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PREFACE

This book on linear programming and game theory has been jointly written by Dr. A. J. Meitei and Dr. Veena Jain with an aim to meet the needs of the students of mathematics, commerce, economics, management studies, and other allied disciplines or courses. The explanation and presentation of every topic in the book have been made as simple and user-friendly as possible. Complex mathematics involved in various theorems and procedures has been avoided, and all explanations are given in simplified and systematic forms so that even non-mathematical students or those who know only basic mathematics can easily and conveniently read the book. The main emphasis is on the solution of various types of linear programming problems by using different kinds of software. Use of software in solving mathematical problems has been an integral part of syllabi these days. Keeping this in mind, the solution of problems using the MS-Excel Solver add-in and the external Jenson add-in have been discussed in all chapters of this book. We explain step by step the procedure of how the add-ins can be used to solve linear programming problems. In addition to MS-Excel, solutions of LPPs by Mathematica, MATLAB, WinQSB, and LINDO have also been explained in the Appendix.

Exercises are given at the end of each chapter so that students can practice a variety of problems. In order to make it easy for students to follow along, all of the materials related to various topics are arranged in a systematic way. All the definitions, theorems, and procedures for solving problems and all cases related to the various topics are discussed clearly in simple language.


The book is divided into nine chapters. At the beginning, Chapter 1 discusses the basic concepts of algebra that include vectors, matrices, operations on matrices and other related methods like the Gauss-Jordan method, solutions of simultaneous linear equations, convex sets, and so forth. The use of MS-Excel in algebraic computations is also explained with relevant examples. All of these concepts are used in developing and understanding the solution procedure for solving a Linear Programming Problem (LPP), so it was essential to incorporate them in the book as a separate chapter. Chapter 2 explains each definition along with the formulation and graphical method for the solution of a linear programming problem. Some important definitions and theorems related to the solution of linear programming problems have also been incorporated. Also, the use of MS-Excel for plotting graphs and finding the solution of an LPP is thoroughly explained with examples. Chapter 3 focuses on solving linear programming problems by the simplex method with the help of its canonical form in a slightly different manner, which has been explained by very few authors. In Chapter 4, the M-Charnes and two Phase-methods are included, in which the manual solution procedure and the solution by using Excel the Solver and the Jensen add-in have also been discussed in detail. In addition, a detailed discussion of various special LPP using both Excel Solver and simplex tables is included in the chapter. The concept of duality with its related theorems and importance is the main topic explained in detail in Chapter 5. In Chapter 6, a sensitivity analysis is carried out in a linear programming problem by considering all possible changes in the parameters and structure of the LPP. Chapters 7 and 8 are on transportation, transshipment, and assignment problems. In these chapters the definition and procedure for solving these types of problems are discussed at length. Chapter 9 is on game theory, where the solution of game problems using different techniques is explained and the use of Gambit Software for finding solutions is discussed as well. Suggestions for further enhancement are welcome.

Dr. A. J. Meitei

Dr. Veena Jain




CHAPTER 1

BASICS OF LINEAR ALGEBRA USING MS-EXCEL

1.1.Vectors

An arrangement of elements either in a row or in a column is called a vector and is usually denoted by lowercase bold letters like a, b, c, and so on.

a = (a1, a2, a3) is a row vector of three elements, and ai, where i = 1, 2, 3, is said to be the ith element of a. Similarly, [image: figure] is a column vector with two elements.

Geometrically, any vector a = (a1, a2) can be considered as a point in a 2-dimensional space. In general a vector a = (a1, a2, a3, …, an) can be considered as a point in an n-dimensional space.

Equality of two vectors: Two n-component vectors a = (a1, a2, a3, …, an) and b = (b1, b2, b3, …, bn) are said to be equal if ai = bi for all i = 1, 2, 3, ..., n. It should also be noted that if a = b then b = a.

Addition of vectors: Let a1 = (2, 4, 6, 9) and a2 = (1, 4, 5, 2) be any two vectors from a 4-dimensional real space. Then the addition of a1 and a2, denoted by a1 + a2, is given as follows:

a1 + a2 = (2 + 1, 4 + 4, 6 + 5, 9 + 2) = (3, 8, 11, 11). To solve this using Excel, we can use the command for matrix addition. This operation shown in the screenshot will be explained later in matrix addition.

Dot or Inner Product of Vectors: The inner or dot product of two vectors will be defined only if the vectors have the same number of components. Let a1 and a2 be any two real vectors from an n-dimensional real space. Then the inner or dot product of a1 and a2 is given by,


[image: figure]

Fig. 1.1

[image: figure]

Let a1 = (2 4 6) and a2 = (1 4 5), and then a1 · a2 = 2 × 1 + 4 × 4 + 6 × 5 = 48. It is also to be noted that the inner product of any two vectors is always a scalar.

[image: figure]

Fig. 1.2


In Excel the SUMPRODUCT function can be used to find the dot product of any two vectors of the same dimension.

Zero Vector: A vector whose elements are all zero is called a zero vector, and it is usually denoted by 0. This vector is also referred to as the origin. In the XY plane, (0 0) is a zero vector with two components.

Unit Vector: A vector denoted by ei whose ith component is 1 and all the remaining components are zero is called the ith unit vector. For a 3-dimensional space there are three unit vectors, namely e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1).

Sum Vector: A vector whose elements are all 1 is called a sum vector and is denoted by 1; that is, 1 = (1, 1, …, 1).

Euclidean Space: This space, sometimes called Cartesian space or simply n space, is the space of all n-tuples of real numbers (x1, x2, ... xn) and is generally denoted by Rn or En.

Matrix: A rectangular arrangement of numbers into rows and columns is called a matrix and is always enclosed in either brackets [] or parentheses (). If the matrix has m rows and n columns, it is called an m × n matrix (read as “m” by “n”). m × n is called the dimension of the matrix. It is usually denoted by capital boldface letters, such as A, B, C, and so forth. A matrix has no numerical value, and the numbers in the matrix are called elements of the matrix. A double subscript is used to denote the location of the element in the matrix, where the first subscript indicates the row number and the second subscript indicates the column number. For example:

[image: figure] is a 2 × 2 matrix or 2 by 2 matrix, and aij is the element in the ith row and jth column of the given matrix where i =1, 2 and j =1, 2.

Square Matrix: A matrix whose number of rows are equal to the number of columns is called a square matrix. For example, [image: figure] is a 2 × 2 square matrix.

Zero Matrix: If each element in a matrix is zero, then the matrix is said to be a zero or null matrix; [image: figure] is a 2 × 3 zero matrix. A null matrix need not be a square matrix.

Identity Matrix: A square matrix denoted by I, in which all diagonal elements are one and the other elements are zero, is called an identity matrix. An m × m identity matrix is denoted by Im. It should also be noted that the multiplication of an identity matrix with any other matrix is the matrix itself, that is, AIm = Im A = A, where A is any m × m matrix.

Determinant: It is a number which is associated with every square matrix. The determinant of the nth order matrix A denoted by |A| is computed as follows:

[image: figure]

where the sum is taken over all permutations of the second subscript. A plus sign is assigned to even permutations and a minus sign to odd permutations.

Consider a third-order matrix [image: figure]

Then |A| = a11a22a33 – a12a21a33 + a12a23a31 – a13a22a31 + a13a21a32 – a11a23a32

In Excel, we can use the MDETERM function to find the determinant of any square matrix as follows:

[image: figure]

Fig. 1.3

Singular Matrix: A square matrix B is said to be a singular matrix if its determinant is zero; otherwise, it is non-singular. For example:

[image: figure] is a non-singular matrix, as |A| = 668 ≠ 0.


[image: figure] is a singular matrix, as |B| = 0.

Triangular Matrix: Any square matrix is said to be an upper triangular matrix if all the entries below the main diagonal are zeros. Similarly, any square matrix is called a lower triangular matrix if entries above the main diagonal of the matrix are zeros.

For example, [image: figure]is an upper triangular matrix, and is [image: figure] a lower triangular matrix.

Multiplication of a Matrix by a Scalar: Let A be an m × n matrix and k be any scalar. Then B = kA is an m × n matrix whose every element is k times the corresponding element of A.

Let [image: figure] and k = 4. Then [image: figure]

To perform this calculation in Excel, select the output space for B, then multiply the matrix A by k as follows, and finally press Ctrl, Shift, and Enter simultaneously.

[image: figure]

Fig. 1.4


Addition of Matrices: The addition of two matrices is defined only if they are of the same dimension. The previous matrices A and B are of the same dimension, 4 × 4, and their addition C = A + B is another matrix of same dimension whose elements are the sum of the corresponding elements of the matrices A and B.

[image: figure]

[image: figure]

Fig. 1.5

The previous figure is the screenshot of the same calculation in Excel. Select the dimension of C and then press Ctrl, Shift, and Enter simultaneously, and we will have the required value of C.

Transpose of a Matrix: It is obtained by interchanging the rows and columns of the matrix; for example, the transpose of an m × n matrix C is a new matrix of dimension n × m whose rows are the columns of C and vice versa, generally denoted by C′ or CT.

Let     [image: figure]


Then     [image: figure]

In Excel, we can use the TRANSPOSE function to find the transpose of a given matrix.

[image: figure]

Fig. 1.6

Matrix Multiplication: The multiplication of any two matrices is defined only if the number of columns of the first matrix is equal to the number of rows of the second matrix. Let A be an m × n and B be an n × p matrix. Then their product is another matrix C (= AB) of order m × p with:

[image: figure] for i = 1, 2, 3, …, m and j = 1, 2, 3, …, p

Example: [image: figure] and [image: figure]

Then

[image: figure]


In Excel the MMULT function can be used for matrix multiplication.

Step 1. Select the dimension of the matrix C in the output space.

Step 2. Type the command MMULT.

Step 3. Select the two matrices as shown in the following figure.

Step 4. Finally, press Ctrl, Shift, and Enter simultaneously.

[image: figure]

Fig. 1.7

Remark: For doing any matrix operation in Excel, one should always press Ctrl, Shift, and Enter simultaneously after the necessary inputs.

Vector Space: A vector space is a space consisting of a collection of vectors which are closed under the operation of addition and multiplication by a scalar; that is, if vectors a, b are in a collection, then a + b and ka will also be in the collection, where k is a scalar quantity.

Rank: The rank of any matrix A, written as r (A), is the maximum number of linearly independent columns in A, or it is the order of the largest non-vanishing minor (determinant of the square submatrix) in A. The rank of a matrix is always unique, since the row rank is always equal to the column rank; that is, the maximum number of linearly independent columns in a matrix is always equal to the maximum number of linearly independent rows.

For example, [image: figure] has rank 1 since |A| = 0 and every minor of order 2 also vanishes.

Note: The rank of a matrix A will be equal to the dimension of the largest square sub-matrix of A which is non-singular.

Example 1.1. Show that the rank of [image: figure] is zero.


Solution: We cannot identify any sub-matrix of the given matrix which is non-singular, and hence the rank of the matrix is zero.

Example 1.2. Show that the rank of [image: figure] is 3.

Solution: The determinant of the largest sub-matrix of the given matrix, which is different from zero, is the matrix itself. Hence the rank of the given matrix is 3.

[image: figure]

Fig. 1.8

Example 1.3. Show that the rank of [image: figure] is 2.

Solution: The determinant of the largest order sub-matrix of the given matrix, which is different from zero, is of dimension 2 × 2. Hence the rank of the given matrix is 2.

Matrix Inverse: An n × n square matrix B is said to be the inverse of another n × n non-singular square matrix A if BA = I, where I is the identity matrix of the same dimension. The inverse of matrix A is usually denoted by A–1.

In Excel we can use the MINVERSE function to find the inverse of any square matrix.

[image: figure]

Fig. 1.9


Example 1.4. Use the MINVERSE function to find the inverse of the following matrix:

[image: figure]

Solution: The following is the screenshot of the Excel calculation of the inverse of matrix A.

1.2.Linear Independence and Dependence of Vectors

Linear combination of vectors: Let a1, a2, a3, …, ak be a set of k vectors from Rn and λ1, λ2, λ3, …, λk be any k scalars, and then the vector

c = λ1a1 + λ2a2 + λ3a3 + ... + λkak

is known as a linear combination of vectors a1, a2, a3, …,ak.

Linearly dependent vectors: A set of vectors a1, a2, a3, …, ak from Rn is said to be linearly dependent if there exist scalars λ1, λ,2, λ3, ..., λk that are not all zero, such that

λ1a1 + λ2a2 + λ3a3 + ... + λkak = 0

And if the previous equation holds only when all λi (i = 1, 2, 3, …, k) are zero, then the vectors are said to be linearly independent.

Note: To check the linear independence of vectors, we can write the linear combination of the given vectors as a system of linear equations of the form λA = 0 and solve for λ. If the solution contains at least one λi ≠ 0, then the set of vectors is linearly dependent; otherwise, it is linearly independent.

Example 1.5. The vectors a1 = (2, 6) and a2 = (4, 12) are linearly dependent vectors, as we can find λ1= 2 and λ2 = –1, for which λ1a1 + λ2a2 = 0.

Example 1.6. The vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1) are linearly independent. We have,

[image: figure]

Hence, the set of unit vectors is always linearly independent.


Notes:



	(i)
	A null vector is not linearly independent of any other vector or set of vectors.



	(ii)
	If a set of vectors is linearly independent, then any subset of these vectors is also linearly independent.



	(iii)
	If any set of vectors is linearly dependent, then any larger set of vectors containing these vectors is also linearly dependent.



	(iv)
	Any vector x is said to be linearly dependent on a set of vectors x1, x2,..., xk if x can be written as a linear combination of the set of vectors.



	(v)
	If x1, x2,... , xk is a given set of vectors from Rn and there exists at least one subset of r < k vectors which are linearly independent but no subset containing (r + 1) vectors is linearly independent, then r is the maximum number of linearly independent vectors in the given set. Given this subset of r linearly independent vectors in the set, any other vector in the set can be written as a linear combination of these r vectors.



	(vi)
	A set of vectors b1, b2 …, bk from Rn where k ≥ 2 is linearly independent if and only if one of these vectors can be written as a linear combination of the others.




Spanning Set: A set of vectors a1, a2, …, ak (k ≥ 2) from Rn is said to span or generate Rn if every vector in Rn can be written as a linear combination of the given set of vectors. The vectors in the spanning set must be linearly independent.

Basis: A basis for Rn is a subset of linearly independent vectors from Rn which spans the entire space.

Notes:


	(i)	There exist an infinite number of bases in Rn.

	(ii)	A set of unit vectors will always form a basis, since it is linearly independent and any vector in the space can be written as a linear combination of unit vectors.

	(iii)	The basis formed by the set of unit vectors is called a standard basis.



Theorem 1.1. The set of unit vectors forms a basis.


Proof. Let ei (i = 1, 2, 3, …, n) denote the set of n unit vectors from Rn. Then we will have to show that ei′s is linearly independent and any vector of Rn should be able to be expressed as a linear combination of these unit vectors.

Let λi′s be n scalars, and then we have

[image: figure]

[image: figure]

This implies ei (i = 1, 2, 3, …, n) is linearly independent.

Let x = (x1, x2, …, xn) be any other vector of Rn different from ei′s. Then we can express the vector x as a linear combination of the n unit vectors as follows:

[image: figure]

Since x is any vector from Rn different from ei(i = 1, 2, 3, …, n), every vector of Rn can be expressed as a linear combination of these unit vectors. Hence, the set of unit vectors always forms a basis for the given space.

1.3.Solution to a System of Simultaneous Linear Equations

Consider a system of m simultaneous linear equations in n unknowns of the form

[image: figure]

In the set of equations (1.1), x1, x2, …, xn are the unknown decision variables, and aij′ s and bi′s are constants where i = 1, 2, ... m, and j = 1, 2 ... n.

A solution to (1.1) is the set of values of the unknown variables xj′s, j = 1……n which satisfies all the m equations of (1.1).

For understanding linear programming we need to understand the properties of solutions to the linear system of equations. Keeping this in mind, we will devote some effort to studying such systems. The matrix representation of the set of equations (1.1) can be written as,


[image: figure]

The system of simultaneous linear equations may have either no solution or at least one solution. To determine the conditions under which the system has at least one solution, form an augmented matrix A|b = (A,b) of the order m × (n + 1) containing the whole matrix A and the vector b. We always have r(A|b) ≥ r(A) since every minor of A also appears in A|b. Now


	(i)	If r (A|b) > r (A), then no solution exists to the given system of linear equations.

	(ii)	If r (A|b) = r (A), then there exists at least one solution.

	 	If the system of equations has at least one solution, then the given set of equations is called consistent; otherwise, it is said to be inconsistent. Further:

	(i)	If m = n and r (A|b) = r (A) = m, then there exists a unique solution to (1.1).

	(ii)	If m < n and r (A|b) = r (A) = k < m, then m − k of the equations are redundant. Any solution which satisfies k equations will also satisfy m − k of the equations.

	(iii)	If m < n and r (A|b) = r (A) = m, then there exist an infinite number of solutions to the given system.



Basic Solution: Given a system of m simultaneous linear equations in n unknowns (m < n),

[image: figure]

Let Bm × m be any m × m non-singular sub-matrix of Am × n. Then, the solution obtained by setting the (n − m) variables not associated with the columns of Bm × m equal to zero is called a basic solution to the given system of equations.

Let the set of m variables associated with the columns of Bm × m be denoted by xB and the remaining (n − m) variables by xNB (= 0), and then

[image: figure]

is the basic solution for the given system of equations.


Notes:



	(i)
	If xB ≥ 0, then the basic solution is called a basic feasible solution. If one or more variables in the basic feasible solution have a zero value, then it is called a degenerate basic feasible solution. Otherwise, it is called a non-degenerate basic feasible solution.



	(ii)
	The maximum number of basic solutions in m linear equations “in which n is unknown”? (where m < n) is [image: figure]. To get all these basic solutions, every set of m columns must be linearly independent.




Example 1.7. Find all the possible basic solutions of the following simultaneous linear equations:

[image: figure]

Solution: The matrix representation of the given system of equations is

[image: figure]

Here the rank of the coefficient matrix A is 2. The following are our 2 × 2 non-singular sub-matrices from the coefficient matrix.

[image: figure] and [image: figure].

The sub-matrix [image: figure] will not be considered, as it is a singular matrix.

When    [image: figure], we have

[image: figure]


Hence, xB = (x1 = 9.89, x3 = 1.22) and xNB= (x2 = 0), which is a non-degenerate basic feasible solution.

Similarly, when [image: figure] bh, xB = (x2 = 4.94, x3 = 1.22) and xNB = (x1 = 0), which is also a non-degenerate basic feasible solution.

1.4.The Gauss-Jordan Method for Solving Systems of Linear Equations

Here we shall discuss a very efficient method (the Gauss-Jordan method) for solving a system of linear equations. Gauss-Jordan elimination involves creating an augmented matrix of both sides of our equations, changing this matrix into reduced row echelon form (a form in which a matrix has zeros on the lower diagonal and the first non-zero number in each row is 1. Also, if a column has a leading 1, then all the other numbers in that column below 1 need to be 0), then finishing up the problem to find our solution. This method can lead us to one of the following three cases:







	(i)
	The system has no solution.



	(ii)
	The system has a unique solution.



	(iii)
	The system has an infinite number of solutions.




The elementary row operation that we apply in this method is important in the sense that a similar type of elimination method will be used in the simplex method for solving a given linear programming problem (LPP).

Example 1.8. (Problem with no solution).

[image: figure]

The augmented matrix representation of the previous system is:

[image: figure]

(Divide R1 by 2 and Multiply new R1 by 10 and subtract from R2)


It can be easily seen that matrix A cannot be converted to an identity matrix. This implies:

[image: figure]

Whatever the values of x1 and x2 are, the second equation can never be satisfied. Hence, the given system of equations has no solution.

Example 1.9. (Problem with a unique solution). Use the Gauss-Jordan method to solve the following system of simultaneous linear equations:

[image: figure]

The augmented matrix representation of the previous system is:

[image: figure]


Hence, the solution to the given system of equations is x1= 0.6667, x2 = –6, and x3 = 10.667. It can also be seen that the previous system of equations has a unique solution.

Example 1.10. (Problem with an infinite solution). Use the Gauss-Jordan method to solve the following system of simultaneous linear equations:

[image: figure]

The augmented matrix representation of the previous system is:

[image: figure]

The linear system corresponding to A | b is

[image: figure]

This implies that x2 = 2 and x1 = 4 – x3; that is, for different values of x3, we can obtain different values of x1. Hence, we have infinite solutions to the given system of equations.


Remark: In the Gauss-Jordan methods the following points can be noted:



	(i)
	In the final augmented matrix, if we have any row with [0, 0, 0, 0 | k] with k ≠ 0, then the system of equations will not have a solution.



	(ii)
	If the final augmented matrix is in the form [In | k], then the system of equations will have a unique solution.



	(iii)
	If we have any row with [0, 0, 0, …, 0 | k] with k = 0, then the system of equations will have an infinite number of solutions.




Example 1.11. Use Gauss-Jordan elementary row operations to find the inverse of the matrix given in Example 1.4.

Solution: To find inverse of A using the Gauss-Jordan method, form the augmented matrix (A | I). Now we will try to reduce the matrix A to an identity matrix by elementary row operations:

[image: figure]

Divide the first row by 2 and subtract the second and third rows from the new row.

[image: figure]

Divide the second row by 6 and subtract the new row from the third row, and also multiply the new row by 2 and subtract from the first row.

[image: figure]

Divide the third row by – 2, multiply the new row by 3, and subtract it from the first row.

[image: figure]


So the inverse of the matrix A is [image: figure]

1.5.Convex Sets

Line Segment: The line segment joining any two points x and y from Rn is a collection of points u, where

[image: figure]

Here the points x and y are called the endpoints of the line segment. It is usually denoted by [x : y].

The open line segment joining x and y is a collection of points, u, where

[image: figure]

It is usually denoted by (x : y).

Convex Sets: A set S is said to be a convex set, if for any two points belonging to the set, the line segment joining these two points also belongs to the set itself.

For example, for any two points x1 and x2 in S, the line segment joining these two points λx1 + (1 – λ)x2 ϵ S for each λϵ [0, 1].

The line segment λx1 + (1 – λ)x2 for λϵ [0, 1] is also called a convex combination of x1 and x2.

[image: figure]

Fig. 1.10 Convex sets

[image: figure]

Fig. 1.11 Non-Convex sets


Example 1.12. Prove that S = {(x1, x2): x1 x2 ≥ 1; x1 ≥ 0, x2 ≥ 0} is convex.

Solution: Let u = (u1, u2) and v = (v1, v2) be any two points of the set S, then

[image: figure]

Multiplying (1.2) and (1.3),

[image: figure]

Let r = (r1, r2) represent a point on the line segment joining u and v. Then

[image: figure]

Now,     [image: figure]

[image: figure]

Hence the set S is a convex set.

Example 1.13. Show that the set S = {(x1, x2): x21 + x22 ≤ 9; x1 ≥ 0, x2 ≥ 0} is convex.

Solution: Let u = (u1, u2) and v = (v1, v2) be any two points of the set S, then

[image: figure]


Let r = (r1r2) represent a point on the line segment joining u and v. Then

[image: figure]

Now,     r12 + r22 = (λu1 + (1– λ) v1)2 + (λu2 + (1 – λ) v2)2

[image: figure]

Also since [image: figure] we have

[image: figure]

Hence, the set S is a convex set.

Example 1.14. Show that a line segment [x : y] joining any two points x, y ϵ Rn is a convex set.

Proof. The line segment joining the two points x, y ϵ Rn is given by,

[image: figure]

Let     u, v ϵ [x : y], then

[image: figure]

Also let w denote a point on the line segment joining the two points u and v, then

[image: figure]

From (1.13), (1.14), and (1.15), we have

[image: figure]

Putting,

[image: figure]

since 0 ≤ β, λ′ and λ″ ≤ 1, we have 0 ≤ α ≤ 1.


Now, 1 – α = 1 – [βλ′ + (1 – β) λ″]

[image: figure]

Therefore, (1.16) can be rewritten as:

[image: figure]

⇒ w ϵ [x : y], hence the line segment is a convex set.

Hyperplane: A set S = {x: c′x = α} is said to be a hyperplane in a n-dimensional space if c is a non-zero vector in Rn and α is any scalar.

A straight line in a 2-dimensional space and a plane in 3-dimensional space are examples of hyperplanes.

Theorem 1.1. A hyperplane S = {x: c′x = α} is a convex set.

Proof. Let u, v ϵ S, then c′u = α

[image: figure]

Let w denote a point on the line segment joining the two points u and v, then

[image: figure]

Now, c′w = c′ [λu + (1 – λ) v] = λ c′u + (1 – λ) c′v = λα + (1 – λ) α = α, which implies that all the points on the line segment joining the two points u and v are also part of the set S hyperplane. Hence, a hyperplane is a convex set.

Half-Space: A closed half-space is defined by S = {x: ax ≤ α} or S = {x: ax ≥ α}, where a is any non-zero vector in Rn and α is any scalar. 2- All the points on one side of the straight line in 2-dimensional space and all the points on one side of plane in 3-dimensional space are examples of half-space.

The sets S = {x: ax < α} and S = {x: ax > α}, are called open half-spaces.

Theorem 1.1. A half-space is a convex set.

Proof. Consider the closed half-space S = {x: ax ≤ α}, where a is any non-zero vector in Rn and α is any scalar.

Let u, v ϵ S, such that

[image: figure]

Let w be a point on the line segment joining the two points u and v, then

[image: figure]


Now, aw = a [λu + (1 – λ) v] = λau + (1 – λ) av ≤ λ α + (1 – λ) α = α (using (1.18))

Therefore, aw = ≤ α ⇒ All the points on the line segment joining the two points u and v are also part of the closed half-space. Hence, the given closed half-space is a convex set. Similarly, it can be proved for open half-spaces.

Theorem 1.1. The intersection of any two convex sets is also a convex set.

Proof: Let S1 and S2 be any two convex sets. And let T = S1 ∩ S2.

If x, y ϵ T, then x, y ϵ S1 and S2. Let x′ represent a point on the line segment joining x and y, then

[image: figure]

Since S1 and S2 are convex sets, x′ ϵ S1 and S2, which implies x′ ϵ T also.

⇒ T = S1 ∩ S1 is a convex set.

Remark: The intersection of any finite number of convex sets is again a convex set.

Polyhedron. It is the intersection of a finite number of half-spaces.

Theorem 1.1. The sum and difference of any two convex sets is again a convex set.

Proof. Let A and B be any two convex sets in Rn, and then we have to show that A ± B is also a convex set.

Let u and v be any two points of the sets A ± B so that

u = x1 ± y1 and v = x2 ± y2, where x1, x2, ϵ A and y1, y2 ϵ B. Let w be any point on the line segment joining u and v, then

[image: figure]

“Since A is a convex set and x1, x2 ϵ A, we have”?

[image: figure]

Similarly, for y1, y2 ϵ B,

[image: figure]

This implies,

[image: figure]


Thus, for any two points u and v from the set A ± B, the line segment joining these two points is also in A ± B. Hence, the sum and difference of any two convex sets is again a convex set.

Convex Hull. A convex hull of a set C of “n” points from Rn, denoted by H(C), is the smallest perimeter fence in Rn enclosing these “n” points.

If C is a convex set, then H(C) = C. The following are some illustrations of convex hulls.

[image: figure]

Fig. 1.12

Hence, a convex hull can also be defined as:

[image: figure]the smallest convex set containing all the points

[image: figure]the smallest area convex “polygon” enclosing the points

[image: figure]a convex “polygon” enclosing the points, whose vertices are points in the set

Convex combination of vectors. Let S = { x1, x2, x3, …, xm} be a set of “m” vectors from Rn. Then a linear combination of these vectors, [image: figure], where λi ≥ 0 and [image: figure], is called a convex combination of the given vectors.

Convex polyhedron. The set of all the convex combination of a finite number of vectors in Rn is called a convex polyhedron or a polytope spanned by these vectors. In other words, a polytope is a bounded polyhedron and always forms a convex set.

Simplex. A simplex in k-dimension is a polytope having exactly (k + 1) vertices. A simplex in a 1-dimensional space is a line segment, in two dimesnsions it is a triangle, and so on.


[image: figure]

Fig. 1.13 Polytope (a bounded Polyhedron)

Extreme Point: Let S be a convex set. A point r ϵ S is called an extreme point if, for any two points u, v ϵ S (where u ≠ v), r cannot be written as a convex combination of the points u and v. An extreme point will always be a boundary point, but all boundary points will not be extreme points.

[image: figure]

Fig. 1.14
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