
		
			[image: cover.png]
		

	
		
			Unity 2022 Mobile Game Development

			Third Edition

			Build and publish engaging games for Android and iOS

			John P. Doran

			[image:]

			BIRMINGHAM—MUMBAI

			Unity 2022 Mobile Game Development

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Rohit Rajkumar

			Publishing Product Manager: Nitin Nainani

			Senior Editor: Mark D’Souza

			Senior Content Development Editor: Feza Shaikh

			Technical Editor: Simran Ali

			Copy Editor: Safis Editing

			Project Coordinator: Sonam Pandey

			Proofreader: Safis Editing

			Indexer: Manju Arasan

			Production Designer: Vijay Kamble

			Marketing Coordinator: Anamika Singh, Namita Velgekar, and Nivedita Pandey

			First published: November 2017

			Second edition: August 2020

			Third edition: July 2023

			Production reference:160623

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-80461-372-6

			www.packtpub.com

			To my wife, Hien, who, has always believed in me and has supported me every step of the way as we’ve traveled all around the world. And to my precious daughter, Johanna, who’s inspired me with her boundless imagination and sense of wonder. This book is dedicated to you both with all my love and gratitude.

			– John P. Doran

			Contributors

			About the author

			John P. Doran is a passionate and seasoned technical game designer, software engineer, and author who is based in Songdo, South Korea. His passion for game development began at an early age. He later graduated from DigiPen Institute of Technology with a bachelor of science in game design and a master of science in computer science from Bradley University.

			For over a decade, John has gained extensive hands-on expertise in game development, working in various roles ranging from game designer to lead user interface (UI) programmer, working in teams consisting of just himself to over 70 people in student, mod, and professional game projects, including working at LucasArts on Star Wars: 1313. Additionally, John has worked in game development education, teaching in Singapore, South Korea, and the US. To date, he has authored 17 books pertaining to game development and is a 2023 Unity Education Ambassador.

			John is currently an instructor at George Mason University Korea. Prior to his present ventures, he was an award-winning videographer.

			Learn more about John at http://johnpdoran.com.

			I extend my deepest gratitude to the Packt Publishing team, including Mark D’Souza, Feza Shaikh, Sonam Pandey, and Nitin Nainani, for their invaluable support, expertise, and guidance in bringing this new edition of the book to life.

			About the reviewers

			Shubham Thakur is a full stack developer at Ceryx Digital in Pune. Proficient in JavaScript, PHP, and Flutter, he has worked on cutting-edge projects involving the Internet of Things (IoT), metaverse, augmented reality (AR), virtual reality (VR), and cloud computing using AWS. Shubham volunteers with Google Developer Groups Pune, has won various hackathons, and is learning Solidity for Web3. He’s a team player, collaborator, and effective communicator who is committed to delivering high-quality solutions on time and within budget.

			I am deeply grateful to Priya for the unwavering support, boundless love, and endless inspiration she brings daily. Yash, thank you for always being there. Amit Jain, thank you for your exceptional mentorship. Thanks to Packt Publishing for the reviewer opportunity. Special thanks to Urvi Sambhav Shah for onboarding me and to Sonam Pandey for her invaluable assistance and guidance during the reviewing process.

			David Cantón Nadales is a software engineer from Seville, Spain, with more than 20 years of experience. He is currently a technical leader at Grupo Viajes El Corte Inglés, a leading travel company in Europe. He has done a multitude of projects and games with Unity, VR with Oculus/Meta Quest 2, Hololens, HTC Vive, DayDream, and LeapMotion. He was an ambassador of the Samsung community “Samsung Dev Spain,” and organizer of “Google Developers Group Sevilla.” He has led more than 100 projects throughout his career. As a social entrepreneur he created the app “Grita”, a social network that emerged during the confinement of COVID-19 that allowed people to talk to other people and help each other psychologically. In 2022, he won the Top Developer Award organized by Samsung.

		

	
		
			Table of Contents

			Preface

			Part 1: Gameplay/Development Setup

			1

			Building Your Game

			Technical requirements

			Setting up the project

			Creating the player

			Moving the player through a C# script

			Improving our scripts with attributes and XML comments

			Using attributes

			XML comments

			Update function versus FixedUpdate function

			Putting it all together

			Having the camera following our player

			Creating a basic tile

			Making it endless

			Creating obstacles

			Summary

			2

			Project Setup for Android and iOS Development

			Technical requirements

			Introducing the Build Settings menu

			Building a project for a PC

			Exporting a project for Android

			Installing Android Build Support for Unity

			Updating build and player settings for Android projects

			Running the Android APK with an emulator

			Putting the project on your Android device

			Unity for iOS setup and Xcode installation

			Building a project for iOS

			Running the project via the iOS simulator

			Summary

			Part 2: Mobile-Specific Features

			3

			Mobile Input/Touch Controls

			Technical requirements

			Using mouse input

			Screen space versus world space

			Moving using touch controls

			Using Unity Remote

			Android setup For Unity Remote

			Enabling developer mode and debugging

			Unity Remote setup for iOS

			Implementing a gesture

			Scaling the player using pinches

			Using the accelerometer

			Detecting touch on game objects

			Summary

			4

			Resolution-Independent UI

			Technical requirements

			Creating a title screen

			The Rect Transform component

			Adjusting and resizing the title text

			Selecting different aspect ratios

			Working with buttons

			Adding a pause menu

			Pausing the game

			Summary

			5

			Advanced Mobile UI

			Technical requirements

			Adding a pause screen button

			Implementing an on-screen joystick

			Adapting GUIs for notch devices

			Summary

			6

			Implementing In-App Purchases

			Technical requirements

			Setting up Unity IAP

			Creating our first purchase

			Adding a button to restore purchases

			Configuring purchases for the stores of your choice

			Summary

			7

			Advertising Using Unity Ads

			Technical requirements

			Setting up Unity Ads

			Displaying a simple ad

			Utilizing ad callback methods

			Opt-in advertisements with rewards

			Adding in a cooldown timer

			Summary

			8

			Integrating Social Media into Our Project

			Technical requirements

			Adding a scoring system

			Sharing high scores via Twitter

			Downloading and installing Facebook’s SDK

			Logging in to our game via Facebook

			Displaying a Facebook name and profile picture

			Summary

			Part 3: Game Feel/Polish

			9

			Keeping Players Involved with Notifications

			Technical requirements

			Setting up notifications

			Scheduling notifications ahead of time

			Customizing notifications

			Canceling notifications

			Summary

			10

			Using Unity Analytics

			Technical requirements

			Setting up Analytics

			Tracking custom events

			Sending basic CustomEvents

			Sending custom events with properties

			Working with funnels

			Summary

			11

			Remote Config

			Technical requirements

			Remote Config setup

			Creating key-value pairs

			Integrating Game Overrides into gameplay

			Summary

			12

			Improving Game Feel

			Technical requirements

			Animation using LeanTween

			LeanTween setup

			Creating a simple tween

			Adding tweens to the pause menu

			Working with materials

			Using postprocessing effects

			Adding particle effects

			Summary

			13

			Building a Release Copy of Our Game

			Technical requirements

			Generating release builds for app stores

			Summary

			14

			Submitting Games to App Stores

			Technical requirements

			Putting your game on the Google Play Store

			Setting up the Google Play Console

			Publishing an app on Google Play

			Putting your game on the Apple iOS App Store

			Apple Developer setup and creating a provisioning profile

			Adding an app to App Store Connect

			Summary

			15

			Augmented Reality

			Technical requirements

			Setting up a project for AR

			Basic setup

			Interacting with the AR environment

			Spawning objects in AR

			Summary

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			As a game developer, your goal is to reach your customers where they are, and with more and more people purchasing mobile devices every year, mobile is a crucial platform to consider. Luckily, Unity offers cross-platform capabilities, allowing you to write your game once and then port it to other consoles with minimal changes. However, developing for mobile devices also requires specific considerations and features, which is where Unity 2022 Mobile Game Development comes in.

			In this book, we’ll guide you through the process of using Unity to create and deploy a mobile game to both iOS and Android. We’ll cover essential topics such as adding input for mobile devices, designing interfaces that adapt to various screen sizes, and exploring ways to monetize your game with Unity’s In-App Purchase (IAP) and advertisement systems. We’ll also discuss the importance of using notifications to retain users and share your game with the world using Twitter and Facebook’s SDKs.

			Additionally, we’ll delve into Unity’s analytics system to optimize your game’s performance and provide insights into user behavior. You’ll also learn how to polish your game in various ways before publishing it on the Google Play and iOS app stores.

			Lastly, we’ll cover the use of Unity’s AR Foundation framework, which enables you to create Augmented Reality (AR) apps that are future-proof and compatible with multiple devices.

			By the end of this book, you’ll have a solid understanding of how to use Unity for mobile game development, including crucial features unique to mobile devices.

			Who this book is for

			If you’re a Unity game developer interested in building mobile games for iOS and Android, then this book is an ideal resource for you. Although prior knowledge of C# is helpful, it is not required. Whether you’re a seasoned developer or just starting out, the step-by-step guidance provided in this book will help you understand the unique features and considerations necessary for mobile game development using Unity.

			What this book covers

			Chapter 1, Building Your Game, introduces the basics of Unity game development by creating a simple project that will be modified throughout the book to incorporate mobile-specific features.

			Chapter 2, Project Setup for Android and iOS Development, explains the process of configuring your development environment for deploying your game to both Android and iOS mobile devices.

			Chapter 3, Mobile Input/Touch Controls, teaches you the fundamentals of mobile input, covering touch and gesture recognition, using the accelerometer, and accessing device information through the Touch class.

			Chapter 4, Resolution-Independent UI, focuses on how to build resolution-independent UI elements, which are useful for all game projects that utilize different aspect ratios and resolutions.

			Chapter 5, Advanced Mobile UI, builds upon the knowledge from the previous chapter, expanding to include mobile-specific aspects of working on a UI, such as requiring on-screen controls and adapting the UI to fit devices with notches.

			Chapter 6, Implementing In-App Purchases, explains how to integrate Unity’s IAP system into our project, including the creation of both consumable and non-consumable IAPs.

			Chapter 7, Advertising Using Unity Ads, covers the integration of Unity’s ad framework into our project and explores the creation of both simple and complex advertisements.

			Chapter 8, Integrating Social Media into Our Project, shows how to integrate social media into your game by incorporating features such as sharing high scores on Twitter and using the Facebook SDK to log in and display a player’s name and profile picture.

			Chapter 9, Keeping Players Involved with Notifications, demonstrates the integration of notifications into your game, including their setup, creating basic notifications, and customizing how they are presented.

			Chapter 10, Using Unity Analytics, covers integrating Unity’s analytics tools into your game, including tracking custom events and using remote settings to modify gameplay without requiring players to redownload the game.

			Chapter 11, Remote Config, will show just how easy it is to set up Unity’s Remote Config system, and how we can utilize it for a simple example by changing the difficulty of our game by changing the speed at which the player moves.

			Chapter 12, Improving Game Feel, introduces the concept of “game feel” in game design and explores how to integrate tweening animations, materials, postprocessing effects, and particle effects to enhance the player experience.

			Chapter 13, Building a Release Copy of Our Game, walks you through the steps required to build a release copy of your game for both iOS and Android devices.

			Chapter 14, Submitting Games to App Stores, provides tips and tricks for submitting your game to the Google Play and iOS app stores.

			Chapter 15, Augmented Reality, covers the process of adding AR to your game, including the setup, installation, and configuration of ARCore, ARKit, and AR Foundation, detecting surfaces in the real world, and interacting with the environment through spawning objects.

			To get the most out of this book

			Throughout this book, we will work within the Unity 3D game engine, which you can download from https://unity.com/download. The projects were created using Unity 2022.1.0b16, but minimal changes should be required if you’re using future versions of the engine. If there is a new version out and you would like to download the exact version used in this book, you can visit Unity’s download archive at https://unity3d.com/get-unity/download/archive. You can also find the system requirements for Unity at https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html in the Unity Editor system requirements section. To deploy your project, you will need an Android or iOS device.

			For the sake of simplicity, we will assume that you are working on a Windows-powered computer when developing for Android and a Macintosh computer when developing for iOS.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							Unity 2022.1.0b16

						
							
							Windows, macOS, or Linux

						
					

					
							
							Unity Hub 3.3.1

						
							
							Windows, macOS, or Linux

						
					

				
			

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://packt.link/6M4wR.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “This gives us the code needed – in particular, the GameNotificationManager class – to be added to our script.”

			A block of code is set as follows:

			
public void ShowNotification(string title, string body,
 DateTime deliveryTime)
{
 IGameNotification notification =
 notificationsManager.CreateNotification();
 if (notification != null)
 {
 notification.Title = title;
 notification.Body = body;
 notification.DeliveryTime = deliveryTime;
 notification.SmallIcon = "icon_0";
 notification.LargeIcon = "icon_1";
 notificationsManager.ScheduleNotification(notification);
 }
}

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
ShowNotification("Endless Runner", notifText, notifTime);
 // Example of cancelling a notification
 var id = ShowNotification("Test", "Should Not Happen",
 notifTime);
 if(id.HasValue)
 {
 notificationsManager.CancelNotification(id.Value);
 }
 /* Cannot be added again until the user quits game */
 addedReminder = true;
 }
}

			Any command-line input or output is written as follows:

			
$ mkdir css
$ cd css

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Open the Project Settings menu by going to Edit | Project Settings.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Unity 2022 Mobile Game Development, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781804613726

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			Part 1: Gameplay/Development Setup

			In this part of the book, we will be exploring the foundational elements of Unity game development, specifically with a focus on preparation for creating mobile games. The chapters in this part will provide you with the necessary knowledge and skills to set up your development environment, as well as guide you through the process of building a game project and deploying it to a mobile device.

			By the end of this part, you will have a solid foundation of knowledge about Unity game development and will be ready to move on to the more advanced topics covered in subsequent parts of the book.

			This part has the following chapters:

			
					Chapter 1, Building Your Game

					Chapter 2, Project Setup for Android and iOS Development

			

		

		
			
			

		

		
			
			

		

	

		
			1

			Building Your Game

			As we start on our journey of building mobile games using the Unity game engine, it’s important that you are familiar with the engine itself before we dive into the specifics of building things for mobile platforms. Although there is a chance that you’ve already built a game and want to transition it to mobile, there will also be those of you who haven’t touched Unity before or may not have used it in a long time. This chapter will act as an introduction to newcomers and a refresher for those coming back, and it will provide some best practices for those who are already familiar with Unity. While you may skip this chapter if you’re already familiar with Unity, I think it’s also a good idea to go through the project so that you know the thought processes behind why the project is made in the way that it is, so that you can keep it in mind for your own future titles.

			In this chapter, we will build a 3D endless runner game in the same vein as Imangi Studios LLC’s Temple Run series. In our case, we will have a player who will run continuously in a certain direction and dodge the obstacles that are in their way. We can also add additional features to the game easily, as the game will endlessly have new things added to it.

			This chapter will be split into several topics. It will contain simple, step-by-step processes for you to follow. Here is an outline of our tasks:

			
					Setting up the project

					Creating the player

					Moving the player through a C# script

					Improving scripts using attributes and XML comments

					Update function versus FixedUpdate function

					Having the camera follow our player

					Creating a basic tile

					Making the game endless

					Creating obstacles

			

			Technical requirements

			This book utilizes Unity 2022.1.0b14 and Unity Hub 3.3.1, but the steps should work with minimal changes in future versions of the editor. If you would like to download the exact version used in this book, and there is a new version out, you can visit Unity’s download archive at https://unity3d.com/get-unity/download/archive.

			You can also find the system requirements for Unity at https://docs.unity3d.com/2022.1/Documentation/Manual/system-requirements.html in the Unity Editor system requirements section.

			You can find the code files for this chapter on GitHub at https://github.com/PacktPublishing/Unity-2022-Mobile-Game-Development-3rd-Edition/tree/main/Chapter01.

			Setting up the project

			Now that we have our goals in mind, let’s start building our project:

			
					To get started, open Unity Hub on your computer.

					From startup, we’ll opt to create a new project by clicking on the New button.

					Next, under Project Name, put in a name (I have chosen MobileDev), and under Templates, make sure that 3D is selected. Afterward, click on CREATE and wait for Unity to load up:

			

			
				
					[image: Figure 1.1 – Creating a 3D project]
				

			

			Figure 1.1 – Creating a 3D project

			
					After it’s finished, you’ll see the Unity Editor pop up for the first time:

			

			
				
					[image: Figure 1.2 – The Unity Editor]
				

			

			Figure 1.2 – The Unity Editor

			
					If your layout doesn’t look the same as in the preceding screenshot, go to the top-right section of the toolbar and select the drop-down menu there that reads Layout. From there, select Default from the options presented:

			

			
				
					[image: Figure 1.3 – The Layout button]
				

			

			Figure 1.3 – The Layout button

			We now have opened Unity for the first time and have the default layout displayed!

			Tip

			If this is your first time working with Unity, then I highly recommend that you read the Unity’s interface section of the Unity Manual, which you can access at https://docs.unity3d.com/Manual/UsingTheEditor.html.

			Now that we have Unity open, we can actually start building our project.

			Creating the player

			To get started, we’ll build a player that will always move forward. Let’s start with that now:

			
					To get started, we will create some ground for our player to walk on. To do that, go to the top menu and select GameObject | 3D Object | Cube.

					From there, we’ll move over to the Inspector window and change the name of the object to Floor. Then, for the Transform component, set Position to (0, 0, 0). This can be done by either typing the values in or right-clicking on the Transform component and then selecting the Reset Position option.

					Then, we will set the Scale values of the object to (7, 0.1, 10):

			

			
				
					[image: Figure 1.4 – Creating the ground]
				

			

			Figure 1.4 – Creating the ground

			In Unity, by default, 1 unit of space is representative of 1 meter in real life. So, our Scale values will make the floor longer than it is wide (X and Z), and we have some size on the ground (Y), so the player will collide and land on it because we have a Box Collider component attached to it by default.

			Note

			The Box Collider component is added automatically when creating a Cube object and is required to have objects collide with it. For more information on the Box Collider component, check out https://docs.unity3d.com/Manual/class-BoxCollider.html.

			
					Next, we will create our player, which will be a sphere. To do this, we will go to GameObject | 3D Object | Sphere.

					Rename the sphere to Player and set the Transform component’s Position values to (0, 1, -4):

			

			
				
					[image: Figure 1.5 – Positioning the player]
				

			

			Figure 1.5 – Positioning the player

			This places the ball slightly above the ground and shifts it back to near the starting point. Note that the camera object (see the camera icon) is pointing toward the ball by default because it is positioned at (0, 1, -10).

			
					We want the ball to move, so we will need to tell the physics engine that we want to have this object react to forces, so we will need to add a Rigidbody component. To do so, with the Player object selected, go to the menu and select Component | Physics | Rigidbody. To see what happens now, let’s click on the Play button, which can be seen in the middle of the first toolbar:

			

			
				
					[image: Figure 1.6 – Current state of the game]
				

			

			Figure 1.6 – Current state of the game

			As in the preceding screenshot, you should see the ball fall down onto the ground when we play the game.

			Tip

			You can disable/enable having the Game tab take up the entire screen when being played by clicking on the Maximize On Play button at the top, or by right-clicking on the Game tab and then selecting Maximize.

			
					Click on the Play button again to turn the game off and go back to the Scene tab, if it doesn’t happen automatically.

			

			We now have the objects for both the floor and the player in the game and have told the player to react to physics! Next, we will add interactivity to the player through the use of code.

			Moving the player through a C# script

			We want the player to move, so in order to do that, we will create our own piece of functionality in a script, effectively creating our own custom component in the process:

			
					To create a script, we will go to the Project window and select the Create button in the top-left corner of the menu by clicking on the + icon, and then we will select Folder:

			

			
				
					[image: Figure 1.7 – Location of the + icon]
				

			

			Figure 1.7 – Location of the + icon

			Tip

			You can also access the Create menu by right-clicking on the right-hand side of the Project window. With this method, you can right-click and then select Create | Folder.

			
					From there, we’ll name this folder Scripts. It’s always a good idea to organize our projects, so this will help with that.

			

			Tip

			If you happen to misspell the name of an item in the Project window, you can rename it by either right-clicking and selecting the Rename option or selecting the object and then single-clicking on the name.

			
					Double-click on the folder to enter it, create a script by going to Create | C# Script, and rename the newly created item to PlayerBehaviour (no spaces).

			

			Note

			The reason I’m using the behaviour spelling instead of behavior is that all components in Unity are children of another class called MonoBehaviour, and I’m following Unity’s lead in that regard.

			
					Double-click on the script to open up the script editor (IDE) of your choice and add the following code to it:
using UnityEngine;
public class PlayerBehaviour : MonoBehaviour
{
 // A reference to the Rigidbody component
 private Rigidbody rb;
 // How fast the ball moves left/right
 public float dodgeSpeed = 5;
 // How fast the ball moves forward automatically
 public float rollSpeed = 5;
 // Start is called before the first frame update
 void Start()
 {
 // Get access to our Rigidbody component
 rb = GetComponent<Rigidbody>();
 }
 // Update is called once per frame
 void Update()
 {
 // Check if we're moving to the side
 var horizontalSpeed =
 Input.GetAxis("Horizontal") * dodgeSpeed;
 rb.AddForce(horizontalSpeed, 0, rollSpeed);
 }
}

			

			In the preceding code, we have a couple of variables that we will be working with. The rb variable is a reference to the GameObject’s Rigidbody component that we added previously. It gives us the ability to make the object move, which we will use in the Update function. We also have two variables, dodgeSpeed and rollSpeed, which dictate how quickly the player will move when moving left/right or when moving forward, respectively.

			Since our object has only one Rigidbody component, we assign rb once in the Start function, which is called when the GameObject is loaded into the scene at the beginning of the game.

			Then, we use the Update function to check whether our player is pressing keys to move left or right based on Unity’s Input Manager system. By default, the Input.GetAxis function will return to us a negative value, moving to -1 if we press A or the left arrow. If we press the right arrow or D, we will get a positive value up to 1 returned to us, and the input will move toward 0 if nothing is pressed. We then multiply this by dodgeSpeed in order to increase the speed so that the movement of the object is easier to see.

			Note

			For more information on the Input Manager, check out https://docs.unity3d.com/Manual/class-InputManager.html.

			Finally, once we have that value, we will apply a force to our ball’s horizontalSpeed units on the X axis and rollSpeed on the Z axis.

			
					Save your script and return to the Unity Editor.

					We will now need to assign this script to our player by selecting the Player object in the Hierarchy window, and then in the Inspector window, we will drag and drop the PlayerBehaviour script from the Project window to be on top of the Player object.

			

			Note

			Note that when writing scripts, if we declare a variable as public, it will show up in the Inspector window for us to be able to set it. We typically set a variable as public when we want designers to tweak the values for gameplay purposes, but it also allows other scripts to access the property in code. By default, variables and methods are private, which means they can only be used within the class. For more information on access modifiers, check out https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/access-modifiers.

			If all goes well, we should see the script appear on our object, as follows:

			
				
					[image: Figure 1.8 – The PlayerBehaviour co﻿mponent added]
				

			

			Figure 1.8 – The PlayerBehaviour component added

			
					Save your scene by going to File | Save. Afterward, play the game and use the left and right arrows to see the player moving according to your input, but no matter what, moving forward by default:

			

			
				
					[image: Figure 1.9 – The current state of the game]
				

			

			Figure 1.9 – The current state of the game

			Now you can see that the ball moves automatically, and our input is received correctly!

			Improving our scripts with attributes and XML comments

			We could stop working with the PlayerBehaviour class script here, but I want to touch on a couple of things that we can use in order to improve the quality and style of our code. This becomes especially useful when you start building projects in teams. As you’ll be working with other people, some of them will be working on code with you. Then, there will be designers and artists who will not be working on code with you but will still need to use the things that you’ve programmed.

			When writing scripts, we want them to be as error-proof as possible. Making the rb variable private starts that process, as now the user will not be able to modify that anywhere outside of this class. We want our teammates to modify dodgeSpeed and rollSpeed, but we may want to give them some advice as to what it is and/or how it will be used. To do this in the Inspector window, we can make use of something called an attribute.

			Using attributes

			Attributes are things we can add to the beginning of a variable, class, or function declaration, which allow us to attach additional functionality to them. There are many of them that exist inside Unity, and you can write your very own attributes as well, but right now, we’ll talk about the ones that I use most often.

			The Tooltip attribute

			If you’ve used Unity for a period of time, you may have noted that some components in the Inspector window, such as Rigidbody, have a nice feature—if you move your mouse over a variable name, you’ll see a description of what the variables are and/or how to use them. The first thing you’ll learn is how we can get the same effect in our own components by making use of the Tooltip attribute. If we do this for the dodgeSpeed and rollSpeed variables, it will look something like this:

			
[Tooltip("How fast the ball moves left/right")]
public float dodgeSpeed = 5;
[Tooltip("How fast the ball moves forward automatically")]
public float rollSpeed = 5;

			Save the preceding script and return to the editor:

			
				
					[image: Figure 1.10 – Tooltip attribute example]
				

			

			Figure 1.10 – Tooltip attribute example

			Now, when we highlight the variable using the mouse and leave it there, the text we placed will be displayed. This is a great habit to get into, as your teammates can always tell what it is that your variables are being used for without having to actually look at the script itself.

			Note

			For more information on the Tooltip attribute, check out https://docs.unity3d.com/ScriptReference/TooltipAttribute.html.

			The Range attribute

			Another thing that we can use to protect our code is the Range attribute. This will allow us to specify a minimum and maximum value for a variable. Since we want the player to always be moving forward, we may want to restrict the player from moving backward. To do that, we can add the following highlighted line of code:

			
[Tooltip("How fast the ball moves forward automatically")]
[Range(0, 10)]
public float rollSpeed = 5;

			Save your script, and return to the editor:

			
				
					[image: Figure 1.11 – R﻿ange attribute example]
				

			

			Figure 1.11 – Range attribute example

			We have now added a slider beside our value, and we can drag it to adjust between our minimum and maximum values. Not only does this protect our variable from being changed to an invalid state but also makes it so that our designers can tweak things easily by just dragging them around.

			The RequireComponent attribute

			Currently, we are using the Rigidbody component in order to create our script. When working as a team member, others may not be reading your scripts but are still expected to use them when creating gameplay. Unfortunately, this means that they may do things that have unintended results, such as removing the Rigidbody component, which will cause errors when our script is run. Thankfully, we also have the RequireComponent attribute, which we can use to fix this.

			It looks something like this:

			
using UnityEngine;
[RequireComponent(typeof(Rigidbody))]
public class PlayerBehaviour : MonoBehaviour

			By adding this attribute, we state that when we include this component in a GameObject and it doesn’t have a Rigidbody component attached to its GameObject, the component will be added automatically. It also makes it so that if we were to try to remove the Rigidbody component from this object, the editor will warn us that we can’t, unless we remove the PlayerBehaviour component first. Note that this works for any class extended from MonoBehaviour; just replace Rigidbody with whatever it is that you wish to keep.

			Now, if we go into the Unity Editor and try to remove the Rigidbody component by right-clicking on it in Inspector and selecting Remove Component, the following message will be seen:

			
				
					[image: Figure 1.12 – Can’t remove component window]
				

			

			Figure 1.12 – Can’t remove component window

			This is exactly what we want, and this ensures that the component will be there, allowing us not to have to include if checks every time we want to use a component.

			Note that, previously, we did not use a Tooltip attribute on the private rb variable. Since it’s not being displayed in the editor, it’s not really needed. However, there is a way that we can enhance that as well: using XML comments.

			XML comments

			We can achieve a couple of nice things with XML comments that we otherwise couldn’t with traditional comments, which we were using previously. When using variables/functions instead of code in Visual Studio, we will now see a comment about it. This will help other coders on your team with additional information and details to ensure that they are using your code correctly.

			XML comments look something like this:

			
/// <summary>
/// A reference to the Rigidbody component
/// </summary>
private Rigidbody rb;

			It may appear that a lot more writing is needed to use this format, but I did not actually type the entire thing out. XML comments are a fairly standard C# feature, so if you are using MonoDevelop or Visual Studio and type ///, the action will automatically generate the summary blocks for you (and the param tags needed, if there are parameters needed for something such as a function).

			Now, why would we want to do this? Well, if you select the variable in IntelliSense, it will display the following information to us:

			
				
					[image: Figure 1.13 – An example of tooltips from XML comments]
				

			

			Figure 1.13 – An example of tooltips from XML comments

			This is a great help when other people are trying to use your code and it is how Unity’s staff write their code. We can also extend this to functions and classes to ensure that our code is more self-documented.

			Unfortunately, XML comments do not show up in the Inspector, and the Tooltip attribute can’t be used for some aspects of projects such as functions. With that in mind, I use Tooltip for public instructions and/or things that will show up in the Inspector window and XML comments for everything else.

			Note

			If you’re interested in looking into XML comments more, feel free to check out https://msdn.microsoft.com/en-us/library/b2s063f7.aspx.

			Now that we have looked at ways of improving the formatting of our code; let’s look at how we can improve the performance by looking at some of the different Update functions Unity provides.

			Update function versus FixedUpdate function

			The next thing to look at is our movement code. You may have noticed that we are currently using the Update function in order to move our player. As the comment above it states, the Update function is called once per frame that the game is running. One thing to consider is that the frequency of Update being called is variable, meaning that it can change over time. This is dependent on a number of factors, including the hardware that is being used. This means that the more times the Update function is called, the better the computer is. We want a consistent experience for all of our players, and one of the ways that we can do that is by using the FixedUpdate function.

			FixedUpdate is similar to Update with some key differences. The first is that it is called at fixed timesteps, meaning the same time between calls. It’s also important to note that physics calculations are done after FixedUpdate is called. This means code-modifying physics-based objects should be executed within the FixedUpdate function generally, apart from one-off events such as jumping:

			
/// <summary>
/// FixedUpdate is a prime place to put physics
/// calculations happening over a period of time.
/// </summary>
void FixedUpdate()
{
 // Check if we're moving to the side
 var horizontalSpeed = Input.GetAxis("Horizontal") *
 dodgeSpeed;
 rb.AddForce(horizontalSpeed, 0, rollSpeed);
}

			By adjusting the code to use FixedUpdate, the ball should be much more consistent in its movement speed.

			Note

			For more information on FixedUpdate, check out https://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html.

			Putting it all together

			With all of the stuff we’ve been talking about, we can now have the final version of the script, which looks like the following:

			
using UnityEngine;
/// <summary>
/// Responsible for moving the player automatically and
/// receiving input.
/// </summary>
[RequireComponent(typeof(Rigidbody))]
public class PlayerBehaviour : MonoBehaviour
{
 /// <summary>
 /// A reference to the Rigidbody component
 /// </summary>
 private Rigidbody rb;
 [Tooltip("How fast the ball moves left/right")]
 public float dodgeSpeed = 5;
 [Tooltip("How fast the ball moves
 forward automatically")]
 [Range(0, 10)]
 public float rollSpeed = 5;
 // Start is called before the first frame update
 public void Start()
 {
 // Get access to our Rigidbody component
 rb = GetComponent<Rigidbody>();
 }
 /// <summary>
 /// FixedUpdate is a prime place to put physics
 /// calculations happening over a period of time.
 /// </summary>
 void FixedUpdate()
 {
 // Check if we're moving to the side
 var horizontalSpeed = Input.GetAxis("Horizontal") *
 dodgeSpeed;
 rb.AddForce(horizontalSpeed, 0, rollSpeed);
 }
}

			I hope that you also agree that this makes the code easier to understand and better to work with. Now, we can move on to additional features in the game!

			Having the camera following our player

			Currently, our camera stays in the same spot while the game is going on. This does not work very well for this game, as the player will be moving while the game is going on. There are two main ways that we can move our camera. We can just move the camera and make it a child of the player, but that will not work due to the fact that the camera would have the same rotation as the ball, which would cause the camera to spin around constantly and likely cause dizziness and disorientation for the players. Due to that, we will likely want to use a script to move it instead. Thankfully, we can modify how our camera looks at things fairly easily, so let’s go ahead and fix that next:

			
					Go to the Project window and create a new C# script called CameraBehaviour. From there, use the following code:
using UnityEngine;
/// <summary>
/// Will adjust the camera to follow and face a target
/// </summary>
public class CameraBehaviour : MonoBehaviour
{
 [Tooltip("What object should the camera be looking
 at")]
 public Transform target;
 [Tooltip("How offset will the camera be to the
 target")]
 public Vector3 offset = new Vector3(0, 3, -6);
 /// <summary>
 /// Update is called once per frame
 /// </summary>
 private void Update()
 {
 // Check if target is a valid object
 if (target != null)
 {
 // Set our position to an offset of our
 // target
 transform.position = target.position +
 offset;
 // Change the rotation to face target
 transform.LookAt(target);
 }
 }
}

			

			This script will set the position of the object it is attached to to the position of a target with an offset. Afterward, it will change the rotation of the object to face the target. Both of the parameters are marked as public, so they can be tweaked in the Inspector window.

			
					Save the script and dive back into the Unity Editor. Select the Main Camera object in the Hierarchy window. Then, go to the Inspector window and add the CameraBehaviour component to it. You may do this by dragging and dropping the script from the Project window onto the GameObject or by clicking on the Add Component button at the bottom of the Inspector window, typing in the name of our component, and then hitting Enter to confirm once it is highlighted.

					Afterward, drag and drop the Player object from the Hierarchy window into the Target property of the script in the Inspector window:

			

			
				
					[image: Figure 1﻿.14 – CameraBehaviour component setup]
				

			

			Figure 1.14 – CameraBehaviour component setup

			
					Save the scene and play the game:

			

			
				
					[image: Figure 1.15 – The current state of the game]
				

			

			Figure 1.15 – The current state of the game

			The camera now follows the player as it moves. Feel free to tweak the variables and see how it affects the look of the camera to get the feeling you’d like best for the project. After this, we can have a place for the ball to move toward, which we will be covering in the next section.

			Creating a basic tile

			We want our game to be endless, but in order to achieve that, we will need to have pieces that we can spawn to build our environment; let’s do that now:

			
					To get started, we will first need to create a single repeatable piece for our runner game. To do that, we’ll add some walls to the floor we already have. From the Hierarchy window, select the Floor object and duplicate it by pressing Ctrl + D in Windows or Command + D on macOS. Rename this new object Left Wall.

					Change the Left Wall object’s Transform component by adjusting the Scale values to (1, 2, 10). From there, select the Move tool by clicking on the button with arrows on the tools overlay or by pressing the W key.

			

			Note

			A recent addition to Unity is the concept of Overlays, which have replaced the original toolbar. For more information about them and how to use them, check out https://docs.unity3d.com/2022.1/Documentation/Manual/overlays.html.

			For more information on Unity’s built-in shortcuts, check out https://docs.unity3d.com/Manual/UnityHotkeys.html.

			
					We want this wall to match up with the floor, so hold down the V key to enter Vertex Snap mode. In Vertex Snap mode, we can select any of the vertices on a mesh and move them to the same position as another vertex on a different object. This is really useful for making sure that objects don’t have holes between them.

					With Vertex Snap mode on, select the inner edge and drag it until it hits the edge of the floor. Alternatively, you can set the Position values to (3, 0.95, 0):

			

			
				
					[image: Figure 1.16 – Left Wall setup]
				

			

			Figure 1.16 – Left Wall setup

			Note

			For more information on moving objects through the scene, including more details on Vertex Snap mode, check out https://docs.unity3d.com/Manual/PositioningGameObjects.html.

			
					Then, duplicate this wall and put the other object on the other side (-3, 0.95, 0), naming it Right Wall:

			

			
				
					[image: Figure 1.17 – Right Wall setup]
				

			

			Figure 1.17 – Right Wall setup

			As you can see in the preceding screenshot, we now protect the player from falling off the left and right edges of the play area. Due to how the walls are set up, if we move the Floor object, the walls will move as well.

			Note

			For information on moving Unity’s camera or navigating to the Scene view, check out https://docs.unity3d.com/Manual/SceneViewNavigation.html.

			The way this game is designed, after the ball rolls past a single tile, we will no longer need it to be there anymore. If we just leave it there, the game will get slower over time due to us having so many things in the game environment using memory, so it’s a good idea to remove assets we are no longer using. We also need to have some way to figure out when we should spawn new tiles to continue the path the player can take.

			
					Now, we also want to know where this piece ends, so we’ll add an object with a trigger collider in it. Select GameObject | Create Empty and name this object Tile End.

					Then, we will add a Box Collider component to our Tile End object. Under Box Collider in the Inspector window, set the Scale values to (7, 2, 1) to fit the size of the space the player can walk in. Note that there is a green box around that space showing where collisions can take place. Set the Position property to (0, 1, 10) to reach past the end of our tile. Finally, check the Is Trigger property so that the collision engine will turn the collider into a trigger, which will be able to run code events when it is hit, but will not prevent the player from moving through it:

			

			
				
					[image: Figure 1.18 – Caption]
				

			

			Figure 1.18 – Caption

			As I mentioned briefly before, this trigger will be used to tell the game that our player has finished walking over this tile. This is positioned past the tile due to the fact that we want to still see tiles until they pass what the camera can see. We’ll tell the engine to remove this tile from the game, but we will dive more into that later on in the chapter.

			
					Now that we have all of the objects created, we want to group our objects together as one piece that we can create duplicates of. To do this, let’s create an empty GameObject instance by going to GameObject | Create Empty and naming the newly created object Basic Tile. Set the Position values of this new object to (0, 0, 0).

					Then, go to the Hierarchy window and drag and drop the Floor, Tile End, Left Wall, and Right Wall objects on top of it to make them children of the Basic Tile object.

					Currently, the camera can see the start of the tiles, so to fix that, let’s set the Basic Tile Position values to (0, 0, -5). As you can see in the following screenshot, now the entire tile will shift back:

			

			
				
					[image: Figure 1.19 – Shifting the tile back]
				

			

			Figure 1.19 – Shifting the tile back

			
					Finally, we will need to know at what position we should spawn the next piece, so create another empty GameObject by going to GameObject | Create Empty or by pressing Ctrl + Shift + N. Make the new object a child of Basic Tile as well, give it the name Next Spawn Point, and set its Position values to (0, 0, 5).

			

			Note

			Note that when we modify an object that has a parent, the position is relative to the parent, not its world position.

			As you can see, the spawn point position will now be on the edge of our current title:

			
				
					[image: Figure 1.20 – Next Spawn Point position]
				

			

			Figure 1.20 – Next Spawn Point position

			
					Now we have a single tile that is fully completed. Instead of duplicating this a number of times by hand, we will make use of Unity’s concept of Prefabs. Prefabs, or prefabricated objects, are blueprints of GameObjects and components that we can turn into files, which can be duplicated. There are other interesting features that Prefabs have, but we will discuss them as we make use of them.

			

			From the Project window, go to the Assets folder and then create a new folder called Prefabs. Then, drag and drop the Basic Tile object from the Hierarchy window to the Project window inside the Prefabs folder. If the text for the Basic Tile name in the Hierarchy window becomes blue, we will know that it was made correctly:

			
				
					[image: Figure 1.21 – Basic Tile Prefab created]
				

			

			Figure 1.21 – Basic Tile Prefab created

			We now have a tile prefab that we can create duplicates of through code to extend our environment.

			Making it endless

			Now that we have a foundation, let’s make it so that we can continue running instead of stopping after a short time by spawning copies of this basic tile in front of each other:

			
					To start off with, we have our prefab, so we can delete the original Basic Tile in the Hierarchy window by selecting it and then pressing the Delete key.

					We need to have a place to create all of these tiles and potentially manage information for the game, such as the player’s score. In Unity, this is typically referred to as a GameManager. From the Project window, go to the Scripts folder and create a new C# script called GameManager.

					Open the script in your IDE and use the following code:
using UnityEngine;
/// <summary>
/// Manages the main gameplay of the game
/// </summary>
public class GameManager : MonoBehaviour
{
 [Tooltip("A reference to the tile we want to
 spawn")]
 public Transform tile;
 [Tooltip("Where the first tile should be placed
 at")]
 public Vector3 startPoint = new Vector3(0, 0, -5);
 [Tooltip("How many tiles should we create in
 advance")]
 [Range(1, 15)]
 public int initSpawnNum = 10;
 /// <summary>
 /// Where the next tile should be spawned at.
 /// </summary>
 private Vector3 nextTileLocation;
 /// <summary>
 /// How should the next tile be rotated?
 /// </summary>
 private Quaternion nextTileRotation;
 /// <summary>
 /// Start is called before the first frame update
 /// </summary>
 private void Start()
 {
 // Set our starting point
 nextTileLocation = startPoint;
 nextTileRotation = Quaternion.identity;
 for (int i = 0; i < initSpawnNum; ++i)
 {
 SpawnNextTile();
 }
 }
 /// <summary>
 /// Will spawn a tile at a certain location and
 /// setup the next position
 /// </summary>
 public void SpawnNextTile()
 {
 var newTile = Instantiate(tile,
 nextTileLocation, nextTileRotation);
 // Figure out where and at what rotation we
 /// should spawn the next item
 var nextTile = newTile.Find("Next Spawn
 Point");
 nextTileLocation = nextTile.position;
 nextTileRotation = nextTile.rotation;
 }
}

			

			This script will spawn a number of tiles, one after another, based on the tile and initSpawnNum properties.

			
					Save your script and dive back into Unity. From there, create a new empty GameObject and name it Game Controller, optionally resetting the position if wanted for organizational purposes. Drag and drop it at the top of the Hierarchy window. For clarity’s sake, go ahead and reset the position if you want to. Then, attach the Game Manager script to the object and then set the Tile property by dragging and dropping the Basic Tile prefab from the Project window into the Tile slot:

			

			
				
					[image: Figure 1.22 – Assigning the Tile property]
				

			

			Figure 1.22 – Assigning the Tile property

			
					Save your scene and run the project:

			

			
				
					[image: Figure 1.23 – The current state of the game]
				

			

			Figure 1.23 – The current state of the game

			Great, but now we will need to create new objects after these, and we don’t want to spawn a crazy number of these at once. It’s better that once we reach the end of a tile, we create a new tile and remove it. We’ll work on optimizing this more later, but that way, we always have about the same number of tiles in the game at any given time.

			
					Go into the Project window and from the Scripts folder, create a new script called TileEndBehaviour, using the following code:
using UnityEngine;
/// <summary>
/// Handles spawning a new tile and destroying this
/// one upon the player reaching the end
/// </summary>
public class TileEndBehaviour : MonoBehaviour
{
 [Tooltip("How much time to wait before destroying
 " + "the tile after reaching the end")]
 public float destroyTime = 1.5f;
 private void OnTriggerEnter(Collider other)
 {
 // First check if we collided with the player
 if(other.gameObject.GetComponent
 <PlayerBehaviour>())
 {
 // If we did, spawn a new tile
 var gm = GameObject.FindObjectOfType
 <GameManager>();
 gm.SpawnNextTile();
 // And destroy this entire tile after a
 // short delay
 Destroy(transform.parent.gameObject,
 destroyTime);
 }
 }
}

					Now, to assign it to the prefab, we can go to the Project window and then go into the Prefabs folder. From there, double-click on the Basic Tile object to open up its editor. From the Hierarchy tab, select the Tile End object and then add a Tile End Behaviour component to it:

			

			
				
					[image: Figure 1.24 – Adding the Tile End Behaviour]
				

			

			Figure 1.24 – Adding the Tile End Behaviour

			
					Click on the left arrow next to the prefab name to return to the basic scene:

			

			
				
					[image: Figure 1.25 – Left Arrow location]
				

			

			Figure 1.25 – Left Arrow location

			Tip

			You can also open the prefab editor by selecting a prefab object from the Project window, going to the Inspector tab, and clicking the Open Prefab button.

			
					Save your scene and play. You’ll now note that as the player continues to move, new tiles will spawn as you go; if you switch to the Scene tab while playing, you’ll see that as the ball passes the tiles, they will destroy themselves:

			

			
				
					[image: Fig﻿ure 1.26 – Tiles automatically being destroyed]
				

			

			Figure 1.26 – Tiles automatically being destroyed

			This will ensure that there will be tiles in front of the player to visit! But of course, this is just an endless straight line. In the next section, we will see how to make the game much more interesting.

			Creating obstacles

			It’s great that we have some basic tiles, but it’s a good idea to give the player something to do, or in our case, something to avoid. This will provide the player with some kind of challenge and a basic gameplay goal, which is avoiding obstacles here. In this section, you’ll learn how to customize your tiles to add obstacles for your player to avoid. So, let’s look at the steps:

			
					Just like we created a prefab for our basic tile, we will create a single obstacle through code. I want to make it easy to see what the obstacle will look like in the world and make sure that it’s not too large, so I’ll drag and drop a Basic Tile prefab back into the world.

				
			

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/image/B18868_01_15.jpg
Game
Game

Scale 1x lute A t Gizmos

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/image/B18868_01_02.jpg
@I~ & B | | I | O O, Layers

= Hierarchy & i # Scene o®Game i @ Inspector
o 6 & | [Flcenter v @Global v | £y v it v i Qv 2
A SampleScene !
& Main Camera
@ Directional Light

< Persp

I Project B Console = -
+~ aQ 72 e @ #15
* Favorites Assets
O, All Materials
O, All Models

O, All Prefabs .

[aw Assets
e Scenes Scenes
= Packages

v Layout

v

OEBPS/image/B18868_01_07.jpg
I Project & Console

«

% Favorites
O, All Materials
O, All Models
O, All Prefabs

[aw Assets
s Scenes
m Packages

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/image/B18868_01_24.jpg
@Dy & M | | I %o O Layers v Default =~

= Hierarchy 3 i # Scene o® Game i @ Inspector =]

4+~ ana 721 Game v Display1 w Free Aspect @ vl TieEnd Sl o =
< N9 Basic Tile v
Tag Untagged ~ Layer Default
) Basic Tile
D Floor J. Transform e
Left Wall
gR?ghtV?Iall Position X0 Y1 Z 10
@ Tile End Rotation X 0 i 0 iz 0
2 Next Spawn Point Scale &= X1 i 1 211
N# v Box Collider o
Edit Collider H
Is Trigger v
M Project B Console = EICHE] None (Physic Materi ®
4+~ a 2 € * 15 Center
* Favorites Assets » Scripts X 0 Y 0 z0
O, All Materials — SR Size
c Be.. GameMan.. PlayerBeh...
O, All Models ameraBe ameMan layerBe X 7 Y 2 7 1
O, All Prefabs
Tile End Behaviour (Script) @ 3*
[aw Assets
B Prefabs Script TileEndBehaviour
e Scenes Destroy Time 14
B Scripts TileEndBe... =

I Packages o Add Component v

OEBPS/image/qr-code-https___packt.link_r_180461372X.jpg

OEBPS/toc.xhtml

		

		Contents

			

						Unity 2022 Mobile Game Development

						Contributors

						About the author

						About the reviewers

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Download the color images

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1: Gameplay/Development Setup

						Chapter 1: Building Your Game

					

								Technical requirements

								Setting up the project

								Creating the player

								Moving the player through a C# script

								Improving our scripts with attributes and XML comments

							

										Using attributes

										XML comments

							

						

								Update function versus FixedUpdate function

							

										Putting it all together

							

						

								Having the camera following our player

								Creating a basic tile

								Making it endless

								Creating obstacles

								Summary

					

				

						Chapter 2: Project Setup for Android and iOS Development

					

								Technical requirements

								Introducing the Build Settings menu

								Building a project for a PC

								Exporting a project for Android

							

										Installing Android Build Support for Unity

										Updating build and player settings for Android projects

							

						

								Running the Android APK with an emulator

								Putting the project on your Android device

								Unity for iOS setup and Xcode installation

								Building a project for iOS

								Running the project via the iOS simulator

								Summary

					

				

						Part 2: Mobile-Specific Features

						Chapter 3: Mobile Input/Touch Controls

					

								Technical requirements

								Using mouse input

							

										Screen space versus world space

							

						

								Moving using touch controls

								Using Unity Remote

							

										Android setup For Unity Remote

										Enabling developer mode and debugging

										Unity Remote setup for iOS

							

						

								Implementing a gesture

								Scaling the player using pinches

								Using the accelerometer

								Detecting touch on game objects

								Summary

					

				

						Chapter 4: Resolution-Independent UI

					

								Technical requirements

								Creating a title screen

							

										The Rect Transform component

										Adjusting and resizing the title text

										Selecting different aspect ratios

							

						

								Working with buttons

								Adding a pause menu

								Pausing the game

								Summary

					

				

						Chapter 5: Advanced Mobile UI

					

								Technical requirements

								Adding a pause screen button

								Implementing an on-screen joystick

								Adapting GUIs for notch devices

								Summary

					

				

						Chapter 6: Implementing In-App Purchases

					

								Technical requirements

								Setting up Unity IAP

							

										Creating our first purchase

							

						

								Adding a button to restore purchases

							

										Configuring purchases for the stores of your choice

							

						

								Summary

					

				

						Chapter 7: Advertising Using Unity Ads

					

								Technical requirements

								Setting up Unity Ads

								Displaying a simple ad

								Utilizing ad callback methods

								Opt-in advertisements with rewards

								Adding in a cooldown timer

								Summary

					

				

						Chapter 8: Integrating Social Media into Our Project

					

								Technical requirements

								Adding a scoring system

								Sharing high scores via Twitter

								Downloading and installing Facebook’s SDK

								Logging in to our game via Facebook

								Displaying a Facebook name and profile picture

								Summary

					

				

						Part 3: Game Feel/Polish

						Chapter 9: Keeping Players Involved with Notifications

					

								Technical requirements

								Setting up notifications

								Scheduling notifications ahead of time

								Customizing notifications

								Canceling notifications

								Summary

					

				

						Chapter 10: Using Unity Analytics

					

								Technical requirements

								Setting up Analytics

								Tracking custom events

							

										Sending basic CustomEvents

										Sending custom events with properties

							

						

								Working with funnels

								Summary

					

				

						Chapter 11: Remote Config

					

								Technical requirements

								Remote Config setup

							

										Creating key-value pairs

							

						

								Integrating Game Overrides into gameplay

								Summary

					

				

						Chapter 12: Improving Game Feel

					

								Technical requirements

								Animation using LeanTween

							

										LeanTween setup

										Creating a simple tween

							

						

								Adding tweens to the pause menu

								Working with materials

								Using postprocessing effects

								Adding particle effects

								Summary

					

				

						Chapter 13: Building a Release Copy of Our Game

					

								Technical requirements

								Generating release builds for app stores

							

										Summary

							

						

					

				

						Chapter 14: Submitting Games to App Stores

					

								Technical requirements

								Putting your game on the Google Play Store

							

										Setting up the Google Play Console

							

						

								Publishing an app on Google Play

								Putting your game on the Apple iOS App Store

							

										Apple Developer setup and creating a provisioning profile

										Adding an app to App Store Connect

							

						

								Summary

					

				

						Chapter 15: Augmented Reality

					

								Technical requirements

								Setting up a project for AR

								Basic setup

								Interacting with the AR environment

								Spawning objects in AR

								Summary

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/image/B18868_01_11.jpg
v Player Behaviour (Script) @ i+
Script B PlayerBehaviour

Dodge Speed 5
Roll Speed o 5

OEBPS/image/B18868_01_08.jpg
i= Hierarchy =]

+v

A SampleScene*
& Main Camera

@ Directional Light

& Floor
& Player

I Project & Console

++ =
% Favorites
[OWNIRVEICHETS
O, All Models
O, All Prefabs

[aw Assets
m Scenes
e Scripts

s Packages

Scene
@ | [Elcenter v @Global ¥

4 Assets » Scripts

#

PlayerBeh...

o® Game

> 15 v b

< Persp

L 4

© Inspector

Y O
0.5

& Rigidbody

\VEES

Drag
Angular Drag
Use Gravity
Is Kinematic
Interpolate

Collision Detection

Constraints

0.05

None

Discrete

v Player Behaviour (Script)

a
Dodge Speed 5
Roll Speed 5

Standard

Add Component

‘ Default-Material (Material)

Edit...

0

v

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/image/B18868_01_03.jpg
< Persp

O,

~

Layers

0 In

v Layout v
2by3
4 Split

Default

Tall
Wide

Save Layout...
Save Layout to File...

Load Layout from File...

Delete Layout

Reset All Layouts

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/B18868_01_20.jpg
Hierarchy =]

v & @ [Flcenter v @Global ¥

R SampleScene*
) Main Camera
@ Directional Light
@ Player
D Basic Tile
& Floor
D Left Wall
& Right Wall
& Tile End
2 Next Spawn Point

Scene

®

S
Lt

@)
£

@
N4

a® Game

i il

O Inspector

@ v Next Spawn Point

=]

Static

i Tag Untagged ~ Layer Default

J. Transform

Position
Rotation
Scale

=

X 0 @ 0
X 0 @0
X1 A 1
Add Component

0
78 5
Zo0
Z W

v

v

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/B18868_01_16.jpg
‘= Hierarchy 3 i ## Scene o® Game i @ Inspector 3

S @ [Fcenterv @Global v v i v W Q@ v Leftwal Static v
A SampleScene*
@ Main Camera
@ Directional Light

v

Tag Untagged ~ Layer Default

' -+
@ Floor o~ Transform 0
@ Player Position X8l 3 Y8 0.95 [Z10
ERICEral Rotation X0 YO zo
Scale & X1 b 2 Z 10
fH Cube (Mesh Filter) e
Mesh f Cube ®
B8 v Mesh Renderer o

Materials 1

OEBPS/image/B18868_01_25.jpg
= Hierarchy S
+v oo 2

Ng Basic Tile
D Basic Tile
D Floor
@ Left Wall
& Right Wall
@ Tile End
& Next Spawn Point

OEBPS/image/cover.png
Unity 2022 Mobile Game
Development

Build and publish engaging games for Android and iOS

<> JOHN P. DORAN

OEBPS/image/B18868_01_12.jpg
Can't remove component

Can't remove Rigidbody because PlayerBehaviour
(Script) depends on it

OEBPS/image/Packt_Logo-01.png
<PACKD

OEBPS/image/B18868_01_21.jpg
= Hierarchy o i # Scene o®Game i @ Inspector =)

o & @ | [Olcenter v @Clobal v | fy v i v Basic Tile (Prefab Asset) e:"*
R SampleScene*
@ Main Camera

Open

@ Directional Light ©
@ Player e
ﬁ%a’f:c Tile > (N Root in Prefab Asset (Open for full editing suppor
oor
&7
@LgftWall = ersp .” v Basic Tile Static ¥
@ Right Wall i v
& Tile End @ Tag Untagged ~ Layer Default =
Next Point fe
Bt R P A Transform o
Position X 0 Al O 78 -5
Rotation X 0 o) iz O
I Project & Console . 2 i Scale ® X 1 Nl 1 Z v
o @ 2| &€ K BIS| ip it :
% Favorites Assets » Prefabs
O, All Materials
O, All Models
e
O, All Prefabs \'
[Assets
M Prefabs ‘Basic Tile
s Scenes P
Bm Scripts ®

OEBPS/image/B18868_01_04.jpg
Scene o®Game i @ Inspector =)
[Flcenter v @Global v £y v i v v Qv 2 @ 1 Floor Tty o
- Tag Untagged v Layer Default =

). Transform Q
Position X 0 @ 0 Z 0
Rotation X 0 (o) Z 0
1 SEenp Scale ® X7 Yo01 Z
& B Cube (Mesh Filter) @ i !
4B Mesh 3 Cube ®

B8 v MeshRenderer 0 i+

OEBPS/image/B18868_01_09.jpg
& D & > I »l 9D O, Layers v Default v

o® Game
Game v Display1 w Free Aspect v Scale 15 Mute Audio Stats Gizmos w

S ——

OEBPS/image/B18868_01_17.jpg
= Hierarchy @ i # Scene o’ Game i @ Inspector &

S # [Ficenter v @Global v i v H v @ v RightWwall Static v -
R SampleScene*

& Main Camera

@ Directional Light @

i Tag Untagged ~ Layer Default =

1 =+
& Floor R PS Transform @
D Player @ Position X -3 Y 095 Z O
®L?ftwa” 2 Rotation X 0 Y 0 1 0
& Right Wall
il Scale = X1 W 2 Z 10
) B Cube (MeshFilter) o
4B Mesh B8 Cube ®
B8 v Mesh Renderer o

\WELCIETS 1

OEBPS/image/B18868_01_26.jpg
‘= Hierarchy 3 i ## Scene o Game i @ Inspector 2

+v a e [FlCenter v @AGlobal ¥ By v 8 ~ @ v Player Seile P
A SampleScene* -
&2 Game Controller
@ Main Camera

~ Tag Untagged ~ Layer Default

1 fan g
D Directional Light ’ Transform o
Q Player Position) Y8 0:55" P21 93.17¢
% gas!c If:eig:one; Rotation X -1184 Y 0 Z 0
asic Tile(Clone < Persp D
D Basic Tile(Clone) [Scale S 1 Y1 Z1
D Basic Tile(Clone) @ fH sphere (MeshFilter) o
D Basic Tile(Clone)
& Basic Tile(Clone) £ Mesh £ Sphere
& Basic Tile(Clone)

Basic Tile(Clone) ~ (NS ¥ 5 v MeshRenderer @ i+ i

OEBPS/image/B18868_01_13.jpg
w File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help Search.. P MobileDev =

(<14 B-aaWl® 9 - Debug - AnyCPU ~ D Attach to Unity ~ R . &fE 2] = g
g v # Solution Explorer v Bx
g &Assembly—csharp . ~ 3 playerBehaviour >{|¥arb - % @NE o-2¢FP o i

. Un!ty Script | O references . . | e Explorer (Ctrl+;) P~
4 Elpublic class PlayerBehaviour : MonoBehaviour I i § .
5 f {[31 Solution "MobileDev' (1 of 1 project)

4 Assembly-CShal

[3 BE. /// <summary> el ly-CSharp
7 : /// A reference to the Rigidbody component
8 |+ /// </summary>
9 ; private Rigidbody rb;
10
11 | [Tooltip(“How fast the ball moves left/right")]
12 | public float dodgeSpeed = 5;
1) :
14] [Tooltip(“How fast the ball moves forwards automatically")]
15 1 [Range(©, 10)]
16 ' public float rollSpeed = 5;
17 ! :

' Solution Expl Git Chi
18 i // start is called before the first frame update clLNESe] EIVERERS

E @ Unity Message | 0 references Properties v X
19 =l void Start() -
20 AP
21 ! : // Get access to our Rigidbody component
22 ! rb = GetComponent<Rigidbody>();
2 - } @, (field) Rigidbody PlayerBehaviour.rb
24 : A refe to the Rigidbod P
25) // Update IS Caried olice per (idile

1 @ Unity Message | 0 references
26 B void Update() v

144% ~ @ Noissues found | &~ « — > Im5 Ch:2 SPC CRIF

Error List Output

OEBPS/Fonts/CourierStd.otf

OEBPS/image/B18868_01_22.jpg
= Hierarchy 3
+~ o
v R SampleScene*
& Game Controller
2 Main Camera
@ Directional Light

D Player

I Project B Console

++ -
v % Favorites
O, All Materials
O, All Models
O, All Prefabs

v [aw Assets
e Prefabs
= Scenes
i Scripts

» m Packages

Scene o®Game

& | [Fcenter v @ Global ¥

Assets » Prefabs

.

—

Basic Tile

&

33

e

=0
€ K* P15

O Inspector

@ v Game Controller

i Tag Untagged

v M Transform
Position X
Rotation X
Scale ® X

v £¥ v Game Manager (Script)

Script
Tile
Start Point
X 0
Init Spawn Num

0
0
{l

Y

=l
Static ~

~ Layer Default =

e i i
Y 0 Z 0
Y 0 Z)
i 1 Z |
e i+ i
£3 GameManager ®

A Basic Tile (Transforn ®

(0] Z8 -5
—®— 10

Add Component

OEBPS/image/B18868_01_19.jpg
Hierarchy 3 i ## Scene o® Game i @ Inspector =]

+v o @ [Olcenter v @Global v | &y v I v i Ea v Basic Tile Static v
A SampleScene*
D Main Camera
@ Directional Light

i Tag Untagged ~ Layer Default -

) -
& Player o~ Transform o
@ Basic Tile Position X 0 Y 0 Z8-5
Q@ Floor Rotation X 0 Y 0 Zo
Q) Left Wall :
& Right Wall Scale &= X1 A 1 Z8 1
@ Tile End

Add Component

OEBPS/image/B18868_01_06.jpg
. b & >]|]|) O, Layers v Layout v

a® Game

Game v Display 1 ~ Free Aspect v Scale ix Mute Audio Stats Gizmos ~

OEBPS/image/B18868_01_05.jpg
= Hierarchy 2 i # Scene o® Game i @ Inspector =]

& @ [Flcenter v @Global v | Hy v i v v @
fA SampleScene*

) Main Camera

& Directional Light

v Player Static =

~ Tag Untagged » Layer Default =

J. Transform

D Floor

Q@ Player Posion X 0 Y 1
Rotation X 0 Y O
Scale & X 1 R 1

Bl Sphere (Mesh Filter) o

Mesh fH Sphere
% v Mesh Renderer @ i+
Materials 1

Lighting

OEBPS/image/B18868_01_18.jpg
3 i # Scene o®Game i @ Inspector 3

' [Flcenter v @Global ¥ Y v 35 v b @ v Tile End Static ~

A SampleScene*
& Main Camera
@ Directional Light @

7 Tag Untagged ~ Layer Default v

1 =+
& Floor N o~ Transform o
Q@ Player @) Position X 0 v Z 10
%;?T}l’\/\:’”” Rotation X 0 Y 0 Z 0
i El a
®T"“i B e o Scale & X 1 v @ z1
& ¥ v Box Collider o
£ Edit Collider A
Is Trigger v
Material None (Physic Material) ®
I Project & Console = Center
- AR e x Bis X0 Y 0 Z0
% Favorites “ Assets > Scripts SIEC
[OW\IRVEICIE]S e 7 b 2 Z W

O, All Models [N [N

OEBPS/image/B18868_01_23.jpg

OEBPS/image/B18868_01_01.jpg
Q Search all templates

U

2D
Core

3D
Core

2D (URP)
Core

3D (HDRP)
Core

3D (URP)
Core

3D
This is an empty 3D project that uses Unity's
built-in renderer.

sa Read more

PROJECT SETTINGS

Project name
MobileDev

Cancel

OEBPS/image/B18868_01_10.jpg
v Player Behaviour (Script) @

Script B PlayerBehaviour
Dodge Speed 5
How fast the ball moves left/right

OEBPS/image/B18868_01_14.jpg
@ D~y & M [| B O O Layers v Default +

= Hierarchy 3 i # Scene o®Game i @ Inspector 3
SR @ [Fcenter v @Global ¥ By v 15 v @ v Main Camera Static ¥

A SampleScene*
2 Main Camera

T Tag MainCamerav Layer Default =

Directional Light
%Floor ° J. Transform o
D Player Position X 0 ol 1 Z -10
Rotation X 0 Y O Z0
Scale & X1 N 1 ZN 1
B(v Camera @
Main Camera v Camera Behaviour (Script) @ 3*
| B
’ Target A Player (Transform) ®
‘ Offset
I Project & Console = X 0 v B 7 g

o @ 7 e € #15

