

 [image: Cover of The Kubernetes Bible by Gineesh Madapparambath | Mr. Russ McKendrick]

 The Kubernetes Bible

 Second Edition

 The definitive guide to deploying and managing Kubernetes across cloud and on-prem environments

 Gineesh Madapparambath

 Russ McKendrick

 [image:]

 The Kubernetes Bible

 Second Edition

 Copyright © 2024 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Senior Publishing Product Manager: Rahul Nair

 Acquisition Editor – Peer Reviews: Gaurav Gavas, Jane D'Souza

 Project Editor: Amisha Vathare

 Content Development Editor: Shikha Parashar

 Copy Editor: Safis Editing

 Technical Editor: Simanta Rajbangshi

 Proofreader: Safis Editing

 Indexer: Pratik Shirodkar

 Presentation Designer: Ganesh Bhadwalkar

 Developer Relations Marketing Executive: Maran Fernandes

 First published: January 2022

 Second edition: November 2024

 Production reference: 1271124

 Published by Packt Publishing Ltd.

 Grosvenor House

 11 St Paul’s Square

 Birmingham

 B3 1RB, UK.

 ISBN 978-1-83546-471-7

 www.packt.com

 Contributors

 About the authors

 Gineesh Madapparambath has over 15 years of experience in IT service management and consultancy, specializing in Linux, automation, and containerization. He has worked extensively in planning, deploying, and supporting automation solutions with Ansible and the Ansible Automation Platform, across private clouds, public clouds, bare metal, and network environments. His experience spans globally, with roles including Systems Engineer, Automation Specialist, and Infrastructure Designer. Gineesh is also the author of Ansible for Real Life Automation.

 To my wife, Deepthy, for supporting and motivating me as always. To my son, Abhay, and my daughter, Anu, for allowing me to take time away from playing with them to write the book. To my parents and my ever-supportive friends, for their motivation and help.

 - Gineesh Madapparambath

 Russ McKendrick is an experienced DevOps practitioner and system administrator with a passion for automation and containers. He has been working in IT and related industries for the better part of 30 years. During his career, he has had responsibilities in many different sectors, including first-line, second-line, and senior support in client-facing and internal teams for small and large organizations.

 He works primarily with Linux, using open-source systems and tools across dedicated hardware and virtual machines hosted in both public and private clouds at Node4, where he is the practice manager (SRE and DevOps). He also buys way too many records!

 About the reviewers

 Rom Adams (né Romuald Vandepoel) is an open source and C-Suite advisor with 20 years of experience in the IT industry. He is a cloud-native expert who helps organizations to modernize and transform with open-source solutions. He advises companies and lawmakers on their open- and inner-source strategies. He has previously worked as a Principal Architect at Ondat, a cloud-native storage company acquired by Akamai, where he designed products and hybrid cloud solutions. He has also held roles at Tyco, NetApp, and Red Hat, becoming a Subject Matter Expert in hybrid cloud.

 Adams has been a moderator and speaker for several events, sharing his insights into culture, process, and technology adoption, as well as his passion for open innovation.

 To my grandmother, for her kindness; my grandfather, for his wisdom; and my partner and best friend, Mercedes Adams, for her love, patience, and continuous support.

 – Rom Adams

 Shane Boulden is a Solution Architect at Red Hat, supporting organisations to deploy, manage, and secure open-source platforms and technologies.

 He is a contributor to several open-source security projects, including the “Compliance as Code” project, building SCAP profiles, and Ansible playbooks aligned with Australian security guidelines. He also supported the Keycloak project to achieve Australian Consumer Data Right (CDR) certification through the OpenID foundation and has contributed a number of new policies to the StackRox Kubernetes-native security project.

 Shane has a keen interest in artificial intelligence and machine learning, publishing peer-reviewed papers on genetic algorithms and their applications and running sessions at conferences helping others get started with open-source Generative AI frameworks.

 Shane regularly publishes articles on platform operations and security on his blog, stb.id.au.

 Foreword

 You can bundle and run your applications by using containers. You get to package your dependencies, libraries, and frameworks into a single unit. But then, you’ll need to manage those containers and, well, orchestrate them. For example, you’ll need to schedule containers across a cluster of nodes, automatically restart your failed containers, and replace the failed nodes. That was the need that Google recognized, and Kubernetes was born out of that need.

 For me, I first got into Kubernetes right after it was created (late 2015). I was helping run customer feedback programs for developers who were building solutions on Microsoft Azure. We needed our services to work with container orchestration systems, and that especially included Kubernetes. By the time Azure Kubernetes Services (AKS) launched in 2018, I was publishing architectural content on the Azure Architecture Center, as well as whitepapers, e-books, and blog posts. Naturally, I worked with Microsoft’s top solution architects to help publish AKS architecture design guidance and reference architectures. For example, in 2022, I was heavily involved in a series of content called “AKS for Amazon EKS professionals.” I later helped publish content about Google Kubernetes Engine (GKE) on the Google Cloud Architecture Center.

 “What makes Kubernetes so incredible is its implementation of Google’s own experience with Borg. Nothing beats the scale of Google. Borg launches more than 2-billion containers per week, an average of 3,300 per second... Kubernetes was born in a cauldron of fire, battle-tested and ready for massive workloads.”

 – Swapnil Bhartiya, OpenSource.com

 Swapnil Bhartiya gets to the heart of the success of Kubernetes… it was born out of need and refined to become incredibly effective. But words alone won’t save your application. Let’s see what Scott Adams has his characters say about cloud-native application design, containerization, and, yes, Kubernetes.

 “I need to know why moving our app to the cloud didn’t automatically solve all our problems.”

 – Pointy-Haired Boss (PHB)

 “You wouldn’t let me re-architect the app to be cloud native.”

 – Dilbert

 “Just put it in containers.”

 – PHB

 “You can’t solve a problem just by saying techy things.”

 – Dilbert

 “Kubernetes.”

 – PHB

 And that’s where The Kubernetes Bible comes in. As Scott Adams explained, you can’t just say the terms; you have to do the work. That means you need to know how to get up and running on Kubernetes, how to design and deploy large clusters, and, in general, how to deploy, debug, and recover containerized applications. In this book, Gineesh Madapparambath and Russ McKendrick take you through everything from installing your first Kubernetes cluster to using and configuring pods to deploying stateless and stateful applications. You’ll learn how to launch your Kubernetes clusters on Google Cloud (GKS), Amazon Web Services (EKS), and Microsoft Azure (AKS). You’ll also explore further techniques, including using Helm charts, security, advanced Pod techniques, traffic management, and much more!

 Be sure to study each chapter of the Kubernetes Bible. Soak in the wisdom of Gineesh and Russ like a sponge. The more you engage with the content of this book, the more you’ll remember and apply it. And keep this book close. You’re going to need it as you continue to manage and orchestrate your containers.

 Ed Price

 Technical Writer, Cloud Architecture Content Manager

 Co-author of 8 books, including The Azure Cloud Native Architecture Mapbook from Packt

 Join our community on Discord

 Join our community’s Discord space for discussions with the authors and other readers:

 https://packt.link/cloudanddevops

 [image:]

 Contents

 	Preface

 	Who this book is for

 	What this book covers

 	To get the most out of this book

 	Get in touch

 	Leave a Review!

 	Kubernetes Fundamentals

 	Understanding monoliths and microservices

 	Understanding the growth of the internet since the late 1990s

 	Understanding the need for more frequent software releases

 	Understanding the organizational shift to agile methodologies

 	Understanding the shift from on-premises to the cloud

 	Understanding why the cloud is well suited for scalability

 	Exploring the monolithic architecture

 	Exploring the microservices architecture

 	Choosing between monolithic and microservices architectures

 	Understanding containers

 	Understanding why containers are good for microservices

 	Understanding the benefits of container isolation

 	Container engines

 	The basics of containers

 	Container image

 	Container

 	Container registry

 	Dockerfile or Containerfile

 	Docker Compose or Podman Compose

 	How can Kubernetes help you to manage your containers?

 	Kubernetes – designed to run workloads in production

 	KubeVirt – a bridge between containers and VMs

 	Understanding the history of Kubernetes

 	Understanding how and where Kubernetes started

 	Who manages Kubernetes today?

 	Where is Kubernetes today?

 	Where is Kubernetes going?

 	Exploring the problems that Kubernetes solves

 	Ensuring high availability

 	Release management and container deployment

 	Autoscaling containers

 	Network isolation

 	Role-Based Access Control (RBAC)

 	Stateful workloads

 	Resource management

 	When and where is Kubernetes not the solution?

 	Summary

 	Further reading

 	Kubernetes Architecture – from Container Images to Running Pods

 	Technical requirements

 	The name – Kubernetes

 	Understanding the difference between the control plane nodes and compute nodes

 	The master and worker nodes

 	Linux and Windows containers

 	Kubernetes components

 	Control plane components

 	Compute node components

 	Add-on components

 	Control plane in managed Kubernetes clusters

 	The Control Plane Components

 	kube-apiserver

 	The role of kube-apiserver

 	How do you run kube-apiserver?

 	Where do you run kube-apiserver?

 	The etcd datastore

 	Where do you run etcd?

 	Operating etcd clusters for Kubernetes

 	Learning more about etcd

 	kube-scheduler

 	Where do you install kube-scheduler?

 	kube-controller-manager

 	Where do you run kube-controller-manager?

 	cloud-controller-manager

 	Where do you run cloud-controller-manager?

 	The compute node components

 	Container engine and container runtime

 	Container Runtime Interface

 	kubelet

 	The kube-proxy component

 	Exploring the kubectl command-line tool and YAML syntax

 	Installing the kubectl command-line tool

 	Kubernetes Legacy Package Repositories

 	Installing kubectl on Linux

 	Installing kubectl on macOS

 	Installing kubectl on Windows

 	The role of kubectl

 	How does kubectl work?

 	kubectl auto-completion

 	The imperative syntax

 	The declarative syntax

 	How to make Kubernetes highly available

 	The single-node cluster

 	The single-master cluster

 	The multi-master multi-node cluster

 	Managing etcd in Kubernetes with multiple control plane nodes

 	Summary

 	Further reading

 	Installing Your First Kubernetes Cluster

 	Technical requirements

 	Installing a Kubernetes cluster with minikube

 	Installing minikube

 	Installing minikube on Linux

 	Installing minikube on macOS

 	Installing minikube on Windows

 	minikube configurations

 	Drivers for minikube

 	Launching a single-node Kubernetes cluster using minikube

 	Setting up minikube using VMs

 	Setting up minikube using a container

 	Accessing the Kubernetes cluster created by minikube

 	Stopping and deleting the local minikube cluster

 	Multi-node Kubernetes cluster using minikube

 	Multi-master Kubernetes cluster using minikube

 	Multiple Kubernetes clusters using minikube

 	Multi-node Kubernetes cluster with kind

 	Installing kind onto your local system

 	Creating a Kubernetes cluster with kind

 	Stopping and deleting the local kind cluster

 	Alternative Kubernetes learning environments

 	Play with Kubernetes

 	Killercoda Kubernetes playground

 	Production-grade Kubernetes clusters

 	Managed Kubernetes clusters using cloud services

 	Kubernetes distributions

 	Kubernetes installation tools

 	Hybrid and multi-cloud solutions

 	Choosing the right environment

 	Running Kubernetes On-Premises: Challenges and Considerations

 	Summary

 	Further reading

 	Running Your Containers in Kubernetes

 	Technical requirements

 	Let’s explain the notion of Pods

 	What are Pods?

 	Each Pod gets an IP address

 	How should you design your Pods?

 	Launching your first Pods

 	Creating a Pod with imperative syntax

 	Tags versus digests – ensuring image consistency

 	Creating a Pod with declarative syntax

 	Namespaces in Kubernetes

 	Reading the Pod’s information and metadata

 	Listing the objects in JSON or YAML

 	Backing up your resource using the list operation

 	Getting more information from the list operation

 	Accessing a Pod from the outside world

 	Entering a container inside a Pod

 	Deleting a Pod

 	Labeling and annotating the Pods

 	What are labels and why do we need them?

 	What are annotations and how do they differ from labels?

 	Adding a label

 	Listing labels attached to a Pod

 	Adding or updating a label to/of a running Pod

 	Deleting a label attached to a running Pod

 	Adding an annotation

 	Launching your first Job

 	What are Jobs?

 	Creating a job with restartPolicy

 	Understanding the job’s backoffLimit

 	Running a task multiple times using completions

 	Running a task multiple times in parallel

 	Terminating a job after a specific amount of time

 	What happens if a job succeeds?

 	Deleting a job

 	Launching your first CronJob

 	What are CronJobs?

 	Preparing your first CronJob

 	Understanding the schedule key

 	Understanding the role of the jobTemplate section

 	Controlling the CronJob execution deadline

 	Managing the history limits of jobs

 	Creating a CronJob

 	Deleting a CronJob

 	Summary

 	Further reading

 	Using Multi-Container Pods and Design Patterns

 	Technical requirements

 	Understanding what multi-container Pods are

 	Concrete scenarios where you need multi-container Pods

 	Creating a Pod made up of two containers

 	What happens when Kubernetes fails to launch one container in a Pod?

 	Deleting a multi-container Pod

 	Understanding the Pod deletion grace period

 	Accessing a specific container inside a multi-container Pod

 	Running commands in containers

 	Overriding the default commands run by the containers

 	Introducing initContainers

 	Accessing the logs of a specific container

 	Sharing volumes between containers in the same Pod

 	What are Kubernetes volumes?

 	Creating and mounting an emptyDir volume

 	Creating and mounting a hostPath volume

 	The ambassador design pattern

 	What is the ambassador design pattern?

 	Ambassador multi-container Pod – an example

 	The sidecar design pattern

 	What is the sidecar design pattern?

 	When to use a Sidecar design pattern?

 	Sidecar multi-container Pod – an example

 	The adapter design pattern

 	Adapter multi-container Pod – an example

 	Sidecars versus Kubernetes Native Sidecars

 	Summary

 	Further reading

 	Namespaces, Quotas, and Limits for Multi-Tenancy in Kubernetes

 	Technical requirements

 	Introduction to Kubernetes namespaces

 	The importance of namespaces in Kubernetes

 	How namespaces are used to split resources into chunks

 	Understanding default namespaces

 	How namespaces impact your resources and services

 	Listing namespaces inside your cluster

 	Retrieving the data of a specific namespace

 	Creating a namespace using imperative syntax

 	Creating a namespace using declarative syntax

 	Deleting a namespace

 	Creating a resource inside a namespace

 	Listing resources inside a specific namespace

 	Setting the current namespace using kubectl config set-context

 	Listing all the resources inside a specific namespace

 	Recognizing how names are scoped within a namespace

 	Understanding that not all resources are in a namespace

 	Resolving a service using namespaces

 	Best practices for Kubernetes namespaces

 	Configuring ResourceQuota and Limit at the namespace level

 	Understanding the need to set ResourceQuotas

 	Understanding how Pods consume these resources

 	Understanding how Pods can require computing resources

 	But what do these metrics mean?

 	Understanding how you can limit resource consumption

 	Understanding why you need ResourceQuota

 	Creating a ResourceQuota

 	Storage resource quotas

 	Listing ResourceQuota

 	Deleting ResourceQuota

 	Introducing LimitRange

 	Listing LimitRanges

 	Deleting LimitRange

 	Summary

 	Further reading

 	Configuring Your Pods Using ConfigMaps and Secrets

 	Technical requirements

 	Understanding what ConfigMaps and Secrets are

 	Decoupling your application and your configuration

 	Understanding how Pods consume ConfigMaps and Secrets

 	Configuring your Pods using ConfigMaps

 	Listing ConfigMaps

 	Creating a ConfigMap

 	Creating a ConfigMap from literal values

 	Storing entire configuration files in a ConfigMap

 	Creating a ConfigMap from an env file

 	Reading values inside a ConfigMap

 	Linking ConfigMaps as environment variables

 	Using kubectl port-forward

 	Mounting a ConfigMap as a volume mount

 	Deleting a ConfigMap

 	Updating a ConfigMap

 	Immutable ConfigMaps

 	Managing sensitive configuration with the Secret object

 	Listing Secrets

 	Creating a Secret imperatively with --from-literal

 	Creating a Secret declaratively with a YAML file

 	Creating a Secret with content from a file

 	Reading a Secret

 	Consuming a Secret as an environment variable

 	Consuming a Secret as a volume mount

 	Deleting a Secret

 	Updating a Secret

 	Summary

 	Further reading

 	Exposing Your Pods with Services

 	Technical requirements

 	Why would you want to expose your Pods?

 	Cluster networking in Kubernetes

 	IP address management in Kubernetes

 	Learning about network plugins

 	What is a service mesh?

 	Understanding Pod IP assignment

 	Understanding the dynamics of Pod IP assignment in Kubernetes

 	Not hardcoding the Pod’s IP address in application development

 	Understanding how Services route traffic to Pods

 	Understanding round-robin load balancing in Kubernetes

 	Understanding how to call a Service in Kubernetes

 	Understanding how DNS names are generated for Services

 	How Services discover and route traffic to Pods in Kubernetes

 	Using a utility Pod for debugging your Services

 	Understanding the drawbacks of direct kubectl expose in Kubernetes

 	Understanding how DNS names are generated for Services

 	Understanding the different types of Services

 	The NodePort Service

 	Why do you need NodePort Services?

 	Creating two containous/whoami Pods

 	Understanding NodePort YAML definition

 	Making sure NodePort works as expected

 	Is this setup production-ready?

 	Listing NodePort Services

 	Adding more Pods to NodePort Services

 	Describing NodePort Services

 	Deleting Services

 	NodePort or kubectl port-forward?

 	The ClusterIP Service

 	Why do you need ClusterIP Services?

 	How do I know if I need NodePort or ClusterIP Services to expose my Pods?

 	Listing ClusterIP Services

 	Creating ClusterIP Services using the imperative way

 	Describing ClusterIP Services

 	Creating ClusterIP Services using the declarative way

 	Understanding headless Services

 	The LoadBalancer Service

 	Supported cloud providers for the LoadBalancer Service type

 	Should the LoadBalancer Service type be used?

 	The ExternalName Service type

 	Implementing Service readiness using probes

 	What is ReadinessProbe and why do you need it?

 	Implementing ReadinessProbe

 	What is LivenessProbe and why do you need it?

 	Implementing LivenessProbe

 	HTTP livenessProbe

 	Command livenessProbe

 	TCP livenessProbe

 	Using named Port with TCP and HTTP livenessProbe

 	Using startupProbe

 	Using ReadinessProbe and LivenessProbe together

 	Summary

 	Further reading

 	Persistent Storage in Kubernetes

 	Technical requirements

 	Why use persistent storage?

 	Introducing Volumes

 	Introducing PersistentVolumes

 	Introducing PersistentVolume types

 	Benefits brought by PersistentVolume

 	Introducing PersistentVolume access modes

 	Creating our first PersistentVolume object

 	How does Kubernetes PersistentVolumes handle storage?

 	Creating PersistentVolume with raw block volume

 	Can Kubernetes handle the provisioning or creation of the resource itself?

 	Understanding how to mount a PersistentVolume to your Pod

 	Introducing PersistentVolumeClaim

 	Splitting storage creation and storage consumption

 	Understanding the PersistentVolume workflow

 	Creating a Pod with a PersistentVolumeClaim object

 	Understanding the life cycle of a PersistentVolume object in Kubernetes

 	Understanding why PersistentVolume objects are not bound to namespaces

 	Reclaiming a PersistentVolume object

 	Updating a reclaim policy

 	Understanding PersistentVolume and PersistentVolumeClaim statuses

 	Understanding static and dynamic PersistentVolume provisioning

 	Static versus dynamic provisioning

 	Introducing dynamic provisioning

 	Introduction to CSI

 	Introducing StorageClasses

 	Understanding the role of PersistentVolumeClaim for dynamic storage provisioning

 	Advanced storage topics

 	Ephemeral volumes for temporary storage in Kubernetes

 	CSI volume cloning and volume snapshots

 	Learning how to expand PersistentVolumeClaim

 	Summary

 	Further reading

 	Running Production-Grade Kubernetes Workloads

 	Technical requirements

 	Ensuring High Availability and Fault Tolerance on Kubernetes

 	High availability

 	Fault tolerance

 	HA and FT for Kubernetes applications

 	What is ReplicationController?

 	What is ReplicaSet?

 	How does ReplicaSet differ from ReplicationController?

 	Creating a ReplicaSet object

 	Testing the behavior of ReplicaSet

 	Testing HA and FT with a ReplicaSet

 	Scaling ReplicaSet

 	Using Pod liveness probes together with ReplicaSet

 	Deleting a ReplicaSet object

 	Summary

 	Further reading

 	Using Kubernetes Deployments for Stateless Workloads

 	Technical requirements

 	Introducing the Deployment object

 	Creating a Deployment object

 	Exposing Deployment Pods using Service objects

 	Creating a Service declaratively

 	Creating a Service imperatively

 	Role of readiness, liveness, and startup probes

 	Scaling a Deployment object

 	Deleting a Deployment object

 	How Kubernetes Deployments seamlessly handle revisions and version rollouts

 	Updating a Deployment object

 	Rolling back a Deployment object

 	Canary deployment strategy

 	Deployment object best practices

 	Use declarative object management for Deployments

 	Do not use the Recreate strategy for production workloads

 	Do not create Pods that match an existing Deployment label selector

 	Carefully set up your container probes

 	Use meaningful and semantic image tags

 	Migrate from older versions of Kubernetes

 	Include resource management in the Deployment

 	Scaling and replica management

 	Security considerations

 	Summary

 	Further reading

 	StatefulSet – Deploying Stateful Applications

 	Technical requirements

 	Introducing the StatefulSet object

 	Managing state in containers

 	Managing state in Kubernetes Pods

 	StatefulSet and how it differs from a Deployment object

 	Exploring the limitations of StatefulSet

 	Data management in Statefulset

 	Replication management

 	Managing StatefulSet

 	Creating a StatefulSet

 	Using the headless Service and stable network identities

 	State persistence

 	Scaling StatefulSet

 	Deleting a StatefulSet

 	Releasing a new version of an app deployed as a StatefulSet

 	Updating StatefulSet

 	Rolling back StatefulSet

 	StatefulSet best practices

 	Use declarative object management for StatefulSets

 	Do not use the TerminationGracePeriodSeconds Pod with a 0 value for StatefulSets

 	Scale down StatefulSets before deleting

 	Ensure state compatibility during StatefulSet rollbacks

 	Do not create Pods that match an existing StatefulSet label selector

 	Use Remote Storage for the PV

 	Define liveness and readiness probes

 	Monitor your StatefulSets

 	Summary

 	Further reading

 	DaemonSet – Maintaining Pod Singletons on Nodes

 	Technical requirements

 	Introducing the DaemonSet object

 	How DaemonSet Pods are scheduled

 	Checking DaemonSets

 	Creating and managing DaemonSets

 	Creating a DaemonSet

 	Prioritizing critical DaemonSets in Kubernetes

 	Modifying a DaemonSet

 	Rolling back the DaemonSet

 	Deleting a DaemonSet

 	Common use cases for DaemonSets

 	DaemonSet best practices

 	Alternatives to DaemonSets

 	Summary

 	Further reading

 	Working with Helm Charts and Operators

 	Technical requirements

 	Understanding Helm

 	Releasing software to Kubernetes using Helm

 	Installing Helm on Linux

 	Installing Helm on Windows

 	Installing Helm on macOS

 	Installing from the binary releases

 	Deploying an example chart – WordPress

 	Deleting a Helm release

 	Helm chart anatomy

 	Installing Kubernetes Dashboard using Helm Charts

 	Secure access to the Kubernetes Dashboard

 	Accessing Dashboard WEBUI

 	Installing other popular solutions using Helm charts

 	Elasticsearch with Kibana

 	Prometheus with Grafana

 	Security considerations for Helm Charts

 	Introducing Kubernetes Operators

 	From humans to software

 	Helm Charts versus Kubernetes Operators

 	How can the Operators help in the application deployment?

 	Reusability of the automation

 	How Operators ensure the application state

 	Custom resource definitions – building blocks for Operators

 	Benefits of CRDs

 	Operator distribution mechanism

 	Building your own Operator

 	Operator Lifecycle Manager (OLM)

 	Enabling Kubernetes monitoring using Prometheus and Grafana

 	Installing Operator Lifecycle Manager

 	Installing Prometheus and Grafana Operators using OLM

 	Configuring Prometheus and Grafana instances using Operators

 	Summary

 	Further reading

 	Kubernetes Clusters on Google Kubernetes Engine

 	Technical requirements

 	What are Google Cloud Platform and Google Kubernetes Engine?

 	Google Cloud Platform

 	Google Kubernetes Engine

 	Preparing your local environment

 	Creating a project

 	Installing the GCP command-line interface

 	Installing on macOS

 	Installing on Windows

 	Installing on Linux

 	Cloud Shell

 	Initialization

 	Launching your first Google Kubernetes Engine cluster

 	Deploying a workload and interacting with your cluster

 	Configuring your local client

 	Launching an example workload

 	Exploring Google Cloud Console

 	Workloads

 	Gateways, Services, and Ingress

 	Other GKE features

 	Deleting your cluster

 	More about cluster nodes

 	Summary

 	Further reading

 	Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes Service

 	Technical requirements

 	What are Amazon Web Services and Amazon Elastic Kubernetes Service?

 	Amazon Web Services

 	Amazon Elastic Kubernetes Service

 	Preparing your local environment

 	Signing up for an AWS account

 	Installing the AWS command-line interface

 	Installing on macOS

 	Installing on Linux

 	Installing on Windows

 	AWS CLI configuration

 	Installing eksctl, the official CLI for Amazon EKS

 	Launching your Amazon Elastic Kubernetes Service cluster

 	Deploying a workload and interacting with your cluster

 	Deploying the workload

 	Exploring the AWS console

 	Deleting your Amazon Elastic Kubernetes Service cluster

 	Summary

 	Further reading

 	Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service

 	Technical requirements

 	What are Microsoft Azure and Azure Kubernetes Service?

 	Microsoft Azure

 	Azure Kubernetes Service

 	Preparing your local environment

 	Creating a free Microsoft Azure account

 	The Azure CLI

 	Installing on macOS

 	Installing on Linux

 	Installing on Windows

 	Configuring the Azure CLI

 	Accessing Azure Cloud Shell

 	Launching your Azure Kubernetes Service cluster

 	Deploying a workload and interacting with your cluster

 	Launching the workload

 	Exploring the Azure portal

 	Namespaces (Kubernetes resources)

 	Workloads (Kubernetes resources)

 	Services and ingresses (Kubernetes resources)

 	Storage (Kubernetes resources)

 	Configuration (Kubernetes resources)

 	Custom resources (Kubernetes resources)

 	Events (Kubernetes resources)

 	Run command (Kubernetes resources)

 	Node pools (Settings)

 	Cluster configuration (Settings)

 	Application scaling (Settings)

 	Networking (Settings)

 	Extensions + applications (Settings)

 	Backup (Settings)

 	Other options (Settings)

 	Insights (Monitoring)

 	Deleting your Azure Kubernetes Service cluster

 	Comparing the three public cloud offerings

 	Summary

 	Further reading

 	Security in Kubernetes

 	Technical Requirements

 	Authentication and Authorization – User Access Control

 	Authentication and User Management

 	The authentication workflow in Kubernetes

 	Authentication to the Kubernetes API

 	Authentication Methods in Kubernetes

 	Authorization and introduction to RBAC

 	RBAC mode in Kubernetes

 	Admission Control – Security Policies and Checks

 	The Two-Phase Admission Process

 	Mutation Phase

 	Validation Phase

 	Enabling and disabling Admission controllers

 	Common Admission Controllers

 	Benefits of Admission Controllers

 	Securing Pods and Containers

 	Securing Pods and Containers in Kubernetes Using Security Context

 	Key Components of SecurityContext

 	Applying SecurityContext at Pod and Container Levels

 	Applying Security Context to a Pod

 	Securing Pods using the NetworkPolicy object

 	Why do you need NetworkPolicy?

 	Understanding Pods are not isolated by default

 	Configuring NetworkPolicy with labels and selectors

 	Securing Communication – TLS Certificates Between Kubernetes Components

 	Container Security – gVisor and Kata Containers

 	gVisor (Guest Virtual Machine Supervisor)

 	Kata Containers

 	Using RuntimeClass for Security Profiles

 	Managing Secrets and Registry Credentials

 	Using kubectl to create a Docker registry secret

 	Summary

 	Further reading

 	Advanced Techniques for Scheduling Pods

 	Technical requirements

 	Refresher – What is kube-scheduler?

 	Managing Node affinity

 	Using nodeName for Pods

 	Using nodeSelector for Pods

 	Using the nodeAffinity configuration for Pods

 	Using Node taints and tolerations

 	Understanding Static Pods in Kubernetes

 	Extended scheduler configurations in Kubernetes

 	Scheduler configuration

 	Node isolation and restrictions

 	Tuning Kubernetes scheduler performance

 	Summary

 	Further reading

 	Autoscaling Kubernetes Pods and Nodes

 	Technical requirements

 	Pod resource requests and limits

 	Autoscaling Pods vertically using a VerticalPodAutoscaler

 	Enabling InPlacePodVerticalScaling

 	Enabling a VPA in GKE

 	Enabling a VPA for other Kubernetes clusters

 	Using a VPA

 	Autoscaling Pods horizontally using a HorizontalPodAutoscaler

 	Deploying the app for HPA demonstration

 	Implementing an HPA

 	Autoscaling Kubernetes Nodes using a Cluster Autoscaler

 	CA limitations

 	Enabling the CA in GKE

 	Enabling a CA in Amazon Elastic Kubernetes Service

 	Enabling a CA in Azure Kubernetes Service

 	Using the CA

 	Alternative autoscalers for Kubernetes

 	KEDA

 	Karpenter

 	Summary

 	Further reading

 	Advanced Kubernetes: Traffic Management, Multi-Cluster Strategies, and More

 	Technical Requirements

 	Advanced Traffic Routing with Ingress

 	Refresher – Kubernetes Services

 	Overview of the Ingress object

 	Using nginx as an Ingress Controller

 	Deploying the NGINX Ingress Controller in minikube

 	Deploying Ingress Resources in Kubernetes

 	ingressClass and Multiple Ingress Controllers

 	Azure Application Gateway Ingress Controller for AKS

 	Why Choose AGIC for AKS?

 	Gateway API

 	Understanding Endpoints and EndpointSlices

 	Modern Advancements with Kubernetes

 	Serverless with Knative and OpenFaaS

 	Kubeflow – Machine Learning on Kubernetes

 	KubeVirt – Virtual Machines on Kubernetes

 	Maintaining Kubernetes Clusters – Day 2 Tasks

 	Kubernetes Cluster Backup and Restore

 	Taking Backup of etcd

 	etcd Snapshot Restore with etcdutl

 	Reconfiguring the Kubernetes API Server

 	Leveraging Infrastructure as Code (IaC) and Configuration as Code (CaC) for Resilient Cluster Management

 	Kubernetes Cluster Upgrades

 	Pre-Upgrade Checklist

 	Upgrade Process

 	Post-Upgrade Tasks

 	Rollback Plan

 	Additional Tips

 	Multi-Cluster Management

 	Securing a Kubernetes Cluster – Best Practices

 	Controlling Access to the Kubernetes API

 	Controlling Access to the Kubelet

 	Controlling Workload or User Capabilities at Runtime

 	Restricting Network Access

 	Protecting Cluster Components

 	Troubleshooting Kubernetes

 	Getting details about resources

 	Kubernetes Logs and Events for troubleshooting

 	kubectl explain – the inline helper

 	Interactive troubleshooting using kubectl exec

 	Ephemeral Containers in Kubernetes

 	Common troubleshooting tasks in Kubernetes

 	Summary

 	Further reading

 	Other Books You May Enjoy

 	Leave a Review!

 	Index

 Landmarks

 	Cover

 	Index

 Preface

 Containers have allowed a real leap forward since their massive adoption in the world of virtualization because they have allowed greater flexibility, especially these days, when buzzwords such as cloud, agile, and DevOps are on everyone’s lips.

 Today, almost no one questions the use of containers—they’re basically everywhere, especially after the success of Docker and the rise of Kubernetes as the leading platform for container orchestration.

 Containers have brought tremendous flexibility to organizations, but they have remained questionable for a very long time when organizations face the challenge of deploying them in production. For years, companies have been using containers for proof-of-concept projects, local development, and similar purposes, but the idea of using containers for real production workloads was inconceivable for many organizations.

 Container orchestrators were the game-changer, with Kubernetes in the lead. Originally built by Google, today, Kubernetes is the leading container orchestrator that provides you with all the features you need in order to deploy containers in production at scale. Kubernetes is popular, but it is also complex. This tool is so versatile that getting started with it and progressing to advanced usage is not an easy task: it is not an easy tool to learn and operate.

 As an orchestrator, Kubernetes has its own concepts independent of those of a container engine. But when both container engines and orchestrators are used together, you get a very strong platform ready to deploy your cloud-native applications in production. As engineers working with Kubernetes daily, we were convinced, like many, that it was a technology to master, and we decided to share our knowledge in order to make Kubernetes accessible by covering most of this orchestrator.

 This book is entirely dedicated to Kubernetes and is the result of our work. It provides a broad view of Kubernetes and covers a lot of aspects of the orchestrator, from pure container Pod creation to deploying the orchestrator on the public cloud. We didn’t want this book to be a Getting Started guide.

 We hope this book will teach you everything you want to learn about Kubernetes!

 Who this book is for

 This book is for people who intend to use Kubernetes with container runtimes. Although Kubernetes supports various container engines through the Container Runtime Interface (CRI) and is not tied to any specific one, the combination of Kubernetes with containerd remains one of the most common use cases.

 This book is highly technical, with a primary focus on Kubernetes and container runtimes from an engineering perspective. It is intended for engineers, whether they come from a development or system administration background and is not aimed at project managers. It is a Kubernetes bible for people who are going to use Kubernetes daily, or for people who wish to discover this tool. You shouldn’t be afraid of typing some commands on a terminal.

 Being a total beginner to Kubernetes or having an intermediate level is not a problem for following this book. While we cover some container fundamentals within the chapters, it’s helpful to have basic technical familiarity with containers. This book can also serve as a guide if you are in the process of migrating an existing application to Kubernetes.

 The book incorporates content that will allow readers to deploy Kubernetes on public cloud offerings such as Amazon EKS or Google GKE. Cloud users who wish to add Kubernetes to their stack on the cloud will appreciate this book.

 What this book covers

 Chapter 1, Kubernetes Fundamentals, is an introduction to Kubernetes. We’re going to explain what Kubernetes is, why it was created, who created it, who keeps this project alive, and when and why you should use it as part of your stack.

 Chapter 2, Kubernetes Architecture – from Container Images to Running Pods, covers how Kubernetes is built as a distributed software and is technically not a single monolith binary but built as a set of microservices interacting with each other. We’re going to explain this architecture and how Kubernetes proceeds to translate your instructions into running containers in this chapter.

 Chapter 3, Installing Your First Kubernetes Cluster, explains that Kubernetes is really difficult to install due to its distributed nature, so as to make the learning process easier, it is possible to install Kubernetes clusters by using one of its distributions. Kind and minikube are two options we’re going to discover in this chapter to have a Kubernetes cluster working on your machine.

 Chapter 4, Running Your Containers in Kubernetes, is an introduction to the concept of Pods.

 Chapter 5, Using Multi-Container Pods and Design Patterns, introduces multi-container Pods and design patterns such as a proxy, adapter, or sidecar that you can build when running several containers as part of the same Pod.

 Chapter 6, Namespaces, Quotas, and Limits for Multi-Tenancy in Kubernetes, explains how using namespaces is a key aspect of cluster management and, inevitably, you’ll have to deal with namespaces during your journey with Kubernetes. Though it’s a simple notion, it is a key one, and you’ll have to master namespaces perfectly in order to be successful with Kubernetes. We will also learn how to implement multi-tenancy in Kubernetes using Namespaces, Quotas and Limits.

 Chapter 7, Configuring Your Pods Using ConfigMaps and Secrets, explains how, in Kubernetes, we separate Kubernetes applications from their configurations. Both applications and configurations have their own life cycle, thanks to the ConfigMap and Secret resources. This chapter will be dedicated to these two objects and how to mount data in a ConfigMap or Secret as environment variables or volumes mounted on your Pod.

 Chapter 8, Exposing Your Pods with Services, teaches you about the notion of services in Kubernetes. Each Pod in Kubernetes gets assigned its own IP address dynamically. Services are extremely useful if you want to provide a consistent one to expose Pods within your cluster to other Pods or to the outside world, with a single static DNS name. You’ll learn here that there are three main service types, called ClusterIp, NodePort, and LoadBalancer, which are all dedicated to a single use case in terms of Pod exposition.

 Chapter 9, Persistent Storage in Kubernetes, covers how, by default, Pods are not persistent. As they’re just managing raw containers, destroying them will result in the loss of your data. The solution to that is the usage of persistent storage thanks to the PersistentVolume and PersistentVolumeClaim resources. This chapter is dedicated to these two objects and the StorageClass object: it will teach you that Kubernetes is extremely versatile in terms of storage and that your Pods can be interfaced with a lot of different storage technologies.

 Chapter 10, Running Production-Grade Kubernetes Workloads, takes a deep dive into high availability and fault tolerance in Kubernetes using ReplicationController and ReplicaSet.

 Chapter 11, Using Kubernetes Deployments for Stateless Workloads, is a continuation of the previous chapter and explains how to manage multiple versions of ReplicaSets using the Deployment object. This is the basic building block for stateless applications running on Kubernetes.

 Chapter 12, StatefulSet – Deploying Stateful Applications, takes a look at the next important Kubernetes object: StatefulSet. This object is the backbone of running stateful applications on Kubernetes. We’ll explain the most important differences between running stateless and stateful applications using Kubernetes.

 Chapter 13, DaemonSet – Maintaining Pod Singletons on Nodes, covers DaemonSet, which are a special Kubernetes object that can be used for running operational or supporting workloads on Kubernetes clusters. Whenever you need to run precisely one container Pod on a single Kubernetes node, DaemonSet is what you need.

 Chapter 14, Working with Helm Charts and Operators, covers Helm Charts, which is a dedicated packaging and redistribution tool for Kubernetes applications. Armed with knowledge from this chapter, you will be able to quickly set up your Kubernetes development environment or even plan for the redistribution of your Kubernetes application as a dedicated Helm Chart. In this chapter, we will also introduce the Kubernetes operators and how they will help you to deploy application stacks.

 Chapter 15, Kubernetes Clusters on Google Kubernetes Engine, looks at how we can move our Kubernetes workload to Google Cloud using both the native command-line client and the Google Cloud console.

 Chapter 16, Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes Service, looks at moving the workload we launched in the previous chapter to Amazon’s Kubernetes offering.

 Chapter 17, Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service, looks at launching a cluster in Microsoft Azure.

 Chapter 18, Security in Kubernetes, covers authorization using built-in role-based access control and authorization schemes together with user management. This chapter also teaches you about admission controllers, TLS certificates based communication, and security context implementations.

 Chapter 19, Advanced Techniques for Scheduling Pods, takes a deeper look at Node affinity, Node taints and tolerations, and advanced scheduling policies in general.

 Chapter 20, Autoscaling Kubernetes Pods and Nodes, introduces the principles behind autoscaling in Kubernetes and explains how to use Vertical Pod Autoscaler, Horizontal Pod Autoscaler, and Cluster Autoscaler.

 Chapter 21, Advanced Kubernetes: Traffic Management, Multi-Cluster Strategies, and More, covers Ingress objects and IngressController in Kubernetes. We explain how to use nginx as an implementation of IngressController and how you can use Azure Application Gateway as a native IngressController in Azure environments. We will also explain advanced Kubernetes topics including Cluster Day 2 tasks, best practices, and troubleshooting.

 To get the most out of this book

 While we cover container fundamentals in the chapters, this book is focused on Kubernetes. Although Kubernetes supports multiple container engines, the content primarily discusses using Kubernetes with containerd as the runtime. You don’t need to be an expert, but having a basic understanding of launching and managing applications with containers will be helpful before diving into this book.

 While it is possible to run Windows containers with Kubernetes, most of the topics covered in this book will be Linux-based. Having a good knowledge of Linux will be helpful, but is not required. Again, you don’t have to be an expert: knowing how to use a terminal session and basic Bash scripting should be enough.

 Lastly, having some general knowledge of software architecture such as REST APIs will be beneficial.

 	
 Software/hardware covered in the book

 	
 OS Requirements

 	
 Kubernetes >= 1.31

 	
 Windows, macOS, Linux

 	
 kubectl >= 1.31

 	
 Windows, macOS, Linux

 We strongly advise you to not attempt to install Kubernetes or kubectl on your machine for now. Kubernetes is not a single binary but is distributed software composed of several components and, as such, it is really complex to install a complete Kubernetes cluster from scratch. Instead, we recommend that you follow the third chapter of this book, which is dedicated to the setup of Kubernetes.

 If you are using the digital version of this book, we advise you to type the code yourself or access the code via the GitHub repository (link available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

 Please note that kubectl, helm, etc. are the tools we’re going to use most frequently in this book, but there is a huge ecosystem around Kubernetes and we might install additional software not mentioned in this section. This book is also about using Kubernetes in the cloud, and we’re going to discover how to provision Kubernetes clusters on public cloud platforms such as Amazon Web Services and Google Cloud Platform. As part of this setup, we might install additional software dedicated to these platforms that are not strictly bound to Kubernetes, but also to other services provided by these platforms.

 Download the example code files

 You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/The-Kubernetes-Bible-Second-Edition. In case there’s an update to the code, it will be updated on the existing GitHub repository.

 We also have other code bundles from our rich catalogue of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781835464717_ColorImages.pdf.

 Conventions used

 There are a number of text conventions used throughout this book.

 Code in text: Indicates code words in the text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Now, we need to create a kubeconfig file for our local kubectl CLI.”

 A block of code is set as follows:

 apiVersion: v1
kind: Pod
metadata:
 name: nginx-Pod

 When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

 apiVersion: v1
kind: ReplicationController
metadata:
 name: nginx-replicationcontroller-example

 Any command-line input or output is written as follows:

 $ kubectl get nodes

 Bold: Indicates a new term, an important word, or words that you see on screen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: “On this screen, you should see an Enable Billing button.”

 IMPORTANT NOTES

 appear like this

 Tips

 appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

 Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

 Leave a Review!

 Thank you for purchasing this book from Packt Publishing—we hope you enjoy it! Your feedback is invaluable and helps us improve and grow. Once you’ve completed reading it, please take a moment to leave an Amazon review; it will only take a minute, but it makes a big difference for readers like you.

 Scan the QR code below to receive a free ebook of your choice.

 [image: A qr code with black squares

Description automatically generated]
 https://packt.link/NzOWQ

 Download a free PDF copy of this book

 Thanks for purchasing this book!

 Do you like to read on the go but are unable to carry your print books everywhere?

 Is your eBook purchase not compatible with the device of your choice?

 Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

 Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

 The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily.

 Follow these simple steps to get the benefits:

 	Scan the QR code or visit the link below:

 [image:]
 https://packt.link/free-ebook/9781835464717

 	Submit your proof of purchase.

 	That’s it! We’ll send your free PDF and other benefits to your email directly.

 1

 Kubernetes Fundamentals

 Welcome to The Kubernetes Bible, and we are happy to accompany you on your journey with Kubernetes. If you are working in the software development industry, you have probably heard about Kubernetes. This is normal because the popularity of Kubernetes has grown a lot in recent years.

 Built by Google, Kubernetes is the leading container orchestrator solution in terms of popularity and adoption: it’s the tool you need if you are looking for a solution to manage containerized applications in production at scale, whether it’s on-premises or on a public cloud. Be focused on the word. Deploying and managing containers at scale is extremely difficult because, by default, container engines such as Docker do not provide any way on their own to maintain the availability and scalability of containers at scale.

 Kubernetes first emerged as a Google project, and Google has put a lot of effort into building a solution to deploy a huge number of containers on their massively distributed infrastructure. By adopting Kubernetes as part of your stack, you’ll get an open source platform that was built by one of the biggest companies on the internet, with the most critical needs in terms of stability.

 Although Kubernetes can be used with a lot of different container runtimes, this book is going to focus on the Kubernetes and containers (Docker and Podman) combination.

 Perhaps you are already using Docker on a daily basis, but the world of container orchestration might be completely unknown to you. It is even possible that you do not even see the benefits of using such technology because everything looks fine to you with just raw Docker. That’s why, in this first chapter, we’re not going to look at Kubernetes in detail. Instead, we will focus on explaining what Kubernetes is and how it can help you manage your application containers in production. It will be easier for you to learn a new technology if you understand why it was built.

 In this chapter, we’re going to cover the following main topics:

 	Understanding monoliths and microservices

 	Understanding containers

 	How can Kubernetes help you to manage containers?

 	Understanding the history of Kubernetes

 	Exploring the problems that Kubernetes solves

 You can download the latest code samples for this chapter from the official GitHub repository at https://github.com/PacktPublishing/The-Kubernetes-Bible-Second-Edition/tree/main/Chapter01

 Understanding monoliths and microservices

 Let’s put Kubernetes and Docker to one side for the moment, and instead, let’s talk a little bit about how the internet and software development evolved together over the past 20 years. This will help you to gain a better understanding of where Kubernetes sits and the problems it solves.

 Understanding the growth of the internet since the late 1990s

 Since the late 1990s, the popularity of the internet has grown rapidly. Back in the 1990s, and even in the early 2000s, the internet was only used by a few hundred thousand people in the world. Today, almost 2 billion people are using the internet for email, web browsing, video games, and more.

 There are now a lot of people on the internet, and we’re using it for tons of different needs, and these needs are addressed by dozens of applications deployed on dozens of devices.

 Additionally, the number of connected devices has increased, as each person can now have several devices of a different nature connected to the internet: laptops, computers, smartphones, TVs, tablets, and more.

 Today, we can use the internet to shop, to work, to entertain, to read, or to do whatever. It has entered almost every part of our society and has led to a profound paradigm shift in the last 20 years. All of this has given the utmost importance to software development.

 Understanding the need for more frequent software releases

 To cope with this ever-increasing number of users who are always demanding more in terms of features, the software development industry had to evolve in order to make new software releases faster and more frequent.

 Indeed, back in the 1990s, you could build an application, deploy it to production, and simply update it once or twice a year. Today, companies must be able to update their software in production, sometimes several times a day, whether to deploy a new feature, integrate with a social media platform, support the resolution of the latest fashionable smartphone, or even release a patch to a security breach identified the day before. Everything is far more complex today, and you must go faster than before.

 We constantly need to update our software, and in the end, the survival of many companies directly depends on how often they can offer releases to their users. But how do we accelerate software development life cycles so that we can deliver new versions of our software to our users more frequently?

 IT departments of companies had to evolve, both in an organizational sense and a technical sense. Organizationally, they changed the way they managed projects and teams in order to shift to agile methodologies, and technically, technologies such as cloud computing platforms, containers, and virtualization were adopted widely and helped a lot to align technical agility with organizational agility. All of this is to ensure more frequent software releases! So, let’s focus on this evolution next.

 Understanding the organizational shift to agile methodologies

 From a purely organizational point of view, agile methodologies such as Scrum, Kanban, and DevOps became the standard way to organize IT teams.

 Typical IT departments that do not apply agile methodologies are often made of three different teams, each of them having a single responsibility in the development and release process life cycle.

 Rest assured, even though we are currently discussing agile methodologies and the history of the internet, this book is really about Kubernetes! We just need to explain some of the problems that we have faced before introducing Kubernetes for real!

 Before the adoption of agile methodologies, development and operations often worked in separate silos. This could lead to inefficiency and communication gaps. Agile methodologies helped bridge these gaps and foster collaboration. The three isolated teams are shown below.

 	The business team: They’re like the voice of the customer. Their job is to explain what features are needed in the app to meet user needs. They translate business goals into clear instructions for the developers.

 	The development team: These are the engineers who bring the app to life. They translate the business team’s feature requests into code, building the functionalities and features users will interact with. Clear communication from the business team is crucial. If the instructions aren’t well defined, it can be like a game of telephone – misunderstandings lead to delays and rework.

 	The operation team: They’re the keepers of the servers. Their main focus is keeping the app running smoothly. New features can be disruptive because they require updates, which can be risky. In the past, they weren’t always aware of what new features were coming because they weren’t involved in the planning.

 These are what we call silos, as illustrated in Figure 1.1:

 [image:]
 Figure 1.1: Isolated teams in a typical IT department

 The roles are clearly defined, people from the different teams do not work together that much, and when something goes wrong, everyone loses time finding the right information from the right person.

 This kind of siloed organization has led to major issues:

 	A significantly longer development time

 	Greater risk in the deployment of a release that might not work at all in production

 And that’s essentially what agile methodologies and DevOps fixed. The change agile methodologies made was to make people work together by creating multidisciplinary teams.

 DevOps is a collaborative culture and set of practices that aims to bridge the gap between development (Dev) and operations (Ops) teams. DevOps promotes collaboration and automation throughout the software lifecycle, from development and testing to deployment and maintenance.

 An agile team consists of a product owner describing concrete features by writing them as user stories that are readable by the developers who are working in the same team as them. Developers should have visibility of the production environment and the ability to deploy on top of it, preferably using a continuous integration and continuous deployment (CI/CD) approach. Testers should also be part of agile teams in order to write tests.

 With the collaborative approach, the teams will get better and clearer visibility of the full picture, as illustrated in the following diagram.

 [image:]
 Figure 1.2: Team collaboration breaks silos

 Simply understand that, by adopting agile methodologies and DevOps, these silos were broken and multidisciplinary teams capable of formalizing a need, implementing it, testing it, releasing it, and maintaining it in the production environment were created. Table 1.1 presents a shift from traditional development to agile and DevOps methodology.

 	
 Feature

 	
 Traditional Development

 	
 Agile & DevOps

 	
 Team Structure

 	
 Siloed departments (Development, Operations)

 	
 Cross-functional, multi-disciplinary teams

 	
 Work Style

 	
 Isolated workflows, limited communication

 	
 Collaborative, iterative development cycles

 	
 Ownership

 	
 Development hands off to Operations for deployment and maintenance

 	
 “You Build It, You Run It” - Teams own the entire lifecycle

 	
 Focus

 	
 Features and functionality

 	
 Business value, continuous improvement

 	
 Release Cycle

 	
 Long release cycles, infrequent deployments

 	
 Short sprints, frequent releases with feedback loops

 	
 Testing

 	
 Separate testing phase after development

 	
 Integrated testing throughout the development cycle

 	
 Infrastructure

 	
 Static, manually managed infrastructure

 	
 Automated infrastructure provisioning and management (DevOps)

 Table 1.1: DevOps vs traditional development – a shift in collaboration

 So, we’ve covered the organizational transition brought about by the adoption of agile methodologies. Now, let’s discuss the technical evolution that we’ve gone through over the past several years.

 Understanding the shift from on-premises to the cloud

 Having agile teams is very nice, but agility must also be applied to how software is built and hosted.

 With the aim to always achieve faster and more recurrent releases, agile software development teams had to revise two important aspects of software development and release:

 	Hosting

 	Software architecture

 Today, apps are not just for a few hundred users but potentially for millions of users concurrently. Having more users on the internet also means having more computing power capable of handling them. And, indeed, hosting an application became a very big challenge.

 In the early days of web hosting, businesses primarily relied on two main approaches to housing their applications: one of these approaches is on-premises hosting. This method involved physically owning and managing the servers that ran their applications. There are two main ways to achieve on-premises hosting:

 	Dedicated Servers: Renting physical servers from established data center providers: This involved leasing dedicated server hardware from a hosting company. The hosting provider would manage the physical infrastructure (power, cooling, security) but the responsibility for server configuration, software installation, and ongoing maintenance fell to the business. This offered greater control and customization compared to shared hosting, but still required significant in-house technical expertise.

 	Building Your Own Data Center: Constructing and maintaining a private data center: This option involved a massive investment by the company to build and maintain its own physical data center facility. This included purchasing server hardware, networking equipment, and storage solutions, and implementing robust power, cooling, and security measures. While offering the highest level of control and security, this approach was very expensive and resource-intensive and was typically only undertaken by large corporations with significant IT resources.

 Also note that on-premises hosting also encompasses managing the operating system, security patches, backups, and disaster recovery plans for the servers. Companies often needed a dedicated IT staff to manage and maintain their on-premises infrastructure, adding to the overall cost.

 When your user base grows, you need to get more powerful machines to handle the load. The solution is to purchase a more powerful server and install your app on it from the start or to order and rack new hardware if you manage your data center. This is not very flexible. Today, a lot of companies are still using an on-premises solution, and often, it’s not very flexible.

 The game-changer was the adoption of the other approach, which is the public cloud, which is the opposite of on-premises. The idea behind cloud computing is that big companies such as Amazon, Google, and Microsoft, which own a lot of datacenters, decided to build virtualization on top of their massive infrastructure to ensure the creation and management of virtual machines was accessible by APIs. In other words, you can get virtual machines with just a few clicks or just a few commands.

 The following table provides high-level information about why cloud computing is good for organizations.

 	
 Feature

 	
 On-Premises

 	
 Cloud

 	
 Scalability

 	
 Limited – requires purchasing new hardware when scaling up

 	
 Highly scalable – easy to add or remove resources on demand

 	
 Flexibility

 	
 Inflexible – changes require physical hardware adjustments

 	
 Highly flexible – resources can be provisioned and de-provisioned quickly

 	
 Cost

 	
 High upfront cost for hardware, software licenses, and IT staff

 	
 Low upfront cost – pay-as-you-go model for resources used

 	
 Maintenance

 	
 Requires dedicated IT staff for maintenance and updates

 	
 Minimal maintenance required – cloud provider manages infrastructure

 	
 Security

 	
 High level of control over security, but requires significant expertise

 	
 Robust security measures implemented by cloud providers

 	
 Downtime

 	
 Recovery from hardware failures can be time-consuming

 	
 Cloud providers offer high availability and disaster recovery features

 	
 Location

 	
 Limited to the physical location of datacenter

 	
 Access from anywhere with an internet connection

 Table 1.2: Importance of cloud computing for organizations

 We will learn how cloud computing technology has helped organizations scale their IT infrastructure in the next section.

 Understanding why the cloud is well suited for scalability

 Today, virtually anyone can get hundreds or thousands of servers, in just a few clicks, in the form of virtual machines or instances created on physical infrastructure maintained by cloud providers such as Amazon Web Services, Google Cloud Platform, and Microsoft Azure. A lot of companies decided to migrate their workloads from on-premises to a cloud provider, and their adoption has been massive over the last few years.

 Thanks to that, now, computing power is one of the simplest things you can get.

 Cloud computing providers are now typical hosting solutions that agile teams possess in their arsenal. The main reason for this is that the cloud is extremely well suited to modern development.

 Virtual machine configurations, CPUs, OSes, network rules, and more are publicly displayed and fully configurable, so there are no secrets for your team in terms of what the production environment is made of. Because of the programmable nature of cloud providers, it is very easy to replicate a production environment in a development or testing environment, providing more flexibility to teams, and helping them face their challenges when developing software. That’s a useful advantage for an agile development team built around the DevOps philosophy that needs to manage the development, release, and maintenance of applications in production.

 Cloud providers have provided many benefits, as follows:

 	Elasticity and scalability

 	Helping to break up silos and enforcing agile methodologies

 	Fitting well with agile methodologies and DevOps

 	Low costs and flexible billing models

 	Ensuring there is no need to manage physical servers

 	Allowing virtual machines to be destroyed and recreated at will

 	More flexible compared to renting a bare-metal machine monthly

 Due to these benefits, the cloud is a wonderful asset in the arsenal of an agile development team. Essentially, you can build and replicate a production environment over and over again without the hassle of managing the physical machine by yourself. The cloud enables you to scale your app based on the number of users using it or the computing resources they are consuming. You’ll make your app highly available and fault tolerant. The result is a better experience for your end users.

 IMPORTANT NOTE

 Please note that Kubernetes can run both on the cloud and on-premises. Kubernetes is very versatile, and you can even run it on a Raspberry Pi. Kubernetes and the public cloud are a good match, but you are not required or forced to run it on the cloud.

 Now that we have explained the changes the cloud produced, let’s move on to software architecture because, over the years, a few things have also changed there.

 Exploring the monolithic architecture

 In the past, applications were mostly composed of monoliths. A typical monolith application consists of a simple process, a single binary, or a single package, as shown in Figure 1.3.

 This unique component is responsible for the entire implementation of the business logic, to which the software must respond. Monoliths are a good choice if you want to develop simple applications that might not necessarily be updated frequently in production. Why? Well, because monoliths have one major drawback. If your monolith becomes unstable or crashes for some reason, your entire application will become unavailable:

 [image:]
 Figure 1.3: A monolith application consists of one big component that contains all your software

 The monolithic architecture can allow you to gain a lot of time during your development and that’s perhaps the only benefit you’ll find by choosing this architecture. However, it also has many disadvantages. Here are a few of them:

 	A failed deployment to production can break your whole application.

 	Scaling activities become difficult to achieve; if you fail to scale, all your applications might become unavailable.

 	A failure of any kind on a monolith can lead to a complete outage of your app.

 In the 2010s, these drawbacks started to cause real problems. With the increase in the frequency of deployments, it became necessary to think of a new architecture that would be capable of supporting frequent deployments and shorter update cycles, while reducing the risk or general unavailability of the application. This is why the microservices architecture was designed.

 Exploring the microservices architecture

 The microservices architecture consists of developing your software application as a suite of independent micro-applications. Each of these applications, which is called a microservice, has its own versioning, life cycle, environment, and dependencies. Additionally, it can have its own deployment life cycle. Each of your microservices must only be responsible for a limited number of business rules, and all your microservices, when used together, make up the application. Think of a microservice as real full-featured software on its own, with its own life cycle and versioning process.

 Since microservices are only supposed to hold a subset of all the features that the entire application has, they must be accessible in order to expose their functions. You must get data from a microservice, but you might also want to push data into it. You can make your microservice accessible through widely supported protocols such as HTTP or AMQP, and they need to be able to communicate with each other.

 That’s why microservices are generally built as web services that expose their functionality through well-defined APIs. While HTTP (or HTTPS) REST APIs are a popular choice due to their simplicity and widespread adoption, other protocols, such as GraphQL, AMQP, and gRPC, are gaining traction and are used commonly.

 The key requirement is that a microservice provides a well-documented and discoverable API endpoint, regardless of the chosen protocol. This allows other microservices to seamlessly interact and exchange data.

 This is something that greatly differs from the monolithic architecture:

 [image:]
 Figure 1.4: A microservice architecture where different microservices communicate via the HTTP protocol

 Another key aspect of the microservice architecture is that microservices need to be decoupled: if a microservice becomes unavailable or unstable, it must not affect the other microservices or the entire application’s stability. You must be able to provision, scale, start, update, or stop each microservice independently without affecting anything else. If your microservices need to work with a database engine, bear in mind that even the database must be decoupled. Each microservice should have its own database and so on. So, if the database of microservice A crashes, it won’t affect microservice B:

 [image:]
 Figure 1.5: A microservice architecture where different microservices communicate with each other and with a dedicated database server; this way, the microservices are isolated and have no common dependencies

 The key rule is to decouple as much as possible so that your microservices are fully independent. Because they are meant to be independent, microservices can also have completely different technical environments and be implemented in different languages. You can have one microservice implemented in Go, another one in Java, and another one in PHP, and all together they form one application. In the context of a microservice architecture, this is not a problem. Because HTTP is a standard, they will be able to communicate with each other even if their underlying technologies are different.

 Microservices must be decoupled from other microservices, but they must also be decoupled from the operating system running them. Microservices should not operate at the host system level but at the upper level. You should be able to provision them, at will, on different machines without needing to rely on a strong dependency on the host system; that’s why microservice architectures and containers are a good combination.

 If you need to release a new feature in production, you simply deploy the microservices that are impacted by the new feature version. The others can remain the same.

 As you can imagine, the microservice architecture has tremendous advantages in the context of modern application development:

 	It is easier to enforce recurring production deliveries with minimal impact on the stability of the whole application.

 	You can only upgrade to a specific microservice each time, not the whole application.

 	Scaling activities are smoother since you might only need to scale specific services.

 However, on the other hand, the microservice architecture has a couple of disadvantages too:

 	The architecture requires more planning and is hard to develop.

 	There are problems in managing each microservice’s dependencies.

 Microservice applications are considered hard to develop. This approach might be hard to understand, especially for junior developers. Dependency management can also become complex since all microservices can potentially have different dependencies.

 Choosing between monolithic and microservices architectures

 Building a successful software application requires careful planning, and one of the key decisions you’ll face is which architecture to use. Two main approaches dominate the scene: monoliths and microservices:

 	Monoliths: Imagine a compact, all-in-one system. That’s the essence of a monolith. Everything exists in a single codebase, making development and initial deployment simple for small projects or teams with limited resources. Additionally, updates tend to be quick for monoliths because there’s only one system to manage.

 	Microservices: Think of a complex application broken down into independent, modular components. Each service can be built, scaled, and deployed separately. This approach shines with large, feature-rich projects and teams with diverse skillsets. Microservices provide flexibility and potentially fast development cycles. However, they also introduce additional complexity in troubleshooting and security management.

 Ultimately, the choice between a monolith and microservices hinges on your specific needs. Consider your project’s size, team structure, and desired level of flexibility. Don’t be swayed by trends – pick the architecture that empowers your team to develop and manage your application efficiently.

 Kubernetes provides flexibility. It caters to both fast-moving monoliths and microservices, allowing you to choose the architecture that best suits your project’s needs.

 In the next section, we will learn about containers and how they help microservice software architectures.

 Understanding containers

 Following this comparison between monolithic and microservice architectures, you should have understood that the architecture that best combines agility and DevOps is the microservice architecture. It is this architecture that we will discuss throughout the book because this is the architecture that Kubernetes manages well.

 Now, we will move on to discuss how Docker, which is a container engine for Linux, is a good option for managing microservices. If you already know a lot about Docker, you can skip this section. Otherwise, I suggest that you read through it carefully.

 Understanding why containers are good for microservices

 Recall the two important aspects of the microservice architecture:

 	Each microservice can have its own technical environment and dependencies.

 	At the same time, it must be decoupled from the operating system it’s running on.

 Let’s put the latter point aside for the moment and discuss the first one: two microservices of the same app can be developed in two different languages or be written in the same language but as two different versions. Now, let’s say that you want to deploy these two microservices on the same Linux machine. That would be a nightmare.

 The reason for this is that you’ll have to install all the versions of the different runtimes, as well as the dependencies, and there might also be different versions or overlaps between the two microservices. Additionally, all of this will be on the same host operating system. Now, let’s imagine you want to remove one of these two microservices from the machine to deploy it on another server and clean the former machine of all the dependencies used by that microservice. Of course, if you are a talented Linux engineer, you’ll succeed in doing this. However, for most people, the risk of conflicts between the dependencies is huge, and in the end, you might just make your app unavailable while running such a nightmarish infrastructure.

 There is a solution to this: you could build a machine image for each microservice and then put each microservice on a dedicated virtual machine. In other words, you refrain from deploying multiple microservices on the same machine. However, in this example, you will need as many machines as you have microservices. Of course, with the help of AWS or GCP, it’s going to be easy to bootstrap tons of servers, each of them tasked with running one and only one microservice, but it would be a huge waste of money to not mutualize the computing power provided by the host.

 You have similar solutions in the container world, but not with the default container runtimes because they don’t guarantee complete isolation between microservices. This is exactly how the Kata runtime and the Confidential Container projects come into play. These technologies provide enhanced security and isolation for containerized applications. We’ll delve deeper into these container isolation concepts later in this book.

 We will learn about how containers help with isolation in the next section.

 Understanding the benefits of container isolation

 Container engines such as Docker and Podman play a crucial role in managing microservices. Unlike virtual machines (VMs) that require a full guest operating system, containers are lightweight units that share the host machine’s Linux kernel. This makes them much faster to start and stop than VMs.

 Container engines provide a user-friendly API to build, deploy, and manage containers. Container engines don’t introduce an additional layer of virtualization. Instead, they use the built-in capabilities of the Linux kernel for process isolation, security, and resource allocation. This efficient approach makes containerization a compelling solution for deploying microservices.

 The following diagram shows how containers are different from virtual machines:

 [image:]
 Figure 1.6: The difference between virtual machines and containers

 Your microservices are going to be launched on top of this layer, not directly on the host system whose sole role will be to run your containers.

 Since containers are isolated, you can run as many containers as you want and have them run applications written in different languages without any conflicts. Microservice relocation becomes as easy as stopping a running container and launching another one from the same image on another machine.

 The usage of containers with microservices provides three main benefits:

 	It reduces the footprint on the host system.

 	It mutualizes the host system without conflicts between different microservices.

 	It removes the coupling between the microservice and the host system.

 Once a microservice has been containerized, you can eliminate its coupling with the host operating system. The microservice will only depend on the container in which it will operate. Since a container is much lighter than a real full-featured Linux operating system, it will be easy to share and deploy on many different machines. Therefore, the container and your microservice will work on any machine that is running a container engine.

 The following diagram shows a microservice architecture where each microservice is wrapped by a container:

 [image:]
 Figure 1.7: A microservice application where all microservices are wrapped by a container; the life cycle of the app becomes tied to the container, and it is easy to deploy it on any machine that is running a container engine

 Containers fit well with the DevOps methodology too. By developing locally in a container, which would later be built and deployed in production, you ensure you develop in the same environment as the one that will eventually run the application.

 Container engines are not only capable of managing the life cycle of a container but also an entire ecosystem around containers. They can manage networks, and the intercommunication between different containers, and all these features respond particularly well to the properties of the microservice architecture that we mentioned earlier.

 By using the cloud and containers together, you can build a very strong infrastructure to host your microservice. The cloud will give you as many machines as you want. You simply need to install a container engine on each of them, and you’ll be able to deploy multiple containerized microservices on each of these machines.

 Container engines such as Docker or Podman are very nice tools on their own. However, you’ll discover that it’s hard to run them in production alone, just as they are.

 Container engines excel in development environments because of their:

 	Simplicity: Container engines are easy to install and use, allowing developers to quickly build, test, and run containerized applications.

 	Flexibility: Developers can use container engines to experiment with different container configurations and explore the world of containerization.

 	Isolation: Container engines ensure isolation between applications, preventing conflicts and simplifying debugging.

 However, production environments have strict requirements. Container engines alone cannot address all of these needs:

 	Scaling: Container engines (such as Docker or Podman) don’t provide built-in auto-scaling features to dynamically adapt container deployments based on resource utilization.

 	Disaster Recovery: Container engines don’t provide comprehensive disaster recovery capabilities to ensure service availability in case of outages.

 	Security: While container engines provide basic isolation, managing security policies for large-scale containerized deployments across multiple machines can be challenging.

 	Standardization: Container engines require custom scripting or integrations for interacting with external systems, such as CI/CD pipelines or monitoring tools.

 While container engines excel in development environments, production deployments demand a more robust approach. Kubernetes, a powerful container orchestration platform, tackles this challenge by providing a comprehensive suite of functionalities. It manages the entire container lifecycle, from scheduling them to run on available resources to scaling deployments up or down based on demand and distributing traffic for optimal performance (load balancing). Unlike custom scripting with container engines, Kubernetes provides a well-defined API for interacting with containerized applications, simplifying integration with other tools used in production environments. Beyond basic isolation, Kubernetes provides advanced security features such as role-based access control and network policies. This allows the efficient management of containerized workloads from multiple teams or projects on the same infrastructure, optimizing resource utilization and simplifying complex deployments.

 Before we dive into the Kubernetes topics, let’s discuss the basics of containers and container engines in the next section.

 Container engines

 A container engine acts as the interface for end-users and REST clients, managing user inputs, downloading container images from container registries, extracting downloaded images onto the disk, transforming user or REST client data for interaction with container engines, preparing container mount points, and facilitating communication with container engines. In essence, container engines serve as the user-facing layer, streamlining image and container management, while the underlying container runtimes handle the intricate low-level details of container and image management.

 Docker stands out as one of the most widely adopted container engines, but it’s important to note that various alternatives exist in the containerization landscape. Some notable ones are LXD, Rkt, CRI-O, and Podman.

 At its core, Docker relies on the containerd container runtime, which oversees critical aspects of container management, including the container life cycle, image transfer and storage, execution, and supervision, as well as storage and network attachments. containerd, in turn, relies on components such as runc and hcsshim. Runc is a command-line tool that facilitates creating and running containers in Linux, while hcsshim plays a crucial role in the creation and management of Windows containers.

 It’s worth noting that containerd is typically not meant for direct end-user interaction. Instead, container engines, such as Docker, interact with the container runtime to facilitate the creation and management of containers. The essential role of runc is evident, serving not only containerd but also being used by Podman, CRI-O, and indirectly by Docker itself.

 The basics of containers

 As we learned in the previous section, Docker is a well-known and widely used container engine. Let’s learn the basic terminology related to containers in general.

 Container image

 A container image is a kind of template used by container engines to launch containers. A container image is a self-contained, executable package that encapsulates an application and its dependencies. It includes everything needed to run the software, such as code, runtime, libraries, and system tools. Container images are created from a Dockerfile or Containerfile, which specify the build steps. Container images are stored in image repositories and shared through container registries such as Docker Hub, making them a fundamental component of containerization.

 Container

 A container can be considered a running instance of a container image. Containers are like modular shipping containers for applications. They bundle an application’s code, dependencies, and runtime environment into a single, lightweight package. Containers run consistently across different environments because they include everything needed. Each container runs independently, preventing conflicts with other applications on the same system. Containers share the host operating system’s kernel, making them faster to start and stop than virtual machines.

 Container registry

 A container registry is a centralized repository for storing and sharing container images. It acts as a distribution mechanism, allowing users to push and pull images to and from the registry. Popular public registries include Docker Hub, Red Hat Quayi, Amazon’s Elastic Container Registry (ECR), Azure Container Registry, Google Container Registry, and GitHub Container Registry. Organizations often use private registries to securely store and share custom images. Registries play a crucial role in the Docker ecosystem, facilitating collaboration and efficient management of containerized applications.

 Dockerfile or Containerfile

 A Dockerfile or Containerfile is a text document that contains a set of instructions for building a container image. It defines the base image, sets up the environment, copies the application code, installs the dependencies, and configures the runtime settings. Dockerfiles or Containerfiles provide a reproducible and automated way to create consistent images, enabling developers to version and share their application configurations.

 A sample Dockerfile can be seen in the following code snippet:

 # syntax=docker/dockerfile:1

FROM node:18-alpine
WORKDIR /app
COPY . .
RUN yarn install --production
CMD ["node", "src/index.js"]
EXPOSE 3000

 And, here’s a line-by-line explanation of the provided Dockerfile:

 	# syntax=docker/dockerfile:1: This line defines the Dockerfile syntax version used to build the image. In this case, it specifies version 1 of the standard Dockerfile syntax.

 	FROM node:18-alpine: This line defines the base image for your container. It instructs the container engine to use the official Node.js 18 image with the Alpine Linux base. This provides a lightweight and efficient foundation for your application.

 	WORKDIR /app: This line sets the working directory within the container. Here, it specifies /app as the working directory. This is where subsequent commands in the Dockerfile will be executed relative to.

 	COPY . .: This line copies all files and directories from the current context (the directory where you have your Dockerfile) into the working directory (/app) defined in the previous step. This essentially copies your entire application codebase into the container.

 	RUN yarn install --production: This line instructs the container engine to execute a command within the container. In this case, it runs yarn install --production. This command uses the yarn package manager to install all production dependencies listed in your package.json file. The --production flag ensures that only production dependencies are installed, excluding development dependencies.

 	CMD ["node", "src/index.js"]: This line defines the default command to be executed when the container starts. Here, it specifies an array with two elements: “node” and “src/index.js”. This tells Docker to run the Node.js interpreter (node) and execute the application’s entry point script (src/index.js) when the container starts up.

 	EXPOSE 3000: This line exposes a port on the container. Here, it exposes port 3000 within the container. This doesn’t map the port to the host machine by default, but it allows you to do so later when running the container with the -p flag (e.g., docker run -p 3000:3000 my-image). Exposing port 3000 suggests your application might be listening on this port for incoming connections.
 IMPORTANT NOTE

 To build the container image, you can use a supported container engine (such as Docker or Podman) or a container build tool, such as Buildah or kaniko.

 Docker Compose or Podman Compose

 Docker Compose is a tool for defining and running multi-container applications. It uses a YAML file to configure the services, networks, and volumes required for an application, allowing developers to define the entire application stack in a single file. Docker Compose or Podman Compose simplifies the orchestration of complex applications, making it easy to manage multiple containers as a single application stack.

 The following compose.yaml file will spin up two containers for a WordPress application stack using a single docker compose or podman compose command:

 # compose.yaml
services:
 db:
 image: docker.io/library/mariadb
 command: '--default-authentication-plugin=mysql_native_password'
 volumes:
 - db_data:/var/lib/mysql
 restart: always
 environment:
 - MYSQL_ROOT_PASSWORD=somewordpress
 - MYSQL_DATABASE=wordpress
 - MYSQL_USER=wordpress
 - MYSQL_PASSWORD=wordpress
 expose:
 - 3306
 - 33060
 networks:
 - wordpress
 wordpress:
 image: wordpress:latest
 ports:
 - 8081:80
 restart: always
 environment:
 - WORDPRESS_DB_HOST=db
 - WORDPRESS_DB_USER=wordpress
 - WORDPRESS_DB_PASSWORD=wordpress
 - WORDPRESS_DB_NAME=wordpress
 networks:
 - wordpress
volumes:
 db_data:
networks:
 wordpress: {}

 In the next section, we will learn how Kubernetes can efficiently orchestrate all these container operations.

 How can Kubernetes help you to manage your containers?

 In this section, we will focus on Kubernetes, which is the purpose of this book.

 Kubernetes – designed to run workloads in production

 If you open the official Kubernetes website (at https://kubernetes.io), the title you will see is Production-Grade Container Orchestration:

 [image:]
 Figure 1.8: The Kubernetes home page showing the header and introducing Kubernetes as a production container orchestration platform

 Those four words perfectly sum up what Kubernetes is: it is a container orchestration platform for production. Kubernetes does not aim to replace Docker or any of the features of Docker or other container engines; rather, it aims to manage the clusters of machines running container runtimes. When working with Kubernetes, you use both Kubernetes and the full-featured standard installations of container runtimes.

 The title mentions production. Indeed, the concept of production is central to Kubernetes: it was conceived and designed to answer modern production needs. Managing production workloads is different today compared to what it was in the 2000s. Back in the 2000s, your production workload would consist of just a few bare-metal servers, if not even one on-premises. These servers mostly ran monoliths directly installed on the host Linux system. However, today, thanks to public cloud platforms such as Amazon Web Services (AWS) or Google Cloud Platform (GCP), anyone can now get hundreds or even thousands of machines in the form of instances or virtual machines with just a few clicks. Even better, we no longer deploy our applications on the host system but as containerized microservices on top of Docker Engine instead, thereby reducing the footprint of the host system.

 A problem will arise when you must manage Docker installations on each of these virtual machines on the cloud. Let’s imagine that you have 10 (or 100 or 1,000) machines launched on your preferred cloud and you want to achieve a very simple task: deploy a containerized Docker app on each of these machines.

 You could do this by running the docker run command on each of your machines. It would work, but of course, there is a better way to do it. And that’s by using a container orchestrator such as Kubernetes. To give you an extremely simplified vision of Kubernetes, it is a REST API that keeps a registry of your machines executing a Docker daemon.

 Again, this is an extremely simplified definition of Kubernetes. In fact, it’s not made of a single centralized REST API, because as you might have gathered, Kubernetes was built as a suite of microservices.

 Also note that while Kubernetes excels at managing containerized workloads, it doesn’t replace virtual machines (VMs) entirely. VMs can still be valuable for specific use cases, such as running legacy applications or software with complex dependencies that are difficult to containerize. However, Kubernetes is evolving to bridge the gap between containers and VMs.

 KubeVirt – a bridge between containers and VMs

 KubeVirt is a project that extends Kubernetes’ ability to manage virtual machines using the familiar Kubernetes API. This allows users to leverage the power and flexibility of Kubernetes for VM deployments alongside containerized applications. KubeVirt embraces Infrastructure as Code (IaC) principles, enabling users to define and manage VMs declaratively within their Kubernetes manifests. This simplifies VM management and integrates it seamlessly into existing Kubernetes workflows.

 By incorporating VMs under the Kubernetes umbrella, KubeVirt provides a compelling approach for organizations that require a hybrid environment with both containers and VMs. It demonstrates the ongoing evolution of Kubernetes as a platform for managing diverse workloads, potentially leading to a more unified approach to application deployment and management.

 We have learned about containers and the complications of managing and orchestrating containers at a large scale. In the next section, we will learn about the history and evolution of Kubernetes.

 Understanding the history of Kubernetes

 Now, let’s discuss the history of the Kubernetes project. It will be useful for you to understand the context in which the Kubernetes project started and the people who are keeping this project alive.

 Understanding how and where Kubernetes started

 Since its founding in 1998, Google has gained huge experience in managing high-demanding workloads at scale, especially container-based workloads. Since the mid-2000s, Google has been at the forefront of developing its applications as Linux containers. Well before Docker simplified container usage for the general public, Google recognized the advantages of containerization, giving rise to an internal project known as Borg. To enhance the architecture of Borg, making it more extensible and robust, Google initiated another container orchestrator project called Omega. Subsequently, several improvements introduced by Omega found their way into the Borg project.

 Kubernetes was born as an internal project at Google, and the first commit of Kubernetes was in 2014 by Brendan Burns, Joe Beda, and Craig McLendon, among others. However, Google didn’t open source Kubernetes on its own. It was the efforts of individuals like Clayton Coleman, who was working at Red Hat at the time, and who played a crucial role in championing the idea of open-sourcing Kubernetes and ensuring its success as a community-driven project. Kelsey Hightower, an early Kubernetes champion at CoreOS, became a prominent voice advocating for the technology. Through his work as a speaker, writer, and co-founder of KubeCon, he significantly boosted Kubernetes’ adoption and community growth.

 Today, in addition to Google, Red Hat, Amazon, Microsoft, and other companies are also contributing to the Kubernetes project actively.

 IMPORTANT NOTE

 Borg is not the ancestor of Kubernetes because the project is not dead and is still in use at Google. It would be more appropriate to say that a lot of ideas from Borg were reused to make Kubernetes. Bear in mind that Kubernetes is not Borg or Omega. Borg was built in C++ and Kubernetes in Go. In fact, they are two entirely different projects, but one is heavily inspired by the other. This is important to understand: Borg and Omega are two internal Google projects. They were not built for the public.

 Kubernetes was developed with the experience gained by Google to manage containers in production. Most importantly, it inherited Borg’s and Omega’s ideas, concepts, and architectures. Here is a brief list of ideas and concepts taken from Borg and Omega, which have now been implemented in Kubernetes:

 	The concept of Pods to manage your containers: Kubernetes uses a logical object, called a pod, to create, update, and delete your containers.

 	Each pod has its own IP address in the cluster.

 	There are distributed components that all watch the central Kubernetes API to retrieve the cluster state.

 	There is internal load balancing between Pods and Services.

 	Labels and selectors are metadata that are used together to manage and orchestrate resources in Kubernetes.

 That’s why Kubernetes is so powerful when it comes to managing containers in production at scale. In fact, the concepts you’ll learn from Kubernetes are older than Kubernetes itself. Although Kubernetes is a young project, it was built on solid foundations.

 Who manages Kubernetes today?

 Kubernetes is no longer maintained by Google because Google handed over operational control of the Kubernetes project to the Cloud Native Computing Foundation (CNCF) on August 29, 2018. CNCF is a non-profit organization that aims to foster and sustain an open ecosystem of cloud-native technologies.

 Google is a founding member of CNCF, along with companies such as Cisco, Red Hat, and Intel. The Kubernetes source code is hosted on GitHub and is an extremely active project on the platform. The Kubernetes code is under Apache License version 2.0, which is a permissive open source license. You won’t have to pay to use Kubernetes, and if you are good at coding with Go, you can even contribute to the code.

 Where is Kubernetes today?

 In the realm of container orchestration, Kubernetes faces competition from various alternatives, including both open-source solutions and platform-specific offerings. Some notable contenders include:

 	Apache Mesos

 	HashiCorp Nomad

 	Docker Swarm

 	Amazon ECS

 While each of these orchestrators comes with its own set of advantages and drawbacks, Kubernetes stands out as the most widely adopted and popular choice in the field.

 Kubernetes has won the fight for popularity and adoption and has become the standard way of deploying container-based workloads in production. As its immense growth has made it one of the hottest topics in the IT industry, it has become crucial for cloud providers to come up with a Kubernetes offering as part of their services. Therefore, Kubernetes is supported almost everywhere now.

 The following Kubernetes-based services can help you get a Kubernetes cluster up and running with just a few clicks:

 	Google Kubernetes Engine (GKE) on Google Cloud Platform

 	Elastic Kubernetes Service (Amazon EKS)

 	Azure Kubernetes Service on Microsoft Azure

 	Alibaba Cloud Container Service for Kubernetes (ACK)

 It’s not just about the cloud offerings. It’s also about the Platform-as-a-Service market. Red Hat started incorporating Kubernetes into its OpenShift container platform with the release of OpenShift version 3 in 2015. This marked a significant shift in OpenShift’s architecture, moving from its original design to a Kubernetes-based container orchestration system, providing users with enhanced container management capabilities and offering a complete set of enterprise tools to build, deploy, and manage containers entirely on top of Kubernetes. In addition to this, other projects, such as Rancher, were built as Kubernetes distributions to offer a complete set of tools around the Kubernetes orchestrator, whereas projects such as Knative manage serverless workloads with the Kubernetes orchestrator.

 IMPORTANT NOTE

 AWS is an exception because it has two container orchestrator services. The first one is Amazon ECS, which is entirely made by AWS. The second one is Amazon EKS, which was released later than ECS and is a complete Kubernetes offering on AWS. These services are not the same, so do not be misguided by their similar names.

 Where is Kubernetes going?

 Kubernetes isn’t stopping at containers! It’s evolving to manage a wider range of workloads. KubeVirt extends its reach to virtual machines, while integration with AI/ML frameworks such as TensorFlow could allow Kubernetes to orchestrate even machine learning tasks. The future of Kubernetes is one of flexibility, potentially becoming a one-stop platform for managing diverse applications across containers, VMs, and even AI/ML workflows.

 Learning Kubernetes today is one of the smartest decisions you can take if you are into managing cloud-native applications in production. Kubernetes is evolving rapidly, and there is no reason to wonder why its growth would stop.

 By mastering this wonderful tool, you’ll get one of the hottest skills being searched for in the IT industry today. We hope you are now convinced!

 In the next section, we will learn how Kubernetes can simplify operations.

 Exploring the problems that Kubernetes solves

 Now, why is Kubernetes such a good fit for DevOps teams? Here’s the connection: Kubernetes shines as a container orchestration platform, managing the deployment, scaling, and networking of containerized applications. Containers are lightweight packages that bundle an application with its dependencies, allowing faster and more reliable deployments across different environments. Users leverage Kubernetes for several reasons:

 	Automation: Kubernetes automates many manual tasks associated with deploying and managing containerized applications, freeing up time for developers to focus on innovation.

 	Scalability: Kubernetes facilitates easy scaling of applications up or down based on demand, ensuring optimal resource utilization.

 	Consistency: Kubernetes ensures consistent deployments across different environments, from development to production, minimizing configuration errors and streamlining the delivery process.

 	Flexibility: Kubernetes is compatible with various tools and technologies commonly used by DevOps teams, simplifying integration into existing workflows.

 You can imagine that launching containers on your local machine or a development environment is not going to require the same level of planning as launching these same containers on remote machines, which could face millions of users. Problems specific to production will arise, and Kubernetes is a great way to address these problems when using containers in production:

 	Ensuring high availability

 	Handling release management and container deployments

 	Autoscaling containers

 	Network isolation

 	Role-Based Access Control (RBAC)

 	Stateful workloads

 	Resource management

 Ensuring high availability

 High availability is the central principle of production. This means that your application should always remain accessible and should never be down. Of course, it’s utopian. Even the biggest companies experience service outages. However, you should always bear in mind that this is your goal. Kubernetes includes a whole battery of functionality to make your containers highly available by replicating them on several host machines and monitoring their health on a regular and frequent basis.

 When you deploy containers, the accessibility of your application will directly depend on the health of your containers. Let’s imagine that for some reason, a container containing one of your microservices becomes inaccessible; with Docker alone, you cannot automatically guarantee that the container is terminated and recreated to ensure the service restoration. With Kubernetes, it becomes possible as Kubernetes will help you design applications that can automatically repair themselves by performing automated tasks such as health checking and container replacement.

 If one machine in your cluster were to fail, all the containers running on it would disappear. Kubernetes would immediately notice that and reschedule all the containers on another machine. In this way, your applications will become highly available and fault tolerant as well.

 Release management and container deployment

 Deployment management is another of these production-specific problems that Kubernetes solves. The process of deployment consists of updating your application in production to replace an old version of a given microservice with a new version.

 Deployments in production are always complex because you have to update the containers that are responding to requests from end users. If you miss them, the consequences could be severe for your application because it could become unstable or inaccessible, which is why you should always be able to quickly revert to the previous version of your application by running a rollback. The challenge of deployment is that it needs to be performed in the least visible way to the end user, with as little friction as possible.

 Whenever you release a new version of the application, there are multiple processes involved, as follows:

 	Update the Dockerfile or Containerfile with the latest application info (if any).

 	Build a new Docker container image with the latest version of the application.

 	Push the new container image to the container registry.

 	Pull the new container image from the container registry to the staging/UAT/production system (Docker host).

 	Stop and delete the existing (old version) of the application container running on the system.

 	Launch the new container image with the new version of the application container image in the staging/UAT/production system.

 Refer to the following image to understand the high-level flow in a typical scenario (please note that this is an ideal scenario because, in an actual environment, you might be using different and isolated container registries for development, staging, and production environments).

 [image:]
 Figure 1.9: High-level workflow of container management

 IMPORTANT NOTE

 The container build process has absolutely nothing to do with Kubernetes: it’s purely a container image management part. Kubernetes will come into play later when you have to deploy new containers based on a newly built image.

 Without Kubernetes, you’ll have to run all these operations including docker pull, docker stop, docker delete, and docker run on the machine where you want to deploy a new version of the container. Then, you will have to repeat this operation on each server that runs a copy of the container. It should work, but it is extremely tedious since it is not automated. And guess what? Kubernetes can automate this for you.

 Kubernetes has features that allow it to manage deployments and rollbacks of Docker containers, and this will make your life a lot easier when responding to this problem. With a single command, you can ask Kubernetes to update your containers on all of your machines as follows:

 $ kubectl set image deploy/myapp myapp_container=myapp:1.0.0

 On a real Kubernetes cluster, this command will update the container called myapp_container, which is running as part of the application deployment called myapp, on every single machine where myapp_container runs to the 1.0.0 tag.

 Whether it must update one container running on one machine or millions over multiple datacenters, this command works the same. Even better, it ensures high availability.

 Remember that the goal is always to meet the requirement of high availability; a deployment should not cause your application to crash or cause a service disruption. Kubernetes is natively capable of managing deployment strategies such as rolling updates, which aim to prevent service interruptions.

 Additionally, Kubernetes keeps in memory all the revisions of a specific deployment and allows you to revert to a previous version with just one command. It’s an incredibly powerful tool that allows you to update a cluster of Docker containers with just one command.

 Autoscaling containers

 Scaling is another production-specific problem that has been widely democratized using public clouds such as Amazon Web Services (AWS) and Google Cloud Platform (GCP). Scaling is the ability to adapt your computing power to the load you are facing, again to meet the requirement of high availability and load balancing. Never forget that the goal is to prevent outages and downtime.

 When your production machines are facing a traffic spike and one of your containers is no longer able to cope with the load, you need to find a way to scale the container workloads efficiently. There are two scaling methods:

 	Vertical scaling: This allows your container to use more computing power offered by the host machine.

 	Horizontal scaling: You can duplicate your container in the same or another machine, and you can load-balance the traffic between the multiple containers.

 Docker is not able to respond to this problem alone; however, when you manage Docker with Kubernetes, it becomes possible.

 [image:]
 Figure 1.10: Vertical scaling versus horizontal scaling for pods

 Kubernetes can manage both vertical and horizontal scaling automatically. It does this by letting your containers consume more computing power from the host or by creating additional containers that can be deployed on the same or another node in the cluster. And if your Kubernetes cluster is not capable of handling more containers because all your nodes are full, Kubernetes will even be able to launch new virtual machines by interfacing with your cloud provider in a fully automated and transparent manner by using a component called a cluster autoscaler.

 IMPORTANT NOTE

 The cluster autoscaler only works if the Kubernetes cluster is deployed on a supported cloud provider (a private or public cloud).

 These goals cannot be achieved without using a container orchestrator. The reason for this is simple. You can’t afford to do these tasks; you need to think about DevOps’ culture and agility and seek to automate these tasks so that your applications can repair themselves, be fault-tolerant, and be highly available.

 Contrary to scaling out your containers or cluster, you must also be able to decrease the number of containers if the load starts to decrease to adapt your resources to the load, whether it is rising or falling. Again, Kubernetes can do this, too.

 Network isolation

 In a world of millions of users, ensuring secure communication between containers is paramount. Traditional approaches can involve complex manual configuration. This is where Kubernetes shines:

 	Pod networking: Kubernetes creates a virtual network overlay for your pods. By default, containers within the same Pod can communicate directly, while containers in different Pods are isolated by default. This prevents unintended communication between containers and enhances security.

 	Network policies: Kubernetes allows you to define granular network policies that further restrict how pods can communicate. You can specify allowed ingress (incoming traffic) and egress (outgoing traffic) for pods, ensuring they only access the resources they need. This approach simplifies network configuration and strengthens security in production environments.

 Role-Based Access Control (RBAC)

 Managing access to container resources in a production environment with multiple users is crucial. Here’s how Kubernetes empowers secure access control:

 	User roles: Kubernetes defines user roles that specify permissions for accessing and managing container resources. These roles can be assigned to individual users or groups, allowing granular control over who can perform specific actions (such as viewing pod logs and deploying new containers).

 	Service accounts: Kubernetes utilizes service accounts to provide identities for pods running within the cluster. These service accounts can be assigned roles, ensuring pods only have the access they require to function correctly.

 This multi-layered approach of using user roles and service accounts strengthens security and governance in production deployments.

 Stateful workloads

 While containers are typically stateless (their data doesn’t persist after they stop), some applications require persistent storage. Kubernetes provides solutions to manage stateful workloads: Persistent Volumes (PVs) and Persistent Volume Claims (PVCs). Kubernetes introduces the concept of PVs, which are persistent storage resources provisioned by the administrator (e.g., host directory, cloud storage). Applications can then request storage using PVCs. This abstraction decouples storage management from the application, allowing containers to leverage persistent storage without worrying about the underlying details.

 Resource management

 Efficiently allocating resources to containers becomes critical in production to optimize performance and avoid resource bottlenecks. Kubernetes provides functionalities for managing resources:

 	Resource quotas: Kubernetes allows you to set resource quotas (limits and requests) for CPU, memory, and other resources for namespaces or pods. This ensures fair resource allocation and prevents individual pods from consuming excessive resources that could starve other applications.

 	Resource limits and requests: When defining deployments, you can specify resource requests (minimum guaranteed resources) and resource limits (maximum allowed resources) for containers. These ensure your application has the resources it needs to function properly while preventing uncontrolled resource usage.

 We will learn about all of these features in the upcoming chapters.

 Should we use Kubernetes everywhere? Let’s discuss that in the next section.

 When and where is Kubernetes not the solution?

 Kubernetes has undeniable benefits; however, it is not always advisable to use it as a solution. Here, we have listed several cases where another solution might be more appropriate:

 	Container-less architecture: If you do not use a container at all, Kubernetes won’t be of any use to you.

 	A very small number of microservices or applications: Kubernetes stands out when it must manage many containers. If your app consists of two to three microservices, a simpler orchestrator might be a better fit.

 Summary

 This first chapter gave us room for a big introduction. We covered a lot of subjects, such as monoliths, microservices, Docker containers, cloud computing, and Kubernetes. We also discussed how this project came to life. You should now have a global vision of how Kubernetes can be used to manage your containers in production. You have also learned why Kubernetes was introduced and how it became a well-known container orchestration tool.

 In the next chapter, we will discuss the process Kubernetes follows to launch a Docker container. You will discover that you can issue commands to Kubernetes, and these commands will be interpreted by Kubernetes as instructions to run containers. We will list and explain each component of Kubernetes and its role in the whole cluster. There are a lot of components that make up a Kubernetes cluster, and we will discover all of them. We will explain how Kubernetes was built with a focus on the distinction between master nodes, worker nodes, and control plane components.

 Further reading

 	Kubernetes documentation: https://kubernetes.io/docs/home/

 	Podman documentation: https://docs.podman.io/en/latest/

 	Docker docs: https://docs.docker.com/

 	Kata containers: https://katacontainers.io/

 	kaniko: https://github.com/GoogleContainerTools/kaniko

 	Buildah: https://buildah.io

 	KubeVirt: https://kubevirt.io

 	Knative: https://knative.dev/docs/

 	Kubernetes: The Documentary [PART 1]: https://www.youtube.com/watch?v=BE77h7dmoQU

 	Kubernetes: The Documentary [PART 2]: https://www.youtube.com/watch?v=318elIq37PE

 	Technically Speaking: Clayton Coleman on the History of Kubernetes: https://www.youtube.com/watch?v=zUJTGqWZtq0

 Join our community on Discord

 Join our community’s Discord space for discussions with the authors and other readers:

 https://packt.link/cloudanddevops

 [image:]

 2

 Kubernetes Architecture – from Container Images to Running Pods

 In the previous chapter, we laid the groundwork regarding what Kubernetes is from a functional point of view. You should now have a better idea of how Kubernetes can help you manage clusters of machines running containerized microservices. Now, let’s go a little deeper into the technical details. In this chapter, we will examine how Kubernetes enables you to manage containers that are distributed on different machines. Following this chapter, you should have a better understanding of the anatomy of a Kubernetes cluster. In particular, you will have a better understanding of Kubernetes components and know the responsibility of each of them in the execution of your containers.

 Kubernetes is made up of several distributed components, each of which plays a specific role in the execution of containers. To understand the role of each Kubernetes component, we will follow the life cycle of a container as it is created and managed by Kubernetes: that is, from the moment you execute the command to create the container to the point when it is actually executed on a machine that is part of your Kubernetes cluster.

 In this chapter, we’re going to cover the following main topics:

 	The name – Kubernetes

 	Understanding the difference between the control plane nodes and compute nodes

 	Kubernetes components

 	The control plane components

 	The compute node components

 	Exploring the kubectl command-line tool and YAML syntax

 	How to make Kubernetes highly available

 Technical requirements

 The following are the technical requirements to proceed with this chapter:

 	A basic understanding of the Linux OS and how to handle basic operations in Linux

 	One or more Linux machines

 The code and snippets used in the chapter are tested on the Fedora workstation. All the code, commands, and other snippets for this chapter can be found in the GitHub repository at https://github.com/PacktPublishing/The-Kubernetes-Bible-Second-Edition/tree/main/Chapter02.

 The name – Kubernetes

 Kubernetes derives its name from Greek origins, specifically from the word “kubernētēs,” which translates to helmsman or pilot. This nautical term signifies someone skilled in steering and navigating a ship. The choice of this name resonates with the platform’s fundamental role in guiding and orchestrating the deployment and management of containerized applications, much like a helmsman steering a ship through the complexities of the digital landscape.

 In addition to its formal name, Kubernetes is commonly referred to as “K8s” within the community. This nickname cleverly arises from the technique of abbreviating the word by counting the eight letters between the “K” and the “s.” This shorthand not only streamlines communication but also adds a touch of informality to discussions within the Kubernetes ecosystem.

 Understanding the difference between the control plane nodes and compute nodes

 To run Kubernetes, you will require Linux machines, which are called nodes in Kubernetes. A node could be a physical machine or a virtual machine on a cloud provider, such as an EC2 instance. There are two types of node in Kubernetes:

 	Control plane nodes (also known as master nodes)

 	Compute nodes (also known as worker nodes)

 The master and worker nodes

 In various contexts, you might encounter the terms “master nodes” and “worker nodes,” which were previously used to describe the conventional hierarchical distribution of roles in a distributed system. In this setup, the “master” node oversaw and assigned tasks to the “worker” nodes. However, these terms may carry historical and cultural connotations that could be perceived as insensitive or inappropriate. In response to this concern, the Kubernetes community has chosen to replace these terms with “control plane nodes” (or controller nodes), denoting the collection of components responsible for managing the overall state of the cluster. Likewise, the term “node” or “compute node” is now used in lieu of “worker” to identify the individual machines in the cluster executing the requested tasks or running the application workloads. The control plane is responsible for maintaining the state of the Kubernetes cluster, whereas compute nodes are responsible for running containers with your applications.

 Linux and Windows containers

 You have the flexibility to leverage Windows-based nodes to launch containers tailored for Windows within your Kubernetes cluster. It’s worth noting that your cluster can harmoniously accommodate both Linux and Windows machines; however, attempting to initiate a Windows container on a Linux worker node, and vice versa, is not feasible. Striking the right balance between Linux and Windows machines in your cluster ensures optimal performance.

 In the next sections of this chapter, we will learn about different Kubernetes components and their responsibilities.

 Kubernetes components

 Kubernetes, by its inherent design, functions as a distributed application. When we refer to Kubernetes, it’s not a standalone, large-scale application released in a single build for installation on a dedicated machine. Instead, Kubernetes embodies a compilation of small projects, each crafted in Go (language), collectively constituting the overarching Kubernetes project.

 To establish a fully operational Kubernetes cluster, it’s necessary to individually install and configure each of these components, ensuring seamless communication among them. Once these prerequisites are fulfilled, you can commence running your containers using the Kubernetes orchestrator.

 For development or local testing, it is fine to install all of the Kubernetes components on the same machine. However, in production, to meet requirements like high availability, load balancing, distributed computing, scaling, and so on, these components should be spread across different hosts. By spreading the different components across multiple machines, you gain two benefits:

 	You make your cluster highly available and fault-tolerant.

 	You make your cluster a lot more scalable. Components have their own life cycle; they can be scaled without impacting others.

 In this way, having one of your servers down will not break the entire cluster but just a small part of it, and adding more machines to your servers becomes easy.

 Each Kubernetes component has its own clearly defined responsibility. It is important for you to understand each component’s responsibility and how it articulates with the other components to understand the overall working of Kubernetes.

 Depending on its role, a component will have to be deployed on a control plane node or a compute node. While some components are responsible for maintaining the state of a whole cluster and operating the cluster itself, others are responsible for running our application containers by interacting with the container runtime directly (e.g., containerd or Docker daemons). Therefore, the components of Kubernetes can be grouped into two families: control plane components and compute node components.

 You are not supposed to launch your containers by yourself, and therefore, you do not interact directly with the compute nodes. Instead, you send your instructions to the control plane. Then, it will delegate the actual container creation and maintenance to the compute node on your behalf.

 [image:]
 Figure 2.1: A typical Kubernetes workflow

 Due to the distributed nature of Kubernetes, the control plane components can be spread across multiple machines. There are two ways to set up the control plane components:

 	You can run all the control planes on the same machine or on different machines. To achieve maximum fault tolerance, it’s a good idea to spread the control plane components across different machines. The idea is that Kubernetes components must be able to communicate with each other, and this still can be achieved by installing them on different hosts.

 	Things are simpler when it comes to compute nodes (or worker nodes). In these, you start from a standard machine running a supported container runtime, and you install the compute node components next to the container runtime. These components will interface with the local container engine that is installed on said machine and execute containers based on the instructions you send to the control plane components. Adding more computing power to your cluster is easy; you just need to add more worker nodes and have them join the cluster to make room for more containers.

 By splitting the control plane and compute node components of different machines, you are making your cluster highly available and scalable. Kubernetes was built with all of the cloud-native concerns in mind; its components are stateless, easy to scale, and built to be distributed across different hosts. The whole idea is to avoid having a single point of failure by grouping all the components on the same host.

 Here is a simplified diagram of a full-featured Kubernetes cluster with all the components listed. In this chapter, we’re going to explain all of the components listed in this diagram, their roles, and their responsibilities. Here, all of the control plane components are installed on a single master node machine:

 [image:]
 Figure 2.2: A full-featured Kubernetes cluster with one control plane node and three compute nodes

 The preceding diagram displays a four-node Kubernetes cluster with all the necessary components.

 Bear in mind that Kubernetes is modified and, therefore, can be modified to fit a given environment. When Kubernetes is deployed and used as part of a distribution such as Amazon EKS or Red Hat OpenShift, additional components could be present, or the behavior of the default ones might differ. In this book, for the most part, we will discuss bare or vanilla Kubernetes. The components discussed in this chapter are the default ones and you will find them everywhere as they are the backbone of Kubernetes.

 The following diagram shows the basic and core components of a Kubernetes cluster.

 [image:]
 Figure 2.3: The components of a Kubernetes cluster (image source: https://kubernetes.io/docs/concepts/overview/components)

 You might have noticed that most of these components have a name starting with kube: these are the components that are part of the Kubernetes project. Additionally, you might have noticed that there are two components with a name that does not start with kube. The other two components (etcd and Container Engine) are two external dependencies that are not strictly part of the Kubernetes project, but which Kubernetes needs to work:

 	etcd is a third-party data store used by the Kubernetes project. Don’t worry; you won’t have to master it to use Kubernetes.

 	The container engine is also a third-party engine.

 Rest assured, you will not have to install and configure these components all by yourself. Almost no one bothers with managing the components by themselves, and, in fact, it’s super easy to get a working Kubernetes without having to install the components.

 For development purposes, you can use minikube, which is a tool that enables developers to run a single-node Kubernetes cluster locally on their machine. It’s a lightweight and easy-to-use solution for testing and developing Kubernetes applications without the need for a full-scale cluster. minikube is absolutely NOT recommended for production.

 For production deployment, cloud offerings like Amazon EKS or Google GKE provide an integrated, scalable Kubernetes cluster. Alternatively, kubeadm, a Kubernetes installation utility, is suitable for platforms without cloud access.

 For educational purposes, a renowned tutorial known as Kubernetes the Hard Way by Kelsey Hightower guides users through manual installations, covering PKI management, networking, and computing provisioning on bare Linux machines in Google Cloud. While this tutorial may feel difficult for beginners, it is still recommended to practice, offering a valuable opportunity to comprehend the internals of Kubernetes. Note that establishing and managing a production-grade Kubernetes cluster, as demonstrated in Kubernetes the Hard Way, is intricate and time-consuming. It’s advised against using its results in a production environment. You will observe many references to this tutorial on the internet because it’s very famous.

 We will learn about the Kubernetes control plane and compute node components in the next section.

 Control plane components

 These components are responsible for maintaining the state of the cluster. They should be installed on a control plane node. These are the components that will keep the list of containers executed by your Kubernetes cluster or the number of machines that are part of the cluster. As an administrator, when you interact with Kubernetes, you interact with the control plane components and the following are the major components in the control plane:

 	kube-apiserver

 	etcd

 	kube-scheduler

 	kube-controller-manager

 	cloud-controller-manager

 Compute node components

 These components are responsible for interacting with the container runtime in order to launch containers according to the instructions they receive from the control plane components. Compute node components must be installed on a Linux machine running a supported container runtime and you are not supposed to interact with these components directly. It’s possible to have hundreds or thousands of compute nodes in a Kubernetes cluster. The following are the major component parts of the compute nodes:

 	kubelet

 	kube-proxy

 	Container runtime

 Add-on components

 Add-ons utilize Kubernetes resources such as DaemonSet, Deployment, and others to implement cluster features. As these features operate at the cluster level, resources for add-ons that are namespaced are located within the kube-system namespace. The following are some of the add-on components you will see commonly in your Kubernetes clusters:

 	DNS

 	Web UI (dashboard)

 	Container resource monitoring

 	Cluster-level logging

 	Network plugins

 Control plane in managed Kubernetes clusters

 In contrast to self-managed Kubernetes clusters, cloud services like Amazon EKS, Google GKE, and similar offerings handle the installation and configuration of most Kubernetes control plane components. They provide access to a Kubernetes endpoint, or optionally, the kube-apiserver endpoint, without exposing intricate details about the underlying machines or provisioned load balancers. This holds true for components such as kube-scheduler, kube-controller-manager, etcd, and others.

 Here is a screenshot of a Kubernetes cluster created on the Amazon EKS service:

 [image:]
 Figure 2.4: The UI console showing details of a Kubernetes cluster provisioned on Amazon EKS

 We have detailed chapters to learn about EKS, GKE, and AKS later in this book.

 We will learn about control plane components that are responsible for maintaining the state of the cluster in the next sections.

 The Control Plane Components

 In the following sections, let us explore the different control plane components and their responsibilities.

 kube-apiserver

 Kubernetes’ most important component is a Representational State Transfer (REST) API called kube-apiserver, which exposes all the Kubernetes features. You will be interacting with Kubernetes by calling this REST API through the kubectl command-line tool, direct API calls, or the Kubernetes dashboard (Web UI) utilities.

 The role of kube-apiserver

 kube-apiserver is a part of the control plane in Kubernetes. It’s written in Go, and its source code is open and available on GitHub under the Apache 2.0 license. To interact with Kubernetes, the process is straightforward. Whenever you want to instruct Kubernetes, you send an HTTP request to kube-apiserver. Whether it’s creating, deleting, or updating a container, you always make these calls to the appropriate kube-apiserver endpoint using the right HTTP verb. This is the routine with Kubernetes—kube-apiserver serves as the sole entry point for all operations directed to the orchestrator. It’s considered a good practice to avoid direct interactions with container runtimes (unless it is some troubleshooting activity).

 kube-apiserver is constructed following the REST standard. REST proves highly efficient in showcasing functionalities through HTTP endpoints, accessible by employing different methods of the HTTP protocol like GET, POST, PUT, PATCH, and DELETE. When you combine HTTP methods and paths, you can perform various operations specified by the method on resources identified by the path.

 The REST standard provides considerable flexibility, allowing easy extension of any REST API by adding new resources through the addition of new paths. Typically, REST APIs employ a datastore to manage the state of objects or resources.

 Data retention in such an API can be approached in several ways, including the following:

 REST API memory storage:

 	Keeps data in its own memory.

 	However, this results in a stateful API, making scaling impossible.

 Kubernetes uses etcd to store state and it is pronounced /ˈɛtsiːdiː/, which means distributed etc directory. The etcd is an open source distributed key-value store used to hold and manage the critical information that distributed systems need to keep running.

 Database engine usage:

 	Utilizes full-featured database engines like MariaDB or PostgreSQL.

 	Delegating storage to an external engine makes the API stateless and horizontally scalable.

 Any REST API can be easily upgraded or extended to do more than its initial intent. To sum up, here are the essential properties of a REST API:

 	Relies on the HTTP protocol

 	Defines a set of resources identified by URL paths

 	Specifies a set of actions identified by HTTP methods

 	Executes actions against resources based on a properly forged HTTP request

 	Maintains the state of their resources on a datastore

 In summary, kube-apiserver is nothing more than a REST API, which is at the heart of any Kubernetes cluster you will set up, no matter if it’s local, on the cloud, or on-premises. It is also stateless; that is, it keeps the state of the resources by relying on a database engine called etcd. This means you can horizontally scale the kube-apiserver component by deploying it onto multiple machines and load balance request issues to it using a layer 7 load balancer without losing data.

 As HTTP is supported almost everywhere, it is very easy to communicate with and issue instructions to a Kubernetes cluster. However, most of the time, we interact with Kubernetes via the command-line utility named kubectl, which is the HTTP client that is officially supported as part of the Kubernetes project. When you download kube-apiserver, you’ll end up with a Go-compiled binary that is ready to be executed on any Linux machine. The Kubernetes developers defined a set of resources for us that are directly bundled within the binary. So, do expect the resources in kube-apiserver related to container management, networking, and computing in general.

 A few of these resources are as follows:

 	Pod

 	ReplicaSet

 	PersistentVolume

 	NetworkPolicy

 	Deployment

 Of course, this list of resources is not exhaustive. If you want a full list of the Kubernetes components, you can access it from the official Kubernetes documentation API reference page at https://kubernetes.io/docs/reference/kubernetes-api/.

 You might be wondering why there are no container resources here. As mentioned in Chapter 1, Kubernetes Fundamentals, Kubernetes makes use of a resource called a Pod to manage the containers. For now, you can think of pods as though they were containers.

 Although pods can hold multiple containers, it’s common to have a pod with just one container inside. If you’re interested in using multiple containers within a pod, we’ll explore patterns like sidecar and init containers in Chapter 5, Using Multi-Container Pods and Design Patterns.

 We will learn a lot about them in the coming chapters. Each of these resources is associated with a dedicated URL path, and changing the HTTP method when calling the URL path will have a different effect. All of these behaviors are defined in kube-apiserver. Note that these behaviors are not something you have to develop; they are directly implemented as part of kube-apiserver.

 After the Kubernetes objects are stored on the etcd database, other Kubernetes components will convert these objects into raw container instructions.

 Remember, kube-apiserver is the central hub and the definitive source for the entire Kubernetes cluster. All actions in Kubernetes revolve around it. Other components, including administrators, interact with kube-apiserver via HTTP, avoiding direct interaction with cluster components in most cases.

 This is because kube-apiserver not only manages the cluster’s state but also incorporates numerous mechanisms for authentication, authorization, and HTTP response formatting. Consequently, manual interventions are strongly discouraged due to the complexity of these processes.

 How do you run kube-apiserver?

 In Chapter 3, Installing Your First Kubernetes Cluster, we will focus on how to install and configure a Kubernetes cluster locally.

 Essentially, there are two ways to run kube-apiserver (and other components), as follows:

 	By running kube-apiserver as a container image

 	By downloading and installing kube-apiserver and running it using a systemd unit file

 Since the recommended method is to run the containerized kube-apisever, let’s put aside the systemd method. Depending on the Kubernetes cluster deployment mechanisms, kube-apiserver and other components will be configured as containers by downloading the appropriate images from the container registry (e.g., registry.k8s.io).

 Where do you run kube-apiserver?

 kube-apiserver should be run on the control plane node(s) as it is part of the control plane. Ensure that the kube-apiserver component is installed on a robust machine solely dedicated to the control plane operations. This component is crucial, and if it becomes inaccessible, your containers will persist but lose connectivity with Kubernetes. They essentially turn into “orphan” containers on isolated machines, no longer under Kubernetes management.

 Also, the other Kubernetes components from all cluster nodes constantly send HTTP requests to kube-apiserver to understand the state of the cluster or to update it. And the more compute nodes you have, the more HTTP requests will be issued against kube-apiserver. That’s why kube-apiserver should be independently scaled as the cluster itself scales out.

 As mentioned earlier, kube-apiserver is a stateless component that does not directly maintain the state of the Kubernetes cluster itself and relies on a third-party database to do so. You can scale it horizontally by hosting it on a group of machines that are behind a load balancer such as an HTTP API. When using such a setup, you interact with kube-apiserver by calling your API load balancer endpoint.

 In the next section, we will learn how Kubernetes stores the cluster and resource information using etcd.

 The etcd datastore

 We explained that kube-apiserver can be scaled horizontally. We also mentioned that to store the state of the cluster status and details, kube-apiserver uses etcd, an open source, distributed key-value store. Strictly speaking, etcd is not a part of the Kubernetes project but a separate project that is maintained by the etcd-io community.

 While etcd is the commonly used datastore for Kubernetes clusters, some distributions like k3s leverage alternatives by default, such as SQLite or even external databases like MySQL or PostgreSQL (https://docs.k3s.io/datastore).

 etcd is also an open source project (written in Go just like Kubernetes), which is available on GitHub (https://github.com/etcd-io/etcd) under license Apache 2.0. It’s also a project incubated (in 2018 and graduated in 2020) by the Cloud Native Computing Foundation (CNCF), which is the organization that maintains Kubernetes.

 When you call kube-apiserver, each time you implement a read or write operation by calling the Kubernetes API, you will read or write data from or to etcd.

 Let’s zoom into what is inside the master node now:

 [image:]
 Figure 2.5: The kube-apiserver component is in front of the etcd datastore and acts as a proxy in front of it; kube-apiserver is the only component that can read or write from and to etcd

 etcd is like the heart of your cluster. If you lose the data in etcd, your Kubernetes cluster won’t work anymore. It’s even more crucial than kube-apiserver. If kube-apiserver crashes, you can restart it. But if etcd data is lost or messed up without a backup, your Kubernetes cluster is done for.

 Fortunately, you do not need to master etcd in depth to use Kubernetes. It is even strongly recommended that you do not touch it at all if you do not know what you are doing. This is because a bad operation could corrupt the data stored in etcd and, therefore, the state of your cluster.

 Remember, the general rule in Kubernetes architecture says that every component has to go through kube-apiserver to read or write in etcd. This is because, from a technical point of view, kubectl authenticates itself against kube-apiserver through a TLS client certificate that only kube-apiserver has. Therefore, it is the only component of Kubernetes that has the right to read or write in etcd. This is a very important notion in the architecture of Kubernetes. All of the other components won’t be able to read or write anything to or from etcd without calling the kube-apiserver endpoints through HTTP.

 Please note that etcd is also designed as a REST API. By default, it listens to port 2379.

 Let’s explore a simple kubectl command, as follows:

 $ kubectl run nginx --restart Never --image nginx

 When you execute the preceding command, the kubectl tool will forge an HTTP POST request that will be executed against the kube-apiserver component specified in the kubeconfig file. kube-apiserver will write a new entry in etcd, which will be persistently stored on disk.

 At that point, the state of Kubernetes changes: it will then be the responsibility of the other Kubernetes components to reconcile the actual state of the cluster to the desired state of the cluster (that is, the one in etcd).

 Unlike Redis or Memcached, etcd is not in-memory storage. If you reboot your machine, you do not lose the data because it is kept on disk.

 Where do you run etcd?

 In a self-managed Kubernetes setup, you can operate etcd either within a container or as part of a systemd unit file. etcd can naturally expand horizontally by distributing its dataset across several servers, making it an independent clustering solution.

 Also, you have two places to run etcd for Kubernetes, as follows:

 	etcd can be deployed together with kube-apiserver (and other control plane components) on the control plane nodes – this is the default and simple setup (in most Kubernetes clusters, components like etcd and kube-apiserver are initially deployed using static manifests. We’ll explore this approach and alternatives in more detail later in the book).

 	You can configure to use a dedicated etcd cluster – this is a more complex approach but more reliable if your environment is demanding for such reliability.

 Operating etcd clusters for Kubernetes

 The details about single-node or multi-node dedicated etcd clusters can be found in the official Kubernetes documentation at https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/.

 Learning more about etcd

 If you are interested in learning how etcd works and want to play with the etcd dataset, there is a free playground available online. Visit http://play.etcd.io/play and learn how to manage etcd clusters and data inside.

 Let us explore and learn about kube-scheduler in the next section.

 kube-scheduler

 kube-scheduler is responsible for electing a worker node out of those available to run a newly created pod.

 Upon creation, pods are unscheduled, indicating that no worker node has been designated for their execution. An unscheduled pod is recorded in etcd without any assigned worker node. Consequently, no active kubelet will be informed of the need to launch this pod, leading to the non-execution of any container outlined in the pod specification.

 Internally, the pod object, as it is stored in etcd, has a property called nodeName. As the name suggests, this property should contain the name of the worker node that will host the pod. When this property is set, we say that the pod has been scheduled; otherwise, the pod is pending for schedule.

 kube-scheduler queries kube-apiserver at regular intervals in order to list the pods that have not been scheduled or with an empty nodeName property. Once it finds such pods, it will execute an algorithm to elect a worker node. Then, it will update the nodeName property in the pod by issuing an HTTP request to the kube-apiserver component. While electing a worker node, the kube-scheduler component will take into account some configuration values that you can pass:

 [image:]
 Figure 2.6: The kube-scheduler component polls the kube-apiserver component to find unscheduled pods

 The kube-scheduler component will take into account some configuration values that you can pass optionally. By using these configurations, you can precisely control how the kube-scheduler component will elect a worker node. Here are some of the features to bear in mind when scheduling pods on your preferred node:

 	Node selector

 	Node affinity and anti-affinity

 	Taint and toleration

 There are also advanced techniques for scheduling that will completely bypass the kube-scheduler component. We will examine these features later.

 The kube-scheduler component can be replaced by a custom one. You can implement your own kube-scheduler component with your custom logic to select a node and use it on your cluster. It’s one of the strengths of the distributed nature of Kubernetes components.

 Where do you install kube-scheduler?

 You can choose to install kube-scheduler on a dedicated machine or the same machine as kube-apiserver. It’s a short process and won’t consume many resources, but there are some things to pay attention to.

 The kube-scheduler component should be highly available. That’s why you should install it on more than one machine. If your cluster does not have a working kube-scheduler component, new pods won’t be scheduled, and the result will be a lot of pending pods. Also note that if no kube-scheduler component is present, it won’t have an impact on the already scheduled pods.

 In the next section, we will learn about another important control plane component called kube-controller-manager.

 kube-controller-manager

 kube-controller-manager is a substantial single binary that encompasses various functionalities, essentially embedding what is referred to as a controller. It is the component that runs what we call the reconciliation loop. kube-controller-manager tries to maintain the actual state of the cluster with the one described in etcd so that there are no differences between the states.

 In certain instances, the actual state of the cluster may deviate from the desired state stored in etcd. This discrepancy can result from pod failures or other factors. Consequently, the kube-controller-manager component plays a crucial role in reconciling the actual state with the desired state. As an illustration, consider the replication controller, one of the controllers operating within the kube-controller-manager component. In practical terms, Kubernetes allows you to specify and maintain a specific number of pods across different compute nodes. If, for any reason, the actual number of pods varies from the specified count, the replication controller initiates requests to the kube-apiserver component. This aims to recreate a new pod in etcd, thereby replacing the failed one on a compute node.

 Here is a list of a few controllers that are part of kube-controller-manager:

 	Node Controller: Handles the life cycle of nodes, overseeing their addition, removal, and updates within the cluster

 	Replication Controller: Ensures that the specified number of replicas for a pod specification is consistently maintained

 	Endpoints Controller: Populates the endpoints objects for services, reflecting the current pods available for each service

 	Service Account Controller: Oversees the management of ServiceAccounts within namespaces, ensuring the presence of a ServiceAccount named default in each currently active namespace

 	Namespace Controller: Manages the lifecycle of namespaces, encompassing creation, deletion, and isolation

 	Deployment Controller: Manages the lifecycle of deployments, ensuring that the desired pod count for each deployment is maintained

 	StatefulSet Controller: Manages the lifecycle of stateful sets, preserving the desired replica count, pod order, and identity

 	DaemonSet Controller: Manages the lifecycle of daemon sets, guaranteeing that a copy of the daemon pod is active on each cluster node

 	Job Controller: Manages the lifecycle of jobs, ensuring the specified pod count for each job is maintained until job completion

 	Horizontal Pod Autoscaler (HPA) Controller: Dynamically scales the number of replicas for a deployment or stateful set based on resource utilization or other metrics

 	Pod Garbage Collector: Removes pods no longer under the control of an owner, such as a replication controller or deployment

 As you can gather, the kube-controller-manager component is quite big. But essentially, it’s a single binary that is responsible for reconciling the actual state of the cluster with the desired state of the cluster that is stored in etcd.

 Where do you run kube-controller-manager?

 The kube-controller-manager component can run as a container or a systemd service similar to kube-apiserver on the control plane nodes. Additionally, you can decide to install the kube-controller-manager component on a dedicated machine. Let’s now talk about cloud-controller-manager.

 cloud-controller-manager

 cloud-controller-manager is a component in the Kubernetes control plane that manages the interactions between Kubernetes and the underlying cloud infrastructure. cloud-controller-manager handles the provisioning and administration of cloud resources, including nodes and volumes, to facilitate Kubernetes workloads. It exclusively operates controllers tailored to your cloud provider. In cases where Kubernetes is self-hosted, within a learning environment on a personal computer, or on-premises, the cluster does not feature a cloud controller manager.

 Similar to kube-controller-manager, cloud-controller-manager consolidates multiple logically independent control loops into a unified binary, executed as a single process. Horizontal scaling, achieved by running multiple copies, is an option to enhance performance or enhance fault tolerance.

 Controllers with potential cloud provider dependencies include:

 	Node Controller: Verifies if a node has been deleted in the cloud after it stops responding

 	Route Controller: Establishes routes in the underlying cloud infrastructure

 	Service Controller: Manages the creation, updating, and deletion of cloud provider load balancers

 Where do you run cloud-controller-manager?

 The cloud-controller-manager component can run as a container or a systemd service similar to kube-apiserver on the control plane nodes.

 In the next sections, we will discuss the component parts of the compute nodes (also known as worker nodes) in the Kubernetes cluster.

 The compute node components

 We will dedicate this part of the chapter to explaining the anatomy of a compute node by explaining the three components running on it:

 	Container engine and container runtime

 	kubelet

 	The kube-proxy component
 kubelet, kube-proxy, and container runtime are essential components for both control plane (master) nodes and worker nodes. We’ll cover them in this section to highlight their functionalities in both contexts.

 Container engine and container runtime

 A container engine is a software platform designed to oversee the creation, execution, and lifecycle of containers. It offers a more abstract layer compared to a container runtime, streamlining container management and enhancing accessibility for developers. Well-known container engines are Podman, Docker Engine, and CRI-O. In contrast, container runtime is a foundational software component responsible for the creation, execution, and administration of containers in the backend when instructed by a container engine or container orchestrator. It furnishes essential functionality for container operation, encompassing tasks such as image loading, container creation, resource allocation, and container lifecycle management. Containerd, runc, dockerd, and Mirantis Container Runtime are some of the well-known container runtimes.

 The terms “container engine” and “container runtime” can sometimes be used interchangeably, leading to confusion. Container runtime (low-level) is the core engine responsible for executing container images, managing their lifecycles (start, stop, pause), and interacting with the underlying operating system. Examples include runc and CRI-O (when used as a runtime). Container engine (high-level) builds upon the container runtime, offering additional features like image building, registries, and management tools. Think Docker, Podman, or CRI-O (when used with Kubernetes). Remember, the key is understanding the core functionalities: low-level runtimes handle container execution, while high-level engines add a layer of management and user-friendliness.

 Docker was the default option for running containers in the backend of Kubernetes in earlier days. But Kubernetes is not limited to Docker now; it can utilize several other container runtimes such as containerd, CRI-O (with runc), Mirantis Container Runtime, etc. However, in this book, we will be using Kubernetes with containerd or CRI-O for several reasons, including the following:

 	Focus and Flexibility: containerd and CRI-O specialize in container runtime functionality, making them more lightweight and potentially more secure compared to Docker’s broader feature set. This focus also allows for seamless integration with container orchestration platforms like Kubernetes. Unlike Docker, you don’t require additional components like cri-dockerd for Kubernetes compatibility.

 	Alignment with Kubernetes: Kubernetes is actively moving away from Docker as the default runtime. Previously (pre-v1.24), Docker relied on a component called dockershim for integration with Kubernetes.

 However, this approach has been deprecated, and Kubernetes now encourages the use of runtimes adhering to the Container Runtime Interface (CRI) standard specifically designed for the platform. By choosing containerd or CRI-O, you ensure a more native and efficient integration with your Kubernetes environment.

 	Kubernetes-Centric Design: CRI-O, in particular, is designed as a lightweight container runtime specifically for Kubernetes. It closely follows Kubernetes release cycles with respect to its minor versions (e.g., 1.x.y), simplifying version management. When a Kubernetes release reaches its end of life, the corresponding CRI-O version can likely be considered deprecated as well, streamlining the decision-making process for maintaining a secure and up-to-date Kubernetes environment.

 Container Runtime Interface

 Kubernetes employs a container runtime to execute containers within Pods. By default, Kubernetes utilizes the CRI to establish communication with the selected container runtime. The CRI was first introduced in Kubernetes version 1.5, released in December 2016.

 The CRI serves as a plugin interface, empowering the kubelet to seamlessly integrate with a diverse range of container runtimes. This flexibility enables the selection of an optimal container runtime tailored to specific environmental requirements, such as containerd, Docker Engine, or CRI-O.

 Within the CRI, a set of defined APIs allows the kubelet to engage with the container runtime efficiently. These APIs cover essential operations like creating, starting, stopping, and deleting containers, along with managing pod sandboxes and networking.

 The following table shows the known endpoints for Linux machines.

 	
 Runtime

 	
 Path to Unix domain socket

 	
 containerd

 	
 unix:///var/run/containerd/containerd.sock

 	
 CRI-O

 	
 unix:///var/run/crio/crio.sock

 	
 Docker Engine (using cri-dockerd)

 	
 unix:///var/run/cri-dockerd.sock

 Table 2.1: Known container runtime endpoints for Linux machines

 Refer to the documentation (https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm) to learn more.

 Kubernetes and Docker

 In Kubernetes releases prior to v1.24, there was a direct integration with Docker Engine facilitated by a component called dockershim. However, this specific integration has been discontinued, and its removal was communicated with the v1.20 release. The deprecation of Docker as the underlying runtime is underway, and Kubernetes is now encouraging the use of runtimes aligned with the CRI designed for Kubernetes.

 Despite these changes, Docker-produced images will persistently function in your cluster with any runtime, ensuring compatibility as it has been previously. Refer to https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/ to learn more.

 Therefore, any Linux machine running containerd can be used as a base on which to build a Kubernetes worker node. (We will discuss Windows compute nodes in the later chapters of this book.)

 Open Container Initiative

 The Open Container Initiative (OCI) is an open-source initiative that defines standards for container images, containers, container runtimes, and container registries. This effort aims to establish interoperability and compatibility across container systems, ensuring consistent container execution in diverse environments. Additionally, the CRI collaborates with OCI, providing a standardized interface for the kubelet to communicate with container runtimes. The OCI defines standards for container images and runtimes supported by the CRI, fostering efficient container management and deployment in Kubernetes.

 Container RuntimeClass

 Kubernetes RuntimeClass allows you to define and assign different container runtime configurations to Pods. This enables balancing performance and security for your applications. Imagine high-security workloads scheduled with a hardware virtualization runtime for stronger isolation, even if it means slightly slower performance. RuntimeClass also lets you use the same runtime with different settings for specific Pods. To leverage this, you’ll need to configure the CRI on your nodes (installation varies) and create corresponding RuntimeClass resources within Kubernetes.

 In the next section, we will learn about the kubelet agent, another important component of a Kubernetes cluster node.

 kubelet

 The kubelet is the most important component of the compute node since it is the one that will interact with the local container runtime installed on the compute node.

 The kubelet functions solely as a system daemon and cannot operate within a container. Its execution is mandatory directly on the host system, often facilitated through systemd. This distinguishes the kubelet from other Kubernetes components, emphasizing its exclusive requirement to run on the host machine.

 When the kubelet gets started, by default, it reads a configuration file located at /etc/kubernetes/kubelet.conf.

 This configuration specifies two values that are really important for the kubelet to work:

 	The endpoint of the kube-apiserver component

 	The local container runtime Unix socket

 Once the compute node has joined the cluster, the kubelet will act as a bridge between kube-apiserver and the local container runtime. The kubelet is constantly running HTTP requests against kube-apiserver to retrieve information about pods it has to launch.

 By default, every 20 seconds, the kubelet runs a GET request against the kube-apiserver component to list the pods created on etcd that are destined to it.

 Once it receives a pod specification in the body of an HTTP response from kube-apiserver, it can convert this into a container specification that will be executed against the specified UNIX socket. The result is the creation of your containers on your compute node using the local container runtime (e.g., containerd).

 Remember that, like any other Kubernetes components, kubelet does not read directly from etcd; rather it interacts with kube-apiserver, which exposes what is inside the etcd data layer. The kubelet is not even aware that an etcd server runs behind the kube-apiserver it polls.

 The polling mechanisms, called watch mechanisms in Kubernetes terminology, are precisely to define how Kubernetes proceeds to run and delete containers against your worker nodes at scale. There are two things to pay attention to here:

 	The kubelet and kube-apiserver must be able to communicate with each other through HTTP. That’s why HTTPS port 6443 must be opened between the compute and control plane nodes.

 	As they are running on the same machine, the kubelet, CRI, and container runtimes are interfaced through the usage of UNIX sockets.

 Each worker node in the Kubernetes cluster needs its own kubelet, causing heightened HTTP polling against kube-apiserver with additional nodes. In larger clusters, particularly those with hundreds of machines, this increased activity can adversely affect kube-apiserver’s performance and potentially lead to a situation that may impact API availability. Efficient scaling is essential to ensure the high availability of the kube-apiserver and other control plane components.

 Also note that you can completely bypass Kubernetes and create containers on your worker nodes without having to use the kubelet, and the sole job of the kubelet is that its local container runtime reflects the configuration that is stored in etcd. So, if you create containers manually on a worker node, the kubelet won’t be able to manage it. However, exposing the container runtime socket to containerized workloads is a security risk. It bypasses Kubernetes’ security mechanisms and is a common target for attackers. A key security practice is to prevent containers from mounting this socket, safeguarding your Kubernetes cluster.

 Please note that the container engine running on the worker node has no clue that it is managed by Kubernetes through a local kubelet agent. A compute node is nothing more than a Linux machine running a container runtime with a kubelet agent installed next to it, executing container management instructions.

 We will learn about the kube-proxy component in the next section.

 The kube-proxy component

 An important part of Kubernetes is networking. We will have the opportunity to dive into networking later; however, you need to understand that Kubernetes has tons of mechanics when it comes to exposing pods to the outside world or exposing pods to one another in the Kubernetes cluster.

 These mechanics are implemented at the kube-proxy level; that is, each worker node requires an instance of a running kube-proxy so that the pods running on them are accessible. We will explore a Kubernetes feature called Service, which is implemented at the level of the kube-proxy component. Just like the kubelet, the kube-proxy component also communicates with the kube-apiserver component.

 Several other sub-components or extensions operate at the compute node level, such as cAdvisor or Container Network Interface (CNI). However, they are advanced topics that we will discuss later.

 Now we have learned about the different Kubernetes components and concepts, let us learn about the kubectl client utility and how it interacts with the Kubernetes API in the next section.

 Exploring the kubectl command-line tool and YAML syntax

 kubectl is the official command-line tool used to manage the Kubernetes platform. This is an HTTP client that is fully optimized to interact with Kubernetes and allows you to issue commands to your Kubernetes cluster.

 Kubernetes and Linux-Based Learning Environment

 For effective learning in Linux containers and related topics, it’s best to use workstations or lab machines with a Linux OS. A good understanding of Linux basics is essential for working with containers and Kubernetes. Using a Linux OS on your workstation automatically places you in the Linux environment, making your learning experience better. You can choose the Linux distribution you prefer, like Fedora, Ubuntu, or another. We’re committed to inclusivity and will offer alternative steps for Windows and macOS users when needed, ensuring a diverse and accessible learning experience for everyone. However, it is not mandatory to have a Linux OS-installed workstation to learn Kubernetes. If you are using a Windows machine, then you can use alternatives such as Windows Subsystem for Linux (WSL) (https://learn.microsoft.com/en-us/windows/wsl/).

 Installing the kubectl command-line tool

 The kubectl command-line tool can be installed on your Linux, Windows, or macOS workstations. You need to ensure that your kubectl client version stays within one minor version of your Kubernetes cluster for optimal compatibility. This means a v1.30 kubectl can manage clusters at v1.29, v1.30, and v1.31. Sticking to the latest compatible version helps avoid potential issues.

 Since you are going to need the kubectl utility in the coming chapter, you can install it right now, as explained in the following sections.

 Kubernetes Legacy Package Repositories

 As of January 2024, the legacy Linux package repositories – namely, apt.kubernetes.io and yum.kubernetes.io (also known as packages.cloud.google.com) – have been frozen since September 13, 2023, and are no longer available. Users are advised to migrate to the new community-owned package repositories for Debian and RPM packages at pkgs.k8s.io, which were introduced on August 15, 2023. These repositories serve as replacements for the now-deprecated Google-hosted repositories (apt.kubernetes.io and yum.kubernetes.io). This change impacts users directly installing upstream versions of Kubernetes and those who have installed kubectl using the legacy package repositories. For further details, refer to the official announcement: Legacy Package Repository Deprecation (https://kubernetes.io/blog/2023/08/31/legacy-package-repository-deprecation/).

 Installing kubectl on Linux

 To install kubectl on Linux, you need to download the kubectl utility and copy it to an executable path as follows:

 $ curl -LO “https://dl.k8s.io/release/$(curl -L -s https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl”
$ chmod +x ./kubectl
$ sudo mv ./kubectl /usr/local/bin/kubectl
$ kubectl version
Client Version: v1.30.0
Kustomize Version: v5.0.4-0.20230601165947-6ce0bf390ce3
The connection to the server localhost:8080 was refused - did you specify the right host or port?

 Ignore the connection error here as you do not have a Kubernetes cluster configured to access using kubectl.

OEBPS/image/B22019_01_01.png
The Business Team The Operation Team

OEBPS/image/B22019_02_01.png
Client

You

Instruction

Kubernetes

Control plane

Delegate
contalner
creation

_—

Kubemnetes

Compute
A

Container runtime

OEBPS/image/B22019_02_06.png
Kubernetes cluster

Control plane node 1

]
'

'

Client 1
'

kubecti/API Call 1
1

s d_;') Kube-aplserver ~<€E— kube-scheduler
en

Instruction

eted

OEBPS/image/B22019_01_06.png
virtualization

containerization

Application Application Application Application Application Application
1 2 2 1 2 2
Binaries & Binaries & Binaries & Binaries & Binaries & Binaries &
Libraries Libraries Libraries Libraries Libraries Libraries

Guest Guest Guest
Operating Operating Operating Container Engine
System System System
Hypervisor Operating System
Infrastructure Infrastructure

OEBPS/image/blockquote-top.png

OEBPS/image/B22019_02_04.png
B > cstes > aksdeme

eks-demo
v Clusterinfo i
@ 150 @uraaupmorsun sy 25 206> s

Oviee | mesowces | compute | Natworking | Adboms | Aces | Obsrabily | Uporadeimihs | Updstemtory | Tags

Detaits
Aovsenes oot OpeioComnct prover et ceea
e [-Ree—

O ek o by, 210+ ks domo.

6 amowsamcrs 55yl el iow 1 A1

OEBPS/image/B22019_01_10.png
Vertical scaling

//\sj

Pod1

Memory 32Mi

Pod1

Memory 64Mi

Horizontal scaling

/ 7;> Pod1
/ Memory 32Mi

Podl
Memory 32Mi Pod2
Memory32Mi
Pod3

Memory 32Mi

OEBPS/image/B22019_01_04.png
croservice Microsstvice Microservice
(Business (Data (Messaging) Microservice
Logic) Interface) o

=

User
interface

Distributed application components

OEBPS/image/tip.png

OEBPS/image/QR_Code119001106479081656.png

OEBPS/image/B22019_01_05.png
microservice
A

database

F—HTTP/ gRPC / GraphQL—

microservice

database

OEBPS/image/B22019_02_05.png
Client

kubectl/API Call

Send
Instruction

L—L > kube-apiserver

Kubernetes cluster

Control plane node 1

eted

OEBPS/image/B22019_01_09.png
Dockerfile Contalnerimage Contalner Registry

Buld Push
Detallsaboutthe =~ ———————> EE———

contalnerimage build myappi1.0 myapp:il.0

DUCTI
(Docken)
|
fn

Container Engine Container Engine
(Docker) (Docker)

Contalner Contalner Container

myapp:1.0 myapp:1.0 myapp:1.0

OEBPS/image/B22019_01_08.png
@ kubernetes Documentation Kubernetes Blog Training Partners Community ~Case Studies Versions~ English -

Production-Grade Container Orchestration

OEBPS/image/info.png

OEBPS/image/B22019_01_03.png
Business Logic

OEBPS/image/B22019_02_03.png
Client

You

Send
Instruction

Kubernetes cluster

Control plane
Cloud Provider APl
<~ﬂ-%§
*

cnm+e node2 ‘ com‘.umnodes

Contalner e Contalner @ Contaner
e Runtime ubsleg prony Runtime ubele prony Runtime

Contalners Contalners Contalners

VVVVY VVVVY NalNzINaINs I,

Confputenodel

OEBPS/image/B22019_MockupCover.png
EXPERT INSIGHT

The Kubernetes
Bible

The definitive guide to deploying and managing Kubernetes
across cloud and on-prem environments

Second Edition

Foreword by
Ed Price
Technical Writer, Cloud Architecture Content Manager

Gineesh Madapparambath
Russ McKendrick <packt>

OEBPS/image/blockquote-bottom.png

OEBPS/image/B22019_02_02.png
Client Send

Instruction
You

= e m e e e e
|
Control plane node 1 Kubernetes cluster
|
Control plane [
components [
|
|
|
i
|
Computenode 1 Compute node2 Computenode3 :
i

ContalnerRuntime ContalnerRuntime Contalner Runtime

v v v
Contalners Contalners Contalners

NaNsINaINAINS NaINsINaIN NS SalNsINaIN N

OEBPS/image/B22019_Free_PDF_QR.png
H o
O

OEBPS/image/B22019_01_02.png
8

The Business Team

The Development Team The Operation Team

OEBPS/image/New_Packt_Logo.png
<PACKD

OEBPS/image/review.png

OEBPS/image/B22019_01_07.png
Container1

Microservice

Contalner 3

Microservice
3

Container2

Microservice|
2

gRPC
Server

Contalner 4

GRPC
Client

Microservice
4

