
[image: Cover Image]

OPTIMIZATION USING LINEAR PROGRAMMING

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants permission to use the contents contained herein, but does not give you the right of ownership to any of the textual content in the book or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved in the creation, writing, production, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to insure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” vary from state to state, and might not apply to the purchaser of this product.

OPTIMIZATION USING LINEAR PROGRAMMING

An Introduction

A.J. Meitei, PhD
Veena Jain, PhD

[image: figure]

MERCURY LEARNING AND INFORMATION

Dulles, Virginia
Boston, Massachusetts
New Delhi

Reprint & Revision Copyright © 2019 by MERCURY LEARNING AND INFORMATION.
All rights reserved.

Original Copyright © 2018 by NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
MERCURY LEARNING AND INFORMATION
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
(800) 232-0223

A.J. Meitei and Veena Jain. Optimization Using Linear Programming.
ISBN: 978-1-68392-347-3

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2018964994

192021321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional information, please contact the Customer Service Dept. at (800) 232-0223(toll free). Digital versions of our titles are available at: www.academiccourseware.com and other electronic vendors.

The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the book and/or disc, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.

CONTENTS

Preface

1BASICS OF LINEAR ALGEBRA USING MS-EXCEL

1.1.Vectors

1.2.Linear Independence and Dependence of Vectors

1.3.Solution to a System of Simultaneous Linear Equations

1.4.The Gauss-Jordan Method for Solving Systems of Linear Equations

1.5.Convex Sets

Exercises

2INTRODUCTION TO LPPs AND THE GRAPHICAL METHOD

2.1.Introduction

2.2.Assumptions in a Linear Programming Problem

2.3.Theorems on Extreme Points

2.4.Areas of Application of LPPs

2.5.Formulation of Linear Programming Models

2.6.Graphical Method

2.6.1.Extreme Point Approach

2.6.2.ISO-Profit (cost) Function Line Approach

2.7.Solution of LPPs by the Graphical Method Using MS-Excel

2.8.Special Cases

2.8.1.Problem with Multiple Solutions

2.8.2.The Problem with Unbounded Solutions

2.8.3.The Problem with Inconsistent Constraints

2.8.4.The Problem with Redundant Constraint Equations

Exercises

3SIMPLEX METHOD-I

3.1.Standard and Canonical Form of the General Linear Programming Problem

3.2.Slack and Surplus Variables

3.3.Algebraic Simplex Method

3.4.Relationship between the Simplex and Graphical Methods

3.5.Simplex Method in Tabular Form

3.6.Use of Solver in MS-Excel for Solving a Linear Programming Problem

3.7.Use of Jensen Add-Ins for a Linear Programming Problem

Exercises

4SIMPLEX METHOD-II

4.1.Introduction

4.2.Big M Method (Penalty Method)

4.3.Two-Phase Method

4.4.Degeneracy in Linear Programming Problems

4.4.1.Perturbation Method for the Resolution of Degeneracy Problems in LPPs

4.5.Solving a System of Linear Equations Using the Simplex Method

4.6.Solution of a System of Linear Equations by Using Solver

4.7.Inverse of a Matrix Using the Simplex Method

4.8.Special Cases

4.8.1.The Problem with Alternative or Multiple Solutions

4.8.2.Unbounded Solutions

4.8.3.The Problem with Inconsistent Constraint Equations

Exercises

5DUALITY

5.1.Introduction

5.2.Rules for Finding the Dual of a Given Linear Programming Problem

5.3.Finding the Optimal Dual Solution from the Optimal Table of the Primal Problem

5.4.Use of the Graphical Method for Finding the Optimal Dual Solution

5.5.Construction of a Simplex Table

5.6.Duality Theorems

5.7.Economic Interpretation of Duality

5.8.Dual Simplex Method

Exercises

6SENSITIVITY ANALYSIS

6.1.Introduction

6.2.Changes in the RHS Vector bi

6.2.1.Range of bi’s

6.2.2.Simultaneous Changes in bi’s

6.3.Addition of a New Constraint

6.3.1.When the Current Solution Satisfies the New Constraint

6.3.2.When the Current Solution Fails to Satisfy the New Constraint

6.4.Adding a New Activity or a Variable

6.5.Changes in the Objective Function Coefficients

6.5.1.Changes in the Objective Function Coefficients of Non-Basic Variables

6.5.2.Changes in Objective Function Coefficients of Basic Variables

6.5.3.100% Rule for Making Simultaneous Changes in the Objective Function Coefficients

6.6.Changes in the aij Coefficients

6.6.1.Changes in aij Coefficients of Non-Basic Variables

6.6.2.Changes in aij- Coefficients of Basic Variables

6.7.Deletion of a Variable

6.8.Deletion of a Constraint

6.9.Sensitivity by Using Excel Solver

Exercises

7TRANSPORTATION AND TRANSSHIPMENT PROBLEMS

7.1.Introduction

7.2.Formulation of a Transportation Problem

7.3.Various Methods for Finding the Initial Basic Feasible Solution

7.3.1.North-West (N-W) Corner Method

7.3.2.Row Minima Method

7.3.3.Column Minima Method

7.3.4.Least-Cost or Matrix Minima Method

7.3.5.Vogel’s Approximation Method (VAM)

7.4.Closed Path or Loop in Transportation Problems

7.5.Moving Toward the Optimal Solution

7.5.1.Stepping-Stone Method

7.5.2.The Modified (MODI) Distribution or u-v Method

7.6.Solution of Transportation Problems in Excel

7.7.Some Special Cases in Transportation Problems

7.7.1.Unbalanced Transportation Problems

7.7.2.Restricted Entry

7.7.3.Maximization Problems

7.7.4.Multiple Solutions in Transportation Problems

7.7.5.Degeneracy in Transportation Problems

7.8.Transshipment Problems

Exercises

8.ASSIGNMENT PROBLEMS

8.1.Introduction

8.2.Mathematical Formulation

8.3.Assignment Problems as a Special Case of Transportation Problems

8.4.Hungarian Method

8.5.Special Cases in Assignment Methods

8.5.1.Maximization Problems

8.5.2.Restricted Entry

8.6.Solution of Assignment Problems Using Excel Solver

Exercises

9GAME THEORY

9.1.Introduction

9.2.Zero-Sum Games

9.3.Maximin and Minimax Principle

9.4.Game with a Saddle Point

9.5.Game without a Saddle Point

9.6.Graphical Solution of 2 × n and m × 2 Games

9.7.Method of Dominance

9.8.Solution of a Game Using the Simplex Method

9.9.Solution of a Game Using Gambit

Exercises

Appendix:Use of MATHEMATICA, MATLAB, LINDO, and WinQSB to Solve Linear Programming Models

References

Index

PREFACE

This book on linear programming and game theory has been jointly written by Dr. A. J. Meitei and Dr. Veena Jain with an aim to meet the needs of the students of mathematics, commerce, economics, management studies, and other allied disciplines or courses. The explanation and presentation of every topic in the book have been made as simple and user-friendly as possible. Complex mathematics involved in various theorems and procedures has been avoided, and all explanations are given in simplified and systematic forms so that even non-mathematical students or those who know only basic mathematics can easily and conveniently read the book. The main emphasis is on the solution of various types of linear programming problems by using different kinds of software. Use of software in solving mathematical problems has been an integral part of syllabi these days. Keeping this in mind, the solution of problems using the MS-Excel Solver add-in and the external Jenson add-in have been discussed in all chapters of this book. We explain step by step the procedure of how the add-ins can be used to solve linear programming problems. In addition to MS-Excel, solutions of LPPs by Mathematica, MATLAB, WinQSB, and LINDO have also been explained in the Appendix.

Exercises are given at the end of each chapter so that students can practice a variety of problems. In order to make it easy for students to follow along, all of the materials related to various topics are arranged in a systematic way. All the definitions, theorems, and procedures for solving problems and all cases related to the various topics are discussed clearly in simple language.

The book is divided into nine chapters. At the beginning, Chapter 1 discusses the basic concepts of algebra that include vectors, matrices, operations on matrices and other related methods like the Gauss-Jordan method, solutions of simultaneous linear equations, convex sets, and so forth. The use of MS-Excel in algebraic computations is also explained with relevant examples. All of these concepts are used in developing and understanding the solution procedure for solving a Linear Programming Problem (LPP), so it was essential to incorporate them in the book as a separate chapter. Chapter 2 explains each definition along with the formulation and graphical method for the solution of a linear programming problem. Some important definitions and theorems related to the solution of linear programming problems have also been incorporated. Also, the use of MS-Excel for plotting graphs and finding the solution of an LPP is thoroughly explained with examples. Chapter 3 focuses on solving linear programming problems by the simplex method with the help of its canonical form in a slightly different manner, which has been explained by very few authors. In Chapter 4, the M-Charnes and two Phase-methods are included, in which the manual solution procedure and the solution by using Excel the Solver and the Jensen add-in have also been discussed in detail. In addition, a detailed discussion of various special LPP using both Excel Solver and simplex tables is included in the chapter. The concept of duality with its related theorems and importance is the main topic explained in detail in Chapter 5. In Chapter 6, a sensitivity analysis is carried out in a linear programming problem by considering all possible changes in the parameters and structure of the LPP. Chapters 7 and 8 are on transportation, transshipment, and assignment problems. In these chapters the definition and procedure for solving these types of problems are discussed at length. Chapter 9 is on game theory, where the solution of game problems using different techniques is explained and the use of Gambit Software for finding solutions is discussed as well. Suggestions for further enhancement are welcome.

Dr. A. J. Meitei

Dr. Veena Jain

CHAPTER 1

BASICS OF LINEAR ALGEBRA USING MS-EXCEL

1.1.Vectors

An arrangement of elements either in a row or in a column is called a vector and is usually denoted by lowercase bold letters like a, b, c, and so on.

a = (a1, a2, a3) is a row vector of three elements, and ai, where i = 1, 2, 3, is said to be the ith element of a. Similarly, [image: figure] is a column vector with two elements.

Geometrically, any vector a = (a1, a2) can be considered as a point in a 2-dimensional space. In general a vector a = (a1, a2, a3, …, an) can be considered as a point in an n-dimensional space.

Equality of two vectors: Two n-component vectors a = (a1, a2, a3, …, an) and b = (b1, b2, b3, …, bn) are said to be equal if ai = bi for all i = 1, 2, 3, ..., n. It should also be noted that if a = b then b = a.

Addition of vectors: Let a1 = (2, 4, 6, 9) and a2 = (1, 4, 5, 2) be any two vectors from a 4-dimensional real space. Then the addition of a1 and a2, denoted by a1 + a2, is given as follows:

a1 + a2 = (2 + 1, 4 + 4, 6 + 5, 9 + 2) = (3, 8, 11, 11). To solve this using Excel, we can use the command for matrix addition. This operation shown in the screenshot will be explained later in matrix addition.

Dot or Inner Product of Vectors: The inner or dot product of two vectors will be defined only if the vectors have the same number of components. Let a1 and a2 be any two real vectors from an n-dimensional real space. Then the inner or dot product of a1 and a2 is given by,

[image: figure]

Fig. 1.1

[image: figure]

Let a1 = (2 4 6) and a2 = (1 4 5), and then a1 · a2 = 2 × 1 + 4 × 4 + 6 × 5 = 48. It is also to be noted that the inner product of any two vectors is always a scalar.

[image: figure]

Fig. 1.2

In Excel the SUMPRODUCT function can be used to find the dot product of any two vectors of the same dimension.

Zero Vector: A vector whose elements are all zero is called a zero vector, and it is usually denoted by 0. This vector is also referred to as the origin. In the XY plane, (0 0) is a zero vector with two components.

Unit Vector: A vector denoted by ei whose ith component is 1 and all the remaining components are zero is called the ith unit vector. For a 3-dimensional space there are three unit vectors, namely e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1).

Sum Vector: A vector whose elements are all 1 is called a sum vector and is denoted by 1; that is, 1 = (1, 1, …, 1).

Euclidean Space: This space, sometimes called Cartesian space or simply n space, is the space of all n-tuples of real numbers (x1, x2, ... xn) and is generally denoted by Rn or En.

Matrix: A rectangular arrangement of numbers into rows and columns is called a matrix and is always enclosed in either brackets [] or parentheses (). If the matrix has m rows and n columns, it is called an m × n matrix (read as “m” by “n”). m × n is called the dimension of the matrix. It is usually denoted by capital boldface letters, such as A, B, C, and so forth. A matrix has no numerical value, and the numbers in the matrix are called elements of the matrix. A double subscript is used to denote the location of the element in the matrix, where the first subscript indicates the row number and the second subscript indicates the column number. For example:

[image: figure] is a 2 × 2 matrix or 2 by 2 matrix, and aij is the element in the ith row and jth column of the given matrix where i =1, 2 and j =1, 2.

Square Matrix: A matrix whose number of rows are equal to the number of columns is called a square matrix. For example, [image: figure] is a 2 × 2 square matrix.

Zero Matrix: If each element in a matrix is zero, then the matrix is said to be a zero or null matrix; [image: figure] is a 2 × 3 zero matrix. A null matrix need not be a square matrix.

Identity Matrix: A square matrix denoted by I, in which all diagonal elements are one and the other elements are zero, is called an identity matrix. An m × m identity matrix is denoted by Im. It should also be noted that the multiplication of an identity matrix with any other matrix is the matrix itself, that is, AIm = Im A = A, where A is any m × m matrix.

Determinant: It is a number which is associated with every square matrix. The determinant of the nth order matrix A denoted by |A| is computed as follows:

[image: figure]

where the sum is taken over all permutations of the second subscript. A plus sign is assigned to even permutations and a minus sign to odd permutations.

Consider a third-order matrix [image: figure]

Then |A| = a11a22a33 – a12a21a33 + a12a23a31 – a13a22a31 + a13a21a32 – a11a23a32

In Excel, we can use the MDETERM function to find the determinant of any square matrix as follows:

[image: figure]

Fig. 1.3

Singular Matrix: A square matrix B is said to be a singular matrix if its determinant is zero; otherwise, it is non-singular. For example:

[image: figure] is a non-singular matrix, as |A| = 668 ≠ 0.

[image: figure] is a singular matrix, as |B| = 0.

Triangular Matrix: Any square matrix is said to be an upper triangular matrix if all the entries below the main diagonal are zeros. Similarly, any square matrix is called a lower triangular matrix if entries above the main diagonal of the matrix are zeros.

For example, [image: figure]is an upper triangular matrix, and is [image: figure] a lower triangular matrix.

Multiplication of a Matrix by a Scalar: Let A be an m × n matrix and k be any scalar. Then B = kA is an m × n matrix whose every element is k times the corresponding element of A.

Let [image: figure] and k = 4. Then [image: figure]

To perform this calculation in Excel, select the output space for B, then multiply the matrix A by k as follows, and finally press Ctrl, Shift, and Enter simultaneously.

[image: figure]

Fig. 1.4

Addition of Matrices: The addition of two matrices is defined only if they are of the same dimension. The previous matrices A and B are of the same dimension, 4 × 4, and their addition C = A + B is another matrix of same dimension whose elements are the sum of the corresponding elements of the matrices A and B.

[image: figure]

[image: figure]

Fig. 1.5

The previous figure is the screenshot of the same calculation in Excel. Select the dimension of C and then press Ctrl, Shift, and Enter simultaneously, and we will have the required value of C.

Transpose of a Matrix: It is obtained by interchanging the rows and columns of the matrix; for example, the transpose of an m × n matrix C is a new matrix of dimension n × m whose rows are the columns of C and vice versa, generally denoted by C′ or CT.

Let [image: figure]

Then [image: figure]

In Excel, we can use the TRANSPOSE function to find the transpose of a given matrix.

[image: figure]

Fig. 1.6

Matrix Multiplication: The multiplication of any two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix. Let A be an m × n and B be an n × p matrix. Then their product is another matrix C (= AB) of order m × p with:

[image: figure] for i = 1, 2, 3, …, m and j = 1, 2, 3, …, p

Example: [image: figure] and [image: figure]

Then

[image: figure]

In Excel the MMULT function can be used for matrix multiplication.

Step 1. Select the dimension of the matrix C in the output space.

Step 2. Type the command MMULT.

Step 3. Select the two matrices as shown in the following figure.

Step 4. Finally, press Ctrl, Shift, and Enter simultaneously.

[image: figure]

Fig. 1.7

Remark: For doing any matrix operation in Excel, one should always press Ctrl, Shift, and Enter simultaneously after the necessary inputs.

Vector Space: A vector space is a space consisting of a collection of vectors which are closed under the operation of addition and multiplication by a scalar; that is, if vectors a, b are in a collection, then a + b and ka will also be in the collection, where k is a scalar quantity.

Rank: The rank of any matrix A, written as r (A), is the maximum number of linearly independent columns in A, or it is the order of the largest non-vanishing minor (determinant of the square submatrix) in A. The rank of a matrix is always unique, since the row rank is always equal to the column rank; that is, the maximum number of linearly independent columns in a matrix is always equal to the maximum number of linearly independent rows.

For example, [image: figure] has rank 1 since |A| = 0 and every minor of order 2 also vanishes.

Note: The rank of a matrix A will be equal to the dimension of the largest square sub-matrix of A which is non-singular.

Example 1.1. Show that the rank of [image: figure] is zero.

Solution: We cannot identify any sub-matrix of the given matrix which is non-singular, and hence the rank of the matrix is zero.

Example 1.2. Show that the rank of [image: figure] is 3.

Solution: The determinant of the largest sub-matrix of the given matrix, which is different from zero, is the matrix itself. Hence the rank of the given matrix is 3.

[image: figure]

Fig. 1.8

Example 1.3. Show that the rank of [image: figure] is 2.

Solution: The determinant of the largest order sub-matrix of the given matrix, which is different from zero, is of dimension 2 × 2. Hence the rank of the given matrix is 2.

Matrix Inverse: An n × n square matrix B is said to be the inverse of another n × n non-singular square matrix A if BA = I, where I is the identity matrix of the same dimension. The inverse of matrix A is usually denoted by A–1.

In Excel we can use the MINVERSE function to find the inverse of any square matrix.

[image: figure]

Fig. 1.9

Example 1.4. Use the MINVERSE function to find the inverse of the following matrix:

[image: figure]

Solution: The following is the screenshot of the Excel calculation of the inverse of matrix A.

1.2.Linear Independence and Dependence of Vectors

Linear combination of vectors: Let a1, a2, a3, …, ak be a set of k vectors from Rn and λ1, λ2, λ3, …, λk be any k scalars, and then the vector

c = λ1a1 + λ2a2 + λ3a3 + ... + λkak

is known as a linear combination of vectors a1, a2, a3, …,ak.

Linearly dependent vectors: A set of vectors a1, a2, a3, …, ak from Rn is said to be linearly dependent if there exist scalars λ1, λ,2, λ3, ..., λk that are not all zero, such that

λ1a1 + λ2a2 + λ3a3 + ... + λkak = 0

And if the previous equation holds only when all λi (i = 1, 2, 3, …, k) are zero, then the vectors are said to be linearly independent.

Note: To check the linear independence of vectors, we can write the linear combination of the given vectors as a system of linear equations of the form λA = 0 and solve for λ. If the solution contains at least one λi ≠ 0, then the set of vectors is linearly dependent; otherwise, it is linearly independent.

Example 1.5. The vectors a1 = (2, 6) and a2 = (4, 12) are linearly dependent vectors, as we can find λ1= 2 and λ2 = –1, for which λ1a1 + λ2a2 = 0.

Example 1.6. The vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1) are linearly independent. We have,

[image: figure]

Hence, the set of unit vectors is always linearly independent.

Notes:

	(i)
	A null vector is not linearly independent of any other vector or set of vectors.

	(ii)
	If a set of vectors is linearly independent, then any subset of these vectors is also linearly independent.

	(iii)
	If any set of vectors is linearly dependent, then any larger set of vectors containing these vectors is also linearly dependent.

	(iv)
	Any vector x is said to be linearly dependent on a set of vectors x1, x2,..., xk if x can be written as a linear combination of the set of vectors.

	(v)
	If x1, x2,... , xk is a given set of vectors from Rn and there exists at least one subset of r < k vectors which are linearly independent but no subset containing (r + 1) vectors is linearly independent, then r is the maximum number of linearly independent vectors in the given set. Given this subset of r linearly independent vectors in the set, any other vector in the set can be written as a linear combination of these r vectors.

	(vi)
	A set of vectors b1, b2 …, bk from Rn where k ≥ 2 is linearly independent if and only if one of these vectors can be written as a linear combination of the others.

Spanning Set: A set of vectors a1, a2, …, ak (k ≥ 2) from Rn is said to span or generate Rn if every vector in Rn can be written as a linear combination of the given set of vectors. The vectors in the spanning set must be linearly independent.

Basis: A basis for Rn is a subset of linearly independent vectors from Rn which spans the entire space.

Notes:

	(i)	There exist an infinite number of bases in Rn.

	(ii)	A set of unit vectors will always form a basis, since it is linearly independent and any vector in the space can be written as a linear combination of unit vectors.

	(iii)	The basis formed by the set of unit vectors is called a standard basis.

Theorem 1.1. The set of unit vectors forms a basis.

Proof. Let ei (i = 1, 2, 3, …, n) denote the set of n unit vectors from Rn. Then we will have to show that ei′s is linearly independent and any vector of Rn should be able to be expressed as a linear combination of these unit vectors.

Let λi′s be n scalars, and then we have

[image: figure]

[image: figure]

This implies ei (i = 1, 2, 3, …, n) is linearly independent.

Let x = (x1, x2, …, xn) be any other vector of Rn different from ei′s. Then we can express the vector x as a linear combination of the n unit vectors as follows:

[image: figure]

Since x is any vector from Rn different from ei(i = 1, 2, 3, …, n), every vector of Rn can be expressed as a linear combination of these unit vectors. Hence, the set of unit vectors always forms a basis for the given space.

1.3.Solution to a System of Simultaneous Linear Equations

Consider a system of m simultaneous linear equations in n unknowns of the form

[image: figure]

In the set of equations (1.1), x1, x2, …, xn are the unknown decision variables, and aij′ s and bi′s are constants where i = 1, 2, ... m, and j = 1, 2 ... n.

A solution to (1.1) is the set of values of the unknown variables xj′s, j = 1……n which satisfies all the m equations of (1.1).

For understanding linear programming we need to understand the properties of solutions to the linear system of equations. Keeping this in mind, we will devote some effort to studying such systems. The matrix representation of the set of equations (1.1) can be written as,

[image: figure]

The system of simultaneous linear equations may have either no solution or at least one solution. To determine the conditions under which the system has at least one solution, form an augmented matrix A|b = (A,b) of the order m × (n + 1) containing the whole matrix A and the vector b. We always have r(A|b) ≥ r(A) since every minor of A also appears in A|b. Now

	(i)	If r (A|b) > r (A), then no solution exists to the given system of linear equations.

	(ii)	If r (A|b) = r (A), then there exists at least one solution.

	 	If the system of equations has at least one solution, then the given set of equations is called consistent; otherwise, it is said to be inconsistent. Further:

	(i)	If m = n and r (A|b) = r (A) = m, then there exists a unique solution to (1.1).

	(ii)	If m < n and r (A|b) = r (A) = k < m, then m − k of the equations are redundant. Any solution which satisfies k equations will also satisfy m − k of the equations.

	(iii)	If m < n and r (A|b) = r (A) = m, then there exist an infinite number of solutions to the given system.

Basic Solution: Given a system of m simultaneous linear equations in n unknowns (m < n),

[image: figure]

Let Bm × m be any m × m non-singular sub-matrix of Am × n. Then, the solution obtained by setting the (n − m) variables not associated with the columns of Bm × m equal to zero is called a basic solution to the given system of equations.

Let the set of m variables associated with the columns of Bm × m be denoted by xB and the remaining (n − m) variables by xNB (= 0), and then

[image: figure]

is the basic solution for the given system of equations.

Notes:

	(i)
	If xB ≥ 0, then the basic solution is called a basic feasible solution. If one or more variables in the basic feasible solution have a zero value, then it is called a degenerate basic feasible solution. Otherwise, it is called a non-degenerate basic feasible solution.

	(ii)
	The maximum number of basic solutions in m linear equations “in which n is unknown”? (where m < n) is [image: figure]. To get all these basic solutions, every set of m columns must be linearly independent.

Example 1.7. Find all the possible basic solutions of the following simultaneous linear equations:

[image: figure]

Solution: The matrix representation of the given system of equations is

[image: figure]

Here the rank of the coefficient matrix A is 2. The following are our 2 × 2 non-singular sub-matrices from the coefficient matrix.

[image: figure] and [image: figure].

The sub-matrix [image: figure] will not be considered, as it is a singular matrix.

When [image: figure], we have

[image: figure]

Hence, xB = (x1 = 9.89, x3 = 1.22) and xNB= (x2 = 0), which is a non-degenerate basic feasible solution.

Similarly, when [image: figure] bh, xB = (x2 = 4.94, x3 = 1.22) and xNB = (x1 = 0), which is also a non-degenerate basic feasible solution.

1.4.The Gauss-Jordan Method for Solving Systems of Linear Equations

Here we shall discuss a very efficient method (the Gauss-Jordan method) for solving a system of linear equations. Gauss-Jordan elimination involves creating an augmented matrix of both sides of our equations, changing this matrix into reduced row echelon form (a form in which a matrix has zeros on the lower diagonal and the first non-zero number in each row is 1. Also, if a column has a leading 1, then all the other numbers in that column below 1 need to be 0), then finishing up the problem to find our solution. This method can lead us to one of the following three cases:

	(i)
	The system has no solution.

	(ii)
	The system has a unique solution.

	(iii)
	The system has an infinite number of solutions.

The elementary row operation that we apply in this method is important in the sense that a similar type of elimination method will be used in the simplex method for solving a given linear programming problem (LPP).

Example 1.8. (Problem with no solution).

[image: figure]

The augmented matrix representation of the previous system is:

[image: figure]

(Divide R1 by 2 and Multiply new R1 by 10 and subtract from R2)

It can be easily seen that matrix A cannot be converted to an identity matrix. This implies:

[image: figure]

Whatever the values of x1 and x2 are, the second equation can never be satisfied. Hence, the given system of equations has no solution.

Example 1.9. (Problem with a unique solution). Use the Gauss-Jordan method to solve the following system of simultaneous linear equations:

[image: figure]

The augmented matrix representation of the previous system is:

[image: figure]

Hence, the solution to the given system of equations is x1= 0.6667, x2 = –6, and x3 = 10.667. It can also be seen that the previous system of equations has a unique solution.

Example 1.10. (Problem with an infinite solution). Use the Gauss-Jordan method to solve the following system of simultaneous linear equations:

[image: figure]

The augmented matrix representation of the previous system is:

[image: figure]

The linear system corresponding to A | b is

[image: figure]

This implies that x2 = 2 and x1 = 4 – x3; that is, for different values of x3, we can obtain different values of x1. Hence, we have infinite solutions to the given system of equations.

Remark: In the Gauss-Jordan methods the following points can be noted:

	(i)
	In the final augmented matrix, if we have any row with [0, 0, 0, 0 | k] with k ≠ 0, then the system of equations will not have a solution.

	(ii)
	If the final augmented matrix is in the form [In | k], then the system of equations will have a unique solution.

	(iii)
	If we have any row with [0, 0, 0, …, 0 | k] with k = 0, then the system of equations will have an infinite number of solutions.

Example 1.11. Use Gauss-Jordan elementary row operations to find the inverse of the matrix given in Example 1.4.

Solution: To find inverse of A using the Gauss-Jordan method, form the augmented matrix (A | I). Now we will try to reduce the matrix A to an identity matrix by elementary row operations:

[image: figure]

Divide the first row by 2 and subtract the second and third rows from the new row.

[image: figure]

Divide the second row by 6 and subtract the new row from the third row, and also multiply the new row by 2 and subtract from the first row.

[image: figure]

Divide the third row by – 2, multiply the new row by 3, and subtract it from the first row.

[image: figure]

So the inverse of the matrix A is [image: figure]

1.5.Convex Sets

Line Segment: The line segment joining any two points x and y from Rn is a collection of points u, where

[image: figure]

Here the points x and y are called the endpoints of the line segment. It is usually denoted by [x : y].

The open line segment joining x and y is a collection of points, u, where

[image: figure]

It is usually denoted by (x : y).

Convex Sets: A set S is said to be a convex set, if for any two points belonging to the set, the line segment joining these two points also belongs to the set itself.

For example, for any two points x1 and x2 in S, the line segment joining these two points λx1 + (1 – λ)x2 ϵ S for each λϵ [0, 1].

The line segment λx1 + (1 – λ)x2 for λϵ [0, 1] is also called a convex combination of x1 and x2.

[image: figure]

Fig. 1.10 Convex sets

[image: figure]

Fig. 1.11 Non-Convex sets

Example 1.12. Prove that S = {(x1, x2): x1 x2 ≥ 1; x1 ≥ 0, x2 ≥ 0} is convex.

Solution: Let u = (u1, u2) and v = (v1, v2) be any two points of the set S, then

[image: figure]

Multiplying (1.2) and (1.3),

[image: figure]

Let r = (r1, r2) represent a point on the line segment joining u and v. Then

[image: figure]

Now, [image: figure]

[image: figure]

Hence the set S is a convex set.

Example 1.13. Show that the set S = {(x1, x2): x21 + x22 ≤ 9; x1 ≥ 0, x2 ≥ 0} is convex.

Solution: Let u = (u1, u2) and v = (v1, v2) be any two points of the set S, then

[image: figure]

Let r = (r1r2) represent a point on the line segment joining u and v. Then

[image: figure]

Now, r12 + r22 = (λu1 + (1– λ) v1)2 + (λu2 + (1 – λ) v2)2

[image: figure]

Also since [image: figure] we have

[image: figure]

Hence, the set S is a convex set.

Example 1.14. Show that a line segment [x : y] joining any two points x, y ϵ Rn is a convex set.

Proof. The line segment joining the two points x, y ϵ Rn is given by,

[image: figure]

Let u, v ϵ [x : y], then

[image: figure]

Also let w denote a point on the line segment joining the two points u and v, then

[image: figure]

From (1.13), (1.14), and (1.15), we have

[image: figure]

Putting,

[image: figure]

since 0 ≤ β, λ′ and λ″ ≤ 1, we have 0 ≤ α ≤ 1.

Now, 1 – α = 1 – [βλ′ + (1 – β) λ″]

[image: figure]

Therefore, (1.16) can be rewritten as:

[image: figure]

⇒ w ϵ [x : y], hence the line segment is a convex set.

Hyperplane: A set S = {x: c′x = α} is said to be a hyperplane in a n-dimensional space if c is a non-zero vector in Rn and α is any scalar.

A straight line in a 2-dimensional space and a plane in 3-dimensional space are examples of hyperplanes.

Theorem 1.1. A hyperplane S = {x: c′x = α} is a convex set.

Proof. Let u, v ϵ S, then c′u = α

[image: figure]

Let w denote a point on the line segment joining the two points u and v, then

[image: figure]

Now, c′w = c′ [λu + (1 – λ) v] = λ c′u + (1 – λ) c′v = λα + (1 – λ) α = α, which implies that all the points on the line segment joining the two points u and v are also part of the set S hyperplane. Hence, a hyperplane is a convex set.

Half-Space: A closed half-space is defined by S = {x: ax ≤ α} or S = {x: ax ≥ α}, where a is any non-zero vector in Rn and α is any scalar. 2- All the points on one side of the straight line in 2-dimensional space and all the points on one side of plane in 3-dimensional space are examples of half-space.

The sets S = {x: ax < α} and S = {x: ax > α}, are called open half-spaces.

Theorem 1.1. A half-space is a convex set.

Proof. Consider the closed half-space S = {x: ax ≤ α}, where a is any non-zero vector in Rn and α is any scalar.

Let u, v ϵ S, such that

[image: figure]

Let w be a point on the line segment joining the two points u and v, then

[image: figure]

Now, aw = a [λu + (1 – λ) v] = λau + (1 – λ) av ≤ λ α + (1 – λ) α = α (using (1.18))

Therefore, aw = ≤ α ⇒ All the points on the line segment joining the two points u and v are also part of the closed half-space. Hence, the given closed half-space is a convex set. Similarly, it can be proved for open half-spaces.

Theorem 1.1. The intersection of any two convex sets is also a convex set.

Proof: Let S1 and S2 be any two convex sets. And let T = S1 ∩ S2.

If x, y ϵ T, then x, y ϵ S1 and S2. Let x′ represent a point on the line segment joining x and y, then

[image: figure]

Since S1 and S2 are convex sets, x′ ϵ S1 and S2, which implies x′ ϵ T also.

⇒ T = S1 ∩ S1 is a convex set.

Remark: The intersection of any finite number of convex sets is again a convex set.

Polyhedron. It is the intersection of a finite number of half-spaces.

Theorem 1.1. The sum and difference of any two convex sets is again a convex set.

Proof. Let A and B be any two convex sets in Rn, and then we have to show that A ± B is also a convex set.

Let u and v be any two points of the sets A ± B so that

u = x1 ± y1 and v = x2 ± y2, where x1, x2, ϵ A and y1, y2 ϵ B. Let w be any point on the line segment joining u and v, then

[image: figure]

“Since A is a convex set and x1, x2 ϵ A, we have”?

[image: figure]

Similarly, for y1, y2 ϵ B,

[image: figure]

This implies,

[image: figure]

Thus, for any two points u and v from the set A ± B, the line segment joining these two points is also in A ± B. Hence, the sum and difference of any two convex sets is again a convex set.

Convex Hull. A convex hull of a set C of “n” points from Rn, denoted by H(C), is the smallest perimeter fence in Rn enclosing these “n” points.

If C is a convex set, then H(C) = C. The following are some illustrations of convex hulls.

[image: figure]

Fig. 1.12

Hence, a convex hull can also be defined as:

[image: figure]the smallest convex set containing all the points

[image: figure]the smallest area convex “polygon” enclosing the points

[image: figure]a convex “polygon” enclosing the points, whose vertices are points in the set

Convex combination of vectors. Let S = { x1, x2, x3, …, xm} be a set of “m” vectors from Rn. Then a linear combination of these vectors, [image: figure], where λi ≥ 0 and [image: figure], is called a convex combination of the given vectors.

Convex polyhedron. The set of all the convex combination of a finite number of vectors in Rn is called a convex polyhedron or a polytope spanned by these vectors. In other words, a polytope is a bounded polyhedron and always forms a convex set.

Simplex. A simplex in k-dimension is a polytope having exactly (k + 1) vertices. A simplex in a 1-dimensional space is a line segment, in two dimesnsions it is a triangle, and so on.

[image: figure]

Fig. 1.13 Polytope (a bounded Polyhedron)

Extreme Point: Let S be a convex set. A point r ϵ S is called an extreme point if, for any two points u, v ϵ S (where u ≠ v), r cannot be written as a convex combination of the points u and v. An extreme point will always be a boundary point, but all boundary points will not be extreme points.

[image: figure]

Fig. 1.14

OEBPS/css/page-template.xpgt

	

	

	
	

	

	
	

OEBPS/images/p22-2.jpg
w=ox+(l-au)y.0<a<1.

OEBPS/images/p22-1.jpg
PSP =A== P AT
=B(1-+(1-B(1-1"

OEBPS/images/p22-4.jpg
w=Au+(l1-1)v,0<SA<1

OEBPS/images/p22-3.jpg

OEBPS/images/p22-6.jpg
w=u+(l-A)v.forall0<rL<1

OEBPS/images/p22-5.jpg
au<oandav<=a

OEBPS/images/p5-1.jpg
COVAR v QX o f| -a7B2:ES
A [B|clole[F| c [milsmlimi

=4*B2:

|~ (I -

OEBPS/images/p9-2.jpg
=MINVERSE(D2:74)

OEBPS/images/p9-1.jpg
=MDETERM(F2:H4)

DER [B cEsNrR|¥a

OEBPS/images/in7-3.jpg
245
A=
323

)

OEBPS/nav.xhtml

Contents

		Cover Page

		Title

		Copyright

		Contents

		Preface

		1 Basics of Linear Algebra Using Ms-Excel

		1.1. Vectors

		1.2. Linear Independence and Dependence of Vectors

		1.3. Solution to a System of Simultaneous Linear Equations

		1.4. The Gauss-Jordan Method for Solving Systems of Linear Equations

		1.5. Convex Sets

		Exercises

		2 Introduction to LPPs and the Graphical Method

		2.1. Introduction

		2.2. Assumptions in a Linear Programming Problem

		2.3. Theorems on Extreme Points

		2.4. Areas of Application of LPPs

		2.5. Formulation of Linear Programming Models

		2.6. Graphical Method

		2.6.1. Extreme Point Approach

		2.6.2. ISO-Profit (cost) Function Line Approach

		2.7. Solution of LPPs by the Graphical Method Using MS-Excel

		2.8. Special Cases

		2.8.1. Problem with Multiple Solutions

		2.8.2. The Problem with Unbounded Solutions

		2.8.3. The Problem with Inconsistent Constraints

		2.8.4. The Problem with Redundant Constraint Equations

		Exercises

		3 Simplex Method-I

		3.1. Standard and Canonical Form of the General Linear Programming Problem

		3.2. Slack and Surplus Variables

		3.3. Algebraic Simplex Method

		3.4. Relationship between the Simplex and Graphical Methods

		3.5. Simplex Method in Tabular Form

		3.6. Use of Solver in MS-Excel for Solving a Linear Programming Problem

		3.7. Use of Jensen Add-Ins for a Linear Programming Problem

		Exercises

		4 Simplex Method-II

		4.1. Introduction

		4.2. Big M Method (Penalty Method)

		4.3. Two-Phase Method

		4.4. Degeneracy in Linear Programming Problems

		4.4.1. Perturbation Method for the Resolution of Degeneracy Problems in LPPs

		4.5. Solving a System of Linear Equations Using the Simplex Method

		4.6. Solution of a System of Linear Equations by Using Solver

		4.7. Inverse of a Matrix Using the Simplex Method

		4.8. Special Cases

		4.8.1. The Problem with Alternative or Multiple Solutions

		4.8.2. Unbounded Solutions

		4.8.3. The Problem with Inconsistent Constraint Equations

		Exercises

		5 Duality

		5.1. Introduction

		5.2. Rules for Finding the Dual of a Given Linear Programming Problem

		5.3. Finding the Optimal Dual Solution from the Optimal Table of the Primal Problem

		5.4. Use of the Graphical Method for Finding the Optimal Dual Solution

		5.5. Construction of a Simplex Table

		5.6. Duality Theorems

		5.7. Economic Interpretation of Duality

		5.8. Dual Simplex Method

		Exercises

		6 Sensitivity Analysis

		6.1. Introduction

		6.2. Changes in the RHS Vector bi

		6.2.1. Range of bi’s

		6.2.2. Simultaneous Changes in bi’s

		6.3. Addition of a New Constraint

		6.3.1. When the Current Solution Satisfies the New Constraint

		6.3.2. When the Current Solution Fails to Satisfy the New Constraint

		6.4. Adding a New Activity or a Variable

		6.5. Changes in the Objective Function Coefficients

		6.5.1. Changes in the Objective Function Coefficients of Non-Basic Variables

		6.5.2. Changes in Objective Function Coefficients of Basic Variables

		6.5.3. 100% Rule for Making Simultaneous Changes in the Objective Function Coefficients

		6.6. Changes in the aij Coefficients

		6.6.1. Changes in aij Coefficients of Non-Basic Variables

		6.6.2. Changes in aij- Coefficients of Basic Variables

		6.7. Deletion of a Variable

		6.8. Deletion of a Constraint

		6.9. Sensitivity by Using Excel Solver

		Exercises

		7 Transportation and Transshipment Problems

		7.1. Introduction

		7.2. Formulation of a Transportation Problem

		7.3. Various Methods for Finding the Initial Basic Feasible Solution

		7.3.1. North-West (N-W) Corner Method

		7.3.2. Row Minima Method

		7.3.3. Column Minima Method

		7.3.4. Least-Cost or Matrix Minima Method

		7.3.5. Vogel’s Approximation Method (VAM)

		7.4. Closed Path or Loop in Transportation Problems

		7.5. Moving Toward the Optimal Solution

		7.5.1. Stepping-Stone Method

		7.5.2. The Modified (MODI) Distribution or u-v Method

		7.6. Solution of Transportation Problems in Excel

		7.7. Some Special Cases in Transportation Problems

		7.7.1. Unbalanced Transportation Problems

		7.7.2. Restricted Entry

		7.7.3. Maximization Problems

		7.7.4. Multiple Solutions in Transportation Problems

		7.7.5. Degeneracy in Transportation Problems

		7.8. Transshipment Problems

		Exercises

		8. Assignment Problems

		8.1. Introduction

		8.2. Mathematical Formulation

		8.3. Assignment Problems as a Special Case of Transportation Problems

		8.4. Hungarian Method

		8.5. Special Cases in Assignment Methods

		8.5.1. Maximization Problems

		8.5.2. Restricted Entry

		8.6. Solution of Assignment Problems Using Excel Solver

		Exercises

		9 Game Theory

		9.1. Introduction

		9.2. Zero-Sum Games

		9.3. Maximin and Minimax Principle

		9.4. Game with a Saddle Point

		9.5. Game without a Saddle Point

		9.6. Graphical Solution of 2 × n and m × 2 Games

		9.7. Method of Dominance

		9.8. Solution of a Game Using the Simplex Method

		9.9. Solution of a Game Using Gambit

		Exercises

		Appendix: Use of Mathematica, Matlab, Lindo, and WinQSB to Solve Linear Programming Models

		References

		Index

Pagebreaks of the print version

		i

		ii

		iii

		iv

		v

		vi

		vii

		viii

		ix

		x

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

		19

		20

		21

		22

		23

		24

		25

		26

		27

		28

		29

		30

		31

		32

		33

		34

		35

		36

		37

		38

		39

		40

		41

		42

		43

		44

		45

		46

		47

		48

		49

		50

		51

		52

		53

		54

		55

		56

		57

		58

		59

		60

		61

		62

		63

		64

		65

		66

		67

		68

		69

		70

		71

		72

		73

		74

		75

		76

		77

		78

		79

		80

		81

		82

		83

		84

		85

		86

		87

		88

		89

		90

		91

		92

		93

		94

		95

		96

		97

		98

		99

		100

		101

		102

		103

		104

		105

		106

		107

		108

		109

		110

		111

		112

		113

		114

		115

		116

		117

		118

		119

		120

		121

		122

		123

		124

		125

		126

		127

		128

		129

		130

		131

		132

		133

		134

		135

		136

		137

		138

		139

		140

		141

		142

		143

		144

		145

		146

		147

		148

		149

		150

		151

		152

		153

		154

		155

		156

		157

		158

		159

		160

		161

		162

		163

		164

		165

		166

		167

		168

		169

		170

		171

		172

		173

		174

		175

		176

		177

		178

		179

		180

		181

		182

		183

		184

		185

		186

		187

		188

		189

		190

		191

		192

		193

		194

		195

		196

		197

		198

		199

		200

		201

		202

		203

		204

		205

		206

		207

		208

		209

		210

		211

		212

		213

		214

		215

		216

		217

		218

		219

		220

		221

		222

		223

		224

		225

		226

		227

		228

		229

		230

		231

		232

		233

		234

		235

		236

		237

		238

		239

		240

		241

		242

		243

		244

		245

		246

		247

		248

		249

		250

		251

		252

		253

		254

		255

		256

		257

		258

		259

		260

		261

		262

		263

		264

		265

		266

		267

		268

		269

		270

		271

		272

		273

		274

		275

		276

		277

		278

		279

		280

		281

		282

		283

		284

		285

		286

		287

		288

		289

		290

		291

		292

		293

		294

		295

		296

		297

		298

		299

		300

		301

		302

		303

		304

		305

		306

		307

		308

		309

		310

		311

		312

		313

		314

		315

		316

		317

		318

		319

		320

		321

		322

		323

		324

		325

		326

		327

		328

		329

		330

		331

		332

		333

		334

		335

		336

		337

		338

		339

		340

		341

		342

		343

		344

		345

		346

		347

		348

		349

		350

		351

		352

		353

		354

		355

		356

		357

		358

OEBPS/images/in19-1.jpg
0.04 058 1.5
-008 017 0
021 0.08 -0.5

OEBPS/images/in7-4.jpg

OEBPS/images/in3-1.jpg
(

a4y
a,,

a4y

OEBPS/images/in3-2.jpg

OEBPS/images/in7-1.jpg

OEBPS/images/in7-2.jpg
L

OEBPS/images/in3-3.jpg
[000)

00 0

OEBPS/images/p10-1.jpg
e oo~
now o,
N~ o~

OEBPS/images/p10-2.jpg
1,0,0)+ +2,(0,0,1)=(0,0,0
0,0.1)=(

0,1,0)+ A

@

2

(2.0,

4

=

OEBPS/images/p14-1.jpg
xytax,txy =20

+2x,+5x,= 16

OEBPS/images/p14-3.jpg
G e
(- o))

(B is obtained using MINVERSE in Excel)
%) (089
= |x) L2

OEBPS/images/p14-2.jpg

OEBPS/images/p18-1.jpg
2 4 61 00
183010
13100 01

OEBPS/images/p18-3.jpg
1.0 3067 -033 0
0 1 0[-008 017 0
0 0 -2-042 017 1

OEBPS/images/p18-2.jpg
1.2 305 00
06 005 1 0
01 2050 1

OEBPS/images/in15-1.jpg

OEBPS/images/p18-4.jpg
1.0 0[0.04 -058 15
0 1 0008 017 0
0 0 1/021 008 -0.5

OEBPS/images/cover.jpg
OPTIMIZATION
USING
LINEAR PROGRAMMING

N] A. MEITEI - V. JAIN

OEBPS/images/p23-1.jpg
M+ (1-A)y.forall0<AL=<1

OEBPS/images/in20-1.jpg
nry =(A +(1=2)v,)(Ay +(1-2) v,)

OEBPS/images/p23-3.jpg
tx, F(1-A)x,ed. forall 0 =L <1

OEBPS/images/p23-2.jpg
=hut(1-~v forall0=r=1
=k zy) (-0 (x,xy)
=[x, + (1= x,] [y, + (1 =1) p,]

OEBPS/images/p23-5.jpg
=Au+(l-A)vedAxB. forall0<rL<]1.

OEBPS/images/in24-1.jpg

OEBPS/images/p23-4.jpg
ry,T(1—-2A)y,eB. forall0 <A <1

OEBPS/images/p4-2.jpg
e Jr.,.....w..m.. Mledicib il] ;JE

| Clipboard i Font]
cowr. ~(3_X__fe] ~MDETERM(B2:E5)

[AlBlclofelF] 6 [u 1 J K

Determinant of A [-MDETERM(B2:E5)

OEBPS/images/p4-1.jpg
A[=) ()a, a; ...

OEBPS/images/in24-2.jpg

OEBPS/images/p8-1.jpg
-MMULT(D4:FS, 3:

RN — W

% 2 a 3 e
32 3
T |a [=MMULT(D4:F'5,13:K5)

OEBPS/images/in8-2.jpg
RIS
SN

S o o

OEBPS/images/in4-1.jpg

OEBPS/images/in8-1.jpg

OEBPS/images/in4-2.jpg

OEBPS/images/p15-2.jpg
2 310
[10 15‘60]
1135
:[o 0‘10]

OEBPS/images/p15-1.jpg

OEBPS/images/p19-2.jpg

OEBPS/images/p19-1.jpg

OEBPS/images/p19-4.jpg

OEBPS/images/p19-3.jpg

OEBPS/images/p20-2.jpg
u, u, v, v, 21
...(1.4)

OEBPS/images/p20-1.jpg
upu = 1

vov,>1

OEBPS/images/p20-4.jpg
=Ry + A (1=)y, + A(1-2) vy + (1= 1) wy,
= Py + A (1= 2) [y + v, | +(1-2) v,
202) 2 12
= Ry + 22(1-2) iy, +(1-2) vy,
(=)o oY)
2 Auy + 24 (1=) Jugva, + (1-A) vy,
A=)y -]20
2 Au, + 24 (1= 2)ugyay, +(1-2) vy,
227 124(1-2)+ (1-2)
=1

o n+n>1

OEBPS/images/p20-3.jpg
=huyt(1-A)v,.forall0=r=1 -(1.3)
=+ (L=W) v, forall 0<A<1 (1.6)

OEBPS/images/p20-5.jpg
St u
utu <9

OEBPS/images/p24-1.jpg

OEBPS/images/p7-1.jpg
=TRANSPOSE(B2:E5)

MA

FEECEOECCEEE

OEBPS/images/logo.jpg

OEBPS/images/in21-1.jpg
v, +uv, < (b +ud Y7 +v2)

OEBPS/images/p7-2.jpg
2%1+4%3+5%6 2%2+4*5+5%9
T3%1+2%3+3%6 3%2+2%5+3%9

OEBPS/images/in5-5.jpg
8 16 8 24
12 16 36 28
8 32 4 0
16 4 20 32

OEBPS/images/in9-1.jpg
o om o~
"o o

o=

OEBPS/images/in9-2.jpg
© m o~
"o om

o=

OEBPS/images/in1-1.jpg

OEBPS/images/in5-3.jpg
Sown
° v~
R
W

OEBPS/images/in5-4.jpg

OEBPS/images/in5-1.jpg

OEBPS/images/in5-2.jpg
% o~

+ s o

a oo
[

OEBPS/images/p12-1.jpg
> e, =0
2.

OEBPS/images/p12-3.jpg
= (1.0

) + ;\2(0 L. 0+ +4(0.0...1)=(00...0)
. o)

OEBPS/images/p12-2.jpg
G %+ Xy Fe X, =0

X, + X, 08, X, = by
: : (L)

A% + Ay Xy +..ot A X,

OEBPS/images/p16-1.jpg

OEBPS/images/p12-4.jpg

OEBPS/images/p16-3.jpg
2 116
Alb=|-1 1 14
2 3 1-6
105 053
15 1507
2 012

I
O

(Divide R, by 2)
(Multiply new R, by 1 and add it with Ry)
(Multiply new R, by 2 and subtract it from R,)

1.0 0]0.6667
=[0 1 1]4.6667
0 0 -2-21333

(Multiply new R, by 0.5 and subtract it from R,)
(Divide R, by 1.5)
(Multiply new R, by 2 and subtract it from R,)
(Subtract new R, from R,)
(Divide R, by -2)

10 0[0.6667

=01 0 -6
0 0 1]10.667

OEBPS/images/p16-2.jpg
XX, Tx;=0
~ tx,x =4

2x, +3x, +x, =6

OEBPS/images/squre.jpg

OEBPS/images/p21-1.jpg
=ty +(1=a)v.forall0=r=1
=+ (=) v, forall 0 <1

1

OEBPS/images/p2-2.jpg

OEBPS/images/p21-3.jpg
eSO+ (1 -4 +20(1-4)9
=9

22
r2+12<9

OEBPS/images/p2-1.jpg
| Home | Insert pagelayout Fomulas Data

g
#

Clipboad &

COVAR

OEBPS/images/p21-2.jpg
= u) (=27 v+ v)) F 20 (1=4) (upy, +uy,)
<012+ 0 (1= 12+ 20 (1= 1) (upy, + uzvy) (111)
(Using (1.7) and (1.8))

OEBPS/images/p21-5.jpg
=aAx+(1-A)y,0=4'<1
"+ (1-2"yp.0<A"<1 ...(1.19)

OEBPS/images/p25-1.jpg

OEBPS/images/p21-4.jpg
ix+(1—-A)y.where0<A<1}

OEBPS/images/p21-7.jpg
=SPAx =2+ -p) *Wx(1-217)
BLY+A-BPLY)x+BA-)+1=-P(1=-1"y) ..(1.16)

OEBPS/images/p6-2.jpg
QX & fx | =D3:G6+13:M6
c lolelelel n [1 [s[x[e]m]
2 4 2 6 8 16 8 24
A 3 4 9 7| B8 12 16 36 28
2 8 1 o 8 32 4 0
4 15 8, 16 4__20_3:

OEBPS/images/p21-6.jpg

OEBPS/images/p25-2.jpg

OEBPS/images/p6-1.jpg
10 20 10
15 20 45
10 40 5
20 5 25

OEBPS/images/p2-3.jpg
43 copy.

 Format painter

rJ\

‘=SUMPRODUCT(C2:E2,C3:E3)

>
]
o

olel £ |

i

a [2 a ¢
e |1 a4 3

@y° @z [=SUMPRODUCT(C2:E2,C3:€3)

OEBPS/images/p21-8.jpg
—pB) A"

OEBPS/images/in14-5.jpg

OEBPS/images/in6-1.jpg
10 20 10 30
15 20 45 35
10 40 5 0

OEBPS/images/p13-2.jpg

OEBPS/images/p13-1.jpg
Where

Ax=>b

@y
A=|aya,

A,y Q.

OEBPS/images/p13-3.jpg
B . _x,=b .

g ko

OEBPS/images/p17-2.jpg
5 tx=6

X +x,=4

OEBPS/images/in14-3.jpg

OEBPS/images/p17-4.jpg

OEBPS/images/in14-4.jpg

OEBPS/images/p17-3.jpg
12 18
Alb=[1 1 1|6

10 14
L2ons (Subtract R, from R))
ez Subtract R, from R
0 2 04 (Subtract R, from R,)
10 14
_lo 1 d2 (AddR, and R,)
0 -2 04
10 14
“{o 1 o2 (Add R, and 2 * R)

0 0 00

OEBPS/images/in14-1.jpg

OEBPS/images/in14-2.jpg

