must use Windows Terminal because Command Prompt does not support emojis, and set the output encoding of the console to use UTF-8, as shown in the following code:

 Console.OutputEncoding = System.Text.Encoding.UTF8;
string grinningEmoji = char.ConvertFromUtf32(0x1F600);
Console.WriteLine(grinningEmoji);

 Verbatim strings

 When storing text in a string variable, you can include escape sequences, which represent special characters like tabs and new lines using a backslash, as shown in the following code:

 string fullNameWithTabSeparator = "Bob\tSmith";

 But what if you are storing the path to a file on Windows, and one of the folder names starts with a T, as shown in the following code?

 string filePath = "C:\televisions\sony\bravia.txt";

 The compiler will convert the \t into a tab character and you will get errors!

 You must prefix it with the @ symbol to use a verbatim literal string, as shown in the following code:

 string filePath = @"C:\televisions\sony\bravia.txt";

 Raw string literals

 Introduced in C# 11, raw string literals are convenient for entering any arbitrary text without needing to escape the contents. They make it easy to define literals containing other languages like XML, HTML, or JSON.

 Raw string literals start and end with three or more double-quote characters, as shown in the following code:

 string xml = """
 <person age="50">
 <first_name>Mark</first_name>
 </person>
 """;

 Why three or more double-quote characters? This is for scenarios where the content itself needs to have three double-quote characters; you can then use four double-quote characters to indicate the beginning and end of the content. Where the content needs to have four double-quote characters, you can then use five double-quote characters to indicate the beginning and end of the content. And so on.

 In the previous code, the XML is indented by 13 spaces. The compiler looks at the indentation of the last three or more double-quote characters, and then automatically removes that level of indentation from all the content inside the raw string literal. The results of the previous code would therefore not be indented as in the defining code, but instead be aligned with the left margin, as shown in the following markup:

 <person age="50">
 <first_name>Mark</first_name>
</person>

 If the end three double-quote characters are aligned with the left margin, as shown in the following code:

 string xml = """
 <person age="50">
 <first_name>Mark</first_name>
 </person>
""";

 Then the 13-space indentation would not be removed, as shown in the following markup:

 <person age="50">
 <first_name>Mark</first_name>
 </person>

 Raw interpolated string literals

 You can mix interpolated strings that use curly braces { } with raw string literals. You specify the number of braces that indicates a replaced expression by adding that number of dollar signs to the start of the literal. Any fewer braces than that are treated as raw content.

 For example, if we want to define some JSON, single braces will be treated as normal braces, but the two dollar symbols tell the compiler that any two curly braces indicate a replaced expression value, as shown in the following code:

 var person = new { FirstName = "Alice", Age = 56 };
string json = $$"""
 {
 "first_name": "{{person.FirstName}}",
 "age": {{person.Age}},
 "calculation": "{{{ 1 + 2 }}}"
 }
 """;
Console.WriteLine(json);

 The previous code would generate the following JSON document:

 {
 "first_name": "Alice",
 "age": 56,
 "calculation": "{3}"
}

 The number of dollars tells the compiler how many curly braces are needed to become recognized as an interpolated expression.

 Summarizing options for storing text

 To summarize:

 	Literal string: Characters enclosed in double-quote characters. They can use escape characters like \t for tab. To represent a backslash, use two: \\.

 	Raw string literal: Characters enclosed in three or more double-quote characters.

 	Verbatim string: A literal string prefixed with @ to disable escape characters so that a backslash is a backslash. It also allows the string value to span multiple lines because the whitespace characters are treated as themselves instead of instructions to the compiler.

 	Interpolated string: A literal string prefixed with $ to enable embedded formatted variables. You will learn more about this later in this chapter.

 Storing numbers

 Numbers are data that we want to perform an arithmetic calculation on, for example, multiplying. A telephone number is not a number. To decide whether a variable should be stored as a number or not, ask yourself whether you need to perform arithmetic operations on the number or whether the number includes non-digit characters such as parentheses or hyphens to format the number, such as (414) 555-1234. In this case, the “number” is a sequence of characters, so it should be stored as a string.

 Numbers can be natural numbers, such as 42, used for counting (also called whole numbers); they can also be negative numbers, such as -42 (called integers); or they can be real numbers, such as 3.9 (with a fractional part), which are called single- or double-precision floating-point numbers in computing.

 Let’s explore numbers:

 	Use your preferred code editor to add a new Console App / console project named Numbers to the Chapter02 solution.
 	For Visual Studio 2022, configure the startup project to the current selection.

 	In Program.cs, delete the existing code, and then type statements to declare some number variables using various data types, as shown in the following code:
 // An unsigned integer is a positive whole number or 0.
uint naturalNumber = 23;
// An integer is a negative or positive whole number or 0.
int integerNumber = -23;
// A float is a single-precision floating-point number.
// The F or f suffix makes the value a float literal.
// The suffix is required to compile.
float realNumber = 2.3f;
// A double is a double-precision floating-point number.
// double is the default for a number value with a decimal point.
double anotherRealNumber = 2.3; // A double literal value.

 Storing whole numbers

 You might know that computers store everything as bits. The value of a bit is either 0 or 1. This is called a binary number system. Humans use a decimal number system.

 The decimal number system, also known as Base 10, has 10 as its base, meaning there are 10 digits, from 0 to 9. Although it is the number base most used by human civilizations, other number base systems are popular in science, engineering, and computing. The binary number system, also known as Base 2, has two as its base, meaning there are two digits, 0 and 1.

 The following image shows how computers store the decimal number 10. Take note of the bits with the value 1 in the 8 and 2 columns; 8 + 2 = 10:

 [image:]
 Figure 2.4: How computers store the decimal number 10

 So, 10 in decimal is 00001010 in a binary byte (8 bits).

 Improving legibility by using digit separators

 Two of the improvements seen in C# 7 and later are the use of the underscore character _ as a digit separator and support for binary literals.

 You can insert underscores anywhere into the digits of a number literal, including decimal, binary, or hexadecimal notation, to improve legibility.

 For example, you could write the value for 1 million in decimal notation, that is, Base 10, as 1_000_000.

 You can even use the 2/3 grouping common in India: 10_00_000.

 Using binary or hexadecimal notation

 To use binary notation, that is, Base 2, using only 1s and 0s, start the number literal with 0b. To use hexadecimal notation, that is, Base 16, using 0 to 9 and A to F, start the number literal with 0x.

 Exploring whole numbers

 Let’s enter some code to see some examples:

 	In the Numbers project, in Program.cs, type statements to declare some number variables using underscore separators, as shown in the following code:
 int decimalNotation = 2_000_000;
int binaryNotation = 0b_0001_1110_1000_0100_1000_0000;
int hexadecimalNotation = 0x_001E_8480;
// Check the three variables have the same value.
Console.WriteLine($"{decimalNotation == binaryNotation}");
Console.WriteLine(
 $"{decimalNotation == hexadecimalNotation}");
// Output the variable values in decimal.
Console.WriteLine($"{decimalNotation:N0}");
Console.WriteLine($"{binaryNotation:N0}");
Console.WriteLine($"{hexadecimalNotation:N0}");
// Output the variable values in hexadecimal.
Console.WriteLine($"{decimalNotation:X}");
Console.WriteLine($"{binaryNotation:X}");
Console.WriteLine($"{hexadecimalNotation:X}");

 	Run the project and note the result is that all three numbers are the same, as shown in the following output:
 True
True
2,000,000
2,000,000
2,000,000
1E8480
1E8480
1E8480

 Computers can always exactly represent integers using the int type or one of its sibling types, such as long and short.

 Storing real numbers

 Computers cannot always represent real, aka decimal or non-integer, numbers precisely. The float and double types store real numbers using single- and double-precision floating points.

 Most programming languages implement the Institute of Electrical and Electronics Engineers (IEEE) Standard for Floating-Point Arithmetic. IEEE 754 is a technical standard for floating-point arithmetic established in 1985 by the IEEE.

 The following image shows a simplification of how a computer represents the number 12.75 in binary notation. Note the bits with the value 1 in the 8, 4, ½, and ¼ columns.

 8 + 4 + ½ + ¼ = 12¾ = 12.75.

 [image:]
 Figure 2.5: Computer representing the number 12.75 in binary notation

OEBPS/Images/B19586_01_14.png
D | O mokprice/sizdotoets:fapost. X L+
<« C

& hitpsy/github.com/markiprice/cs12dotnets [

©) rotiprice / cszgomes Q Type Do search

© Code @ lssues 11 Pullrequests © Actions [Projects 00 Wiki

@ cs12dotnet8 pusic R Pn | Oumath 3 -

1 main - P Tbench ©0wg: Gotofie Addfile~

Lol Codespaces
@@ markiprice Add solution code for Ch'
& Clone

W code/Chapter0l Add solu @
- o addso HTTPS S Gitubcu

- scipts Updates | hetps: //github.con/mark orice/cs12dotn @

O gitignore Update 4 U5 Gitorcheckoutwith SV using the web URL

O ReAoMEmd VP9 F 63 Open with GitHub Desktop

READMEmJ

M Download 2IP

hitpsy/githubcom/markjprice/cs12dotnet/archive/refs/heads/mainaip cvvers

QM %

© Security 2 Insights

> + -
@ Setings

¥Rkl | -

About @

Repository for the Packt Publishing book
titled "C# 12 and .NET 8 - Modern Cross-
Platform Development Fundamentals* by
Mark . Price

[0 Readme

A Activty

% Bstars
®© 3vatching
¥ tfork

OEBPS/Images/B19586_01_01.png
©) (Proview] REAOMEmd - cst2dor X

€« C O @& githubdev/markjprice/cs12dotnet8
= oeom Preview] READMEmG. X =)
o 7 Sueomesemn Common Mistakes, Improvements, and Erata aka it of corectons
> code
> docs
Seers C# 12 and .NET 8 - Modern Cross-Platform Development
@ giignore Fundamentals, Eighth Edition
® ReAOMEmd
® Repository for the Packt Publishing book ted "C# 12 and .NET 8 - Moder Cross-Platform Development
Fundamentals” by Mark J. Price
gy 0 omme This book s expected to publish in November 2023
> e
BTN oo 0 Goho (e]

OEBPS/Images/B19586_01_19.png
Visual Studio 2022 Visual Studio Code
Inline Hints Dotnet > Inlay Hints: Enable Inlay Hints For Parameters

Display all hints while pressing Alt+F1 Display inline parameter name hints
Color hints

Display inline parameter name hints

Console.WriteLine(fornat: "Value is {0}.", argo: 19.8);

OEBPS/Images/B19586_02_05.png
128

64

32

16

/>

/s

/s

/16

OEBPS/Images/B19586_01_06.png
00 Fle it View Gt Projct Buld Debug Tt Anabze Tools Edensions Window Hep [seachCued P Chapett — O X
B-SBE|9 - [y [y] b hetecs - b - | BB i Ao Buese B

oRl--886

2] Consote.uritetineC-hello,
3

R solton Crapterar (1 of 1 prejct)
4 Helocs

> 58 Dependencies
) MicrosoftVisus Sudio Dsbug Comscle. X+ c# progames

Hello, it

C:\cs12dotnet8\Chapterol\HelLoCS\bin\Debug\nets. 8\HelLoCS . exe
(process 230u8) exited with code 0.
Press any key to close this window . . .

OEBPS/Images/B19586_01_05.png
00 e Gt Vew Gt post uid Deug Tt Ay Took Eensons Window fep |sech Cuieq)

o < [oebug_-[anycPu -] B Hellocs - D 5 - B3| B oA O | B %4 R 1A

For more inforsation

R Soluton Chaterot 1 of 1 prjec)
4 Hallocs
b 26 Dependendes
® progames

+ Addto

OEBPS/Images/B19586_01_23.png
00 Fle Edt View Gt Pojet Bukd Debug Tet Awbze Took Edtensons Window Hep [Sech@ied P| chopeot = O X
(0-0 | @-SBB| 9 -|[oewg <|[aycn - [Hetlocs ~| B Hellocs ~ B B %L Bueshwe R

S Helocs -] “oHellocs product B | a8lo-=08
T e s * Pserch solotion Expiorer i
oreeences 5 souton Chaptedr” 2 of 2 project)
5 o in 2 b B Asoutmyinionment
10 1 4 Hellocs
1¢f||| | public string Name { get; set; -
ot sl e {gei) % oo
public int Quantity { get; set; }]
bt progames

public string Description { got; set; }

public Product(string name, decisal price, int quantity, string description)

quantity;
Description = description;

public override string Tostring()

G5~ S

[100% 18 & o s ound

OEBPS/Images/blockquote-top.png

OEBPS/Images/B19586_02_01.png
Of Fle it Vew Gt Pojed Buid Debug

Test Amlyze Toos Exensions Window Help | P Sewch Cheperz @ - O X
©-0|B-EB@| - -|[omy Jlyaw] b voaniay - b -85
Progames = X 5 -
St 8-~
(3 1 /7 S bttps://aka.ns/nen-console-tenplate for more information S Saut s T e
2 #error version e oot Dol
3 Console.uriteLine("H ; | 5 soson e 1t e
‘ol 3 Vocabuln
e A NI o e ar | ¢ T
o pogames
[Soluion____+][@ 26rers | (& 0 Woraings | @ oesages (3] [sis + motserse <) sewchenor s __£]-
" Code Description Project. File. Line Suppression State
[E— L
Complerverion 48011233774 (6524176
csssos ol vrins 480 12337 oy progames 2 A

OEBPS/Images/B19586_01_10.png
XK fle Edit Selection View Go Run Jeminal ‘Welcome - Chapter0t-vicode - Visusl Studio Code DBm®E - o x

oowoReR X wecome X o

< oo vicooe 5 B 0
> wneote Start Walkthroughs

© Helocs
© GetSarted with # De.

3 NewFe.

> b
o D opentie,
HelloCs csproj B3 Open Folder. = Get Started with Jupyt.
© programas 2 clone Gt Repository —_—
Chaptenoisin @ Get tartedvith WL,
> ourune Recent
> Twene Chapterol Crest2dotnets @ srowse & Edit Remote .. ()
> uspyoxcoupED MesERs HelloCS Cicet2dotnete\Chaptedt-vcode

& Goting started vith ... (FEEE)

Jbouiynironment

e —

[Azuitn Tabla S

IAzurite Blot

OEBPS/Images/B19586_01_02.png
2023 2024 2025 2026

Version | Support 2027 2028
NET6 | LTS

.NET7 | SIS Immmm |

NET8 LTS |

NET9 | STS I

NET10 | LTS .|
NET11 STS I

OEBPS/Images/B19586_01_15.png
B¥ Microsoft | Leam Documentation Taining Certfications Q&A Code Samples Assessments Shows ~Events

UNET Languages - Features Workloads v APls v

.
e
B

> dotnet add/list/remove reference

Resources

Leam / NET / Tools and diagnostics / Tools /

dotnet build

Artice - 03/14/2023 + 20 contributors

In this article

Name
Synopss
Descrption

Search £ Signin

load .NET

& Feodback

OEBPS/Images/B19586_02_02.png
Visual Studio 2022

1/ Loop through all the types in the assembly.
foreach (TypeInfo t in a.DefinedTypes)
{

// Add up the counts of all the methods.
methodCount += t.GetMethods().Length;
¥

// Loop through all the types in the assembly.
foreach (TypeInfo t in a.DefinedTypes)[_.

Visual Studio Code

/1 Loop through all the types in the assembly.
foreach (TypeInfo t in a.DefinedTypes)
{
// Add up the counts of all the methods.
methodCount += t.GetMethods().Length;
}

/7 Loop through all the types in the assembly.
foreach (TypeInfo t in a.DefinedTypes) -

OEBPS/Images/B19586_Free_Pdf.png

OEBPS/Images/B19586_01_07.png
0Q Fle ft Vew Gt Pojct Buld Debug XML Test Analze Tools Exensons Mindow Help

= & < [oetes [y b betocs - >

chper = @ X

ML & tveshare &

P TG
oo perbie Ty Ee
o o 5t ot 1t
st e
Pttt ow
</propartycroup b D mors

<oroeces =

OEBPS/Images/tip.png

OEBPS/Images/cover.png
EXPERT INSIGHT

C#12and .NET 8

Modern Cross-Platform
Development Fundamentals

Start building websites and services with ASP.NET Core 8,
Blazor, and EF Core 8

Eighth Edition

Mark J. Price

OEBPS/Images/B19586_01_24.png
& hupsi/githubcom/dotneinstallerstable B A% Glm oty
READMEmd Downloads Ba -

Table ommont dnetonte ke suess O
Note the 7.0.100 build will be finished internally. Below is the last public version available from that branch but is ot " © Oelew r
ol upeated with thefnlruntime. oo
Platfe main. 801002 Release/7.0.4xx iaroet s T &s e
latform (9.0.x Runtime) (8.0-r2 Runtime) (7.0.x Runtime) Lo more:
o oo oo e o] Copydonnondin
Windows 64 nstller - Checsum Installer - Checksum Instller - hecksum

2ip - Checksum 2ip - Checksum 2ip - Checksum

OEBPS/Images/B19586_01_11.png
<

Fle Edit Selection View Go Run

> ascode
© Helocs
> bin
> o
HeloCs cproj
© Programes
Chapterotin

> ourune
> e

> NspY DECOMPIED MEMBERS.
> sowumon xuonen

Terminal Help Chapterdi-vscode - Visu tudio Code. DEm®e - o x

earting open a solution. .
Scarting open 3 solution with enviromment service
Starting Clear environsent..

Starting Spaun NET server. .

T server started and I9C estavlished in 184ins
Completed Spawn -NET sarver (195315)

Completed Clear enviromment (216505)

Completed Open solution with environsent service (236215)
Starting Restore solution

Completed open » solution (1355m2)
Completed Restore solution (1571a5)

[Acuwite Table'Se

OEBPS/Images/B19586_02_03.png
O fle Et Yew Gt Project Buld Debug Tet Anohze Tools Extensions Window Help [SeochCulia) |
10-0[19-SBB|9 - -|[o |[mcr

Chaptero2

D Guese B m

> ety < B 6 | 83| 8 s Ebm

E 0 -286| A=
17 5o ity . el conssle-Semlats o woe nfoemation L]
11 Wervor version E

Console Writeline 5 Soluton Chpter2 (1 f 1 prjec

6 ocabulary
Guss e cur | P 98 Depencences
€ progames
(e souton____-J

 Code | Descrption
51002 enpected

2mors] [0 Warnings || @ 0 Messages |[¥B)| [Buid + intelisense.
ooject
[

sesrh ver e P
e Line. Supprssion State

Progumes 3 e
‘Cansole dos nat contain
(Cooy TR Conmisiacss et o Vocabulay progumes 3

OEBPS/Images/info.png

OEBPS/Images/B19586_01_08.png
00 Fle ft View Gt Pojct Buld Debug Test Ambze Took Etensions Window Hep [sewch(Ced | Chaptedl

B SEB|9 - [[y] bhetecs - D G- B[@ | 5% R -

for more inforaation

Console.uritaLine(-Hollo, Cr
367 | throw nen Excaption0;

D Microsot Visusl Studio Dobug Comscle. X+

Hello, CH!
Unhandled exception. System.Exception: Exception of type 'System.Exception’ was thrown.
at Progran. <Hain>§(stringl] args) in C:\cs12dotnet8\Chapterol\Hellocs\Progran. cs:line 3

- o

2 tiestare

Gi\eszdotneta\chapters A eTLoCS\b 1\ Debignets B\ HelaCS exe Uprocess 16862) exdted with code ~amlaates.

[{ brecs any Hey to crose this window -

X
R

OEBPS/Images/B19586_01_20.png
0 2 P connng sereng - x|

€ C O hipssstackoveriowcom/search?q=securesting

- o x

0 ¢ o & - L

Ddtackoverflow About Products ForTeams | Q secresing

Home Search Results Abwanced Serc Tips m

e
[o—
© auestions [seconionnot s
s)
500 results Relevance | Nevest ‘ More -
s |
Comparies
3 When would | need a Securestring in NET?
cuas @ Ay it oy Securesing o « e
SecreStingComovords s ofSecureSing prs = .
© bplor collcties skviews
) [2) [
s 8 g 2591 ik ep 26 20011842
SackOvertlow for
Toam st 1873010

How to convert SecureString to

calaborating and System.String?

sharing organiztionsl
knoutedge.

ebkainy ATeSeAOnS sbout unsecuting your SecureSing by cresing
SystemSting out o it aside, how can it b done? How can | conver.

o I |

B Microsoft Azure

What wil you create?
Startbuiing apps today. Free untlyou
ise

Try Azure free>

=]
‘indeed

Build your career in Front End
Development with

Jovasscript €SS React

OEBPS/Images/B19586_01_03.png
O Bl [t Vew Gt Poec Dobug Ambze Took Gtendons Window e |sevcr(Crioq »

S —— A

Welcome to Visual Studio 2022

Open recent

s Vil o, sy s s o it o e i kil
e

[

Open Projct

New Project Open Folder
You can pinaryting hat you pen frequenty o tha s avays o the

OEBPS/Images/blockquote-bottom.png

OEBPS/Images/B19586_01_16.png
00 Fle €t View Gt ro Optiors

£0- 085 18D mmgmontosones CIN PR —
i s e
pentunine IT— e e e s

e 2 S e d s oSk
o Sy [—
R 25 s oty g ok
7 susing [cotootnsn
12 Goasespace sy (£ i TP i s s
I e e
:: ‘ |‘:W"\K (7] Always use default symbol servers for navigation
= € vt ey i)
H v e
» e TSR —
“ bl Where shauld the rename Ul be shown?

forc 8.0 " oruniili)

OEBPS/Images/QR_Code31844992189153375.png

OEBPS/Images/B19586_01_12.png
X Fle Edit Selection View Go Run Program.cs - Chapter1-vacode - VisolStuio Code Doo® - o Xx
oo © progames X o-
© sounon xpionsn felocs > © Programs
6 cptenn 1 /) See https://aka.ns/new-console-template for mare infornation =
© & hatocs 2 Console.tiriteline(iello, CH;
> 89 Dependendes :
© programes
PONENS OUTPUT THMNAL AZRE POUGLOTNOTEIOOK DERUG CONSOLE G A
> cpTino vscooe BS CEACSL200TETE\ChAPTErGL-Vscote\HR1LECS) 0Tnet Fum .
He1lo, ot
> ounune 3
2 oumme 75 Ci\estasotnets\chaptero1-vscodevtelocs: |

> 1sPY DECOMPILED MEMBERS.

e e

e Biob

OEBPS/Images/B19586_01_25.png

OEBPS/Images/B19586_01_21.png
© Codesemcnenuis X+

€ 5 C O @ githubcom/searchlq=email+repo%3Adotnets2Fruntime language%3ACK23atype=codetiref=advsearch & 122 % W O @ ¢

=) €) (6 cotsoma

Filter by 99 fles (14013 detetintine X
l o code = ~ @ atons/sc/ystem)ComponentModel/DataAmotations EmaiAddressatiibutecs @ Ch - 1 main
tssves o
° «
1 pullrequests 5 6 [ttt teibiteTargets.property | ttributeTargets.Field |
RS ————

@ Discussions o 7 Allowwitiple = fatse)]

o Commis B © el enles clos ComtiAdresmetribte : D
s«

© Packages o » Plic Emtlassressactribuce)
u Saceotarype ExaLiress

o wikis o (ostanpe. g

pans

OEBPS/Images/B19586_01_09.png
00 Fle [t Vew Gt ot Buld Debug Tt Ambze Toos Gensons Wndow Hep [schred P| chpeot — O X

©- 0@ EB@|D - |[ohug -J[ary] [soouttyirionment] P Aboutyeeonment + > 5 - & teshre R

[Ens— | % AboutiyEnionmentProgram | Saainsingl args) I+ 0B o-=06
1§ 1 nanespace AbouthyEnviroment =
H ‘ B Sesch Slton xporer ey
5 Solution Chopter0” 2o 2 projects)
3¢/ dintemal class ProgEa 4" 63 AboutyEnvironment
u ‘ € b 88 Depandoncis
5 o static void ainCstring() args) 1 b cerogma
s ¢ + @ retecs
7 Console MriteLineCEnvironmont CurrentDirectory); > 48 Dopondonces
1 Console MriteL ineCEnyironment OSVersion. ersionString) > c progames
H Consale MriteLine(lanespace: {6}, typeo(Pragian) Mamespace
10 —
o[6 MirosotVisun o Debug Comsole. X+ - o0 x

cs12dotnet8\Chaptero1\AboutHyEnvironnent\bin\Debug\nets.o
Microsoft Windows NT 10.0.22621.6
Namespace: AboutMyEnvironment

(cs12dotnet8\Chaptero1\AboutHyEnvironnent \bin\Debug\nets. 8\AboutHyEnvironn
ent.exe (process 25206) exited with code O
Press any key to close this window .

(0% 1890 Nosuoi

OEBPS/Images/B19586_01_04.png
- o x

Create a new project = [-
Recent project templates o = Al plattorms = Allproject types -
Alistof your recently accessed templtes wil be i B e

pEres -

A projectforcreating a command-line application that can un on NET on
Windows, Linux and macOs

Ui w0 Windows Comole

i 8 vop (T e

A project forcreating & command-fine application

@ Windows Console.

Other results based on your search

B Console App
A project forcreating a commandine application that can run on NET on
Windows, Linux and macOS.

Vislbic Lo ma0S Windows (om0l
15 Typescript Console Appiication

A bsic TypeScrpt CGREG applicaton template which can be run vithyourlocal
node nstallation

OEBPS/Images/B19586_01_18.png
00 Fle ft Vew Gt Pojct Buld Debug Test Amwbze Took Etensions Wndow Hep [swcrred P| chepedt — O X
@0 |- @D | [omug |[amcrw |[neiocs b etocs < b 5 -8 B D Buesun R

oB-s86

b ca progames
7 4 Helocs

11 Returns: [p—
77 A 32-bit signed integer equivalant to the nusber contained in 5. > @ progrmes
”

71 & string contatning a nusber to convert.
A

11 Exceptions:
T:Systen. ArgunentilallException:
e .

T:Systen. FormatException:
< 45 not n the corract format

T:Systen. OverflonException:
< represents a nusber Less than Int32.HinValue or greater than Int3
public static Int32 parse(string £);
[public static Int32 Parse(ReadonlySpan<char> 5, TFormatProvider? provic~
F2)) o cau s aur

OEBPS/Images/B19586_02_04.png
128

64

32

16

OEBPS/Images/New_Packt_Logo.png
<PACKD

OEBPS/Images/B19586_01_17.png
00 Fle fdt Vew Gt ot Buld Debug Tt Ambze Took tensons Window Hep [sexchiceq £

N N | o o — | T

Chopeot = @ X

BB Buese B

Hnullable enable

sustng [

anespace Systen

¢
justic readonty struct B : IComparable, IComparable<Int3z>, IConvert:

ublic const In€32 MaxValue = 2147483647
ublic const Ine32 Minvalue

OEBPS/Images/B19586_01_22.png
(s} Email Valdation in C# x

& G O hips//chatopensicom

+ Newchat

Configuring Preferences for

UK Alevel grade infiation

SQL Serverand SQtite.

UK Monuments Protection

Linkedin recommendation

MarkPrice

B vrteachtnctontovaidaeanemsilacress

Sur, hores implafunctonusing O and regulrexprssions
{ovalcatoanemail acress:

Systen. Text.RegularExpressions;

(string email)

«
Regenerate response
it (,u(emau))

OEBPS/Images/B19586_01_13.png
XK fle Edit Selection View Go Run Program.s - Chapterdi-vscode - VisualStudio Code DEmD® - o x
© progames felocs O Programas AsoutEncment X o
© souwmon exsione AbouhyEmiconment > © Programcs > 4 Program > € Main

v O chapen

1 nasespace AbouthyEnvironment;

~ & AvoutiyEnvronment
elSolep s 3 class progran -
@ progamcs
~ @ Helocs Orcas r
> 49 Dependendes s static void Main(stringl]
[
© progranes
° ; ConsoletriteLine(Enviroment. Currentirectory);
. ConsolekrkzeLine(Enviroment. OSVers1on.Versionstring);
9 @ | Comsoleliriteline("Nasespaces {0)", typeof(Progran).Namespace);
)
uoy
T IR N — oa
J| Dpwn
©P5 C:\csiadotnets\Chapteroi-vscode\RboutiyEnviroments dotnet. run
> consrenonuscooe cs12dotnets\Chapterel.vscode\AboutiyEnvironment push et
e icrosoft Windous NT 16.0.32621.0 (e yr—
Nanespace: AbouthyEnviransent

> TIMELINE PS C:\cs1adotnets\Chapterd1-vscode\AbouthyEnvironnent> |

> 1spy DEcoMPILED WEMBERS

Blob Service] L, Col)

xite Table Service] _ {Azurite Gueve Service] _ [Azur

