
		
			[image: Cover.png]
		

	
		
			Persistence Best Practices for Java Applications

			Effective strategies for distributed cloud-native applications and data-driven modernization

			Otávio Santana

			Karina Varela

			[image: Packt Logo]

			BIRMINGHAM—MUMBAI

			Persistence Best Practices for Java Applications

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Gebin George

			Publishing Product Manager: Kunal Sawant

			Senior Editor: Nisha Cleetus

			Technical Editor: Shruti Thingalaya

			Copy Editor: Safis Editing

			Project Coordinator: Deeksha Thakkar

			Proofreader: Safis Editing

			Indexer: Pratik Shirodkar

			Production Designer: Shankar Kalbhor

			Business Development Executive: Kriti Sharma

			Developer Relations Marketing Executives: Rayyan Khan and Sonia Chauhan

			First published: August 2023

			Production reference: 2040823

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB, UK.

			ISBN 978-1-83763-127-8

			www.packtpub.com

			To my wife, Poliana, my loving partner, and God’s blessing throughout our journey.

			– Otávio Santana

			To Ian, my endless inspiration. Your belief in me, patient support, and encouragement mean the world. May this book ignite your passion and dedication. I’m proud to call you my son.

			– Karina Varela

			Contributors

			About the authors

			Otávio Santana is a passionate architect and software engineer with expertise in the cloud, Java, and polyglot persistence. He contributes to open source projects, leads Java specifications, and works on NoSQL databases. He represents SouJava in the Java Community Process and Jakarta EE boards, mentors developers, and writes articles and books on software architecture. As a global speaker, he presents at major conferences and supports Java User Groups. Otávio has received numerous awards and is a member of Java Champions and Oracle ACE. He enjoys history, traveling, and telling dad jokes in multiple languages.

			Karina Varela is a highly experienced cloud solutions expert with a strong background in Java and open source culture. Having worked at Red Hat and IBM, she brings valuable expertise in developing, delivering, and troubleshooting production applications. Karina’s contributions extend beyond technical skills, as she has played a crucial role in deploying mission-critical software globally. She is well regarded in the Java community for her insightful writings and speeches at tech conferences. Karina actively supports the open source community and leads widely used enterprise solutions. Her innovative approach and commitment to quality have made a significant impact on the industry, establishing her as a thought leader and influential contributor.

			About the reviewer

			Alain Trottier is a seasoned computer engineer with a passion for communicating technology and driving innovation. He has dedicated two decades to exploring the ever-evolving world of software engineering. Throughout his career, he has channeled his expertise into authoring magazine articles and publishing four comprehensive books on software engineering. Additionally, he has contributed as a technical editor for several notable publications in the field. Recognized as an intrapreneur, he has consistently sought opportunities to innovate and deliver value within organizations. He invites you to connect with him on LinkedIn (https://www.linkedin.com/in/alaintrottier) to explore the possibilities of collaboration, share insights, and engage in meaningful conversations about the exciting realm of technology and innovation. Let’s make a difference together.

		

		
			
			

		

	
		
			Table of Contents

			Preface

			Part 1: Persistence in Cloud Computing – Storing and Managing Data in Modern Software Architecture

			1

			The History of Data Storage – From the Caves to the Cloud

			Why do databases exist?

			The challenges of handling data

			Characteristics of Java persistence frameworks

			The cloud’s effect on stateful solutions

			Exploring the trade-offs of distributed database systems – a look into the CAP theorem and beyond

			Summary

			2

			Exploring the Multiple Database Flavors

			A look back at relational databases

			A deep dive into non-relational databases (NoSQL)

			NoSQL database types – key-value

			NoSQL database types – document

			NoSQL database types – wide-column/column-family

			NoSQL database types – graph

			NewSQL databases – trying to get the best out of both worlds

			Summary

			3

			Exploring Architectural Strategies and Cloud Usage

			The cloud’s influence on software architecture design

			Design patterns – the essential building blocks for software architects

			Monolithic architecture

			Microservices architecture

			Common pitfalls of microservices adoption

			Cloud deployment strategies that favor modern stateful solutions

			Why the hybrid and multi-cloud models matter

			Distributed systems and their impact on data systems

			Example – architecting a food delivery solution

			The basic scenario

			The challenges of integrating services around a central piece of data

			Summary

			4

			Design Patterns for Data Management in Cloud-Native Applications

			Technical requirements

			Design patterns applied to the Java persistence layer

			Unstructured code

			The data mapper pattern

			The DAO pattern

			Repository pattern boosted by DDD

			The active record pattern

			Navigating the Java mapping landscape – evaluating framework trade-offs

			Data transfer between the view and underlying layers

			Summary

			Part 2: Jakarta EE, MicroProfile, Modern Persistence Technologies, and Their Trade-Offs

			5

			Jakarta EE and JPA – State of Affairs

			Technical requirements

			Jakarta EE overview

			Framework unveiled – reflection versus reflectionless solutions

			JPA state of affairs

			JPA and database mapping patterns

			The power of JPA with Quarkus and Panache cloud-native runtimes

			Setting up the new service

			Persistent entities and database operations

			Exposing REST endpoints for data manipulation

			Even faster development speed – automatic endpoint generation

			General JPA-related performance considerations

			Summary

			6

			NoSQL in Java Demystified – One API to Rule Them All

			Technical requirements

			Understanding NoSQL database trade-offs

			Consuming NoSQL databases with JNoSQL

			Key-value databases

			Column databases

			Document databases

			Graph databases

			Summary

			7

			The Missing Guide for jOOQ Adoption

			Technical requirements

			Data-driven and object-oriented programming in Java

			What is jOOQ?

			Using jOOQ with Jakarta/MicroProfile

			Summary

			8

			Ultra-Fast In-Memory Persistence with Eclipse Store

			Technical requirements

			Object-relational impedance mismatch explained

			In-memory persistence storage – Eclipse Store

			The basics of how to store and manage data in memory

			Using in-memory data storage with Jakarta EE and MicroProfile

			Summary

			Part 3: Architectural Perspective over Persistence

			9

			Persistence Practices – Exploring Polyglot Persistence

			Technical requirements

			The trade-offs of polyglot persistence

			Understanding DDD and Jakarta

			Jakarta Data

			Summary

			10

			Architecting Distributed Systems – Challenges and Anti-Patterns

			Data integration scales and distributed transactions

			The dual-write anti-pattern

			Microservices and shared databases

			Eventual consistency problems

			Summary

			11

			Modernization Strategies and Data Integration

			Application modernization strategies

			Avoiding data storage-related anti-patterns and bad practices

			Introduction to CDC pattern

			Adopting cloud technologies and cloud services

			Summary

			12

			Final Considerations

			The power of tests - How to lead with data-domain tests

			Do not underestimate the importance of documentation

			Architecture without architects

			Summary

			Further reading

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			A solid software architecture combines every building block required to bring a tech solution to life. In the early days of an application’s life, the design and practices are established: microservice or monolith architecture, event-driven approach, the integration and delivery application life cycle, containerization, and so on. Restricting the application side, especially in a Java context, frameworks and execution runtimes are also defined. Like the good old legacy systems, most modern cloud-native solutions rely on data, generally in data stores (e.g., databases). Unfortunately, the persistence layer is often left aside and not treated with the same importance as these other topics. For scenarios dependent on stateful services, this is the beginning of the end – the brand-new solution is doomed for a life of performance struggles and reduced maintainability, or even worse, might have ingrained weeds causing data inconsistency. The reduced maintainability is a result of the neglect in the persistence layer design and definitions, as schemes and data models are poorly implemented on top of insufficient information. In such scenarios, even trivial database refactorings are brutal and time-consuming.

			Having a panoramic understanding of the challenges, solutions, and best practices of the persistence layer, technologies, and existing approaches is the way out of such troublesome scenarios and many more related to applications and data stores.

			This book presents well-established patterns and standards that can be used in Java solutions, with valuable pros and cons of the trendy technologies and frameworks used in cloud-native microservices when confronted with good Java coding practices. As Java technologies have been broadly used for over two decades now, cloud adoption puts extra challenges on the table, such as the growing need for cost reduction through stack modernization. So, you will learn about application modernization strategies and gain in-depth knowledge about how enterprise data integration patterns and event-driven architectures enable smooth modernization processes with low-to-zero impact on the existing legacy stack.

			After reading this book, your next architectural decision will be solid and backed by a thorough explanation of data storage options and their respective recommended usage scenarios, covering technologies such as SQL, NoSQL, and NewSQL. When talking about data-related content tailored within a Java ecosystem’s context, extensive information is available on topics such as how MicroProfile and Jakarta EE work; database patterns (such as Active Record and Data Access Object (DAO); Command and Query Responsibility Segregation (CQRS); in-memory persistence; and frameworks for object mapping.

			If, at this point, you understand the reasons why the careful handling of data storage is crucial for a system and architecture and believe it has a direct impact on the whole organization, to the point of adding such value that businesses strive to beat their competitors by adopting data-centric strategies, then this book is for you. Get ready to join us on this exciting journey of exploring data, its mysteries, and its treasures in a cloud-driven era.

			Who this book is for

			This book is primarily intended for experienced developers, engineers, and software architects with a strong background in Java and focused on building Java solutions. It is designed to cater to individuals who already possess a solid understanding of Java development and seek to enhance their knowledge and skills in persistence.

			The content of this book assumes a certain level of familiarity with Java programming concepts, object-oriented design principles, and enterprise application development. It dives into advanced topics and explores various aspects of persistence in modern Java solutions.

			Whether you are a seasoned Java developer looking to deepen your understanding of persistence technologies, an engineer seeking to optimize performance and scalability in Java applications, or a software architect responsible for designing robust persistence layers, this book provides valuable insights, best practices, and practical guidance to meet your needs.

			By leveraging the expertise and experience shared in this book, you can enhance your ability to design, implement, and optimize persistence solutions within your Java projects, ultimately empowering you to develop high-performing, scalable, and maintainable Java applications.

			What this book covers

			Chapter 1, Storing Data: from the Caves to the Clouds, is where you will acquire the foundation knowledge you’ll need for what’s coming next in the book, so buckle up. You will learn about the challenges of storing data, which gave birth to the first data storage solutions. As technology advanced, databases evolved into robust and reliable solutions. The Java ecosystem responded well and grew along with the data ecosystem, providing users with frameworks, application servers, and so on to allow for a simpler developer experience yet deliver performant database integration.

			Chapter 2, Distilling the Multiple Database Flavors, discusses how a polyglot persistence strategy naturally materializes with the growth and individual needs of decoupled and independent services. You will explore different ways to store data, market data management systems (e.g., relational, NoSQL, and NewSQL), their respective languages, and, most importantly, the use case scenarios for each of them. Overengineering is the villain in system design, so this chapter will prepare you with the knowledge to keep it far from your persistence layer.

			Chapter 3, Exploring Architectural Strategies and Cloud Usage, will get you familiar with and help you recall concepts around the multiple ways to architect solutions. You will learn about the relationship between monoliths, microservices, and event-driven solutions, and how these approaches push the increasing adoption of different cloud service offerings. You will learn how to identify the benefits and disadvantages of using a mix of on-premises and cloud solutions, a mix that results in organizations’ solutions being built on top of hybrid and/or multi-cloud models.

			Chapter 4, Getting the Most out of Design Patterns for Data Management in Cloud-Native Applications, dives into the realm of data management in cloud-native applications and explores how to leverage design patterns effectively. With the increasing adoption of cloud technologies, it has become crucial for developers to optimize data management strategies to maximize the benefits of cloud-native architectures.

			Chapter 5, Jakarta EE and JPA: State of Affairs, provides a comprehensive overview of persistence within the Jakarta EE and MicroProfile ecosystems. Persistence is a fundamental aspect of enterprise application development, and understanding how it is handled in these frameworks is essential for developers.

			Chapter 6, NoSQL in Java Demystified: One API to Rule Them All, talks about how NoSQL databases open the doors to various capabilities in enterprise applications and systems. Nowadays, even more-conservative markets such as finance are starting to consider non-relational database solutions. It’s time to get familiar with NoSQL databases and their types, how to integrate them with Java services, and the use cases where they may be a good fit for data storage.

			Chapter 7, The Missing Guide for jOOQ Adoption, discusses object-oriented querying, commonly known as jOOQ, which is a light database-mapping software library in Java that implements the Active Record pattern. Its purpose is to be relational and object-oriented by providing a domain-specific language (DSL) to construct queries from classes automatically generated based on a database schema.

			Chapter 8, Ultra-Fast In-Memory Persistence with Eclipse Store, explores Eclipse Store, which delivers ultra-fast in-memory data processing with pure Java. It provides microsecond query time, low-latency data access, gigantic data throughput, and workloads. Thus, it saves lots of CPU power, CO2 emissions, and costs in the data center.

			Chapter 9, Persistence Practices: Exploring Polyglot Persistence, delves into the concept of polyglot persistence within the Jakarta Data ecosystem. Polyglot persistence refers to the practice of using multiple data storage technologies within an application to optimize for different data requirements.

			Chapter 10, Architecting Distributed Systems: Challenges and Anti-Patterns, explores the intricacies of architecting distributed systems and examines the challenges and anti-patterns that can arise in the process. Distributed systems are becoming increasingly prevalent in modern software architecture, but they come with their own set of complexities.

			Chapter 11, Modernization Strategies and Data Integration, explores modernization strategies and data integration techniques to help organizations adapt their existing systems to meet the demands of modern technology landscapes. As technology evolves rapidly, it becomes crucial for businesses to modernize their legacy systems and integrate them seamlessly with new technologies.

			Chapter 12, Final Considerations on Persistence in Modern Java Solutions, is the final chapter, and we provide important considerations and insights regarding persistence in modern Java solutions. As the landscape of Java development evolves, it is crucial to stay up to date with best practices and emerging trends in persistence.

			To get the most out of this book

			Before you begin reading this book and diving into the software requirements, it is crucial to understand the following technologies: Java 17, Maven, Git, and Docker. Familiarity with Java 17 is assumed, including knowledge of its syntax and object-oriented programming concepts and familiarity with core libraries and frameworks. Understanding Maven will be beneficial, as it is a popular build automation tool for managing dependencies and building Java projects. Proficiency in Git, a version control system, is necessary to track and manage source code changes effectively. Lastly, knowledge of Docker, a containerization platform, will help with understanding how to package and deploy software applications in isolated environments.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

				
				
					
							
							Java 17

						
							
							Windows, macOS, or Linux

						
					

					
							
							Maven

						
							
					

					
							
							Git

						
							
					

					
							
							Docker

						
							
					

				
			

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Persistence-Best-Practices-for-Java-Applications/. If there’s an update to the code, it will be updated in the GitHub repository.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “In this domain, the Book entity attributes should be title, author, publisher, and genre.”

			A block of code is set as follows:

			
public class Book { private final String title;
 private final String author;
 private final String publisher;
 private final String genre;
 // constructor method
 // builder inner class
}

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
public class Book { private final String title;
 private final String author;
 private final String publisher;
 private final String genre;
 // constructor method
 // builder inner class
}

			Any command-line input or output is written as follows:

			
$ mkdir css$ cd css

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Select System info from the Administration panel.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Persistence Best Practices for Java Applications, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image: Download a free PDF copy of this book]
				

			

			https://packt.link/free-ebook/9781837631278

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			Part 1: Persistence in Cloud Computing – Storing and Managing Data in Modern Software Architecture

		

		
			In this section of the book, we delve into the essential aspects of persistence in the context of cloud computing. As cloud solutions become increasingly prevalent in modern software architecture, it is vital to understand how to store and manage data effectively in this environment.

			This part includes the following chapters:

			
					Chapter 1, Storing Data: from the Caves to the Clouds

					Chapter 2, Distilling the Multiple Database Flavors

					Chapter 3, Exploring Architectural Strategies and Cloud Usage

					Chapter 4, Getting the Most out of Design Patterns for Data Management in Cloud-Native Applications

			

		

		
			
			

		

		
			
			

		

		
			
			

		

	

		
			1

			The History of Data Storage – From the Caves to the Cloud

			Data: a critical, life-changing, and fundamental asset that supports humanity’s existence and evolution. For thousands of years (yes, thousands!), data storage solutions have evolved and supported humans by allowing us to “remember” and share knowledge in easy, maintainable, and searchable manners. Data turns into information, which in turn turns into knowledge. The ability to learn from the past and plan for the future is highly influenced by how we manage data in our systems today.

			Software engineers are the catalysts of this process: our responsibility is to define and deliver solutions to people’s problems through software engineering – solutions that mostly revolve around data manipulation at a large or small scale. Having understood the importance of persistence in software engineering, you’re ready to bring your solutions’ persistence to the next level.

			In this chapter, we will explore the modern era, where databases have become the backbone of our applications and the entire planet. We will cover the following topics:

			
					Why do databases exist? The history of databases

					Characteristics of Java persistence frameworks

					The cloud’s effect on stateful solutions

					Exploring the trade-offs of distributed database systems – a look into the CAP theorem and beyond

			

			This first chapter provides you with an understanding of the past and current states of data storage technologies, before moving on to more advanced topics. This will give you a better foundation to work from. You will learn how data storage technologies responded to the market’s cloud-shift mentality. Finally, you will become familiar with practices such as Domain-Driven Design (DDD), which perfectly ties in with good persistence development practices, and the challenges faced by distributed data systems that await us in a distributed world, such as the CAP theorem.

			Why do databases exist?

			A comprehensive understanding of databases is impossible without delving into humanity’s history. The desire to preserve knowledge throughout time has made writing one of the most enduring technologies, and looking back, it was first used in temples and caves, which can be recognized as the first non-computational databases of humankind.

			Today, the industry emphasizes accurate and well-recorded information. As a matter of fact, the result of an increasing number of people gaining access to technology and joining the global network of information is reflected in research that states that the amount of data doubles every two years.

			The history of modern databases began in 1960, when Charles Bachman designed the first database for computers, the integrated data store, or IDS, a predecessor to IBM’s Information Management System (IMS).

			A decade after that, around 1970, one of the most significant events in the history of databases occurred when E. F. Codd published his paper A Relational Model of Data for Large Shared Data Banks, coining the term relational database.

			Finally, as the next and probably most recent breakthrough in terms of data storage, came NoSQL, which refers to any non-relational database. Some say NoSQL stands for Non-SQL, while others say it stands for Not Only SQL.

			NoSQL databases power some of the most popular online applications. Here are a few:

			
					Google: Google uses NoSQL Bigtable for Google Mail, Google Maps, Google Earth, and Google Finance

					Netflix: Netflix likes the high availability of the NoSQL database and uses a combination of SimpleDB, HBase, and Cassandra

					Uber: Uber uses Riak, a distributed NoSQL database with a flexible key-value store model

					LinkedIn: LinkedIn built its own NoSQL database called Espresso, which is a document-oriented database

			

			The challenges of handling data

			The evolution of database systems has been marked by key milestones over the decades. In the early days, when storage was expensive, the challenge was finding ways to reduce information waste. A reduction of even one million dollars’ worth of information was a significant achievement.

			Did you know?

			At the dawn of the database era, a megabyte used to cost around 5 million dollars!

			https://ourworldindata.org/grapher/historical-cost-of-computer-memory-and-storage

			Today, megabyte cost isn’t the challenge anymore as we’re living at the cost of 0.001 $/MB. As time passed and storage became cheaper, the methods of reducing duplicate data started to negatively impact an application’s response time. Normalization and the attempts to reduce data duplication, multiple join queries, and massive amounts of data did not help as much.

			It’s no surprise that challenges to this model would eventually emerge. As noted by the esteemed and respected authors of the book Fundamentals of Software Architecture (https://www.amazon.com/dp/1492043451/), definitive solutions don’t exist; instead, we are presented with many solutions where each is accompanied by its own set of benefits and drawbacks.

			Obviously, the same applies to databases.

			There is no one-size-fits-all solution when it comes to data storage solutions.

			In the 2000s, new storage solutions, such as NoSQL databases, began to gain popularity and architects had more options to choose from. This doesn’t mean that SQL stopped being relevant, but rather that architects must now navigate the complexities of choosing the right paradigm for each problem.

			As the database landscape went through these phases, the application’s scenario also changed. Discussions moved toward the motivations and challenges of adopting a microservices architecture style, bringing us back to the multiple persistence strategies available. Traditionally, architectures included relational database solutions, with one or two instances (given its increased cost). Now, as new storage solutions mature, architectural solutions start to include persistence based on NoSQL databases, scaling up to multiple running instances. The possibility of storing data in multiple ways, throughout different services that compose a single broader solution, is a good environment for potential new solutions with polyglot persistence.

			Polyglot persistence is the idea that computer applications can use different database types to take advantage of the fact that various engine systems are better equipped to handle different problems. Complex applications often involve different types of problems, so choosing the right tool for each job can be more productive than trying to solve all aspects of the problem using a single solution.

			When analyzing solutions in most recent times, the reality confronts us, developers and architects, with the complexity of choice. How do we handle data, having to consider a scenario with multiple data types? To make it clear, we’re talking about mixing and matching hundreds of possible solutions. The best path is to prepare by learning about persistence fundamentals, best practices, and paradigms. And finally, being aware that no matter how much we desire a fast, scalable, highly available, precise, and consistent solution – we now know that, according to the CAP theorem, a concept discussed later in this chapter, that may be impossible.

			Next, we’ll narrow down our focus specifically to persistence within the context of Java applications.

			Characteristics of Java persistence frameworks

			Let’s grasp the idea of the differences between the Java language and the multiple databases available. Java, an Object-Oriented Programming (OOP) language, naturally offers features such as inheritance, encapsulation, and types, which supports the creation of well-designed code. Unfortunately, not all of these features are supported by database systems.

			As a consequence, when integrating both language and database paradigms, some of their unique advantages might get lost. This complexity becomes clear when we observe that in all data manipulation between in-memory objects and the database schema, there should be some data mapping and conversion. It is critical to either define a preferred approach or provide an isolation layer. In Java, the most systematic way to integrate both worlds is through the usage of frameworks. Frameworks come in various types and categories shaped by their communication levels and the provided API dynamics. In Figure 1.1, observe the key aspects of both concepts:

			
				
					[image: Figure 1.1 – Considerations about the different characteristics of a Java persistence framework]
				

			

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/toc.xhtml

		

		Contents

			

						Persistence Best Practices for Java Applications

						Contributors

						About the authors

						About the reviewer

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1: Persistence in Cloud Computing – Storing and Managing Data in Modern Software Architecture

						Chapter 1: The History of Data Storage – From the Caves to the Cloud

					

								Why do databases exist?

							

										The challenges of handling data

							

						

								Characteristics of Java persistence frameworks

								The cloud’s effect on stateful solutions

								Exploring the trade-offs of distributed database

systems – a look into the CAP theorem and beyond

								Summary

					

				

						Chapter 2: Exploring the Multiple Database Flavors

					

								A look back at relational databases

								A deep dive into non-relational databases (NoSQL)

							

										NoSQL database types – key-value

										NoSQL database types – document

										NoSQL database types – wide-column/column-family

										NoSQL database types – graph

							

						

								NewSQL databases – trying to get the best out of both worlds

								Summary

					

				

						Chapter 3: Exploring Architectural Strategies and Cloud Usage

					

								The cloud’s influence on software architecture design

							

										Design patterns – the essential building blocks for software architects

										Monolithic architecture

										Microservices architecture

										Common pitfalls of microservices adoption

							

						

								Cloud deployment strategies that favor modern stateful solutions

							

										Why the hybrid and multi-cloud models matter

							

						

								Distributed systems and their impact on data systems

							

										Example – architecting a food delivery solution

										The basic scenario

										The challenges of integrating services around a central piece of data

							

						

								Summary

					

				

						Chapter 4: Design Patterns for Data Management in Cloud-Native Applications

					

								Technical requirements

								Design patterns applied to the Java persistence layer

							

										Unstructured code

										The data mapper pattern

										The DAO pattern

										Repository pattern boosted by DDD

										The active record pattern

							

						

								Navigating the Java mapping landscape – evaluating framework trade-offs

								Data transfer between the view and underlying layers

								Summary

					

				

						Part 2: Jakarta EE, MicroProfile, Modern Persistence Technologies, and Their Trade-Offs

						Chapter 5: Jakarta EE and JPA – State of Affairs

					

								Technical requirements

								Jakarta EE overview

								Framework unveiled – reflection versus reflectionless solutions

								JPA state of affairs

							

										JPA and database mapping patterns

							

						

								The power of JPA with Quarkus and Panache cloud-native runtimes

							

										Setting up the new service

										Persistent entities and database operations

										Exposing REST endpoints for data manipulation

										Even faster development speed – automatic endpoint generation

							

						

								General JPA-related performance considerations

								Summary

					

				

						Chapter 6: NoSQL in Java Demystified – One API to Rule Them All

					

								Technical requirements

								Understanding NoSQL database trade-offs

								Consuming NoSQL databases with JNoSQL

							

										Key-value databases

										Column databases

										Document databases

										Graph databases

							

						

								Summary

					

				

						Chapter 7: The Missing Guide for jOOQ Adoption

					

								Technical requirements

							

										Data-driven and object-oriented programming in Java

										What is jOOQ?

										Using jOOQ with Jakarta/MicroProfile

							

						

								Summary

					

				

						Chapter 8: Ultra-Fast In-Memory Persistence with Eclipse Store

					

								Technical requirements

								Object-relational impedance mismatch explained

								In-memory persistence storage – Eclipse Store

							

										The basics of how to store and manage data in memory

							

						

								Using in-memory data storage with Jakarta EE and MicroProfile

								Summary

					

				

						Part 3: Architectural Perspective over Persistence

						Chapter 9: Persistence Practices – Exploring Polyglot Persistence

					

								Technical requirements

								The trade-offs of polyglot persistence

								Understanding DDD and Jakarta

								Jakarta Data

								Summary

					

				

						Chapter 10: Architecting Distributed Systems – Challenges and Anti-Patterns

					

								Data integration scales and distributed transactions

								The dual-write anti-pattern

								Microservices and shared databases

								Eventual consistency problems

								Summary

					

				

						Chapter 11: Modernization Strategies and Data Integration

					

								Application modernization strategies

								Avoiding data storage-related anti-patterns and bad practices

								Introduction to CDC pattern

								Adopting cloud technologies and cloud services

								Summary

					

				

						Chapter 12: Final Considerations

					

								The power of tests - How to lead with data-domain tests

								Do not underestimate the importance of documentation

								Architecture without architects

								Summary

								Further reading

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/image/B19375_QR_Free_PDF.jpg

OEBPS/image/Figure_1.1_B19375.jpg
Characteristics of a Java Persistence Framework

Specific APl

Integration and data manipulation
between a Java service and a specific
datastorage

API Abstraction
Levels

Agnostic API

Integration and Data manipulation
between a Java service and multiple
plementations of data storage.

Greater level of support provided by
the owner (vendor);
Increased migration effort if
changing the storage solution

No vendor-lock in; Flexibility to
change underlying solution, lower
effort on changes;

Usage of unique technology
behaviors might be challenging

$}40-3pDa]

OEBPS/Fonts/CourierStd.otf

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/image/cover.png
1ST EDITION

Persistence Best Practices
for Java Applications

Effective strategies for distributed cloud-native
applications and data-driven modernization

OTAVIO SANTANA | KARINA VARELA

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

