
		
			[image: Cover.jpg]
		

	
		
			Reactive Patterns with RxJS and Angular Signals

			Elevate your Angular 18 applications with RxJS Observables, subjects, operators, and Angular Signals

			Lamis Chebbi

			[image: A close-up of a logo

Description automatically generated]

			Reactive Patterns with RxJS and Angular Signals

			Copyright © 2024 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Kaustubh Manglurkar

			Publishing Product Manager: Vaideeshwari Muralikrishnan

			Senior Editor: Hayden Edwards

			Technical Editor: Simran Ali

			Copy Editor: Safis Editing

			Project Coordinator: Shagun Saini

			Proofreader: Safis Editing

			Indexer: Rekha Nair

			Production Designer: Jyoti Kadam

			Marketing Coordinator: Anamika Singh and Nivedita Pandey

			First edition published: April 2022

			Second edition published: July 2024

			Production reference: 1290524

			Published by Packt Publishing Ltd

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB

			ISBN 978-1-83508-770-1

			www.packtpub.com

			To my father, who instilled in me diligence, perseverance, and a good work ethic. Thank you for always being there to support me and lift me up.

			To my mother, who taught me selflessness and doing things with love. Thank you for your enduring encouragement during the writing of this book.

			To my brother and my sisters, for their continuous support.

			– Lamis Chebbi

			Foreword

			RxJS is a powerful JavaScript library that enables developers to build reactive and event-based web applications. The Angular framework uses this library to manage asynchronous operations, such as HTTP communication and user interaction with web forms and routing.

			Angular Signals, a cutting-edge API, introduces fine-grained reactivity in Angular applications. This synchronous reactive pattern boosts performance and intelligently tracks the application state, optimizing component rendering and enhancing the overall user experience.

			Reactive Patterns with RxJS and Angular Signals is a book that embraces both worlds, combining best practices from each tool to help you build performant and reactive Angular applications.

			Lamis uses a simple yet insightful approach to RxJS and Signals, one which not only allows you to gain a deeper understanding of all the available reactive patterns in Angular, but also one that helps you build a complete application that encompasses all the latest features of the Angular framework.

			Aristeidis Bampakos

			Angular Google Developer Expert (GDE)

			Contributors

			About the author

			Lamis Chebbi is a Google Developer Expert for Angular and is the author of the first edition of this book, titled Reactive Patterns with RxJS for Angular. She is an enthusiastic software engineer with a strong passion for the modern web, the founder of Angular Tunisia, a member of the WWCode community, a speaker, a content creator, and a trainer.

			She has been interested in Angular and RxJS for the past few years and loves to share her knowledge about Angular by participating in workshops and organizing training sessions. Empowering women and students is one of her highest priorities.

			Besides Angular and the web, Lamis loves music, traveling, chromotherapy, and volunteering.

			Last but not least, she’s a forever student.

			I want to thank all the people who believed in me, supported me, and inspired me throughout this journey.

			About the reviewers

			Aleksandr Guzenko is a respected software engineer known for his extensive expertise in both frontend and backend development. With over eight years of experience in the field, Aleksandr has made significant contributions to the software engineering community. His deep knowledge and practical skills are not only evident in his professional work but also in his active involvement as a judge in numerous hackathons.

			Furthermore, Aleksandr is a sought-after speaker at conferences, where he shares his insights and experiences, particularly focusing on software architecture. He is also an author, of articles that delve into various aspects of software engineering.

			Ishu Mishra is an IT specialist, working on frontend tech stacks for over 6 years. He began working at a start-up organization called Sparx IT Solutions, where he gained knowledge of Angular, and has worked for several companies since then.

			Ishu previously worked for the Japanese multinational NEC Corporation, and presently, Ishu is employed in Bangalore by Morgan Stanley.

			Matheus Rian is a frontend developer and speaker, who is passionate about technology and education. He started programming in high school and hasn’t stopped learning since, developing his skills in technologies such as Angular and React.

			Furthermore, Matheus is a multiplier, seeking to disseminate knowledge and generate a positive impact within communities. As well as working in the frontend market, he gives lectures at events and contributes articles on Medium and dev.to.

			Arthur Lannelucq is a passionate frontend developer specializing in Angular and RxJS. He is a strong advocate for reactive architectures, believing in their power to build responsive and scalable web applications.

			He has gained solid experience working on various projects for large companies and start-ups. Eager to share his knowledge, he also runs a YouTube channel where he provides tutorials and practical advice on Angular and frontend development.

		

	
		
			Table of Contents

			Preface

			Part 1: An Introduction to the Reactive World

			1

			Diving into the Reactive Paradigm

			Technical requirements

			Exploring the pillars of reactive programming

			Data streams

			Observer patterns

			Learning about the marble diagram (our secret weapon)

			Highlighting the use of RxJS in Angular

			The HttpClient module

			The Router module

			Reactive forms

			The Event emitter

			Summary

			2

			Walking through Our Application

			Technical requirements

			Breaking down our app’s interfaces

			View one – the landing page

			View two – the New Recipe interface

			View three – the My Recipes interface

			View four – the My Favourites interface

			View five – the Modify Recipe interface

			View six – the Recipe Details interface

			Reviewing our app’s architecture

			Reviewing our app’s components

			Summary

			Part 2: A Trip into Reactive Patterns

			3

			Fetching Data as Streams

			Technical requirements

			Defining the data fetch requirement

			Exploring the classic pattern for fetching data

			Defining the structure of your data

			Creating the fetching data service

			Creating Angular standalone components

			Injecting and subscribing to the service in your component

			Displaying the data in the template

			Managing unsubscriptions

			Exploring the reactive pattern for fetching data

			Retrieving data as streams

			Defining the stream in your component

			Using the async pipe in your template

			Highlighting the advantages of the reactive pattern

			Using the declarative approach

			Using the change detection strategy of OnPush

			Diving into the built-in control flow in Angular 17

			Structural directives

			Built-in control flows

			Including built-in control flows in our recipe app

			Benefits of built-in control flow

			Summary

			4

			Handling Errors Reactively

			Technical requirements

			Understanding the anatomy of an Observable contract

			Exploring error handling patterns and strategies

			The replace strategy

			The rethrow strategy

			The retrying strategy

			Choosing the right error handling strategy

			Handling errors in our recipe app

			Summary

			5

			Combining Streams

			Technical requirements

			Defining the filtering requirement

			Exploring the imperative pattern for filtering data

			Exploring the declarative pattern for filtering data

			The combineLatest operator

			Updating the filter value

			Highlighting common pitfalls and best practices

			Unnecessary subscriptions

			Missing or incomplete values

			Performance overhead

			Confusing error handling

			Summary

			6

			Transforming Streams

			Technical requirements

			Defining the autosave requirement

			Exploring the imperative pattern for the autosave feature

			Exploring the reactive pattern for the autosave feature

			Higher-order Observables

			Higher-order mapping operators

			Summary

			7

			Sharing Data between Angular Components

			Technical requirements

			Defining the sharing data requirement

			Exploring the reactive pattern to share data

			Step 1 – Creating a shared service

			Step 2 – Updating the last selected recipe

			Step 3 – Consuming the last selected recipe

			Wrapping up the data-sharing reactive pattern

			Leveraging Deferrable Views in Angular 17

			Summary

			Part 3: The Power of Angular Signals

			8

			Mastering Reactivity with Angular Signals

			Technical requirements

			Understanding the motivation behind Signals

			The traditional Zone.js approach

			The new Signals approach

			Unveiling the Signal API

			Defining Signals

			Creating Signals using the constructor function

			Reading Signals

			Modifying a writable Signal

			Computed Signals

			Signal effects

			Unlocking the power of RxJS and Angular Signals

			Understanding the behavior of toSignal()

			Understanding the behavior of toObservable()

			Integrating Signals into our recipe app

			Fetching data as streams using Signals

			Combining streams using Signals

			Sharing data using Signals

			Transforming streams using Signals

			Exploring reactive data binding with Signals

			Signal inputs

			Model inputs

			Signal queries

			Summary

			Part 4: Multicasting Adventures

			9

			Demystifying Multicasting

			Technical requirements

			Explaining multicasting versus unicasting

			Unicasting and cold Observables

			Multicasting and hot Observables

			Transforming cold Observables into hot Observables

			Exploring RxJS subjects

			A plain subject

			replaySubject

			BehaviorSubject

			Highlighting the advantages of multicasting

			Summary

			10

			Boosting Performance with Reactive Caching

			Technical requirements

			Defining the caching requirement

			Exploring the reactive pattern to cache streams

			The shareReplay operator

			Using shareReplay in RecipesApp

			Customizing the shareReplay operator

			Replacing the shareReplay operator with the share operator

			Highlighting the use of caching for side effects

			Summary

			11

			Performing Bulk Operations

			Technical requirements

			Defining the bulk operation requirements

			Learning the reactive pattern for bulk operations

			The forkJoin operator

			The bulk operation reactive pattern

			Benefits of the forkJoin operator

			Learning the reactive pattern for tracking the bulk operation’s progress

			Summary

			12

			Processing Real-Time Updates

			Technical requirements

			Defining the requirements of real time

			Learning the reactive pattern for consuming real-time messages

			Creating and using WebSocketSubject

			WebSocketSubject in action

			Learning the reactive pattern for handling reconnection

			Summary

			Part 5: Final Touches

			13

			Testing RxJS Observables

			Technical requirements

			Learning about the subscribe and assert pattern

			Testing single-value output methods

			Testing multiple-value output methods

			Testing timed-value output methods

			Learning about the marble testing pattern

			Understanding the syntax

			Introducing TestScheduler

			Implementing marble tests

			Testing timed-value output methods

			Highlighting testing streams using HttpClientTestingModule

			Summary

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			Embarking on the journey from imperative to reactive programming is a significant shift and one that I have experienced firsthand. As I navigated this transition, I found myself drawn to the world of reactive patterns and the transformative power they held. It was a journey filled with discovery, comparison, and a strong determination to understand this new way of thinking.

			Inspired by my own experiences, I’ve crafted this book to serve as a guide through the realms of reactive patterns within Angular applications. I believe that the reactive mindset is gradually achieved by comparing the reactive way to the imperative way, in order to distinguish the difference and benefits. Within these pages, you’ll discover how embracing reactive patterns can greatly enhance the way you manage data, write code, and react to user changes. From improving efficiency to creating cleaner, more manageable code bases, the benefits are vast and practical.

			So, without further ado, let’s embark on this journey together and unlock the potential of reactive programming.

			Who this book is for

			If you’re a developer working with Angular and RxJS, this book is tailor-made for you. Designed for individuals at a beginner level in both Angular and RxJS, this book will guide you toward becoming an experienced developer while also benefitting those who wish to harness the potential of RxJS and leverage the reactive paradigm within their Angular applications.

			What this book covers

			In Chapter 1, Diving into the Reactive Paradigm, you will learn the fundamentals of reactive programming.

			In Chapter 2, Walking through Our Application, you will learn the architecture and requirements of the recipe application that we will be building through the book.

			In Chapter 3, Fetching Data as Streams, you will learn the reactive pattern for fetching data so that we can reactively retrieve a list of recipes in our recipe app.

			In Chapter 4, Handling Errors Reactively, you will learn the different error strategies and the reactive patterns for handling errors.

			In Chapter 5, Combining Streams, you will learn the reactive pattern for combining streams and use it to implement a filter functionality in our recipe app, while also discovering the common pitfalls and sharing best practices for optimal implementation.

			In Chapter 6, Transforming Streams, you will learn the reactive pattern for transforming streams and use it to implement autosave and autocomplete features in our recipe app.

			In Chapter 7, Sharing Data between Angular Components, you will learn the reactive pattern to share data between components and use it to share the selected recipe in our recipe app.

			In Chapter 8, Mastering Reactivity with Angular Signals, you will deep-dive into Angular signals, learning different reactive patterns based on Angular Signals, and how to unleash the power of RxJS and Signals together. You will also discover the latest Angular Signals improvements.

			In Chapter 9, Demystifying Multicasting, you will learn the essentials of multicasting and the different multicasting concepts and operators offered by RxJS, such as Subjects, Behavior Subjects, and Replay Subjects.

			In Chapter 10, Boosting Performance with Reactive Caching, you will learn the reactive pattern to cache streams and implement a caching mechanism in our recipe app, based on the latest RxJS features.

			In Chapter 11, Performing Bulk Operations, you will learn the reactive pattern to perform bulk operations and implement a multiple asynchronous file upload in our recipe app.

			In Chapter 12, Processing Real-Time Updates, you will explore the reactive patterns to consume real-time updates and display newly created recipes instantly in our recipe app.

			In Chapter 13, Testing RxJS Observables, you will learn the different strategies to test reactive patterns and practice testing the API responses in our recipe app.

			To get the most out of this book

			This book assumes some familiarity with Angular, basic RxJS, TypeScript, and a foundational knowledge of functional programming. All code examples have been tested using Angular 17 and 18 on on the Windows OS. However, they should work with future version releases too.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							Angular 17 and above

						
							
							Windows, macOS, or Linux

						
					

					
							
							TypeScript 5.4.2

						
							
							Windows, macOS, or Linux

						
					

					
							
							RxJS 7.8.1

						
							
							Windows, macOS, or Linux

						
					

					
							
							PrimeNG 17.10.0

						
							
							Windows, macOS, or Linux

						
					

					
							
							Bootstrap 5.0.0

						
							
							Windows, macOS, or Linux

						
					

				
			

			Make sure you follow the prerequisites found here: https://angular.dev/tools/cli/setup-local. The prerequisites include the environment setup and the technologies needed in order to install and use Angular.

			We also use the Bootstrap library to manage the application’s responsiveness, the PrimeNG library for its rich components, and, of course, RxJS as the reactive library.

			Plus, there is a ready-for-use backend server in the GitHub repository that we will only reference in our application.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “In the following code snippet, we have an example of an Angular service that injects the HttpClient service and fetches data from the server using the HttpClient.get() method.”

			A block of code is set as follows:

			
import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { Observable} from 'rxjs';
			Any command-line input or output is written as follows:

			
//console output
Full Name: John Doe
			Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Users can create a new recipe by clicking on the New Recipe menu item located at the top right of the page.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Reactive Patterns with RxJS and Angular Signals, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			

			
				
					[image:]
				

			

			https://download.packt.com/free-ebook/9781835087701

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

		
			
			

		

	

		
			Part 1:An Introduction to the Reactive World

			Embark on a journey into the world of reactive programming with Angular!

			In this part, you will understand the fundamentals of the reactive paradigm and its application in Angular, gaining insight into why it’s essential to leverage this approach. Then, we will introduce the recipe application that we are going to progressively build as we go through the book.

			This part includes the following chapters:

			
					Chapter 1, Diving into the Reactive Paradigm

					Chapter 2, Walking through Our Application

			

		

		
			
			

		

		
			
			

		

	

		
			1

			Diving into the Reactive Paradigm

			Reactive patterns are reusable solutions to a commonly occurring problem using reactive programming. Behind all these patterns is a new way of thinking, a new architecture, new coding styles, and new tools. That’s what this entire book is based on – useful reactive patterns in Angular applications.

			Now, I know you are impatient to write your first reactive pattern in Angular, but before doing so, and in order to help you take full advantage of all the RxJS patterns and leverage the reactive paradigm, we will start by explaining in detail all the fundamentals and preparing the groundwork for the following chapters.

			Let’s start with a basic understanding of the reactive paradigm, its advantages, and the problems it solves. Best of all, let’s put a reactive mindset on and start thinking reactively. We will begin by highlighting the pillars and the advantages of the reactive paradigm. Then, we will explain the marble diagram and why it is useful. Finally, we will highlight the use of RxJS in Angular.

			Giving an insight into the fundamentals of the reactive paradigm is incredibly important. This will ensure you get the basics right, help you understand the usefulness of the reactive approach, and consequently help you determine which situation is best to use it in.

			In this chapter, we’re going to cover the following topics:

			
					Exploring the pillars of reactive programming

					Learning the marble diagram (our secret weapon)

					Highlighting the use of RxJS in Angular

			

			Technical requirements

			This chapter does not require any environment setup or installation steps.

			All the code snippets in this chapter are just examples to illustrate the concept, so you will not need the code repository to follow along. However, if you’re interested, the code for the book can be found at https://github.com/PacktPublishing/Reactive-Patterns-with-RxJS-and-Angular-Signals-Second-Edition.

			This book assumes that you have a basic understanding of Angular and RxJS.

			Note

			This book uses the new Angular documentation site, angular.dev. The previous documentation site, angular.io, will soon be deprecated. Stay connected with the latest updates and resources by accessing the documentation through this link.

			Exploring the pillars of reactive programming

			Reactive programming is among the major programming paradigms used by developers worldwide. Every programming paradigm solves some problems and has its own advantages. By definition, reactive programming is programming with asynchronous data streams and is based on observer patterns. So, let’s talk about these pillars of reactive programming!

			Data streams

			Data streams are the spine of reactive programming. Everything that may change or happen over time (you don’t know when exactly) is represented as asynchronous streams such as events, notifications, and messages. Reactive programming is about reacting to changes as soon as they are emitted!

			An excellent example of data streams is UI events. Let’s suppose that we have an HTML button and we want to execute an action whenever a user clicks on it. Here, we can think of the click event as a stream:

			
//HTML code
<button id='save'>Save</button>
//JS code
const saveElement = document.getElementById('save');
saveElement.addEventListener('click', processClick);
function processClick(event) {
 console.log('Hi');
}
			As implemented in the preceding code snippet, in order to react to the click event, we register an EventListener event. Then, every time a click occurs, the processClick method is called to execute a side effect. In our case, we are just logging Hi in the console.

			As you might have gathered, to be able to react when something happens and execute a side effect, you should listen to the streams to become notified. To get closer to reactive terminology, instead of listen, we can say observe. This leads us to the observer design pattern, which is at the heart of reactive programming.

			Observer patterns

			The observer pattern is based on two main roles – a publisher and a subscriber:

			
					A publisher maintains a list of subscribers and notifies them or propagates a change every time there is an update

					On the other hand, a subscriber performs an update or executes a side effect every time they receive a notification from the publisher

			

			The observer pattern is illustrated here:

			
				
					[image: Figure 1.1 – The observer pattern]
				

			

			Figure 1.1 – The observer pattern

			To get notified about the updates, you need to subscribe to the publisher. A real-world analogy would be a newsletter; you don’t get any emails from a specific newsletter if you don’t subscribe to it.

			This leads us to the building blocks of RxJS, which include the following:

			
					Observables: These are a representation of the asynchronous data streams that notify the observers of any change

					Observers: These are consumers of the data streams emitted by Observables

			

			RxJS combines the observer pattern with the iterator pattern and functional programming to process and handle asynchronous events. This was a reminder of reactive programming fundamentals, and it is crucial to know when to put a reactive implementation in place and when to avoid it.

			In general, whenever you have to handle asynchronous tasks in your Angular application, always think of RxJS. The main advantages of RxJS over other asynchronous APIs are as follows:

			
					RxJS makes dealing with event-based programs, asynchronous data calls, and callbacks an easy task.

					Observables guarantee consistency. They emit multiple values over time so that you can consume continuous data streams.

					Observables are lazy; they are not executed until you subscribe to them. This helps with writing declarative code that is clean, efficient, and easy to understand and maintain.

					Observables can be canceled, completed, and retrieved at any moment. This makes a lot of sense in many real-world scenarios.

					RxJS provides many operators with a functional style to manipulate collections and optimize side effects.

					Observables push errors to the subscribers and provide a clean way to handle errors.

					RxJS allows you to write clean and efficient code to handle asynchronous data in your application.

			

			Now that we have given some insight into the reactive programming pillars and detailed the major advantages of RxJS, let’s explore the marble diagram, which is very handy for understanding and visualizing the Observable execution.

			Learning about the marble diagram (our secret weapon)

			RxJS ships with more than one hundred operators – these are among the building blocks of RxJS, useful for manipulating streams. All the reactive patterns that will be detailed later in this book are based on operators, and when it comes to explaining operators, it is better to refer to a visual representation – that’s where marble diagrams come in!

			Marble diagrams are visual representations of the operator’s execution, which will be used in all chapters to understand the behavior of RxJS operators. At first, it might seem daunting, but it is delightfully simple. You only have to understand the anatomy of the diagram and then you’ll be good at reading and translating it.

			Marble diagrams represent the execution of an operator, so every diagram will include the following:

			
					Input Observable(s): Represents one or many Observables given as input to the operator

					Operator: Represents the operator to be executed with its parameters

					Output Observable: Represents the Observable produced after the operator’s execution

			

			We can see the execution illustrated here:

			
				
					[image: Figure 1.2 – The operator execution]
				

			

			Figure 1.2 – The operator execution

			Now, let’s zoom in on the representation of the input/output Observables:

			
				
					[image: Figure 1.3 – The marble diagram elements]
				

			

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
						
			
			
			
			
			
			
			
			
			
			
			
			
			
			
						
			
			
						
			
			
						
			
			
						
			
						
			
			
						
			
						
			
			
			
			
			
		

	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/toc.xhtml

		

		Contents

			

						Reactive Patterns with RxJS and Angular Signals

						Foreword

						Contributors

						About the author

						About the reviewers

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1:An Introduction to the Reactive World

						Chapter 1: Diving into the Reactive Paradigm

					

								Technical requirements

								Exploring the pillars of reactive programming

							

										Data streams

										Observer patterns

							

						

								Learning about the marble diagram (our secret weapon)

								Highlighting the use of RxJS in Angular

							

										The HttpClient module

										The Router module

										Reactive forms

										The Event emitter

							

						

								Summary

					

				

						Chapter 2: Walking through Our Application

					

								Technical requirements

								Breaking down our app’s interfaces

							

										View one – the landing page

										View two – the New Recipe interface

										View three – the My Recipes interface

										View four – the My Favourites interface

										View five – the Modify Recipe interface

										View six – the Recipe Details interface

							

						

								Reviewing our app’s architecture

								Reviewing our app’s components

								Summary

					

				

						Part 2: A Trip into Reactive Patterns

						Chapter 3: Fetching Data as Streams

					

								Technical requirements

								Defining the data fetch requirement

								Exploring the classic pattern for fetching data

							

										Defining the structure of your data

										Creating the fetching data service

										Creating Angular standalone components

										Injecting and subscribing to the service in your component

										Displaying the data in the template

										Managing unsubscriptions

							

						

								Exploring the reactive pattern for fetching data

							

										Retrieving data as streams

										Defining the stream in your component

										Using the async pipe in your template

							

						

								Highlighting the advantages of the reactive pattern

							

										Using the declarative approach

										Using the change detection strategy of OnPush

							

						

								Diving into the built-in control flow in Angular 17

							

										Structural directives

										Built-in control flows

										Including built-in control flows in our recipe app

										Benefits of built-in control flow

							

						

								Summary

					

				

						Chapter 4: Handling Errors Reactively

					

								Technical requirements

								Understanding the anatomy of an Observable contract

								Exploring error handling patterns and strategies

							

										The replace strategy

										The rethrow strategy

										The retrying strategy

										Choosing the right error handling strategy

							

						

								Handling errors in our recipe app

								Summary

					

				

						Chapter 5: Combining Streams

					

								Technical requirements

								Defining the filtering requirement

								Exploring the imperative pattern for filtering data

								Exploring the declarative pattern for filtering data

							

										The combineLatest operator

										Updating the filter value

							

						

								Highlighting common pitfalls and best practices

							

										Unnecessary subscriptions

										Missing or incomplete values

										Performance overhead

										Confusing error handling

							

						

								Summary

					

				

						Chapter 6: Transforming Streams

					

								Technical requirements

								Defining the autosave requirement

								Exploring the imperative pattern for the autosave feature

								Exploring the reactive pattern for the autosave feature

							

										Higher-order Observables

										Higher-order mapping operators

							

						

								Summary

					

				

						Chapter 7: Sharing Data between Angular Components

					

								Technical requirements

								Defining the sharing data requirement

								Exploring the reactive pattern to share data

							

										Step 1 – Creating a shared service

										Step 2 – Updating the last selected recipe

										Step 3 – Consuming the last selected recipe

										Wrapping up the data-sharing reactive pattern

							

						

								Leveraging Deferrable Views in Angular 17

								Summary

					

				

						Part 3: The Power of Angular Signals

						Chapter 8: Mastering Reactivity with Angular Signals

					

								Technical requirements

								Understanding the motivation behind Signals

							

										The traditional Zone.js approach

										The new Signals approach

							

						

								Unveiling the Signal API

							

										Defining Signals

										Creating Signals using the constructor function

										Reading Signals

										Modifying a writable Signal

										Computed Signals

										Signal effects

							

						

								Unlocking the power of RxJS and Angular Signals

							

										Understanding the behavior of toSignal()

										Understanding the behavior of toObservable()

							

						

								Integrating Signals into our recipe app

							

										Fetching data as streams using Signals

										Combining streams using Signals

										Sharing data using Signals

										Transforming streams using Signals

							

						

								Exploring reactive data binding with Signals

							

										Signal inputs

										Model inputs

										Signal queries

							

						

								Summary

					

				

						Part 4: Multicasting Adventures

						Chapter 9: Demystifying Multicasting

					

								Technical requirements

								Explaining multicasting versus unicasting

							

										Unicasting and cold Observables

										Multicasting and hot Observables

										Transforming cold Observables into hot Observables

							

						

								Exploring RxJS subjects

							

										A plain subject

										replaySubject

										BehaviorSubject

							

						

								Highlighting the advantages of multicasting

								Summary

					

				

						Chapter 10: Boosting Performance with Reactive Caching

					

								Technical requirements

								Defining the caching requirement

								Exploring the reactive pattern to cache streams

							

										The shareReplay operator

										Using shareReplay in RecipesApp

										Customizing the shareReplay operator

										Replacing the shareReplay operator with the share operator

							

						

								Highlighting the use of caching for side effects

								Summary

					

				

						Chapter 11: Performing Bulk Operations

					

								Technical requirements

								Defining the bulk operation requirements

								Learning the reactive pattern for bulk operations

							

										The forkJoin operator

										The bulk operation reactive pattern

										Benefits of the forkJoin operator

							

						

								Learning the reactive pattern for tracking the bulk operation’s progress

								Summary

					

				

						Chapter 12: Processing Real-Time Updates

					

								Technical requirements

								Defining the requirements of real time

								Learning the reactive pattern for consuming real-time messages

							

										Creating and using WebSocketSubject

										WebSocketSubject in action

							

						

								Learning the reactive pattern for handling reconnection

								Summary

					

				

						Part 5: Final Touches

						Chapter 13: Testing RxJS Observables

					

								Technical requirements

								Learning about the subscribe and assert pattern

							

										Testing single-value output methods

										Testing multiple-value output methods

										Testing timed-value output methods

							

						

								Learning about the marble testing pattern

							

										Understanding the syntax

										Introducing TestScheduler

										Implementing marble tests

										Testing timed-value output methods

							

						

								Highlighting testing streams using HttpClientTestingModule

								Summary

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/image/B21180_01_3.jpg
Completion status

—0-0—@—C-
J

| Timeline
_

~

Marble values

\/
Timeline

Error status

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/B21180_01_2.jpg
Input Observable(s)

|

Operator

|

Output Observable

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/B21180_01_1.jpg
Publisher

notifySubscriber()

/l\.

Subscriber

Subscriber

Subscriber

update()

update()

update()

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/image/Cover.jpg
<packt>

Reactive Patterns with RxJS
and Angular Signals

Elevate your Angular 18 applications with RxJS
Observables, subjects, operators, and Angular Signals

LAMIS CHEBBI

Foreword by Aristeidis Bampakos, Angular Google Developer Expert (GDE)

OEBPS/Fonts/CourierStd.otf

OEBPS/image/B21180_QR_Free_PDF.jpg

