

[image: Cover Image]

NATURAL LANGUAGE PROCESSING
AND
MACHINE LEARNING
FOR DEVELOPERS

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and its companion files (the “Work”), you agree that this license grants permission to use the contents contained herein, but does not give you the right of ownership to any of the textual content in the book or ownership to any of the information, files, or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and anyone involved in the creation, writing, production, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to insure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” vary from state to state, and might not apply to the purchaser of this product.

Companion files also available for downloading from the publisher by writing to info@merclearning.com

NATURAL LANGUAGE PROCESSING
AND
MACHINE LEARNING
FOR DEVELOPERS

Pocket Primer

Oswald Campesato

[image: image]

Copyright ©2021 by MERCURY LEARNING AND INFORMATION LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

MERCURY LEARNING AND INFORMATION

22841 Quicksilver Drive

Dulles, VA 20166

info@merclearning.com

www.merclearning.com

800-232-0223

O. Campesato. Natural Language Processing and Machine Learning for Developers.

ISBN: 978-1-68392-618-4

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2021936681

212223321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors.
The sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the book, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.

I’d like to dedicate this book to my parents-

may this bring joy and happiness into their lives.

Contents

Preface

Chapter 1 Introduction to NumPy

What is NumPy?

Useful NumPy Features

What are NumPy Arrays?

Working with Loops

Appending Elements to Arrays (1)

Appending Elements to Arrays (2)

Multiply Lists and Arrays

Doubling the Elements in a List

Lists and Exponents

Arrays and Exponents

Math Operations and Arrays

Working with “-1” Subranges with Vectors

Working with “-1” Subranges with Arrays

Other Useful NumPy Methods

Arrays and Vector Operations

NumPy and Dot Products (1)

NumPy and Dot Products (2)

NumPy and the “Norm” of Vectors

NumPy and Other Operations

NumPy and the reshape() Method

Calculating the Mean and Standard Deviation

Trimmed Mean and Weighted Mean

Code Sample with Mean and Standard Deviation

Working with Lines in the Plane (Optional)

Plotting a Line with NumPy and Matplotlib

Plotting a Quadratic with NumPy and Matplotlib

What is Linear Regression?

What is Multivariate Analysis?

What about Nonlinear Datasets?

The MSE Formula

Other Error Types

Nonlinear Least Squares

Calculating the MSE Manually

Find the Best-Fitting Line with NumPy

Calculating MSE by Successive Approximation (1)

Calculating MSE by Successive Approximation (2)

What is Jax?

Google Colaboratory

Uploading CSV Files in Google Colaboratory

Summary

Chapter 2 Introduction to Pandas

What is Pandas?

Pandas Options and Settings

Pandas Data Frames

Data Frames and Data Cleaning Tasks

Alternatives to Pandas

A Pandas Data Frame with NumPy Example

Describing a Pandas Data Frame

Pandas Boolean Data Frames

Transposing a Pandas Data Frame

Pandas Data Frames and Random Numbers

Reading CSV Files in Pandas

The loc() and iloc() Methods in Pandas

Converting Categorical Data to Numeric Data

Matching and Splitting Strings in Pandas

Converting Strings to Dates in Pandas

Merging and Splitting Columns in Pandas

Combining Pandas Data frames

Data Manipulation with Pandas Data Frames (1)

Data Manipulation with Pandas Data Frames (2)

Data Manipulation with Pandas Data Frames (3)

Pandas Data Frames and CSV Files

Managing Columns in Data Frames

Switching Columns

Appending Columns

Deleting Columns

Inserting Columns

Scaling Numeric Columns

Managing Rows in Pandas

Selecting a Range of Rows in Pandas

Finding Duplicate Rows in Pandas

Inserting New Rows in Pandas

Handling Missing Data in Pandas

Multiple Types of Missing Values

Test for Numeric Values in a Column

Replacing NaN Values in Pandas

Sorting Data Frames in Pandas

Working with groupby() in Pandas

Working with apply() and mapapply() in Pandas

Handling Outliers in Pandas

Pandas Data Frames and Scatterplots

Pandas Data Frames and Simple Statistics

Aggregate Operations in Pandas Data Frames

Aggregate Operations with the titanic.csv Dataset

Save Data Frames as CSV Files and Zip Files

Pandas Data Frames and Excel Spreadsheets

Working with JSON-based Data

Python Dictionary and JSON

Python, Pandas, and JSON

Pandas and Regular Expressions (Optional)

Useful One-Line Commands in Pandas

What is Method Chaining?

Pandas and Method Chaining

Pandas Profiling

What is Texthero?

Summary

Chapter 3 NLP Concepts (I)

The Origin of Languages

Language Fluency

Major Language Groups

Peak Usage of Some Languages

Languages and Regional Accents

Languages and Slang

Languages and Dialects

The Complexity of Natural Languages

Word Order in Sentences

What about Verbs?

Auxiliary Verbs

What are Case Endings?

Languages and Gender

Singular and Plural Forms of Nouns

Changes in Spelling of Words

Japanese Grammar

Japanese Postpositions (Particles)

Ambiguity in Japanese Sentences

Japanese Nominalization

Google Translate and Japanese

Japanese and Korean

Vowel-Optional Languages and Word Direction

Mutating Consonant Spelling

Expressing Negative Opinions

Phonetic Languages

Phonemes and Morphemes

English Words of Greek and Latin Origin

Multiple Ways to Pronounce Consonants

The Letter “j” in Various Languages

“Hard” versus “Soft” Consonant Sounds

“Ess,” “zee,” and “sh” Sounds

Three Consecutive Consonants

Diphthongs and Triphthongs in English

Semi-Vowels in English

Challenging English Sounds

English in Canada, UK, Australia, and the United States

English Pronouns and Prepositions

What is NLP?

The Evolution of NLP

A Wide-Angle View of NLP

NLP Applications and Use Cases

NLU and NLG

What is Text Classification?

Information Extraction and Retrieval

Word Sense Disambiguation

NLP Techniques in ML

NLP Steps for Training a Model

Text Normalization and Tokenization

Word Tokenization in Japanese

Text Tokenization with Unix Commands

Handling Stop Words

What is Stemming?

Singular versus Plural Word Endings

Common Stemmers

Stemmers and Word Prefixes

Over Stemming and Under Stemming

What is Lemmatization?

Stemming/Lemmatization Caveats

Limitations of Stemming and Lemmatization

Working with Text: POS

POS Tagging

POS Tagging Techniques

Working with Text: NER

Abbreviations and Acronyms

NER Techniques

What is Topic Modeling?

Keyword Extraction, Sentiment Analysis, and Text Summarization

Summary

Chapter 4 NLP Concepts (II)

What is Word Relevance?

What is Text Similarity?

Sentence Similarity

Sentence Encoders

Working with Documents

Document Classification

Document Similarity (doc2vec)

Techniques for Text Similarity

Similarity Queries

What is Text Encoding?

Text Encoding Techniques

Document Vectorization

One-Hot Encoding (OHE)

Index-Based Encoding

Additional Encoders

The BoW Algorithm

What are n-grams?

Calculating Probabilities with N-grams

Calculating tf, idf, and tf-idf

What is Term Frequency (TF)?

What is Inverse Document Frequency (IDF)?

What is tf-idf?

Limitations of tf-idf

Pointwise Mutual Information (PMI)

The Context of Words in a Document

What is Semantic Context?

Textual Entailment

Discrete, Distributed, and Contextual Word Representations

What is Cosine Similarity?

Text Vectorization (aka Word Embeddings)

Overview of Word Embeddings and Algorithms

Word Embeddings

Word Embedding Algorithms

What is Word2vec?

The Intuition for Word2vec

The Word2vec Architecture

Limitations of Word2vec

The CBoW Architecture

What are Skip-grams?

Skip-gram Example

The Skip-gram Architecture

Neural Network Reduction

What is GloVe?

Working with GloVe

What is FastText?

Comparison of Word Embeddings

What is Topic Modeling?

Topic Modeling Algorithms

LDA and Topic Modeling

Text Classification versus Topic Modeling

Language Models and NLP

How to Create a Language Model

Vector Space Models

Term-Document Matrix

Tradeoffs of the VSM

NLP and Text Mining

Text Extraction Preprocessing and N-Grams

Relation Extraction and Information Extraction

What is a BLEU Score?

ROUGE Score: An Alternative to BLEU

Summary

Chapter 5 Algorithms and Toolkits (I)

Cleaning Data with Regular Expressions

Handling Contracted Words

Python Code Samples of BoW

One-Hot Encoding Examples

Sklearn and Word Embedding Examples

What is BeautifulSoup?

Web Scraping with Pure Regular Expressions

What is Scrapy?

What is SpaCy?

SpaCy and Stop Words

SpaCy and Tokenization

SpaCy and Lemmatization

SpaCy and NER

SpaCy Pipelines

SpaCy and Word Vectors

The scispaCy Library (Optional)

Summary

Chapter 6 Algorithms and Toolkits (II)

What is NLTK?

NLTK and BoW

NLTK and Stemmers

NLTK and Lemmatization

NLTK and Stop Words

What is Wordnet?

Synonyms and Antonyms

NLTK, lxml, and XPath

NLTK and n-grams

NLTK and POS (1)

NLTK and POS (2)

NLTK and Tokenizers

NLTK and Context-Free Grammars (Optional)

What is Gensim?

Gensim and tf-idf Example

Saving a Word2vec Model in Genism

An Example of Topic Modeling

A Brief Comparison of Popular Python-Based NLP Libraries

Miscellaneous Libraries

Summary

Chapter 7 Introduction to Machine Learning

What is Machine Learning?

Learning Style of Machine Learning Algorithms

Types of Machine Learning Algorithms

Machine Learning Tasks

Preparing a Dataset and Training a Model

Feature Engineering, Selection, and Extraction

Feature Engineering

Feature Selection

Feature Extraction

Model Selection

Working with Datasets

Training Data versus Test Data

What is Cross-Validation?

Overfitting versus Underfitting

What is Regularization?

ML and Feature Scaling

Data Normalization Techniques

Metrics in Machine Learning

R-Squared and its Limitations

Confusion Matrix

Precision, Recall, and Specificity

The ROC Curve and AUC

Metrics for Model Evaluation and Selection

What is Linear Regression?

Linear Regression versus Curve-Fitting

When are Solutions Exact Values?

What is Multivariate Analysis?

Other Types of Regression

Working with Lines in the Plane (Optional)

Scatter Plots with NumPy and Matplotlib (1)

Why the “Perturbation Technique” is Useful

Scatter Plots with NumPy and Matplotlib (2)

A Quadratic Scatterplot with NumPy and Matplotlib

The Mean Squared Error (MSE) Formula

A List of Error Types

Nonlinear Least Squares

Calculating the MSE Manually

Approximating Linear Data with np.linspace()

What are Ensemble Methods?

Four Types of Ensemble Methods

Bagging

Boosting

Stacked Models and Blending Models

What is Bootstrapping?

Common Boosting Algorithms

Hyperparameter Optimization

Grid Search

Randomized Search

Bayesian Optimization

AutoML, AutoML-Zero, and AutoNLP

Miscellaneous Topics

What is Causality?

What is Explainability?

What is Interpretability?

Summary

Chapter 8 Classifiers in Machine Learning

What is Classification?

What are Classifiers?

Common Classifiers

Binary versus Multiclass Classification

Multilabel Classification

What are Linear Classifiers?

What is kNN?

How to Handle a Tie in kNN

SMOTE and kNN

kNN for Data Imputation

What are Decision Trees?

Trade-offs with Decision Trees

Decision Tree Algorithms

Decision Tree Code Samples

Decision Trees, Gini Impurity, and Entropy

What are Random Forests?

What are Support Vector Machines?

Trade-offs of SVMs

What is a Bayesian Classifier?

Types of Naïve Bayes Classifiers

Training Classifiers

Evaluating Classifiers

Trade-offs for ML Algorithms

What are Activation Functions?

Why Do we Need Activation Functions?

How Do Activation Functions Work?

Common Activation Functions

Activation Functions in Python

Keras Activation Functions

The ReLU and ELU Activation Functions

The Advantages and Disadvantages of ReLU

ELU

Sigmoid, Softmax, and Hardmax Similarities

Softmax

Softplus

Tanh

Sigmoid, Softmax, and HardMax Differences

Hyperparameters for Neural Networks

The Loss Function Hyperparameter

The Optimizer Hyperparameter

The Learning Rate Hyperparameter

The Dropout Rate Hyperparameter

What is Backward Error Propagation?

What is Logistic Regression?

Setting a Threshold Value

Logistic Regression: Important Assumptions

Linearly Separable Data

Keras, Logistic Regression, and Iris Dataset

Sklearn and Linear Regression

SciPy and Linear Regression

Keras and Linear Regression

Summary

Chapter 9 NLP Applications

What is Text Summarization?

Extractive Text Summarization

Abstractive Text Summarization

Text Summarization with gensim and SpaCy

What are Recommender Systems?

Movie Recommender Systems

Factoring the Rating Matrix R

Content-Based Recommendation Systems

Analyzing only the Description of the Content

Building User Profiles and Item Profiles

Collaborative Filtering Algorithm

User–User Collaborative Filtering

Item–Item Collaborative Filtering

Recommender System with Surprise

Recommender Systems and Reinforcement Learning (Optional)

Basic Reinforcement Learning in Five Minutes

What is RecSim?

What is Sentiment Analysis?

Useful Tools for Sentiment Analysis

Aspect-Based Sentiment Analysis

Deep Learning and Sentiment Analysis

Sentiment Analysis with Naïve Bayes

Sentiment Analysis in NLTK and VADER

Sentiment Analysis with Textblob

Sentiment Analysis with Flair

Detecting Spam

Logistic Regression and Sentiment Analysis

Working with COVID-19

What are Chatbots?

Open Domain Chatbots

Chatbot Types

Logic Flow of Chatbots

Chatbot Abuses

Useful Links

Summary

Chapter 10 NLP and TF2/Keras

Term-Document Matrix

Text Classification Algorithms in Machine Learning

A Keras-Based Tokenizer

TF2 and Tokenization

TF2 and Encoding

A Keras-Based Word Embedding

An Example of BoW with TF2

The 20newsgroup Dataset

Text Classification with the kNN Algorithm

Text Classification with a Decision Tree Algorithm

Text Classification with a Random Forest Algorithm

Text Classification with the SVC Algorithm

Text Classification with the Naïve Bayes Algorithm

Text Classification with the kMeans Algorithm

TF2/Keras and Word Tokenization

TF2/Keras and Word Encodings

Text Summarization with TF2/Keras and Reuters Dataset

Summary

Chapter 11 Transformer, BERT, and GPT

What is Attention?

Types of Word Embeddings

Types of Attention and Algorithms

An Overview of the Transformer Architecture

The Transformers Library from HuggingFace

Transformer and NER Tasks

Transformer and QnA Tasks

Transformer and Sentiment Analysis Tasks

Transformer and Mask Filling Tasks

What is T5?

What is BERT?

BERT Features

How is BERT Trained?

How BERT Differs from Earlier NLP Techniques

The Inner Workings of BERT

What is MLM?

What is NSP?

Special Tokens

BERT Encoding: Sequence of Steps

Subword Tokenization

Sentence Similarity in BERT

Word Context in BERT

Generating BERT Tokens (1)

Generating BERT Tokens (2)

The BERT Family

Surpassing Human Accuracy: deBERTa

What is Google Smith?

Introduction to GPT

Installing the Transformers Package

Working with GPT-2

What is GPT-3?

What is the Goal?

GPT-3 Task Strengths and Mistakes

GPT-3 Architecture

GPT versus BERT

Zero-Shot, One-Shot, and Few Shot Learners

GPT Task Performance

The Switch Transformer: One Trillion Parameters

Looking Ahead

Summary

Appendix A Data and Statistics

What are Datasets?

Data Preprocessing

Data Types

Preparing Datasets

Continuous versus Discrete Data

“Binning” Continuous Data

Scaling Numeric Data via Normalization

Scaling Numeric Data via Standardization

What to Look for in Categorical Data

Mapping Categorical Data to Numeric Values

Working with Dates

Working with Currency

Missing Data, Anomalies, and Outliers

Anomalies and Outliers

Outlier Detection

Missing Data: MCAR, MAR, and MNAR

What is Data Drift?

What is Imbalanced Classification?

Undersampling and Oversampling

Limitations of Resampling

What is SMOTE?

SMOTE Extensions

Analyzing Classifiers

What is LIME?

What is ANOVA?

What is a Probability?

Calculating the Expected Value

Random Variables

Discrete versus Continuous Random Variables

Well-Known Probability Distributions

Fundamental Concepts in Statistics

The Mean

The Median

The Mode

The Variance and Standard Deviation

Population, Sample, and Population Variance

Chebyshev’s Inequality

What is a p-Value?

The Moments of a Function (Optional)

Skewness

Kurtosis

Data and Statistics

The Central Limit Theorem

Correlation versus Causation

Statistical Inferences

The Bias-Variance Trade-off

Types of Bias in Data

Gini Impurity, Entropy, and Perplexity

What is Gini Impurity?

What is Entropy?

Calculating Gini Impurity and Entropy Values

Multidimensional Gini Index

What is Perplexity?

Cross-Entropy and KL Divergence

What is Cross Entropy?

What is KL Divergence?

What’s their Purpose?

Covariance and Correlation Matrices

Covariance Matrix

Covariance Matrix: An Example

Correlation Matrix

Eigenvalues and Eigenvectors

Calculating Eigenvectors: A Simple Example

Gauss Jordan Elimination (Optional)

Principal Component Analysis (PCA)

The New Matrix of Eigenvectors

Dimensionality Reduction

Dimensionality Reduction Techniques

The Curse of Dimensionality

What are Manifolds (Optional)?

Singular Value Decomposition (SVD)

Locally Linear Embedding (LLE)

UMAP

t-SNE (“tee-snee”)

PHATE

Linear Versus Nonlinear Reduction Techniques

Types of Distance Metrics

Other Well-Known Distance Metrics

Pearson Correlation Coefficient

Jaccard Index (or Similarity)

Local Sensitivity Hashing (Optional)

What is Sklearn?

Sklearn, Pandas, and the IRIS Dataset

Sklearn and Outlier Detection

What is Bayesian Inference?

Bayes Theorem

Some Bayesian Terminology

What is MAP?

Why Use Bayes Theorem?

What are Vector Spaces?

Summary

Appendix B Introduction to Python

Tools for Python

easy_install and pip

virtualenv

IPython

Python Installation

Setting the PATH Environment Variable (Windows Only)

Launching Python on Your Machine

The Python Interactive Interpreter

Python Identifiers

Lines, Indentation, and Multilines

Quotation and Comments in Python

Saving Your Code in a Module

Some Standard Modules in Python

The help() and dir() Functions

Compile Time and Runtime Code Checking

Simple Data Types in Python

Working with Numbers

Working with Other Bases

The chr() Function

The round() Function in Python

Formatting Numbers in Python

Working with Fractions

Unicode and UTF-8

Working with Unicode

Working with Strings

Comparing Strings

Formatting Strings in Python

Uninitialized Variables and the Value None in Python

Slicing and Splicing Strings

Testing for Digits and Alphabetic Characters

Search and Replace a String in Other Strings

Remove Leading and Trailing Characters

Printing Text without NewLine Characters

Text Alignment

Working with Dates

Converting Strings to Dates

Exception Handling in Python

Handling User Input

Python and Emojis (Optional)

Command-Line Arguments

Summary

Appendix C Introduction to Regular Expressions

What are Regular Expressions?

Metacharacters in Python

Character Sets in Python

Working with “^” and “\”

Character Classes in Python

Matching Character Classes with the re Module

Using the re.match() Method

Options for the re.match() Method

Matching Character Classes with the re.search() Method

Matching Character Classes with the findAll() Method

Finding Capitalized Words in a String

Additional Matching Function for Regular Expressions

Grouping with Character Classes in Regular Expressions

Using Character Classes in Regular Expressions

Matching Strings with Multiple Consecutive Digits

Reversing Words in Strings

Modifying Text Strings with the re Module

Splitting Text Strings with the re.split() Method

Splitting Text Strings Using Digits and Delimiters

Substituting Text Strings with the re.sub() Method

Matching the Beginning and the End of Text Strings

Compilation Flags

Compound Regular Expressions

Counting Character Types in a String

Regular Expressions and Grouping

Simple String Matches

Additional Topics for Regular Expressions

Summary

Exercises

Appendix D Introduction to Keras

What is Keras?

Working with Keras Namespaces in TF 2

Working with the tf.keras.layers Namespace

Working with the tf.keras.activations Namespace

Working with the keras.tf.datasets Namespace

Working with the tf.keras.experimental Namespace

Working with Other tf.keras Namespaces

TF 2 Keras versus “Standalone” Keras

Creating a Keras-Based Model

Keras and Linear Regression

Keras, MLPs, and MNIST

Keras, CNNs, and cifar10

Resizing Images in Keras

Keras and Early Stopping (1)

Keras and Early Stopping (2)

Keras and Metrics

Saving and Restoring Keras Models

Summary

Appendix E Introduction to TensorFlow 2

What is TF 2?

TF 2 Use Cases

TF 2 Architecture: The Short Version

TF 2 Installation

TF 2 and the Python REPL

Other TF 2-Based Toolkits

TF 2 Eager Execution

TF 2 Tensors, Data Types, and Primitive Types

TF 2 Data Types

TF 2 Primitive Types

Constants in TF 2

Variables in TF 2

The tf.rank() API

The tf.shape() API

Variables in TF 2 (Revisited)

TF 2 Variables versus Tensors

What is @tf.function in TF 2?

How Does @tf.function Work?

A Caveat about @tf.function in TF 2

The tf.print() Function and Standard Error

Working with @tf.function in TF 2

An Example without @tf.function

An Example with @tf.function

Overloading Functions with @tf.function

What is AutoGraph in TF 2?

Arithmetic Operations in TF 2

Caveats for Arithmetic Operations in TF 2

TF 2 and Built-In Functions

Calculating Trigonometric Values in TF 2

Calculating Exponential Values in TF 2

Working with Strings in TF 2

Working with Tensors and Operations in TF 2

Second-Order Tensors in TF 2 (1)

Second-Order Tensors in TF 2 (2)

Multiplying Two Second-Order Tensors in TF

Convert Python Arrays to TF Tensors

Conflicting Types in TF 2

Differentiation and tf.GradientTape in TF 2

Examples of tf.GradientTape

Using Nested Loops with tf.GradientTape

Other Tensors with tf.GradientTape

A Persistent Gradient Tape

What is Trax?

Google Colaboratory

Other Cloud Platforms

GCP SDK

TF2 and tf.data.Dataset

The TF 2 tf.data.Dataset

Creating a Pipeline

A Simple TF 2 tf.data.Dataset

What are Lambda Expressions?

Working with Generators in TF 2

Summary

Appendix F Data Visualization

What is Data Visualization?

Types of Data Visualization

What is Matplotlib?

Horizontal Lines in Matplotlib

Slanted Lines in Matplotlib

Parallel Slanted Lines in Matplotlib

A Grid of Points in Matplotlib

A Dotted Grid in Matplotlib

Lines in a Grid in Matplotlib

A Colored Grid in Matplotlib

A Colored Square in an Unlabeled Grid in Matplotlib

Randomized Data Points in Matplotlib

A Histogram in Matplotlib

A Set of Line Segments in Matplotlib

Plotting Multiple Lines in Matplotlib

Trigonometric Functions in Matplotlib

Display IQ Scores in Matplotlib

Plot a Best-Fitting Line in Matplotlib

Introduction to Sklearn (scikit-learn)

The Digits Dataset in Sklearn

The Iris Dataset in Sklearn

Sklearn, Pandas, and the Iris Dataset

The Iris Dataset in Sklearn (Optional)

The faces Dataset in Sklearn (Optional)

Working with Seaborn		

Features of Seaborn

Seaborn Built-in Datasets

The Iris Dataset in Seaborn

The Titanic Dataset in Seaborn

Extracting Data from the Titanic Dataset in Seaborn (1)

Extracting Data from the Titanic Dataset in Seaborn (2)

Visualizing a Pandas Dataset in Seaborn

Data Visualization in Pandas

Summary

Index

Preface

What Is the Primary Value Proposition for This Book?

This book contains a fast-paced introduction to as much relevant information about NLP and machine learning as possible that can be reasonably included in a book of this size. Some chapters contain topics that are discussed in great detail (such as the first half of Chapter 3), and other chapters contain advanced statistical concepts that you can safely omit during your first pass through this book. The book casts a wide net to help developers who have a range of technical backgrounds, which is the rationale for the inclusion of numerous topics. Regardless of your background, please keep in mind the following point: you will not become an expert in machine learning or NLP by reading this book, and be prepared to read some of the content in this book multiple times.

However, you will be exposed to many NLP and machine learning topics, and many topics are presented in a cursory manner for two reasons. First, it’s important that you be exposed to these concepts. In some cases, you will find topics that might pique your interest, and motivate you to learn more about them through self-study; in other cases, you will probably be satisfied with a brief introduction.

Second, a full treatment of all the topics that are covered in this book would probably triple the size of this book, and few people are interested in reading 1,000-page technical books. Subsequently, the book provides a broad view of the NLP and machine learning landscape, based on the belief that this approach will be more beneficial for readers who are already experienced developers, but need to learn about NLP and machine learning.

The Target Audience

The book is intended primarily for people who have a solid background as software developers. Specifically, it is for developers who are accustomed to searching online for more detailed information about technical topics. If you are a beginner, there are other books that are more suitable for you, and you can find them by performing an online search.

The book is also intended to reach an international audience of readers with highly diverse backgrounds in various age groups. While many readers know how to read English, their native spoken language is not English (which could be their second, third, or even fourth language). Consequently, this book uses standard English rather than colloquial expressions that might be confusing to those readers. As you know, many people learn by different types of imitation, which includes reading, writing, or hearing new material. This book takes these points into consideration in order to provide a comfortable and meaningful learning experience for the intended readers.

Why Such a Massive Number of Topics in This Book?

As mentioned in the response to the previous question, this book is intended for developers who want to learn NLP concepts and machine learning. Since this encompasses people with vastly different technical backgrounds, there are readers who “don’t know what they don’t know” regarding NLP. Therefore, it exposes people to a plethora of NLP-related concepts, after which they can decide which topics to select for greater study. Consequently, this book does not have a “zero-to-hero” approach, nor is it necessary to master all the topics that are discussed in the chapters and the appendices; rather, they are a go-to source of information to help you decide where you want to invest your time and effort.

As you might already know, learning often takes place through an iterative and repetitive approach whereby the cumulative exposure leads to a greater level of comfort and understanding of technical concepts. For some readers, this will be the first step in their journey toward mastering NLP and machine learning.

Please read the document ChapterOutline.doc that provides the rationale for each chapter, as well as the sequence in which you can read the chapters in this book.

How Is the Book Organized and What Will I Learn?

Most of this book is organized as paired chapters: the first two chapters contain introductory material for NumPy and Pandas, followed by a pair of chapters that contain NLP concepts, and then another pair of chapters that contain Python code samples that illustrate the NLP concepts.

The next pair of chapters introduce machine learning concepts and algorithms (such as Decision Trees, Random Forests, and SVMs), followed by chapter nine that explores sentiment analysis, recommender systems, COVID-19 analysis, spam detection, and a short discussion regarding chatbots. The tenth chapter contains examples of performing NLP tasks using TF2 and Keras, and the eleventh chapter presents the Transformer architecture, BERT-based models, and the GPT family of models, all of which have been developed during the past three years and to varying degrees they are considered SOTA (“state of the art”).

The appendices contain introductory material (including Python code samples) for various topics, including Python 3, Regular Expressions, Keras, TF2, Matplotlib and Seaborn. The Appendix A (which is the most extensive in terms of page count) contains myriad topics, such as working with datasets that contain different types of data, handling missing data, statistical concepts, how to handle imbalanced features (SMOTE), how to analyze classifiers, variance and correlation matrices, dimensionality reduction (including SVD and t-SNE), and a section that discusses Gini impurity, entropy, and KL-divergence.

Why Is There Minimal Coverage of Deep Learning?

This book is for developers who are looking for an introduction to NLP, along with an introduction to machine learning. If you peruse the table of contents, you will see that this book covers a vast assortment of topics, and weighs in around 600 pages. Books have a “tipping point” in terms of page count, beyond which few people have the time to read 1000-page books on technical topics, especially when the field is undergoing continual innovation.

With the preceding points in mind, the inclusion of an extensive section pertaining to deep learning is beyond the scope of an introductory book, and better suited in a book called “Deep Learning and NLP” (or some other similar title).

Why Are the Code Samples Primarily in Python?

Most of the code samples are short (usually less than one page and sometimes less than half a page), and if need be, you can easily and quickly copy/paste the code into a new Jupyter notebook.

The machine learning code samples that perform more time-consuming computations are available as Python scripts as well as Jupyter notebooks. For the Python code samples that reference a CSV file, you do not need any additional code in the corresponding Jupyter notebook to access the CSV file. Moreover, the code samples execute quickly, so you won’t need to avail yourself of the free GPU that is provided in Google Colaboratory.

If you do decide to use Google Colaboratory, you can easily copy/paste the Python code into a notebook, and also use the upload feature to upload existing Jupyter notebooks. Keep in mind the following point: if the Python code references a CSV file, make sure that you include the appropriate code snippet (as explained in Chapter 1) to access the CSV file in the corresponding Jupyter notebook in Google Colaboratory.

How Much Keras Knowledge Is Needed for This Book?

Some exposure to Keras is helpful, and you can read Appendix D if Keras is new to you. In addition, one of the appendices provides an introduction to TensorFlow 2. Please keep in mind that Keras is well-integrated into TensorFlow 2 (in the tf.keras namespace), and it provides a layer of abstraction over “pure” TensorFlow that will enable you to develop prototypes more quickly.

Do I Need to Learn the Theory Portions of This Book?

Once again, the answer depends on the extent to which you plan to become involved in NLP and machine learning. In addition to creating a model, you will use various algorithms to see which ones provide the level of accuracy (or some other metric) that you need for your project. If you fall short, the theoretical aspects of machine learning can help you perform a “forensic” analysis of your model and your data, and ideally assist in determining how to improve your model.

How Were the Code Samples Created?

The code samples in this book were created and tested using Python 3 and Keras that’s built into TensorFlow 2 on a MacBook Pro with OS X 10.12.6 (macOS Sierra). Regarding their content: the code samples are derived primarily from the author for his Deep Learning and Keras graduate course. In some cases, there are code samples that incorporate short sections of code from discussions in online forums. The key point to remember is that the code samples follow the “Four Cs”: they must be Clear, Concise, Complete, and Correct to the extent that it’s possible to do so, given the size of this book.

Getting the Most from This Book

Some programmers learn well from prose, others learn well from sample code (and lots of it), which means that there’s no single style that can be used for everyone.

Moreover, some programmers want to run the code first, see what it does, and then return to the code to delve into the details (and others use the opposite approach).

Consequently, there are various types of code samples in this book: some are short, some are long, and other code samples “build” from earlier code samples.

What Do I Need to Know for This Book?

Current knowledge of Python 3.x is the most helpful skill. Knowledge of other programming languages (such as Java) can also be helpful because of the exposure to programming concepts and constructs. The less technical knowledge that you have, the more diligence will be required in order to understand the various topics that are covered.

If you want to be sure that you can grasp the material in this book, glance through some of the code samples to get an idea of how much is familiar to you and how much is new for you.

Doesn’t the Companion Disc Obviate the Need for This Book?

The companion files contain all the code samples to save you time and effort from the error-prone process of manually typing code into a text file. In addition, there are situations in which you might not have easy access to these files. Furthermore, the code samples in the book provide explanations that are not available on the companion files.

The companion files are available for downloading by writing to the publisher at info@merclearning.com.

Does This Book Contain Production-Level Code Samples?

The primary purpose of the code samples is to show you Python-based libraries for solving a variety of NLP-related tasks in conjunction with machine learning. Clarity has higher priority than writing more compact code that is more difficult to understand (and possibly more prone to bugs). If you decide to use any of the code in a production Website, you ought to subject that code to the same rigorous analysis as the other parts of your code base.

What Are the Non-Technical Prerequisites for This Book?

Although the answer to this question is more difficult to quantify, it’s especially important to have a strong desire to learn about machine learning, along with the motivation and discipline to read and understand the code samples.

Even simple machine language APIs can be a challenge the first time you encounter them, so be prepared to read the code samples several times.

How Do I Set Up a Command Shell?

If you are a Mac user, there are three ways to do so. The first method is to use Finder to navigate to Applications > Utilities and then double click on the Utilities application. Next, if you already have a command shell available, you can launch a new command shell by typing the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a MacBook from a command shell that is already visible simply by clicking command+n in that command shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.com/) that simulates bash commands, or use another toolkit such as MKS (a commercial product). Please read the online documentation that describes the download and installation process. Note that custom aliases are not automatically set if they are defined in a file other than the main start-up file (such as .bash_login).

Companion Files

All the code samples and figures in this book may be obtained by writing to the publisher at info@merclearning.com.

Other Books by the Author

This book contains several appendices that are portions from the following books that are also published by Mercury Learning and Information:

	Python Pocket Primer:

9781938549854

	Regular Expressions Pocket Primer:

9781683922278

	Data Cleaning Pocket Primer

9781683922179

What Are the “Next Steps” After Finishing This Book?

The answer to this question varies widely, mainly because the answer depends heavily on your objectives. If you are interested primarily in NLP, then you can learn more advanced concepts, such as attention, transformers, and the BERT-related models.

If you are primarily interested in machine learning, there are some subfields of machine learning, such as deep learning and reinforcement learning (and deep reinforcement learning) that might appeal to you. Fortunately, there are many resources available, and you can perform an Internet search for those resources. One other point: the aspects of machine learning for you to learn depend on who you are: the needs of a machine learning engineer, data scientist, manager, student, or software developer are all different.

Oswald Campesato
April 2021

CHAPTER 1

INTRODUCTION TO NUMPY

This chapter provides a quick introduction to the Python NumPy package that provides very useful functionality, not only for Python scripts, but also for Python-based scripts with TensorFlow. This chapter contains NumPy code samples with loops, arrays, and lists. You will also learn about dot products, the reshape() method (very useful!), how to plot with Matplotlib (discussed in Appendix F), and examples of linear regression.

The first part of this chapter briefly introduces NumPy and some of its useful features. The second part contains examples of working arrays in NumPy, and contrasts some of the APIs for lists with the same APIs for arrays. In addition, you will see how easy it is to compute the exponent-related values (square, cube, and so forth) of elements in an array.

The second part of the chapter introduces subranges, which are very useful (and frequently used) for extracting portions of datasets in machine learning tasks. In particular, you will see code samples that handle negative (-1) subranges for vectors as well as for arrays, because they are interpreted one way for vectors and a different way for arrays.

The third part of this chapter delves into other NumPy methods, including the reshape() method, which is extremely useful (and very common) when working with images files: some TensorFlow APIs require converting a 2D array of (R,G,B) values into a corresponding one-dimensional vector.

The fourth part of this chapter delves into linear regression, the mean squared error (MSE), and how to calculate MSE with the NumPy linspace() API.

What is NumPy?

NumPy is a Python module that provides many convenience methods and also better performance. NumPy provides a core library for scientific computing in Python, with performant multidimensional arrays and good vectorized math functions, along with support for linear algebra and random numbers.

NumPy is modeled after MatLab, with support for lists, arrays, and so forth. NumPy is easier to use than MatLab, and it’s very common in TensorFlow 2.x code as well as Python code. Moreover, Chapter 2 contains code samples that combine NumPy with Pandas.

Useful NumPy Features

The NumPy package provides the ndarray object that encapsulates multidimensional arrays of homogeneous data types. Many ndarray operations are performed in compiled code in order to improve performance.

NumPy arrays have the following properties:

	They have a fixed size

	Elements have the same data type

	Elements have the same size (except for objects)

	Modifying an array involves creating a new array

Now that you have a general idea about NumPy, let’s delve into some examples that illustrate how to work with NumPy arrays, which is the topic of the next section.

What are NumPy Arrays?

An array is a set of consecutive memory locations used to store data. Each item in the array is called an element. The number of elements in an array is called the dimension of the array. A typical array declaration is shown here:

arr1 = np.array([1,2,3,4,5])

The preceding code snippet declares arr1 as an array of five elements, which you can access via arr1[0] through arr1[4]. Notice that the first element has an index value of 0, the second element has an index value of 1, and so forth. Thus, if you declare an array of 100 elements, then the 100th element has index value of 99.

NOTE

The first position in a NumPy array has index 0.

NumPy treats arrays as vectors and mathematical operations are performed on an element-by-element basis. Remember the following difference: “doubling” an array multiplies each element by 2, whereas “doubling” a list appends a list to itself.

Listing 1.1 displays the contents of nparray1.py that illustrates some operations on a NumPy array.

LISTING 1.1: nparray1.py

import numpy as np

list1 = [1,2,3,4,5]

print(list1)

arr1 = np.array([1,2,3,4,5])

print(arr1)

list2 = [(1,2,3),(4,5,6)]

print(list2)

arr2 = np.array([(1,2,3),(4,5,6)])

print(arr2)

Listing 1.1 defines the variables list1 and list2 (which are Python lists), as well as the variables arr1 and arr2 (which are NumPy arrays), and prints their values. The output from launching Listing 1.1 is here:

[1, 2, 3, 4, 5]

[1 2 3 4 5]

[(1, 2, 3), (4, 5, 6)]

[[1 2 3]

[4 5 6]]

As you can see, Python lists and NumPy arrays are very easy to define, and now we’re ready to look at some loop operations for lists and arrays.

Working with Loops

Listing 1.2 displays the contents of loop1.py that illustrates how to iterate through the elements of a NumPy array and a Python list.

LISTING 1.2: loop1.py

import numpy as np

list = [1,2,3]

arr1 = np.array([1,2,3])

for e in list:

 print(e)

for e in arr1:

 print(e)

Listing 1.2 initializes the variable list, which is a Python list, and also the variable arr1, which is a NumPy array. The next portion of Listing 1.2 contains two loops, each of which iterates through the elements in list and arr1. As you can see, the syntax is identical in both loops. The output from launching Listing 1.2 is here:

1

2

3

1

2

3

Appending Elements to Arrays (1)

Listing 1.3 displays the contents of append1.py that illustrates how to append elements to a NumPy array and a Python list.

LISTING 1.3: append1.py

import numpy as np

arr1 = np.array([1,2,3])

these do not work:

#arr1.append(4)

#arr1 = arr1 + [5]

arr1 = np.append(arr1,4)

arr1 = np.append(arr1,[5])

for e in arr1:

 print(e)

arr2 = arr1 + arr1

for e in arr2:

 print(e)

Listing 1.3 initializes the variable list, which is a Python list, and also the variable arr1, which is a NumPy array. The output from launching Listing 1.3 is here:

1

2

3

4

5

2

4

6

8

10

Appending Elements to Arrays (2)

Listing 1.4 displays the contents of append2.py that illustrates another example of appending elements to a NumPy array and a Python list.

LISTING 1.4: append2.py

import numpy as np

arr1 = np.array([1,2,3])

arr1 = np.append(arr1,4)

for e in arr1:

 print(e)

arr2 = arr1 + arr1

for e in arr2:

 print(e)

Listing 1.4 initializes the variable arr1, which is a NumPy array. Notice that NumPy arrays do not have an “append” method: this method is available through NumPy itself. Once again, note that one difference between Python lists and NumPy arrays: the “+” operator concatenates Python lists, whereas this operator doubles the elements in a NumPy array. The output from launching Listing 1.4 is here:

4

2

4

6

Multiply Lists and Arrays

Listing 1.5 displays the contents of multiply1.py that illustrates how to multiply elements in a Python list and a NumPy array.

LISTING 1.5: multiply1.py

import numpy as np

list1 = [1,2,3]

arr1 = np.array([1,2,3])

print('list: ',list1)

print('arr1: ',arr1)

print('2*list:',2*list)

print('2*arr1:',2*arr1)

Listing 1.5 contains a Python list called list and a NumPy array called arr1. The print() statements display the contents of list and arr1 as well as the result of doubling list1 and arr1. Recall that “doubling” a Python list is different from doubling a NumPy array, which you can see in the output from launching Listing 1.5:

('list: ', [1, 2, 3])

('arr1: ', array([1, 2, 3]))

('2*list:', [1, 2, 3, 1, 2, 3])

('2*arr1:', array([2, 4, 6]))

Doubling the Elements in a List

Listing 1.6 displays the contents of double_list1.py that illustrates one way to double the elements in a Python list.

LISTING 1.6: double_list1.py

import numpy as np

list1 = [1,2,3]

list2 = []

for e in list1:

 list2.append(2*e)

print('list1:',list1)

print('list2:',list2)

Listing 1.6 contains a Python list called list1 and an empty Python list called list2. The next code snippet iterates through the elements of list1 and appends them to the variable list2. The pair of print() statements display the contents of list1 and list2 to show you that they are the same. The output from launching Listing 1.6 is here:

('list: ', [1, 2, 3])

('list2:', [2, 4, 6])

Lists and Exponents

Listing 1.7 displays the contents of exponent_list1.py that illustrates how to compute exponents of the elements in a Python list.

LISTING 1.7: exponent_list1.py

import numpy as np

list1 = [1,2,3]

list2 = []

for e in list1:

 list2.append(e*e) # e*e = squared

print('list1:',list1)

print('list2:',list2)

Listing 1.7 contains a Python list called list1 and an empty NumPy list called list2. The next code snippet iterates through the elements of list1 and appends the square of each element to the variable list2. The pair of print() statements display the contents of list1 and list2. The output from launching Listing 1.7 is here:

('list1:', [1, 2, 3])

('list2:', [1, 4, 9])

Arrays and Exponents

Listing 1.8 displays the contents of exponent_array1.py that illustrates how to compute exponents of the elements in a NumPy array.

LISTING 1.8: exponent_array1.py

import numpy as np

arr1 = np.array([1,2,3])

arr2 = arr1**2

arr3 = arr1**3

print('arr1:',arr1)

print('arr2:',arr2)

print('arr3:',arr3)

Listing 1.8 contains a NumPy array called arr1 followed by two NumPy arrays called arr2 and arr3. Notice the compact manner in which the NumPy arr2 is initialized with the square of the elements in in arr1, followed by the initialization of the NumPy array arr3 with the cube of the elements in arr1. The three print() statements display the contents of arr1, arr2, and arr3. The output from launching Listing 1.8 is here:

('arr1:', array([1, 2, 3]))

('arr2:', array([1, 4, 9]))

('arr3:', array([1, 8, 27]))

Math Operations and Arrays

Listing 1.9 displays the contents of mathops_array1.py that illustrates how to compute exponents of the elements in a NumPy array.

LISTING 1.9: mathops_array1.py

import numpy as np

arr1 = np.array([1,2,3])

sqrt = np.sqrt(arr1)

log1 = np.log(arr1)

exp1 = np.exp(arr1)

print('sqrt:',sqrt)

print('log1:',log1)

print('exp1:',exp1)

Listing 1.9 contains a NumPy array called arr1 followed by three NumPy arrays called sqrt, log1, and exp1 that are initialized with the square root, the logarithm, and the exponential value of the elements in arr1, respectively. The three print() statements display the contents of sqrt, log1, and exp1. The output from launching Listing 1.9 is here:

('sqrt:', array([1. , 1.41421356, 1.73205081]))

('log1:', array([0. , 0.69314718, 1.09861229]))

('exp1:', array([2.71828183, 7.3890561, 20.08553692]))

Working with “-1” Subranges with Vectors

Listing 1.10 displays the contents of npsubarray2.py that illustrates how to use “-1” for ranges of elements in a NumPy array.

LISTING 1.10: npsubarray2.py

import numpy as np

-1 => "all except the last element in . . ." (row or col)

arr1 = np.array([1,2,3,4,5])

print('arr1:',arr1)

print('arr1[0:-1]:',arr1[0:-1])

print('arr1[1:-1]:',arr1[1:-1])

print('arr1[::-1]:', arr1[::-1]) # reverse!

Listing 1.10 contains a NumPy array called arr1 followed by four print statements, each of which displays a different subrange of values in arr1. The output from launching Listing 1.10 is here:

('arr1:', array([1, 2, 3, 4, 5]))

('arr1[0:-1]:', array([1, 2, 3, 4]))

('arr1[1:-1]:', array([2, 3, 4]))

('arr1[::-1]:', array([5, 4, 3, 2, 1]))

Working with “-1” Subranges with Arrays

Listing 1.11 displays the contents of np2darray2.py that illustrates how to select different ranges of elements in a two-dimensional NumPy array.

LISTING 1.11: np2darray2.py

import numpy as np

-1 => "the last element in . . ." (row or col)

arr1 = np.array([(1,2,3),(4,5,6),(7,8,9),(10,11,12)])

print('arr1:', arr1)

print('arr1[-1,:]:', arr1[-1,:])

print('arr1[:,-1]:', arr1[:,-1])

print('arr1[-1:,-1]:',arr1[-1:,-1])

Listing 1.11 contains a NumPy array called arr1 followed by four print statements, each of which displays a different subrange of values in arr1. The output from launching Listing 1.11 is here:

(arr1:', array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9],

 [10, 11, 12]]))

(arr1[-1,:]]', array([10, 11, 12]))

(arr1[:,-1]:', array([3, 6, 9, 12]))

(arr1[-1:,-1]]', array([12]))

Other Useful NumPy Methods

In addition to the NumPy methods that you saw in the code samples prior to this section, the following (often intuitively named) NumPy methods are also very useful.

The method np.zeros() initializes an array with 0 values.

The method np.ones() initializes an array with 1 values.

The method np.empty()initializes an array with 0 values.

The method np.arange() provides a range of numbers:

The method np.shape() displays the shape of an object:

The method np.reshape() <= very useful!

The method np.linspace() <= useful in regression

The method np.mean() computes the mean of a set of numbers:

The method np.std() computes the standard deviation of a set of numbers:

Although the np.zeros() and np.empty() both initialize a 2D array with 0, np.zeros() requires less execution time. You could also use np.full(size, 0), but this method is the slowest of the three methods.

The reshape() method and the linspace() method are very useful for changing the dimensions of an array and generating a list of numeric values, respectively. The reshape() method appears in TensorFlow code, and the linspace() method is useful for generating a set of numbers in linear regression (discussed in Chapter 8). The mean() and std() methods are useful for calculating the mean and the standard deviation of a set of numbers. For example, you can use these two methods in order to resize the values in a Gaussian distribution so that their mean is 0 and the standard deviation is 1. This process is called standardizing a Gaussian distribution.

Arrays and Vector Operations

Listing 1.12 displays the contents of array_vector.py that illustrates how to perform vector-based operations on the elements in a NumPy array.

LISTING 1.12: array_vector.py

import numpy as np

a = np.array([[1,2], [3, 4]])

b = np.array([[5,6], [7,8]])

print('a: ', a)

print('b: ', b)

print('a + b: ', a+b)

print('a - b: ', a-b)

print('a * b: ', a*b)

print('a / b: ', a/b)

print('b / a: ', b/a)

print('a.dot(b):',a.dot(b))

Listing 1.12 contains two NumPy arrays called a and b followed by eight print statements, each of which displays the result of invoking various arithmetic operations on the NumPy arrays a and b. The output from launching Listing 1.12 is here:

('a : ', array([[1, 2], [3, 4]]))

('b : ', array([[5, 6], [7, 8]]))

('a + b: ', array([[6, 8], [10, 12]]))

('a - b: ', array([[-4, -4], [-4, -4]]))

('a * b: ', array([[5, 12], [21, 32]]))

('a / b: ', array([[0, 0], [0, 0]]))

('b / a: ', array([[5, 3], [2, 2]]))

('a.dot(b):', array([[19, 22], [43, 50]]))

NumPy and Dot Products (1)

Listing 1.13 displays the contents of dotproduct1.py that illustrates how to perform the dot product on the elements in a NumPy array.

LISTING 1.13: dotproduct1.py

import numpy as np

a = np.array([1,2])

b = np.array([2,3])

dot2 = 0

for e,f in zip(a,b):

 dot2 += e*f

print('a: ',a)

print('b: ',b)

print('a*b: ',a*b)

print('dot1:',a.dot(b))

print('dot2:',dot2)

Listing 1.13 contains two NumPy arrays called a and b followed by a simple loop that computes the dot product of a and b. The next section contains five print statements that display the contents of a and b, their inner product that’s calculated in three different ways. The output from launching Listing 1.13 is here:

('a: ', array([1, 2]))

('b: ', array([2, 3]))

('a*b: ', array([2, 6]))

('dot1:', 8)

('dot2:', 8)

NumPy and Dot Products (2)

NumPy arrays support a “dot” method for calculating the inner product of an array of numbers, which uses the same formula that you use for calculating the inner product of a pair of vectors. Listing 1.14 displays the contents of dotproduct2.py that illustrates how to calculate the dot product of two NumPy arrays.

LISTING 1.14: dotproduct2.py

import numpy as np

a = np.array([1,2])

b = np.array([2,3])

print('a: ',a)

print('b: ',b)

print('a.dot(b): ',a.dot(b))

print('b.dot(a): ',b.dot(a))

print('np.dot(a,b):',np.dot(a,b))

print('np.dot(b,a):',np.dot(b,a))

Listing 1.14 contains two NumPy arrays called a and b followed by six print statements that display the contents of a and b, and also their inner product that’s calculated in three different ways. The output from launching Listing 1.14 is here:

('a: ', array([1, 2]))

('b: ', array([2, 3]))

('a.dot(b): ', 8)

('b.dot(a): ', 8)

('np.dot(a,b):', 8)

('np.dot(b,a):', 8)

NumPy and the “Norm” of Vectors

The norm of a vector (or an array of numbers) is the length of a vector, which is the square root of the dot product of a vector with itself. NumPy also provides the sum() and square() functions that you can use to calculate the norm of a vector.

Listing 1.15 displays the contents of array_norm.py that illustrates how to calculate the magnitude (norm) of a NumPy array of numbers.

LISTING 1.15: array_norm.py

import numpy as np

a = np.array([2,3])

asquare = np.square(a)

asqsum = np.sum(np.square(a))

anorm1 = np.sqrt(np.sum(a*a))

anorm2 = np.sqrt(np.sum(np.square(a)))

anorm3 = np.linalg.norm(a)

print('a: ',a)

print('asquare:',asquare)

print('asqsum: ',asqsum)

print('anorm1: ',anorm1)

print('anorm2: ',anorm2)

print('anorm3: ',anorm3)

Listing 1.15 contains an initial NumPy array called a, followed by the NumPy array asquare and the numeric values asqsum, anorm1, anorm2, and anorm3. The NumPy array asquare contains the square of the elements in the NumPy array a, and the numeric value asqsum contains the sum of the elements in the NumPy array asquare.

Next, the numeric value anorm1 equals the square root of the sum of the square of the elements in a. The numeric value anorm2 is the same as anorm1, computed in a slightly different fashion. Finally, the numeric value anorm3 is equal to anorm2, but as you can see, anorm3 is calculated via a single NumPy method, whereas anorm2 requires a succession of NumPy methods.

The last portion of Listing 1.15 consists of six print statements, each of which displays the computed values. The output from launching Listing 1.15 is here:

('a: ', array([2, 3]))

('asquare:', array([4, 9]))

('asqsum: ', 13)

('anorm1: ', 3.605551275463989)

('anorm2: ', 3.605551275463989)

('anorm3: ', 3.605551275463989)

NumPy and Other Operations

NumPy provides the “*” operator to multiply the components of two vectors to produce a third vector whose components are the products of the corresponding components of the initial pair of vectors. This operation is called a Hadamard product. If you then add the components of the third vector, the sum is equal to the inner product of the initial pair of vectors.

Listing 1.16 displays the contents of otherops.py that illustrates how to perform other operations on a NumPy array.

LISTING 1.16: otherops.py

import numpy as np

a = np.array([1,2])

b = np.array([3,4])

print('a: ',a)

print('b: ',b)

print('a*b: ',a*b)

print('np.sum(a*b): ',np.sum(a*b))

print('(a*b.sum()): ',(a*b).sum())

Listing 1.16 contains two NumPy arrays called a and b, followed five print statements that display the contents of a and b, their Hadamard product, and also their inner product that’s calculated in two different ways. The output from launching Listing 1.16 is here:

('a: ', array([1, 2]))

('b: ', array([3, 4]))

('a*b: ', array([3, 8]))

('np.sum(a*b): ', 11)

('(a*b.sum()): ', 11)

NumPy and the reshape() Method

NumPy arrays support the reshape() method that enables you to restructure the dimensions of an array of numbers. In general, if a NumPy array contains m elements, where m is a positive integer, then that array can be restructured as an m1 x m2 NumPy array, provided that m1 and m2 are positive integers such that m1*m2 = m.

Listing 1.17 displays the contents of numpy_reshape.py that illustrates how to use the reshape() method on a NumPy array.

LISTING 1.17: numpy_reshape.py

import numpy as np

x = np.array([[2, 3], [4, 5], [6, 7]])

print(x.shape) # (3, 2)

x = x.reshape((2, 3))

print(x.shape) # (2, 3)

print('x1:',x)

x = x.reshape((-1))

print(x.shape) # (6,)

print('x2:',x)

x = x.reshape((6, -1))

print(x.shape) # (6, 1)

print('x3:',x)

x = x.reshape((-1, 6))

print(x.shape) # (1, 6)

print('x4:',x)

Listing 1.17 contains a 3x2 NumPy array called x, followed by a set of invocations of the reshape() method that reshape the dimensions of x. The first invocation of the reshape() method changes the shape of x from 3x2 to 2x3. The second invocation changes the shape of x from 2x3 to 6x1. The third invocation changes the shape of x from 1x6 to 6x1. The final invocation changes the shape of x from 6x1 to 1x6 again.

Each invocation of the reshape() method is followed by a print() statement so that you can see the effect of the invocation. The output from launching Listing 1.17 is here:

(3, 2)

(2, 3)

('x1:', array([[2, 3, 4],

 [5, 6, 7]]))

(6,)

('x2:', array([2, 3, 4, 5, 6, 7]))

(6, 1)

('x3:', array([,

 [3],

 [4],

 [5],

 [6],

 [7]]))

(1, 6)

Calculating the Mean and Standard Deviation

If you need to review these concepts from statistics (and perhaps also the mean, median, and mode as well), please read the appropriate section in Appendix A.

NumPy provides various built-in functions that perform statistical calculations, such as the following list of methods:

np.linspace() <= useful for regression

np.mean()

np.std()

The np.linspace()method generates a set of equally spaced numbers between a lower bound and an upper bound. The np.mean() and np.std() methods calculate the mean and standard deviation, respectively, of a set of numbers. Listing 1.18 displays the contents of sample_mean_std.py that illustrates how to calculate statistical values from a NumPy array.

LISTING 1.18: sample_mean_std.py

import numpy as np

x2 = np.arange(8)

print 'mean = ',x2.mean()

print 'std = ',x2.std()

x3 = (x2 - x2.mean())/x2.std()

print 'x3 mean = ',x3.mean()

print 'x3 std = ',x3.std()

Listing 1.18 contains a NumPy array x2 that consists of the first eight integers. Next, the mean() and std() that are “associated” with x2 are invoked in order to calculate the mean and standard deviation, respectively, of the elements of x2. The output from launching Listing 1.18 is here:

('a: ', array([1, 2]))

('b: ', array([3, 4]))

Trimmed Mean and Weighted Mean

In addition to the arithmetic mean, there are variants that are known as weighted mean and a trimmed mean (also called a truncated mean).

A trimmed mean is known as a robust estimate (i.e., a metric that is not sensitive to outliers). As a simple example of a trimmed mean, suppose that you have five scores for the evaluation of a product: simply drop the highest and lowest scores and then compute the average of the remaining three scores. If you have multiple sets of five scores, repeat the preceding process and then compute the average of the set of trimmed mean values.

A weighted mean is useful when sample data represents different groups in a dataset. Assigning a larger weight to groups that are under-represented yields a weighted mean that more accurate represents the various groups in the dataset. However, keep in mind that outliers can affect the mean as well as the weighted mean.

The weighted mean is the same as the expected value. In case you are unfamiliar with the notion of an expected value, suppose that the set P = {p1,p2,...,pn} is a probability distribution, which means that the numeric values in the set P must be nonnegative and have a sum equal to 1. In addition, suppose that V = {v1,v2,...,vn} is a set of numeric scores that are assigned to n features of a product M. The values in the set V are probably positive integers in some range (e.g., between 1 and 10).

Then the expected value E(M) for that product is computed as follows:

E(M) = p1*v1 + p2*v2 + ... + pn*vn

The preceding formula is the same formula for calculating the weighted mean of a set of numbers.

Code Sample with Mean and Standard Deviation

The code sample in this section extends the code sample in the previous section with additional statistical values, and the code can be used for any data distribution. Keep in mind that the code sample uses random numbers simply for the purposes of illustration: after you have launched the code sample, replace those numbers with values from a CSV file or some other dataset containing meaningful values.

Moreover, this section does not provide details regarding the meaning of quartiles, but you can learn about quartiles here:

https://en.wikipedia.org/wiki/Quartile

Listing 1.19 displays the contents of stat_values.py that illustrates how to display various statistical values from a NumPy array of random numbers.

LISTING 1.19: stat_values.py

import numpy as np

from numpy import percentile

from numpy.random import rand

generate data sample

data = np.random.rand(1000)

calculate quartiles, min, and max

quartiles = percentile(data, [25, 50, 75])

data_min, data_max = data.min(), data.max()

print summary information

print('Minimum: %.3f' % data_min)

print('Q1 value: %.3f' % quartiles[0])

print('Median: %.3f' % quartiles)

print('Mean Val: %.3f' % data.mean())

print('Std Dev: %.3f' % data.std())

print('Q3 value: %.3f' % quartiles)

print('Maximum: %.3f' % data_max)

The data sample (shown in bold) in Listing 1.19 is from a uniform distribution between 0 and 1. The NumPy percentile() function calculates a linear interpolation between observations, which is needed to calculate the median on a sample with an even number of values. As you can surmise, the NumPy functions min() and max() calculate the smallest and largest values in the data sample. The output from launching Listing 1.19 is here:

Minimum: 0.000

Q1 value: 0.237

Median: 0.500

Mean Val: 0.495

Std Dev: 0.295

Q3 value: 0.747

Maximum: 0.999

As a prelude, Appendix F contains more detailed information about matplotlib in order to plot various charts and graphs. However, the Python code samples in the next several sections contain some rudimentary APIs from matplotlib. The code samples start with simple examples of line segments, followed by an introduction to linear regression.

Working with Lines in the Plane (Optional)

This section contains a short review of lines in the Euclidean plane, so you can skip this section if you are comfortable with this topic. A minor point that’s often overlooked is that lines in the Euclidean plane have infinite length. If you select two distinct points of a line, then all the points between those two selected points is a line segment. A ray is a “half infinite” line: when you select one point as an endpoint, then all the points on one side of the line constitutes a ray.

For example, the points in the plane whose y-coordinate is 0 is a line and also the x-axis, whereas the points between (0,0) and (1,0) on the x-axis form a line segment. In addition, the points on the x-axis that are to the right of (0,0) form a ray, and the points on the x-axis that are to the left of (0,0) also form a ray.

For simplicity this book uses the terms “line” and “line segment” interchangeably. Just in case you’re a bit fuzzy on the details, here is the equation of any (non-vertical) line in the Euclidean plane:

y = m*x + b

The value of m is the slope of the line and the value of b is the y-intercept (i.e., the point (0,b) where the nonvertical line intersects the y-axis). Alternatively, the following form for a line in the plane is a more general equation that also includes vertical lines:

a*x + b*y + c = 0

However, we won’t be working with vertical lines, so we’ll stick with the first formula. Figure 1.1 displays three horizontal lines whose equations (from top to bottom) are y = 3, y = 0, and y = -3, respectively.

[image: image]
Figure 1.1 A Graph of Three Horizontal Line Segments.

Figure 1.2 displays two slanted lines whose equations are y = x and y = −x, respectively.

[image: image]
Figure 1.2 A Graph of Two Diagonal Line Segments.

Figure 1.3 displays two slanted parallel lines whose equations are y = 2*x and y = 2*x+3, respectively.

[image: image]
Figure 1.3 A Graph of Two Slanted Parallel Line Segments.

Figure 1.4 displays a piece-wise linear graph consisting of connected line segments.

Now that you have seen some basic examples of lines in the Euclidean plane, let’s look at some code samples that use NumPy and Matplotlib to display scatter plots of points in the plane.

[image: image]
Figure 1.4 A PieceWise Linear Graph of Line Segments.

Plotting a Line with NumPy and Matplotlib

Listing 1.20 displays the contents of np_plot.py that illustrates how to plot multiple points on a line in the plane.

LISTING 1.20: np_plot.py

import numpy as np

import matplotlib.pyplot as plt

x = np.random.randn(15,1)

y = 2.5*x + 5 + 0.2*np.random.randn(15,1)

plt.scatter(x,y)

plt.show()

Listing 1.20 starts with two import statements, followed by the initialization of x as a set of random values via the NumPy randn() API. Next, y is assigned a range of values that consist of two parts: a linear equation with input values from the x values, which is combined with a randomization factor. Figure 1.5 displays the output generated by the code in Listing 1.20.

[image: image]
Figure 1.5 A Dataset with Potential Linear Regression.

Plotting a Quadratic with NumPy and Matplotlib

Listing 1.21 displays the contents of np_plot_quadratic.py that illustrates how to plot a quadratic function in the plane.

LISTING 1.21: np_plot_quadratic.py

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(-5,5,num=100)[:,None]

y = -0.5 + 2.2*x +0.3*x**3+ 2*np.random.randn(100,1)

plt.plot(x,y)

plt.show()

Listing 1.21 starts with two import statements, followed by the initialization of x as a range of values via the NumPy linspace() API. Next, y is assigned a range of values that fit a quadratic equation, which are based on the values for the variable x. Figure 1.6 displays the output generated by the code in Listing 1.21.

Now that you have seen an assortment of line graphs and scatterplots, let’s delve into linear regression, which is the topic of the next section.

[image: image]
Figure 1.6 A Dataset with Potential Linear Regression.

What is Linear Regression?

Linear regression finds the equation of the best-fitting hyperplane that approximates a dataset, where a hyperplane has degree one less than the dimensionality of the dataset. In particular, if the dataset is in the Euclidean plane, the hyperplane is simply a line; if the dataset is in 3D the hyperplane is a plane.

Linear regression is suitable when the points in a dataset are distributed in such a way that they can reasonably be approximated by a hyperplane. If not, then you can try to fit other types of surfaces to the points in the dataset.

Keep in mind two other details. First, the best-fitting hyperplane does not necessarily intersect all (or even most of) the points in the dataset. In fact, the best-fitting hyperplane might not intersect any points in the dataset. The purpose of a best-fitting hyperplane is to approximate the points in dataset as closely as possible. Second, linear regression is not the same as curve fitting, which attempts to find a polynomial that passes through a set of points.

Some details about curve fitting: given n points in the plane (no two of which have the same x value), there is a polynomial of degree less than or equal to n-1 that passes through those points. Thus, a line (which has degree one) will pass through any pair of non-vertical points in the plane. For any triple of points in the plane, there is a quadratic equation or a line that passes through those points.

In some cases a lower degree polynomial is available. For instance, consider the set of 100 points of the form (x, x): The x value equals the y value, and the line y = x (a polynomial of degree one) passes through all of those points.

However, keep in mind that the extent to which a line “represents” a set of points in the plane depends on how closely those points can be approximated by a line.

What is Multivariate Analysis?

Multivariate analysis generalizes the equation of a line in the Euclidean plane, and it has the following form:

y = w1*x1 + w2*x2 + . . . + wn*xn + b

As you can see, the preceding equation contains a linear combination of the variables x1, x2, . . ., xn. In this book, we will usually work with datasets that involve lines in the Euclidean plane.

What about Nonlinear Datasets?

Simple linear regression finds the best-fitting line that approximates a dataset, but what happens if the dataset does not fit a line in the plane? This is an excellent question! In such a scenario, we look for other curves to approximate the dataset, such a quadratic, cubic, or higher-degree polynomials. However, these alternatives involve trade-offs, as we’ll discuss later.

Another possibility is to use a continuous piece-wise linear function, which is a function that comprises a set of line segments, where adjacent line segments are connected. If one or more pairs of adjacent line segments are not connected, then it’s a piece-wise linear function (i.e., the function is discontinuous). In either case, line segments have degree one, which involves lower computational complexity than higher order polynomials.

Thus, given a set of points in the plane, try to find the “best fitting” line that approximates those points, after addressing the following questions:

	How do we know that a line “fits” the data?

	What if a different type of curve is a better fit?

	What does “best fit” mean?

One way to check if a line fits the data well is through a simple visual check: display the data in a graph and if the data conforms to the shape of a line reasonably well, then a line might be a good fit. However, this is a subjective decision, and a sample dataset that does not fit a line is displayed in Figure 1.7.

Figure 1.7 displays a dataset containing four points that do not fit a line.

[image: image]
Figure 1.7 A Nonlinear Dataset.

However, if a line does not appear to be a good fit for the data, then perhaps a quadratic or cubic (or even higher degree) polynomial has the potential of being a better fit. Let’s defer the nonlinear scenario and let’s make the assumption that a line would be a good fit for the data. There is a well-known technique for finding the “best fitting” line for such a dataset, and it’s called mean squared error (MSE).

The MSE Formula

Figure 1.8 displays the formula for the MSE. Translated into English: the MSE is the average of the sum of the squares of the difference between an actual y value and the predicted y value, where the latter is the y value that each datapoint would have if that datapoint were actually on the best-fitting line.

Figure 1.8 displays the formula for MSE (Mean Squared Error) for calculating the best-fitting line for a set of points in the plane.

[image: image]
Figure 1.8 The MSE Formula.

Other Error Types

Although we will only discuss MSE for linear regression in this book, there are other types of formulas that you can use for linear regression, some of which are listed here:

	MSE

	RMSE

	RMSPROP

	MAE

The MSE is the basis for the preceding error types. For example, root mean squared error (RMSE) is the square root of MSE.

However, mean absolute error (MAE) is the average of the sum of the absolute value of the differences of the y terms (not the square of the differences of the y terms).

The RMSProp optimizer utilizes the magnitude of recent gradients to normalize the gradients. Maintain a moving average over the RMS gradients, and then divide that term by the current gradient.

Although it’s easier to compute the derivative of MSE (because it’s a differentiable function), it’s also true that MSE is more susceptible to outliers, more so than MAE. The reason is simple: a squared term can be significantly larger than adding the absolute value of a term. For example, if a difference term is 10, then the squared term 100 is added to MSE, whereas only 10 is added to MAE. Similarly, if a difference term is −20, then the squared term 400 is added to MSE, whereas only 20 (which is the absolute value of −20) is added to MAE.

Nonlinear Least Squares

When predicting housing prices, where the dataset contains a wide range of values, techniques such as linear regression or random forests can cause the model to overfit (discussed in Chapter 7), which means that the model does not generalize well to other datasets.

In this scenario, you can try an error metric such as relative error that reduces the importance of fitting the samples with the largest values. This technique is called non-linear least squares, which may use a log-based transformation of labels and predicted values.

Calculating the MSE Manually

Let’s look at two simple graphs, each of which contains a line that approximates a set of points in a scatter plot. Notice that the line segment is the same for both sets of points, but the datasets are slightly different. We will manually calculate the MSE for both datasets and determine which value of MSE is smaller.

Figure 1.9 displays a set of points and a line that is a potential candidate for best-fitting line for the data.

[image: image]
Figure 1.9 A Line Graph that Approximates Points of a Scatter Plot.

The MSE for the line in Figure 1.9 is computed as follows:

MSE = [(-2)*(-2) + 2*2]/7 = 8/7

Look at Figure 1.10 that also displays a set of points and a line that is a potential candidate for best-fitting line for the data.

[image: image]
Figure 1.10 A Line Graph that Approximates Points of a Scatter Plot.

The MSE for the line in Figure 1.10 is computed as follows:

MSE = [1*1 + (-1)*(-1) + (-1)*(-1) + 1*1]/7 = 4/7

Thus, the line in Figure 1.10 has a smaller MSE than the line in Figure 1.9, which might have surprised you (or did you guess correctly?)

In these two figures we calculated the MSE easily and quickly, but in general it’s significantly more tedious. For instance, if we plot 10 points in the Euclidean plane that do not closely fit a line, with individual terms that involve non-integer values, we would probably need a calculator. A better solution involves NumPy functions, as discussed in the next section.

Find the Best-Fitting Line with NumPy

Earlier in this chapter you saw examples of lines in the plane, including horizontal, slanted, and parallel lines. Most of those lines have a positive slope and a non-zero value for their y-intercept. Although there are scatterplots of datapoints in the plane where the best-fitting line has a negative slope, the examples in this book involve scatterplots whose best-fitting line has a positive slope.

Listing 1.22 displays the contents of plot_best_fit2.py that illustrates how to determine the bestfitting line for a set of points in the Euclidean plane. The solution is based on so-called “closed form” formulas that are available from Statistics.

LISTING 1.22: plot_best_fit2.py

import numpy as np

xs = np.array([1,2,3,4,5], dtype=np.float64)

ys = np.array([1,2,3,4,5], dtype=np.float64)

def best_fit_slope(xs,ys):

 m = (((np.mean(xs)*np.mean(ys))-np.mean(xs*ys)) /

 ((np.mean(xs)**2) - np.mean(xs**2)))

 b = np.mean(ys) - m * np.mean(xs)

 return m, b

m,b = best_fit_slope(xs,ys)

print('m:',m,'b:',b)

Listing 1.22 starts with two NumPy arrays xs and ys that are initialized with the first five positive integers. The Python function best_fit_slope() calculate the optimal values of m (the slope) and b (the y-intercept) of a set of numbers. The output from Listing 1.22 is here:

m: 1.0 b: 0.0

Notice that the NumPy arrays xs and ys are identical, which means that these points lie on the line y=x whose slope is 1. By simple extrapolation, the point (0,0) is also a point on the same line. Hence, the y-intercept of this line must equal 0.

Figure 1.11 displays another line segment that approximates a scatter plot consisting of a larger number of points.

[image: image]
Figure 1.11 A Line Graph that Approximates a Generalized Scatter Plot.

If you are really interested, you can search online to find the derivation for the values of m and b. In this chapter we’re going to skip the derivation, and proceed with examples of calculating the MSE. The first example involves calculating the MSE manually, followed by an example that uses NumPy formulas to perform the calculations.

Calculating MSE by Successive Approximation (1)

This section contains a code sample that uses a simple technique for successively determining better approximations for the slope and y-intercept of a best-fitting line. Recall that an approximation of a derivative is the ratio of “delta y” divided by “delta x.” The delta values calculate the difference of the y values and the difference of the x values, respectively, of two nearby points (x1,y1) and (x2,y2) on a function. Hence, the delta-based approximation ratio is (y2-y1)/(x2-x1).

The technique in this section involves a simplified approximation for the delta values: we assume that the denominators are equal to 1. As a result, we need only calculate the numerators of the “delta” values: in this code sample, those numerators are the variables dw and db.

Listing 1.23 displays the contents of plain_linreg1.py that illustrates how to compute the MSE with simulated data.

LISTING 1.23: plain_linreg1.py

import numpy as np

import matplotlib.pyplot as plt

X = [0,0.12,0.25,0.27,0.38,0.42,0.44,0.55,0.92,1.0]

Y = [0,0.15,0.54,0.51,0.34,0.1, 0.19,0.53,1.0,0.58]

losses = []

#Step 1: Parameter initialization

W = 0.45 # the initial slope

b = 0.75 # the initial y-intercept

for i in range(1, 100):

 #Step 2: Calculate Loss

 Y_pred = np.multiply(W, X) + b

 loss_error = 0.5 * (Y_pred - Y)**2

 loss = np.sum(loss_error)/10

 #Step 3: Calculate dw and db

 db = np.sum((Y_pred - Y))

 dw = np.dot((Y_pred - Y), X)

 losses.append(loss)

 #Step 4: Update parameters:

 W = W - 0.01*dw

 b = b - 0.01*db

 if i%10 == 0:

 print("Loss at", i,"iteration = ", loss)

#Step 5: Repeat via a for loop with 1000 iterations

#Plot loss versus # of iterations

print("W = ", W,"& b = ", b)

plt.plot(losses)

plt.ylabel('loss')

plt.xlabel('iterations (per tens)')

plt.show()

Listing 1.23 defines the variables X and Y that are simple arrays of numbers (this is our dataset). Next, the losses array is initialized as an empty array, and we will append successive loss approximations to this array. The variables W and b correspond to the slope and y-intercept, and they are initialized with the values 0.45 and 0.75, respectively (feel free to experiment with these values).

The next portion of Listing 1.23 is a for loop that executes 100 times. During each iteration, the variables Y_pred, loss_error, and loss are computed, and they correspond to the predicted value, the error, and the loss, respectively. (Remember: we are performing linear regression). The value of loss (which is the error for the current iteration) is then appended to the losses array.

Next, the variables dw and db are calculated: these correspond to “delta w” and “delta b” that we’ll use to update the values of W and b, respectively. The code is reproduced here:

#Step 4: Update parameters:

W = W - 0.01*dw

b = b - 0.01*db

Notice that dw and db are both multiplied by the value 0.01, which is the value of our “learning rate” (you can experiment with this value as well).

The next code snippet displays the current loss, which is performed every tenth iteration through the loop. When the loop finishes execution, the values of W and b are displayed, and a plot is displayed that shows the loss values on the vertical axis and the loop iterations on the horizontal axis. The output from Listing 1.23 is here:

Loss at 10 iteration = 0.04114630674619491

Loss at 20 iteration = 0.026706242729839395

Loss at 30 iteration = 0.024738889446900423

Loss at 40 iteration = 0.023850565034634254

Loss at 50 iteration = 0.0231499048706651

Loss at 60 iteration = 0.02255361434242207

Loss at 70 iteration = 0.0220425055291673

Loss at 80 iteration = 0.021604128492245713

Loss at 90 iteration = 0.021228111750568435

W = 0.47256473531193927 & b = 0.19578262688662174

Figure 1.12 displays the plot of loss-versus-iterations for Listing 1.23.

[image: image]
Figure 1.12 A Plot of Loss-versus-Iterations.

Calculating MSE by Successive Approximation (2)

In the previous section, you saw how to calculate “delta” approximations in order to determine the equation of a best-fitting line for a set of points in a 2D plane. The example in this section generalizes the code in the previous section by adding an outer loop that represents the number of epochs. The number of epochs specifies the number of times that an inner loop is executed.

Listing 1.24 displays the contents of plain_linreg2.py that illustrates how to compute the MSE with simulated data.

LISTING 1.24: plain_linreg2.py

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

X = [0,0.12,0.25,0.27,0.38,0.42,0.44,0.55,0.92,1.0]

Y = [0,0.15,0.54,0.51, 0.34,0.1,0.19,0.53,1.0,0.58]

#uncomment to see a plot of X versus Y values

#plt.plot(X,Y)

#plt.show()

losses = []

#Step 1: Parameter initialization

W = 0.45

b = 0.75

epochs = 100

lr = 0.001

for j in range(1, epochs):

 for i in range(1, 100):

 #Step 2: Calculate Loss

 Y_pred = np.multiply(W, X) + b

 Loss_error = 0.5 * (Y_pred - Y)**2

 loss = np.sum(Loss_error)/10

 #Step 3: Calculate dW and db

 db = np.sum((Y_pred - Y))

 dw = np.dot((Y_pred - Y), X)

 losses.append(loss)

 #Step 4: Update parameters:

 W = W - lr*dw

 b = b - lr*db

 if i%50 == 0:

 print("Loss at epoch", j,"= ", loss)

#Plot loss versus # of iterations

print("W = ", W,"& b = ", b)

plt.plot(losses)

plt.ylabel('loss')

plt.xlabel('iterations (per tens)')

plt.show()

Compare the new contents of Listing 1.24 (shown in bold) with the contents of Listing 1.23: the changes are minimal, and the main difference is to execute the inner loop 100 times for each iteration of the outer loop, which also executes 100 times. The output from Listing 1.24 is here:

('Loss at epoch', 1, '= ', 0.07161762489862147)

('Loss at epoch', 2, '= ', 0.030073922512586938)

('Loss at epoch', 3, '= ', 0.025415528992988472)

('Loss at epoch', 4, '= ', 0.024227826373677794)

('Loss at epoch', 5, '= ', 0.02346241967071181)

('Loss at epoch', 6, '= ', 0.022827707922883803)

('Loss at epoch', 7, '= ', 0.022284262669854064)

('Loss at epoch', 8, '= ', 0.02181735173716673)

('Loss at epoch', 9, '= ', 0.021416050179776294)

('Loss at epoch', 10, '= ', 0.02107112540934384)

// details omitted for brevity

('Loss at epoch', 90, '= ', 0.018960749188638278)

('Loss at epoch', 91, '= ', 0.01896074755776306)

('Loss at epoch', 92, '= ', 0.018960746155994725)

('Loss at epoch', 93, '= ', 0.018960744951148113)

('Loss at epoch', 94, '= ', 0.018960743915559485)

('Loss at epoch', 95, '= ', 0.018960743025451313)

('Loss at epoch', 96, '= ', 0.018960742260386375)

('Loss at epoch', 97, '= ', 0.018960741602798474)

('Loss at epoch', 98, '= ', 0.018960741037589136)

('Loss at epoch', 99, '= ', 0.018960740551780944)

('W = ', 0.6764145874436108, '& b = ', 0.09976839618922698)

Figure 1.13 displays the plot of loss-versus-iterations for Listing 1.24.

[image: image]
Figure 1.13 A Plot of Loss-versus-Iterations.

Notice that Figure 1.13 has 10,000 iterations on the horizontal axis, whereas Figure 1.12 has only 100 iterations on the horizontal axis.

What is Jax?

Jax is an open source package that uses more modern techniques to speed up NumPy and Python computations on CPUs, GPUS, and TPUs, which is probably why Jax has been called “NumPy on steroids”. The Jax documentation is here:

https://jax.readthedocs.io/en/latest/developer.html

You can build Jax in two steps from its source code (with or without CUDA) as described in the preceding link, or you can install Jax on your machine via pip3, as shown here:

pip3 install jaxlib

Jax is also the default for Trax (see Appendix E), and you can also set Jax in Google Colaboratory.

In case you’re interested, tf.experimental.numpy implements NumPy on TensorFlow, as described here:

https://www.tensorflow.org/api_docs/python/tf/experimental/numpy

Google Colaboratory

Depending on the hardware, GPU-based TF 2 code can be 10 times faster than CPU-based TF 2 code. However, the price of a good GPU can be a significant factor. Although NVIDIA provides GPUs, those consumer-based GPUs are not optimized for multi-GPU support (which is supported by TF 2).

Fortunately Google Colaboratory is an affordable alternative that provides free GPU support, and also runs as a Jupyter notebook environment. In addition, Google Colaboratory executes your code in the cloud and involves zero configuration, and it’s available here:

https://colab.research.google.com/notebooks/welcome.ipynb

The preceding Jupyter notebook is suitable for training simple models and testing ideas quickly. Google Colaboratory makes it easy to upload local files, install software in Jupyter notebooks, and even connect Google Colaboratory to a Jupyter runtime on your local machine.

Some of the supported features of Colaboratory include TF 2 execution with GPUs, visualization using Matplotlib, and the ability to save a copy of your Google Colaboratory notebook to Github by using File > Save a copy to GitHub.

Moreover, you can load any Jupyter notebook on GitHub by just adding the path to the URL colab.research.google.com/github/ (see the Colaboratory website for details).

Google Colaboratory has support for other technologies such as HTML and SVG, enabling you to render SVG-based graphics in notebooks that are in Google Colaboratory. In case you’re interested, you can launch Tensorboard inside a Google Colaboratory notebook with the following command (replace the specified directory with your own location):

%tensorboard --logdir /logs/images

Keep in mind the following details about Google Colaboratory. First, whenever you connect to a server in Google Colaboratory, you start what’s known as a session. You can execute the code in a session with a CPU (the default), a GPU, or a TPU, and you can execute your code without any time limit for your session. However, if you select the GPU option for your session, only the first 12 hours of GPU execution time are free. Any additional GPU time during that same session incurs a small charge (see the website for those details).

The other point to keep in mind is that any software that you install in a Jupyter notebook during a given session will not be saved when you exit that session. For example, the following code snippet installs TFLearn in a Jupyter notebook:

!pip install tflearn

When you exit the current session and at some point later you start a new session, you need to install TFLearn again, as well as any other software (such as Github repositories) that you also installed in any previous session.

Incidentally, you can also run TF 2 code and TensorBoard in Google Colaboratory, with support for CPUs, GPUs, and TPU. Navigate to this link for more information:

https://colab.research.google.com

Uploading CSV Files in Google Colaboratory

Listing 1.25 displays the contents upload_csv_file.ipynb that illustrates how to upload a CSV file in a Google Colaboratory notebook.

LISTING 1.25: upload_csv_file.ipynb

import pandas as pd

from google.colab import files

uploaded = files.upload()

df = pd.read_csv("weather_data.csv")

print("dataframe df:")

df

Listing 1.25 uploads the CSV file weather_data.csv whose contents are not shown here because they are not important for this example. The code shown in bold is the Colaboratory-specific code that is required to upload the CSV file. When you launch this code, you will see a small button labeled “Browse,” which you must click and then select the CSV file that is listed in the code snippet. After doing so, the rest of the code is executed and you will see the contents of the CSV file displayed in your browser session.

Summary

This chapter introduced you to the NumPy package for Python. You learned how to write Python scripts containing loops, arrays, and lists. You also saw how to work with dot products, the reshape() method, plotting with Matplotlib (discussed in more detail in Appendix F), and examples of linear regression.

Then you learned how to work with subranges of arrays, and also negative subranges of vectors and arrays, both of which are very useful for extracting portions of datasets in machine learning tasks. You also saw various other NumPy operations, such as the reshape() method that is extremely useful (and very common) when working with images files.

Next, you learned how to use NumPy for linear regression, the mean squared error (MSE), and how to calculate MSE with the NumPy linspace() method. Finally, you learned about Google Colaboratory, which provides CPU, GPU, and TPU support for the execution of Jupyter notebooks in the cloud.

CHAPTER 2

INTRODUCTION TO PANDAS

This chapter introduces you to Pandas and provides various code samples that illustrate some of its useful features. As you will see, the purpose of each section is self-explanatory, and they have a succinct style that focuses on the code samples. If you are familiar with these topics, feel free to skim through the material and peruse the code samples, just in case they contain some new information.

The first part of this chapter contains a brief introduction to Pandas and some of its useful features. This section contains code samples that illustrate some features of data frames and a brief discussion of series, which are two of the main features of Pandas.

The second part of this chapter discusses various types of data frames that you can create, such as numeric and Boolean data frames. In addition, you will see examples of creating data frames with NumPy functions and random numbers. You will also see examples of converting between Python dictionaries and JSON-based data, and also how to create a Pandas data frame from JSON-based data.

What is Pandas?

Pandas is a Python package that is compatible with other Python packages, such as NumPy, Matplotlib, and so forth. Install Pandas by opening a command shell and invoking this command for Python 3.x:

pip3 install pandas

In many ways the semantics of the APIs in the Pandas library are similar to a spreadsheet, along with support for xsl, xml, html, csv file types. Pandas provides a data type called a DataFrame with extremely powerful functionality, which is discussed in the next section.

Pandas data frames support a variety of input types, such as ndarrays, lists, dicts, or Series.

Pandas also provides another data type called Pandas Series that provides another mechanism for managing data. In addition to performing an online for more details regarding Series, the following article contains a good introduction:

https://towardsdatascience.com/20-examples-to-master-pandas-series-bc4c68200324

Pandas Options and Settings

You can change default values of environment variables in Pandas, an example of which is shown here:

import pandas as pd

display_settings = {

 'max_columns': 8,

 'expand_frame_repr': True, # Wrap to multiple pages

 'max_rows': 20,

 'precision': 3,

 'show_dimensions': True

}

for op, value in display_settings.items():

pd.set_option("display.{}".format(op), value)

Include the preceding code block in your own code if you want Pandas to display a maximum of 20 rows and 8 columns, and floating point numbers displayed with 3 decimal places. Set expand_frame_rep to True if you want the output to “wrap around” to multiple pages. The preceding for loop iterates through display_settings and sets the options equal to their corresponding values.

In addition, the following code snippet displays all Pandas options and their current values in your code:

print(pd.describe_option())

There are various other operations that you can perform with options and their values (such as the pd.reset() method for resetting values), as described in the Pandas user guide:

https://pandas.pydata.org/pandas-docs/stable/user_guide/options.html

Pandas Data Frames

In simplified terms, a Pandas data frame is a two-dimensional data structure, and it’s convenient to think of the data structure in terms of rows and columns. Data frames can be labeled (rows as well as columns), and the columns can contain different data types. The source of the dataset for a Pandas data frame can be a data file, a database table, a web service, and so forth. Pandas data frame features include:

	Data Frame Methods

	Data Frame Statistics

	Grouping, Pivoting, and Reshaping

	Handle Missing Data

	Join Data Frames

The Pandas code samples in this chapter show you almost all the features in the preceding list.

Data Frames and Data Cleaning Tasks

The specific tasks that you need to perform depend on the structure and contents of a dataset. In general you will perform a workflow with the following steps, not necessarily always in this order (and some might be optional). All of the following steps can be performed with a Pandas data frame:

	Read data into a data frame

	Display top of data frame

	Display column data types

	Display nonmissing values

	Replace NA with a value

	Iterate through the columns

	Statistics for each column

	Find Missing Values

	Total missing values

	Percentage of missing values

	Sort table values

	Print summary information

	Columns with > 50% missing

	Rename columns

This chapter contains sections that illustrate how to perform many of the steps in the preceding list.

Alternatives to Pandas

Before delving into Pandas code samples, there are alternatives to Pandas that offer very useful features, some of which are in the following list:

	PySpark (for large datasets)

	Dask (for distributed processing)

	Modin (faster performance)

	Datatable (R data.table for Python)

The inclusion of these alternatives is not intended to diminish Pandas: indeed, you might not need any of the functionality in the preceding list. However, you might need such functionality in the future, so it’s worthwhile for you to know about these alternatives now (and there may be even more powerful alternatives at some point in the future).

A Pandas Data Frame with NumPy Example

Listing 2.1 displays the contents of pandas_df.py that illustrates how to define several Pandas data frames and display their contents.

LISTING 2.1: pandas_df.py

import pandas as pd

import numpy as np

myvector1 = np.array([1,2,3,4,5])

print("myvector1:")

print(myvector1)

print()

mydf1 = pd.DataFrame(myvector1)

print("mydf1:")

print(mydf1)

print()

myvector2 = np.array([i for i in range(1,6)])

print("myvector2:")

print(myvector2)

print()

mydf2 = pd.DataFrame(myvector2)

print("mydf2:")

print(mydf2)

print()

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])

print("myarray:")

print(myarray)

print()

mydf3 = pd.DataFrame(myarray)

print("mydf3:")

print(mydf3)

print()

Listing 2.1 starts with standard import statements for Pandas and NumPy, followed by the definition of two one-dimensional NumPy arrays and a two-dimensional NumPy array. The NumPy syntax ought to be familiar to you from the examples in Chapter 1. Each NumPy variable is followed by a corresponding Pandas data frame mydf1, mydf2, and mydf3. Now launch the code in Listing 2.1 and you will see the following output, and you can compare the NumPy arrays with the Pandas data frames:

myvector1:

[1 2 3 4 5]

mydf1:

 0

0 1

1 2

2 3

3 4

4 5

myvector2:

[1 2 3 4 5]

mydf2:

 0

0 1

1 2

2 3

3 4

4 5

myarray:

[[10 30 20]

[50 40 60]

[1000 2000 3000]]

mydf3:

 0 1 2

0 10 30 20

1 50 40 60

2 1000 2000 3000

By contrast, the following code block illustrates how to define a Pandas Series:

names = pd.Series(['SF', 'San Jose', 'Sacramento'])

sizes = pd.Series([852469, 1015785, 485199])

df = pd.DataFrame({ 'Cities': names, 'Size': sizes })

print(df)

Create a Python file with the preceding code (along with the required import statement) and when you launch that code you will see the following output:

 City name sizes

0 SF 852469

1 San Jose 1015785

2 Sacramento 485199

Describing a Pandas Data Frame

Listing 2.2 displays the contents of pandas_df_describe.py that illustrates how to define a Pandas Data frame that contains a 3×3 NumPy array of integer values, where the rows and columns of the data frame are labeled. Various other aspects of the data frame are also displayed.

LISTING 2.2: pandas_df_describe.py

import numpy as np

import pandas as pd

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])

rownames = ['apples', 'oranges', 'beer']

colnames = ['January', 'February', 'March']

mydf = pd.DataFrame(myarray, index=rownames, columns=colnames)

print("contents of df:")

print(mydf)

print()

print("contents of January:")

print(mydf['January'])

print()

print("Number of Rows:")

print(mydf.shape[0])

print()

print("Number of Columns:")

print(mydf.shape)

print()

print("Number of Rows and Columns:")

print(mydf.shape)

print()

print("Column Names:")

print(mydf.columns)

print()

print("Column types:")

print(mydf.dtypes)

print()

print("Description:")

print(mydf.describe())

print()

Listing 2.2 starts with two standard import statements followed by the variable myarray, which is a 3×3 NumPy array of numbers. The variables rownames and colnames provide names for the rows and columns, respectively, of the Pandas data frame mydf, which is initialized as a Pandas data frame with the specified datasource (i.e., myarray).

The first portion of the output below requires a single print statement (which simply displays the contents of mydf). The second portion of the output is generated by invoking the describe() method that is available for any Pandas data frame. The describe() method is very useful: you will see various statistical quantities, such as the mean, standard deviation minimum, and maximum performed by columns (not rows), along with values for the 25th, 50th, and 75th percentiles. The output of Listing 2.2 is here:

contents of df:

 January February March

apples 10 30 20

oranges 50 40 60

beer 1000 2000 3000

contents of January:

apples 10

oranges 50

beer 1000

Name: January, dtype: int64

Number of Rows:

3

Number of Columns:

3

Number of Rows and Columns:

(3, 3)

Column Names:

Index(['January', 'February', 'March'], dtype='object')

Column types:

January int64

February int64

March int64

dtype: object

Description:

 January February March

count 3.000000 3.000000 3.000000

mean 353.333333 690.000000 1026.666667

std 560.386771 1134.504297 1709.073823

min 10.000000 30.000000 20.000000

25% 30.000000 35.000000 40.000000

50% 50.000000 40.000000 60.000000

75% 525.000000 1020.000000 1530.000000

max 1000.000000 2000.000000 3000.000000

Pandas Boolean Data Frames

Pandas supports Boolean operations on Data frames, such as the logical OR, the logical AND, and the logical negation of a pair of Data frames. Listing 2.3 displays the contents of pandas_boolean_df.py that illustrates how to define a Pandas data frame whose rows and columns are Boolean values.

LISTING 2.3: pandas_boolean_df.py

import pandas as pd

df1 = pd.DataFrame({'a': [1, 0, 1], 'b': [0, 1, 1] }, dtype=bool)

df2 = pd.DataFrame({'a': [0, 1, 1], 'b': [1, 1, 0] }, dtype=bool)

print("df1 & df2:")

print(df1 & df2)

print("df1 | df2:")

print(df1 | df2)

print("df1 ^ df2:")

print(df1 ^ df2)

Listing 2.3 initializes the Data frames df1 and df2, and then computes df1 & df2, df1 | df2, df1 ^ df2, which represent the logical AND, the logical OR, and the logical negation, respectively, of df1 and df2. The output from launching the code in Listing 2.3 is here:

df1 & df2:

 a b

0 False False

1 False True

2 True False

df1 | df2:

 a b

0 True True

1 True True

2 True True

df1 ^ df2:

 a b

0 True True

1 True False

2 False True

Transposing a Pandas Data Frame

The T attribute (as well as the transpose function) enables you to generate the transpose of a Pandas data frame, similar to a NumPy ndarray. The transpose operation switches rows to columns and columns to rows. For example, the following code snippet defines a Pandas data frame df1 and then displays the transpose of df1:

df1 = pd.DataFrame({'a': [1, 0, 1], 'b': [0, 1, 1] }, dtype=int)

print("df1.T:")

print(df1.T)

The output is here:

df1.T:

 0 1 2

a 1 0 1

b 0 1 1

The following code snippet defines Pandas data frames df1 and df2 and then displays their sum:

df1 = pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, dtype=int)

df2 = pd.DataFrame({'a' : [3, 3, 3], 'b' : [5, 5, 5] }, dtype=int)

print("df1 + df2:")

print(df1 + df2)

The output is here:

df1 + df2:

 a b

0 4 5

1 3 6

2 4 6

Pandas Data Frames and Random Numbers

Listing 2.4 displays the contents of pandas_random_df.py that illustrates how to create a Pandas data frame with random numbers.

LISTING 2.4: pandas_random_df.py

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randint(1, 5, size=(5, 2)), columns=['a','b'])

df = df.append(df.agg(['sum', 'mean']))

print("Contents of data frame:")

print(df)

Listing 2.4 defines the Pandas data frame df that consists of 5 rows and 2 columns of random integers between 1 and 5. Notice that the columns of df are labeled “a” and “b.” In addition, the next code snippet appends two rows consisting of the sum and the mean of the numbers in both columns. The output of Listing 2.4 is here:

 a b

0 1.0 2.0

1 1.0 1.0

2 4.0 3.0

3 3.0 1.0

4 1.0 2.0

sum 10.0 9.0

mean 2.0 1.8

Listing 2.5 displays the contents of pandas_combine_df.py that illustrates how to combine Pandas data frames.

LISTING 2.5: pandas_combine_df.py

import pandas as pd

import numpy as np

df = pd.DataFrame({'foo1' : np.random.randn(5),

 'foo2' : np.random.randn(5)})

print("contents of df:")

print(df)

print("contents of foo1:")

print(df.foo1)

print("contents of foo2:")

print(df.foo2)

Listing 2.5 defines the Pandas data frame df that consists of 5 rows and 2 columns (labeled “foo1” and “foo2”) of random real numbers between 0 and 5. The next portion of Listing 2.5 displays the contents of df and foo1. The output of Listing 2.5 is here:

contents of df:

 foo1 foo2

0 0.274680 _0.848669

1 _0.399771 _0.814679

2 0.454443 _0.363392

3 0.473753 0.550849

4 _0.211783 _0.015014

contents of foo1:

0 0.256773

1 1.204322

2 1.040515

3 _0.518414

4 0.634141

Name: foo1, dtype: float64

contents of foo2:

0 _2.506550

1 _0.896516

2 _0.222923

3 0.934574

4 0.527033

Name: foo2, dtype: float64

Reading CSV Files in Pandas

Pandas provides the read_csv() method for reading the contents of CSV files. For example, Listing 2.6 displays the contents of sometext.txt that contains labeled data (spam or ham), and Listing 2.7 displays the contents of read_csv_file.py that illustrates how to read the contents of a CSV file.

LISTING 2.6: sometext.csv

type text

ham Available only for today

ham I'm joking with you

spam Free entry in 2 a wkly comp

ham U dun say so early hor

ham I don't think he goes to usf

spam FreeMsg Hey there

ham my brother is not sick

ham As per your request Melle

spam WINNER!! As a valued customer

LISTING 2.7: read_csv_file.py

import pandas as pd

import numpy as np

df = pd.read_csv('sometext.csv', delimiter='\t')

print("=> First five rows:")

print(df.head(5))

Listing 2.7 reads the contents of sometext.csv, whose columns are separated by a tab (“\t”) delimiter. Launch the code in Listing 2.7 and you will see the following output:

=> First five rows:

 type text

0 ham Available only for today

1 ham I'm joking with you

2 spam Free entry in 2 a wkly comp

3 ham U dun say so early hor

4 ham I don't think he goes to usf

The default value for the head() method is 5, but you can display the first n rows of a data frame df with the code snippet df.head(n).

You can also use the sep parameter specifies a different separator, and the names parameter specifies the column names in the data that you want to read, an example of which is here:

df2 = pd.read_csv("data.csv",sep="|",

 names=["Name","Surname","Height","Weight"])

Pandas also provides the read_table() method for reading the contents of CSV files, which uses the same syntax as the read_csv() method.

The loc() and iloc() Methods in Pandas

If you want to display the contents of a record in a data frame, specify the index of the row in the Pandas loc() method. For example, the following code snippet displays the data by feature name in a Data frame df:

df.loc[feature_name]

Select the first row of the “height” column in a Data frame:

df.loc([0], ['height'])

However, the following code snippet uses the iloc() function to display the first 8 records of the name column with this code snippet:

df.iloc[0:8]['name']

Converting Categorical Data to Numeric Data

One common task in machine learning involves converting a feature containing character data into a feature that contains numeric data. Listing 2.8 displays the contents of cat2numeric.py that illustrates how to replace a text field with a corresponding numeric field.

LISTING 2.8: cat2numeric.py

import pandas as pd

import numpy as np

df = pd.read_csv('sometext.csv', delimiter='\t')

print("=> First five rows (before):")

print(df.head(5))

print("-------------------------")

print()

map ham/spam to 0/1 values:

df['type'] = df['type'].map({'ham':0 , 'spam':1})

print("=> First five rows (after):")

print(df.head(5))

print("-------------------------")

Listing 2.8 initializes the data frame df with the contents of the CSV file sometext.csv, and then displays the contents of the first five rows by invoking df.head(5), which is also the default number of rows to display.

The next code snippet in Listing 2.8 invokes the map() method to replace occurrences of ham with 0 and replace occurrences of spam with 1 in the column labeled type, as shown here:

df['type'] = df['type'].map({'ham':0 , 'spam':1})

The last portion of Listing 2.8 invokes the head() method again to display the first five rows of the dataset after having renamed the contents of the column type. Launch the code in Listing 2.8 and you will see the following output:

=> First five rows (before):

 type text

0 ham Available only for today

1 ham I'm joking with you

2 spam Free entry in 2 a wkly comp

3 ham U dun say so early hor

4 ham I don't think he goes to usf

=> First five rows (after):

 type text

0 0 Available only for today

1 0 I'm joking with you

2 1 Free entry in 2 a wkly comp

3 0 U dun say so early hor

4 0 I don't think he goes to usf

As another example, Listing 2.9 displays the contents of shirts.csv and Listing 2.10 displays the contents of shirts.py that illustrates four techniques for converting categorical data to numeric data.

LISTING 2.9: shirts.csv

type,ssize

shirt,xxlarge

shirt,xxlarge

shirt,xlarge

shirt,xlarge

shirt,xlarge

shirt,large

shirt,medium

shirt,small

shirt,small

shirt,xsmall

shirt,xsmall

shirt,xsmall

LISTING 2.10: shirts.py

import pandas as pd

shirts = pd.read_csv("shirts.csv")

print("shirts before:")

print(shirts)

print()

TECHNIQUE #1:

#shirts.loc[shirts['ssize']=='xxlarge','size'] = 4

#shirts.loc[shirts['ssize']=='xlarge', 'size'] = 4

#shirts.loc[shirts['ssize']=='large', 'size'] = 3

#shirts.loc[shirts['ssize']=='medium', 'size'] = 2

#shirts.loc[shirts['ssize']=='small', 'size'] = 1

#shirts.loc[shirts['ssize']=='xsmall', 'size'] = 1

TECHNIQUE #2:

#shirts['ssize'].replace('xxlarge', 4, inplace=True)

#shirts['ssize'].replace('xlarge', 4, inplace=True)

#shirts['ssize'].replace('large', 3, inplace=True)

#shirts['ssize'].replace('medium', 2, inplace=True)

#shirts['ssize'].replace('small', 1, inplace=True)

#shirts['ssize'].replace('xsmall', 1, inplace=True)

TECHNIQUE #3:

#shirts['ssize'] = shirts['ssize'].apply({'xxlarge':4, 'xlarge':4, 'large':3, 'medium':2, 'small':1, 'xsmall':1}.get)

TECHNIQUE #4:

shirts['ssize'] = shirts['ssize'].replace(regex='xlarge', value=4)

shirts['ssize'] = shirts['ssize'].replace(regex='large', value=3)

shirts['ssize'] = shirts['ssize'].replace(regex='medium', value=2)

shirts['ssize'] = shirts['ssize'].replace(regex='small', value=1)

print("shirts after:")

print(shirts)

Listing 2.10 starts with a code block of six statements that uses direct comparison with strings to make numeric replacements. For example, the following code snippet replaces all occurrences of the string xxlarge with the value 4:

shirts.loc[shirts['ssize']=='xxlarge','size'] = 4

The second code block consists of six statements that use the replace() method to perform the same updates, an example of which is shown here:

shirts['ssize'].replace('xxlarge', 4, inplace=True)

The third code block consists of a single statement that use the apply() method to perform the same updates, as shown here:

shirts['ssize'] = shirts['ssize'].apply({'xxlarge':4, 'xlarge':4, 'large':3, 'medium':2, 'small':1, 'xsmall':1}.get)

The fourth code block consists of four statements that use regular expressions to perform the same updates, an example of which is shown here:

shirts['ssize'] = shirts['ssize'].replace(regex='xlarge', value=4)

Since the preceding code snippet matches xxlarge as well as xlarge, we only need four statements instead of six statements. If you are unfamiliar with regular expressions, you can read Appendix C. Now launch the code in Listing 2.10 and you will see the following output:

shirts before

 type size

0 shirt xxlarge

1 shirt xxlarge

2 shirt xlarge

3 shirt xlarge

4 shirt xlarge

5 shirt large

6 shirt medium

7 shirt small

8 shirt small

9 shirt xsmall

10 shirt xsmall

11 shirt xsmall

shirts after:

 type size

0 shirt 4

1 shirt 4

2 shirt 4

3 shirt 4

4 shirt 4

5 shirt 3

6 shirt 2

7 shirt 1

8 shirt 1

9 shirt 1

10 shirt 1

11 shirt 1

Matching and Splitting Strings in Pandas

Listing 2.11 displays the contents of shirts_str.py that illustrates how to match a column value with an initial string and also how to split a column value based on a letter.

LISTING 2.11: shirts_str.py

import pandas as pd

shirts = pd.read_csv("shirts.csv")

print("shirts:")

print(shirts)

print()

print("shirts starting with xl:")

print(shirts[shirts.ssize.str.startswith('xl')])

print()

print("Exclude 'xlarge' shirts:")

print(shirts[shirts['ssize'] != 'xlarge'])

print()

print("first three letters:")

shirts['sub1'] = shirts['ssize'].str[:3]

print(shirts)

print()

print("split ssize on letter 'a':")

shirts['sub2'] = shirts['ssize'].str.split('a')

print(shirts)

print()

print("Rows 3 through 5 and column 2:")

print(shirts.iloc[2:5, 2])

print()

Listing 2.11 initializes the data frame df with the contents of the CSV file shirts.csv, and then displays the contents of df. The next code snippet in Listing 2.11 uses the startswith() method to match the shirt types that start with the letters xl, followed by a code snippet that displays the shorts whose size does not equal the string xlarge.

The next code snippet uses the construct str[:3] to display the first three letters of the shirt types, followed by a code snippet that uses the split() method to split the shirt types based on the letter “a.”

The final code snippet invokes iloc[2:5,2] to display the contents of rows 3 through 5 inclusive, and only the second column. The output of Listing 2.11 is here:

shirts:

 type ssize

Contents

	Cover page

	Title page

	Copyright

	Dedication

	Contents

	Preface

	Chapter 1 Introduction to NumPy
	What is NumPy?
	Useful NumPy Features

	What are NumPy Arrays?

	Working with Loops

	Appending Elements to Arrays (1)

	Appending Elements to Arrays (2)

	Multiply Lists and Arrays

	Doubling the Elements in a List

	Lists and Exponents

	Arrays and Exponents

	Math Operations and Arrays
	Working with “-1” Subranges with Vectors

	Working with “-1” Subranges with Arrays

	Other Useful NumPy Methods

	Arrays and Vector Operations

	NumPy and Dot Products (1)

	NumPy and Dot Products (2)

	NumPy and the “Norm” of Vectors

	NumPy and Other Operations

	NumPy and the reshape() Method

	Calculating the Mean and Standard Deviation
	Trimmed Mean and Weighted Mean

	Code Sample with Mean and Standard Deviation

	Working with Lines in the Plane (Optional)

	Plotting a Line with NumPy and Matplotlib

	Plotting a Quadratic with NumPy and Matplotlib

	What is Linear Regression?
	What is Multivariate Analysis?

	What about Nonlinear Datasets?

	The MSE Formula
	Other Error Types

	Nonlinear Least Squares

	Calculating the MSE Manually

	Find the Best-Fitting Line with NumPy

	Calculating MSE by Successive Approximation (1)

	Calculating MSE by Successive Approximation (2)

	What is Jax?

	Google Colaboratory
	Uploading CSV Files in Google Colaboratory

	Summary

	Chapter 2 Introduction to Pandas
	What is Pandas?
	Pandas Options and Settings

	Pandas Data Frames

	Data Frames and Data Cleaning Tasks

	Alternatives to Pandas

	A Pandas Data Frame with NumPy Example

	Describing a Pandas Data Frame

	Pandas Boolean Data Frames
	Transposing a Pandas Data Frame

	Pandas Data Frames and Random Numbers

	Reading CSV Files in Pandas

	The loc() and iloc() Methods in Pandas

	Converting Categorical Data to Numeric Data

	Matching and Splitting Strings in Pandas

	Converting Strings to Dates in Pandas

	Merging and Splitting Columns in Pandas

	Combining Pandas Data frames

	Data Manipulation with Pandas Data Frames (1)

	Data Manipulation with Pandas Data Frames (2)

	Data Manipulation with Pandas Data Frames (3)

	Pandas Data Frames and CSV Files

	Managing Columns in Data Frames
	Switching Columns

	Appending Columns

	Deleting Columns

	Inserting Columns

	Scaling Numeric Columns

	Managing Rows in Pandas
	Selecting a Range of Rows in Pandas

	Finding Duplicate Rows in Pandas

	Inserting New Rows in Pandas

	Handling Missing Data in Pandas
	Multiple Types of Missing Values

	Test for Numeric Values in a Column

	Replacing NaN Values in Pandas

	Sorting Data Frames in Pandas

	Working with groupby() in Pandas

	Working with apply() and mapapply() in Pandas

	Handling Outliers in Pandas

	Pandas Data Frames and Scatterplots

	Pandas Data Frames and Simple Statistics

	Aggregate Operations in Pandas Data Frames

	Aggregate Operations with the titanic.csv Dataset

	Save Data Frames as CSV Files and Zip Files

	Pandas Data Frames and Excel Spreadsheets

	Working with JSON-based Data
	Python Dictionary and JSON

	Python, Pandas, and JSON

	Pandas and Regular Expressions (Optional)

	Useful One-Line Commands in Pandas

	What is Method Chaining?
	Pandas and Method Chaining

	Pandas Profiling

	What is Texthero?

	Summary

	Chapter 3 NLP Concepts (I)
	The Origin of Languages
	Language Fluency

	Major Language Groups

	Peak Usage of Some Languages

	Languages and Regional Accents

	Languages and Slang

	Languages and Dialects

	The Complexity of Natural Languages
	Word Order in Sentences

	What about Verbs?

	Auxiliary Verbs

	What are Case Endings?

	Languages and Gender

	Singular and Plural Forms of Nouns

	Changes in Spelling of Words

	Japanese Grammar
	Japanese Postpositions (Particles)

	Ambiguity in Japanese Sentences

	Japanese Nominalization

	Google Translate and Japanese

	Japanese and Korean

	Vowel-Optional Languages and Word Direction

	Mutating Consonant Spelling

	Expressing Negative Opinions

	Phonetic Languages
	Phonemes and Morphemes

	English Words of Greek and Latin Origin

	Multiple Ways to Pronounce Consonants
	The Letter “j” in Various Languages

	“Hard” versus “Soft” Consonant Sounds

	“Ess,” “zee,” and “sh” Sounds

	Three Consecutive Consonants

	Diphthongs and Triphthongs in English

	Semi-Vowels in English

	Challenging English Sounds

	English in Canada, UK, Australia, and the United States

	English Pronouns and Prepositions

	What is NLP?
	The Evolution of NLP

	A Wide-Angle View of NLP
	NLP Applications and Use Cases

	NLU and NLG

	What is Text Classification?

	Information Extraction and Retrieval

	Word Sense Disambiguation

	NLP Techniques in ML
	NLP Steps for Training a Model

	Text Normalization and Tokenization
	Word Tokenization in Japanese

	Text Tokenization with Unix Commands

	Handling Stop Words

	What is Stemming?
	Singular versus Plural Word Endings

	Common Stemmers

	Stemmers and Word Prefixes

	Over Stemming and Under Stemming

	What is Lemmatization?
	Stemming/Lemmatization Caveats

	Limitations of Stemming and Lemmatization

	Working with Text: POS
	POS Tagging

	POS Tagging Techniques

	Working with Text: NER
	Abbreviations and Acronyms

	NER Techniques

	What is Topic Modeling?

	Keyword Extraction, Sentiment Analysis, and Text Summarization

	Summary

	Chapter 4 NLP Concepts (II)
	What is Word Relevance?

	What is Text Similarity?

	Sentence Similarity
	Sentence Encoders

	Working with Documents
	Document Classification

	Document Similarity (doc2vec)

	Techniques for Text Similarity
	Similarity Queries

	What is Text Encoding?

	Text Encoding Techniques
	Document Vectorization

	One-Hot Encoding (OHE)

	Index-Based Encoding

	Additional Encoders

	The BoW Algorithm

	What are n-grams?
	Calculating Probabilities with N-grams

	Calculating tf, idf, and tf-idf
	What is Term Frequency (TF)?

	What is Inverse Document Frequency (IDF)?

	What is tf-idf?

	Limitations of tf-idf

	Pointwise Mutual Information (PMI)

	The Context of Words in a Document
	What is Semantic Context?

	Textual Entailment

	Discrete, Distributed, and Contextual Word Representations

	What is Cosine Similarity?

	Text Vectorization (aka Word Embeddings)

	Overview of Word Embeddings and Algorithms
	Word Embeddings

	Word Embedding Algorithms

	What is Word2vec?
	The Intuition for Word2vec

	The Word2vec Architecture

	Limitations of Word2vec

	The CBoW Architecture

	What are Skip-grams?
	Skip-gram Example

	The Skip-gram Architecture

	Neural Network Reduction

	What is GloVe?

	Working with GloVe

	What is FastText?

	Comparison of Word Embeddings

	What is Topic Modeling?
	Topic Modeling Algorithms

	LDA and Topic Modeling

	Text Classification versus Topic Modeling

	Language Models and NLP
	How to Create a Language Model

	Vector Space Models
	Term-Document Matrix

	Tradeoffs of the VSM

	NLP and Text Mining
	Text Extraction Preprocessing and N-Grams

	Relation Extraction and Information Extraction

	What is a BLEU Score?
	ROUGE Score: An Alternative to BLEU

	Summary

	Chapter 5 Algorithms and Toolkits (I)
	Cleaning Data with Regular Expressions

	Handling Contracted Words

	Python Code Samples of BoW

	One-Hot Encoding Examples

	Sklearn and Word Embedding Examples

	What is BeautifulSoup?

	Web Scraping with Pure Regular Expressions

	What is Scrapy?

	What is SpaCy?

	SpaCy and Stop Words

	SpaCy and Tokenization

	SpaCy and Lemmatization

	SpaCy and NER

	SpaCy Pipelines

	SpaCy and Word Vectors

	The scispaCy Library (Optional)

	Summary

	Chapter 6 Algorithms and Toolkits (II)
	What is NLTK?

	NLTK and BoW

	NLTK and Stemmers

	NLTK and Lemmatization

	NLTK and Stop Words

	What is Wordnet?
	Synonyms and Antonyms

	NLTK, lxml, and XPath

	NLTK and n-grams

	NLTK and POS (1)

	NLTK and POS (2)

	NLTK and Tokenizers

	NLTK and Context-Free Grammars (Optional)

	What is Gensim?
	Gensim and tf-idf Example

	Saving a Word2vec Model in Genism

	An Example of Topic Modeling

	A Brief Comparison of Popular Python-Based NLP Libraries

	Miscellaneous Libraries

	Summary

	Chapter 7 Introduction to Machine Learning
	What is Machine Learning?
	Learning Style of Machine Learning Algorithms

	Types of Machine Learning Algorithms
	Machine Learning Tasks

	Preparing a Dataset and Training a Model

	Feature Engineering, Selection, and Extraction
	Feature Engineering

	Feature Selection

	Feature Extraction

	Model Selection

	Working with Datasets
	Training Data versus Test Data

	What is Cross-Validation?

	Overfitting versus Underfitting
	What is Regularization?

	ML and Feature Scaling

	Data Normalization Techniques

	Metrics in Machine Learning
	R-Squared and its Limitations

	Confusion Matrix

	Precision, Recall, and Specificity

	The ROC Curve and AUC

	Metrics for Model Evaluation and Selection

	What is Linear Regression?
	Linear Regression versus Curve-Fitting

	When are Solutions Exact Values?

	What is Multivariate Analysis?

	Other Types of Regression

	Working with Lines in the Plane (Optional)

	Scatter Plots with NumPy and Matplotlib (1)
	Why the “Perturbation Technique” is Useful

	Scatter Plots with NumPy and Matplotlib (2)

	A Quadratic Scatterplot with NumPy and Matplotlib

	The Mean Squared Error (MSE) Formula
	A List of Error Types

	Nonlinear Least Squares

	Calculating the MSE Manually

	Approximating Linear Data with np.linspace()

	What are Ensemble Methods?

	Four Types of Ensemble Methods
	Bagging

	Boosting

	Stacked Models and Blending Models

	What is Bootstrapping?

	Common Boosting Algorithms

	Hyperparameter Optimization
	Grid Search

	Randomized Search

	Bayesian Optimization

	AutoML, AutoML-Zero, and AutoNLP

	Miscellaneous Topics
	What is Causality?

	What is Explainability?

	What is Interpretability?

	Summary

	Chapter 8 Classifiers in Machine Learning
	What is Classification?
	What are Classifiers?

	Common Classifiers

	Binary versus Multiclass Classification

	Multilabel Classification

	What are Linear Classifiers?

	What is kNN?
	How to Handle a Tie in kNN

	SMOTE and kNN

	kNN for Data Imputation

	What are Decision Trees?
	Trade-offs with Decision Trees

	Decision Tree Algorithms

	Decision Tree Code Samples

	Decision Trees, Gini Impurity, and Entropy

	What are Random Forests?

	What are Support Vector Machines?
	Trade-offs of SVMs

	What is a Bayesian Classifier?
	Types of Naïve Bayes Classifiers

	Training Classifiers

	Evaluating Classifiers

	Trade-offs for ML Algorithms

	What are Activation Functions?
	Why Do we Need Activation Functions?

	How Do Activation Functions Work?

	Common Activation Functions
	Activation Functions in Python

	Keras Activation Functions

	The ReLU and ELU Activation Functions
	The Advantages and Disadvantages of ReLU

	ELU

	Sigmoid, Softmax, and Hardmax Similarities
	Softmax

	Softplus

	Tanh

	Sigmoid, Softmax, and HardMax Differences

	Hyperparameters for Neural Networks
	The Loss Function Hyperparameter

	The Optimizer Hyperparameter

	The Learning Rate Hyperparameter

	The Dropout Rate Hyperparameter

	What is Backward Error Propagation?

	What is Logistic Regression?
	Setting a Threshold Value

	Logistic Regression: Important Assumptions

	Linearly Separable Data

	Keras, Logistic Regression, and Iris Dataset

	Sklearn and Linear Regression

	SciPy and Linear Regression

	Keras and Linear Regression

	Summary

	Chapter 9 NLP Applications
	What is Text Summarization?
	Extractive Text Summarization

	Abstractive Text Summarization

	Text Summarization with gensim and SpaCy

	What are Recommender Systems?
	Movie Recommender Systems

	Factoring the Rating Matrix R

	Content-Based Recommendation Systems
	Analyzing only the Description of the Content

	Building User Profiles and Item Profiles

	Collaborative Filtering Algorithm
	User–User Collaborative Filtering

	Item–Item Collaborative Filtering

	Recommender System with Surprise

	Recommender Systems and Reinforcement Learning (Optional)
	Basic Reinforcement Learning in Five Minutes

	What is RecSim?

	What is Sentiment Analysis?
	Useful Tools for Sentiment Analysis

	Aspect-Based Sentiment Analysis

	Deep Learning and Sentiment Analysis

	Sentiment Analysis with Naïve Bayes

	Sentiment Analysis in NLTK and VADER

	Sentiment Analysis with Textblob

	Sentiment Analysis with Flair

	Detecting Spam

	Logistic Regression and Sentiment Analysis

	Working with COVID-19

	What are Chatbots?
	Open Domain Chatbots

	Chatbot Types

	Logic Flow of Chatbots

	Chatbot Abuses

	Useful Links

	Summary

	Chapter 10 NLP and TF2/Keras
	Term-Document Matrix

	Text Classification Algorithms in Machine Learning

	A Keras-Based Tokenizer

	TF2 and Tokenization

	TF2 and Encoding

	A Keras-Based Word Embedding

	An Example of BoW with TF2

	The 20newsgroup Dataset

	Text Classification with the kNN Algorithm

	Text Classification with a Decision Tree Algorithm

	Text Classification with a Random Forest Algorithm

	Text Classification with the SVC Algorithm

	Text Classification with the Naïve Bayes Algorithm

	Text Classification with the kMeans Algorithm

	TF2/Keras and Word Tokenization

	TF2/Keras and Word Encodings

	Text Summarization with TF2/Keras and Reuters Dataset

	Summary

	Chapter 11 Transformer, BERT, and GPT
	What is Attention?
	Types of Word Embeddings

	Types of Attention and Algorithms

	An Overview of the Transformer Architecture
	The Transformers Library from HuggingFace

	Transformer and NER Tasks

	Transformer and QnA Tasks

	Transformer and Sentiment Analysis Tasks

	Transformer and Mask Filling Tasks

	What is T5?

	What is BERT?
	BERT Features

	How is BERT Trained?

	How BERT Differs from Earlier NLP Techniques

	The Inner Workings of BERT
	What is MLM?

	What is NSP?

	Special Tokens

	BERT Encoding: Sequence of Steps

	Subword Tokenization

	Sentence Similarity in BERT
	Word Context in BERT

	Generating BERT Tokens (1)

	Generating BERT Tokens (2)

	The BERT Family
	Surpassing Human Accuracy: deBERTa

	What is Google Smith?

	Introduction to GPT
	Installing the Transformers Package

	Working with GPT-2

	What is GPT-3?
	What is the Goal?

	GPT-3 Task Strengths and Mistakes

	GPT-3 Architecture

	GPT versus BERT

	Zero-Shot, One-Shot, and Few Shot Learners

	GPT Task Performance

	The Switch Transformer: One Trillion Parameters

	Looking Ahead

	Summary

	Appendix A Data and Statistics
	What are Datasets?
	Data Preprocessing

	Data Types

	Preparing Datasets
	Continuous versus Discrete Data

	“Binning” Continuous Data

	Scaling Numeric Data via Normalization

	Scaling Numeric Data via Standardization

	What to Look for in Categorical Data

	Mapping Categorical Data to Numeric Values

	Working with Dates

	Working with Currency

	Missing Data, Anomalies, and Outliers
	Anomalies and Outliers

	Outlier Detection

	Missing Data: MCAR, MAR, and MNAR

	What is Data Drift?

	What is Imbalanced Classification?
	Undersampling and Oversampling

	Limitations of Resampling

	What is SMOTE?
	SMOTE Extensions

	Analyzing Classifiers
	What is LIME?

	What is ANOVA?

	What is a Probability?
	Calculating the Expected Value

	Random Variables
	Discrete versus Continuous Random Variables

	Well-Known Probability Distributions

	Fundamental Concepts in Statistics
	The Mean

	The Median

	The Mode

	The Variance and Standard Deviation

	Population, Sample, and Population Variance

	Chebyshev’s Inequality

	What is a p-Value?

	The Moments of a Function (Optional)
	Skewness

	Kurtosis

	Data and Statistics
	The Central Limit Theorem

	Correlation versus Causation

	Statistical Inferences

	The Bias-Variance Trade-off
	Types of Bias in Data

	Gini Impurity, Entropy, and Perplexity
	What is Gini Impurity?

	What is Entropy?

	Calculating Gini Impurity and Entropy Values

	Multidimensional Gini Index

	What is Perplexity?

	Cross-Entropy and KL Divergence
	What is Cross Entropy?

	What is KL Divergence?

	What’s their Purpose?

	Covariance and Correlation Matrices
	Covariance Matrix

	Covariance Matrix: An Example

	Correlation Matrix

	Eigenvalues and Eigenvectors

	Calculating Eigenvectors: A Simple Example

	Gauss Jordan Elimination (Optional)

	Principal Component Analysis (PCA)
	The New Matrix of Eigenvectors

	Dimensionality Reduction

	Dimensionality Reduction Techniques
	The Curse of Dimensionality

	What are Manifolds (Optional)?

	Singular Value Decomposition (SVD)

	Locally Linear Embedding (LLE)

	UMAP

	t-SNE (“tee-snee”)

	PHATE

	Linear Versus Nonlinear Reduction Techniques

	Types of Distance Metrics

	Other Well-Known Distance Metrics
	Pearson Correlation Coefficient

	Jaccard Index (or Similarity)

	Local Sensitivity Hashing (Optional)

	What is Sklearn?
	Sklearn, Pandas, and the IRIS Dataset

	Sklearn and Outlier Detection

	What is Bayesian Inference?
	Bayes Theorem

	Some Bayesian Terminology

	What is MAP?

	Why Use Bayes Theorem?

	What are Vector Spaces?

	Summary

	Appendix B Introduction to Python
	Tools for Python
	easy_install and pip

	virtualenv

	IPython

	Python Installation

	Setting the PATH Environment Variable (Windows Only)

	Launching Python on Your Machine
	The Python Interactive Interpreter

	Python Identifiers

	Lines, Indentation, and Multilines

	Quotation and Comments in Python

	Saving Your Code in a Module

	Some Standard Modules in Python

	The help() and dir() Functions

	Compile Time and Runtime Code Checking

	Simple Data Types in Python

	Working with Numbers
	Working with Other Bases

	The chr() Function

	The round() Function in Python

	Formatting Numbers in Python

	Working with Fractions

	Unicode and UTF-8

	Working with Unicode

	Working with Strings
	Comparing Strings

	Formatting Strings in Python

	Uninitialized Variables and the Value None in Python

	Slicing and Splicing Strings
	Testing for Digits and Alphabetic Characters

	Search and Replace a String in Other Strings

	Remove Leading and Trailing Characters

	Printing Text without NewLine Characters

	Text Alignment

	Working with Dates
	Converting Strings to Dates

	Exception Handling in Python

	Handling User Input

	Python and Emojis (Optional)

	Command-Line Arguments

	Summary

	Appendix C Introduction to Regular Expressions
	What are Regular Expressions?

	Metacharacters in Python

	Character Sets in Python
	Working with “^” and “\”

	Character Classes in Python

	Matching Character Classes with the re Module

	Using the re.match() Method

	Options for the re.match() Method

	Matching Character Classes with the re.search() Method

	Matching Character Classes with the findAll() Method
	Finding Capitalized Words in a String

	Additional Matching Function for Regular Expressions

	Grouping with Character Classes in Regular Expressions

	Using Character Classes in Regular Expressions
	Matching Strings with Multiple Consecutive Digits

	Reversing Words in Strings

	Modifying Text Strings with the re Module

	Splitting Text Strings with the re.split() Method

	Splitting Text Strings Using Digits and Delimiters

	Substituting Text Strings with the re.sub() Method

	Matching the Beginning and the End of Text Strings

	Compilation Flags

	Compound Regular Expressions

	Counting Character Types in a String

	Regular Expressions and Grouping

	Simple String Matches

	Additional Topics for Regular Expressions

	Summary

	Exercises

	Appendix D Introduction to Keras
	What is Keras?
	Working with Keras Namespaces in TF 2

	Working with the tf.keras.layers Namespace

	Working with the tf.keras.activations Namespace

	Working with the keras.tf.datasets Namespace

	Working with the tf.keras.experimental Namespace

	Working with Other tf.keras Namespaces

	TF 2 Keras versus “Standalone” Keras

	Creating a Keras-Based Model

	Keras and Linear Regression

	Keras, MLPs, and MNIST

	Keras, CNNs, and cifar10

	Resizing Images in Keras

	Keras and Early Stopping (1)

	Keras and Early Stopping (2)

	Keras and Metrics

	Saving and Restoring Keras Models

	Summary

	Appendix E Introduction to TensorFlow 2
	What is TF 2?
	TF 2 Use Cases

	TF 2 Architecture: The Short Version

	TF 2 Installation

	TF 2 and the Python REPL

	Other TF 2-Based Toolkits

	TF 2 Eager Execution

	TF 2 Tensors, Data Types, and Primitive Types
	TF 2 Data Types

	TF 2 Primitive Types

	Constants in TF 2

	Variables in TF 2

	The tf.rank() API

	The tf.shape() API

	Variables in TF 2 (Revisited)
	TF 2 Variables versus Tensors

	What is @tf.function in TF 2?
	How Does @tf.function Work?

	A Caveat about @tf.function in TF 2

	The tf.print() Function and Standard Error

	Working with @tf.function in TF 2
	An Example without @tf.function

	An Example with @tf.function

	Overloading Functions with @tf.function

	What is AutoGraph in TF 2?

	Arithmetic Operations in TF 2

	Caveats for Arithmetic Operations in TF 2

	TF 2 and Built-In Functions

	Calculating Trigonometric Values in TF 2

	Calculating Exponential Values in TF 2

	Working with Strings in TF 2

	Working with Tensors and Operations in TF 2

	Second-Order Tensors in TF 2 (1)

	Second-Order Tensors in TF 2 (2)

	Multiplying Two Second-Order Tensors in TF

	Convert Python Arrays to TF Tensors
	Conflicting Types in TF 2

	Differentiation and tf.GradientTape in TF 2

	Examples of tf.GradientTape
	Using Nested Loops with tf.GradientTape

	Other Tensors with tf.GradientTape

	A Persistent Gradient Tape

	What is Trax?

	Google Colaboratory

	Other Cloud Platforms
	GCP SDK

	TF2 and tf.data.Dataset

	The TF 2 tf.data.Dataset
	Creating a Pipeline

	A Simple TF 2 tf.data.Dataset

	What are Lambda Expressions?

	Working with Generators in TF 2

	Summary

	Appendix F Data Visualization
	What is Data Visualization?
	Types of Data Visualization

	What is Matplotlib?

	Horizontal Lines in Matplotlib

	Slanted Lines in Matplotlib

	Parallel Slanted Lines in Matplotlib

	A Grid of Points in Matplotlib

	A Dotted Grid in Matplotlib

	Lines in a Grid in Matplotlib

	A Colored Grid in Matplotlib

	A Colored Square in an Unlabeled Grid in Matplotlib

	Randomized Data Points in Matplotlib

	A Histogram in Matplotlib

	A Set of Line Segments in Matplotlib

	Plotting Multiple Lines in Matplotlib

	Trigonometric Functions in Matplotlib

	Display IQ Scores in Matplotlib

	Plot a Best-Fitting Line in Matplotlib

	Introduction to Sklearn (scikit-learn)

	The Digits Dataset in Sklearn

	The Iris Dataset in Sklearn
	Sklearn, Pandas, and the Iris Dataset

	The Iris Dataset in Sklearn (Optional)

	The faces Dataset in Sklearn (Optional)

	Working with Seaborn
	Features of Seaborn

	Seaborn Built-in Datasets

	The Iris Dataset in Seaborn

	The Titanic Dataset in Seaborn

	Extracting Data from the Titanic Dataset in Seaborn (1)

	Extracting Data from the Titanic Dataset in Seaborn (2)

	Visualizing a Pandas Dataset in Seaborn

	Data Visualization in Pandas

	Summary

	Index

OEBPS/images/fig1.5.jpg
12 A

10 A

OEBPS/css/page-template.xpgt

	
		
	

	
		
	

	
		
	

	
		
	

	
		
				
			
				
		
	

	

OEBPS/images/fig1.6.jpg
40 4

201

=20 4

-40

-4

-2

OEBPS/images/fig1.4.jpg
35 4

30 4

T
0
o~

o
~

yb1ay

15 A

10

Weight

OEBPS/images/pub.jpg
(V)

MERCURY LEARNING AND INFORMATION

Dulls, Virginia
Boston, Massachusetts
‘New Delhi

OEBPS/images/Cover.jpg
NATURAL LANGUAGE PROCESSING
AND MACHINE LEARNING
FOR DEVELOPERS

OswaLD CAMPESATO

OEBPS/images/fig1.10.jpg
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

OEBPS/images/fig1.11.jpg
-1 4

=5

-1.00 -0.75 -0.50 -0.25

0.00

0.25

0.50

0.75

1.00

OEBPS/images/fig1.1.jpg
-2 <

-4

-4

-2

OEBPS/images/fig1.2.jpg
-2 4

-4

-4

-2

OEBPS/images/fig1.3.jpg
10.0

754

5.0 1

2.5

0.0

=2.5

=504

=7.5

-10.0

-4

-2

OEBPS/images/fig1.12.jpg
loss

0.18

0.16

0.14 1

0.12 4

0.10 4

0.08

0.06

0.04

0.02

20

T T

40 60
iterations (per tens)

80

T
100

OEBPS/images/fig1.13.jpg
0.18

0.16 -

0.14 A

0.12 A

0.10 4

loss

0.08

0.06

0.04

0.02

2000

4000 6000
iterations (per tens)

8000

10000

OEBPS/images/fig1.9.jpg
5.0 -

4.5 -

4.0 -

3.5:

3.0 -

2.5

2.0~

1.5:4

1.0 -

1.0

15

2.0

2.5

3.0

3.5

4.0

4.5

5.0

OEBPS/images/fig1.7.jpg
5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5~

2.0~

1.5

1.0-

1.0

15

2.0

2.5

3.0

3.5

4.0

4.5

5.0

OEBPS/images/fig1.8.jpg

