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What Is the Primary Value Proposition for This Book?



This book contains a fast-paced introduction to as much relevant information about NLP and machine learning as possible that can be reasonably included in a book of this size. Some chapters contain topics that are discussed in great detail (such as the first half of Chapter 3), and other chapters contain advanced statistical concepts that you can safely omit during your first pass through this book. The book casts a wide net to help developers who have a range of technical backgrounds, which is the rationale for the inclusion of numerous topics. Regardless of your background, please keep in mind the following point: you will not become an expert in machine learning or NLP by reading this book, and be prepared to read some of the content in this book multiple times.

However, you will be exposed to many NLP and machine learning topics, and many topics are presented in a cursory manner for two reasons. First, it’s important that you be exposed to these concepts. In some cases, you will find topics that might pique your interest, and motivate you to learn more about them through self-study; in other cases, you will probably be satisfied with a brief introduction.

Second, a full treatment of all the topics that are covered in this book would probably triple the size of this book, and few people are interested in reading 1,000-page technical books. Subsequently, the book provides a broad view of the NLP and machine learning landscape, based on the belief that this approach will be more beneficial for readers who are already experienced developers, but need to learn about NLP and machine learning.



The Target Audience



The book is intended primarily for people who have a solid background as software developers. Specifically, it is for developers who are accustomed to searching online for more detailed information about technical topics. If you are a beginner, there are other books that are more suitable for you, and you can find them by performing an online search.

The book is also intended to reach an international audience of readers with highly diverse backgrounds in various age groups. While many readers know how to read English, their native spoken language is not English (which could be their second, third, or even fourth language). Consequently, this book uses standard English rather than colloquial expressions that might be confusing to those readers. As you know, many people learn by different types of imitation, which includes reading, writing, or hearing new material. This book takes these points into consideration in order to provide a comfortable and meaningful learning experience for the intended readers.



Why Such a Massive Number of Topics in This Book?



As mentioned in the response to the previous question, this book is intended for developers who want to learn NLP concepts and machine learning. Since this encompasses people with vastly different technical backgrounds, there are readers who “don’t know what they don’t know” regarding NLP. Therefore, it exposes people to a plethora of NLP-related concepts, after which they can decide which topics to select for greater study. Consequently, this book does not have a “zero-to-hero” approach, nor is it necessary to master all the topics that are discussed in the chapters and the appendices; rather, they are a go-to source of information to help you decide where you want to invest your time and effort.

As you might already know, learning often takes place through an iterative and repetitive approach whereby the cumulative exposure leads to a greater level of comfort and understanding of technical concepts. For some readers, this will be the first step in their journey toward mastering NLP and machine learning.

Please read the document ChapterOutline.doc that provides the rationale for each chapter, as well as the sequence in which you can read the chapters in this book.



How Is the Book Organized and What Will I Learn?



Most of this book is organized as paired chapters: the first two chapters contain introductory material for NumPy and Pandas, followed by a pair of chapters that contain NLP concepts, and then another pair of chapters that contain Python code samples that illustrate the NLP concepts.

The next pair of chapters introduce machine learning concepts and algorithms (such as Decision Trees, Random Forests, and SVMs), followed by chapter nine that explores sentiment analysis, recommender systems, COVID-19 analysis, spam detection, and a short discussion regarding chatbots. The tenth chapter contains examples of performing NLP tasks using TF2 and Keras, and the eleventh chapter presents the Transformer architecture, BERT-based models, and the GPT family of models, all of which have been developed during the past three years and to varying degrees they are considered SOTA (“state of the art”).

The appendices contain introductory material (including Python code samples) for various topics, including Python 3, Regular Expressions, Keras, TF2, Matplotlib and Seaborn. The Appendix A (which is the most extensive in terms of page count) contains myriad topics, such as working with datasets that contain different types of data, handling missing data, statistical concepts, how to handle imbalanced features (SMOTE), how to analyze classifiers, variance and correlation matrices, dimensionality reduction (including SVD and t-SNE), and a section that discusses Gini impurity, entropy, and KL-divergence.



Why Is There Minimal Coverage of Deep Learning?



This book is for developers who are looking for an introduction to NLP, along with an introduction to machine learning. If you peruse the table of contents, you will see that this book covers a vast assortment of topics, and weighs in around 600 pages. Books have a “tipping point” in terms of page count, beyond which few people have the time to read 1000-page books on technical topics, especially when the field is undergoing continual innovation.

With the preceding points in mind, the inclusion of an extensive section pertaining to deep learning is beyond the scope of an introductory book, and better suited in a book called “Deep Learning and NLP” (or some other similar title).



Why Are the Code Samples Primarily in Python?



Most of the code samples are short (usually less than one page and sometimes less than half a page), and if need be, you can easily and quickly copy/paste the code into a new Jupyter notebook.

The machine learning code samples that perform more time-consuming computations are available as Python scripts as well as Jupyter notebooks. For the Python code samples that reference a CSV file, you do not need any additional code in the corresponding Jupyter notebook to access the CSV file. Moreover, the code samples execute quickly, so you won’t need to avail yourself of the free GPU that is provided in Google Colaboratory.

If you do decide to use Google Colaboratory, you can easily copy/paste the Python code into a notebook, and also use the upload feature to upload existing Jupyter notebooks. Keep in mind the following point: if the Python code references a CSV file, make sure that you include the appropriate code snippet (as explained in Chapter 1) to access the CSV file in the corresponding Jupyter notebook in Google Colaboratory.



How Much Keras Knowledge Is Needed for This Book?



Some exposure to Keras is helpful, and you can read Appendix D if Keras is new to you. In addition, one of the appendices provides an introduction to TensorFlow 2. Please keep in mind that Keras is well-integrated into TensorFlow 2 (in the tf.keras namespace), and it provides a layer of abstraction over “pure” TensorFlow that will enable you to develop prototypes more quickly.



Do I Need to Learn the Theory Portions of This Book?



Once again, the answer depends on the extent to which you plan to become involved in NLP and machine learning. In addition to creating a model, you will use various algorithms to see which ones provide the level of accuracy (or some other metric) that you need for your project. If you fall short, the theoretical aspects of machine learning can help you perform a “forensic” analysis of your model and your data, and ideally assist in determining how to improve your model.



How Were the Code Samples Created?



The code samples in this book were created and tested using Python 3 and Keras that’s built into TensorFlow 2 on a MacBook Pro with OS X 10.12.6 (macOS Sierra). Regarding their content: the code samples are derived primarily from the author for his Deep Learning and Keras graduate course. In some cases, there are code samples that incorporate short sections of code from discussions in online forums. The key point to remember is that the code samples follow the “Four Cs”: they must be Clear, Concise, Complete, and Correct to the extent that it’s possible to do so, given the size of this book.



Getting the Most from This Book



Some programmers learn well from prose, others learn well from sample code (and lots of it), which means that there’s no single style that can be used for everyone.

Moreover, some programmers want to run the code first, see what it does, and then return to the code to delve into the details (and others use the opposite approach).

Consequently, there are various types of code samples in this book: some are short, some are long, and other code samples “build” from earlier code samples.



What Do I Need to Know for This Book?



Current knowledge of Python 3.x is the most helpful skill. Knowledge of other programming languages (such as Java) can also be helpful because of the exposure to programming concepts and constructs. The less technical knowledge that you have, the more diligence will be required in order to understand the various topics that are covered.

If you want to be sure that you can grasp the material in this book, glance through some of the code samples to get an idea of how much is familiar to you and how much is new for you.



Doesn’t the Companion Disc Obviate the Need for This Book?



The companion files contain all the code samples to save you time and effort from the error-prone process of manually typing code into a text file. In addition, there are situations in which you might not have easy access to these files. Furthermore, the code samples in the book provide explanations that are not available on the companion files.

The companion files are available for downloading by writing to the publisher at info@merclearning.com.



Does This Book Contain Production-Level Code Samples?



The primary purpose of the code samples is to show you Python-based libraries for solving a variety of NLP-related tasks in conjunction with machine learning. Clarity has higher priority than writing more compact code that is more difficult to understand (and possibly more prone to bugs). If you decide to use any of the code in a production Website, you ought to subject that code to the same rigorous analysis as the other parts of your code base.



What Are the Non-Technical Prerequisites for This Book?



Although the answer to this question is more difficult to quantify, it’s especially important to have a strong desire to learn about machine learning, along with the motivation and discipline to read and understand the code samples.

Even simple machine language APIs can be a challenge the first time you encounter them, so be prepared to read the code samples several times.



How Do I Set Up a Command Shell?



If you are a Mac user, there are three ways to do so. The first method is to use Finder to navigate to Applications > Utilities and then double click on the Utilities application. Next, if you already have a command shell available, you can launch a new command shell by typing the following command:

open /Applications/Utilities/Terminal.app



A second method for Mac users is to open a new command shell on a MacBook from a command shell that is already visible simply by clicking command+n in that command shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.com/) that simulates bash commands, or use another toolkit such as MKS (a commercial product). Please read the online documentation that describes the download and installation process. Note that custom aliases are not automatically set if they are defined in a file other than the main start-up file (such as .bash_login).



Companion Files



All the code samples and figures in this book may be obtained by writing to the publisher at info@merclearning.com.



Other Books by the Author



This book contains several appendices that are portions from the following books that are also published by Mercury Learning and Information:


	Python Pocket Primer:

9781938549854


	Regular Expressions Pocket Primer:

9781683922278


	Data Cleaning Pocket Primer

9781683922179






What Are the “Next Steps” After Finishing This Book?



The answer to this question varies widely, mainly because the answer depends heavily on your objectives. If you are interested primarily in NLP, then you can learn more advanced concepts, such as attention, transformers, and the BERT-related models.

If you are primarily interested in machine learning, there are some subfields of machine learning, such as deep learning and reinforcement learning (and deep reinforcement learning) that might appeal to you. Fortunately, there are many resources available, and you can perform an Internet search for those resources. One other point: the aspects of machine learning for you to learn depend on who you are: the needs of a machine learning engineer, data scientist, manager, student, or software developer are all different.



Oswald Campesato
April 2021




CHAPTER 1

INTRODUCTION TO NUMPY



 




This chapter provides a quick introduction to the Python NumPy package that provides very useful functionality, not only for Python scripts, but also for Python-based scripts with TensorFlow. This chapter contains NumPy code samples with loops, arrays, and lists. You will also learn about dot products, the reshape() method (very useful!), how to plot with Matplotlib (discussed in Appendix F), and examples of linear regression.

The first part of this chapter briefly introduces NumPy and some of its useful features. The second part contains examples of working arrays in NumPy, and contrasts some of the APIs for lists with the same APIs for arrays. In addition, you will see how easy it is to compute the exponent-related values (square, cube, and so forth) of elements in an array.

The second part of the chapter introduces subranges, which are very useful (and frequently used) for extracting portions of datasets in machine learning tasks. In particular, you will see code samples that handle negative (-1) subranges for vectors as well as for arrays, because they are interpreted one way for vectors and a different way for arrays.

The third part of this chapter delves into other NumPy methods, including the reshape() method, which is extremely useful (and very common) when working with images files: some TensorFlow APIs require converting a 2D array of (R,G,B) values into a corresponding one-dimensional vector.

The fourth part of this chapter delves into linear regression, the mean squared error (MSE), and how to calculate MSE with the NumPy linspace() API.


What is NumPy?



NumPy is a Python module that provides many convenience methods and also better performance. NumPy provides a core library for scientific computing in Python, with performant multidimensional arrays and good vectorized math functions, along with support for linear algebra and random numbers.

NumPy is modeled after MatLab, with support for lists, arrays, and so forth. NumPy is easier to use than MatLab, and it’s very common in TensorFlow 2.x code as well as Python code. Moreover, Chapter 2 contains code samples that combine NumPy with Pandas.


Useful NumPy Features

The NumPy package provides the ndarray object that encapsulates multidimensional arrays of homogeneous data types. Many ndarray operations are performed in compiled code in order to improve performance.

NumPy arrays have the following properties:


	They have a fixed size


	Elements have the same data type


	Elements have the same size (except for objects)


	Modifying an array involves creating a new array




Now that you have a general idea about NumPy, let’s delve into some examples that illustrate how to work with NumPy arrays, which is the topic of the next section.




What are NumPy Arrays?



An array is a set of consecutive memory locations used to store data. Each item in the array is called an element. The number of elements in an array is called the dimension of the array. A typical array declaration is shown here:

arr1 = np.array([1,2,3,4,5])



The preceding code snippet declares arr1 as an array of five elements, which you can access via arr1[0] through arr1[4]. Notice that the first element has an index value of 0, the second element has an index value of 1, and so forth. Thus, if you declare an array of 100 elements, then the 100th element has index value of 99.

NOTE

The first position in a NumPy array has index 0.



NumPy treats arrays as vectors and mathematical operations are performed on an element-by-element basis. Remember the following difference: “doubling” an array multiplies each element by 2, whereas “doubling” a list appends a list to itself.

Listing 1.1 displays the contents of nparray1.py that illustrates some operations on a NumPy array.


LISTING 1.1: nparray1.py



import numpy as np

 

list1 = [1,2,3,4,5]

print(list1)

 

arr1  = np.array([1,2,3,4,5])

print(arr1)

 

list2 = [(1,2,3),(4,5,6)]

print(list2)

 

arr2  = np.array([(1,2,3),(4,5,6)])

print(arr2)



Listing 1.1 defines the variables list1 and list2 (which are Python lists), as well as the variables arr1 and arr2 (which are NumPy arrays), and prints their values. The output from launching Listing 1.1 is here:

[1, 2, 3, 4, 5]

[1 2 3 4 5]

[(1, 2, 3), (4, 5, 6)]

[[1 2 3]

[4 5 6]]



As you can see, Python lists and NumPy arrays are very easy to define, and now we’re ready to look at some loop operations for lists and arrays.



Working with Loops



Listing 1.2 displays the contents of loop1.py that illustrates how to iterate through the elements of a NumPy array and a Python list.


LISTING 1.2: loop1.py



import numpy as np

 

list = [1,2,3]

arr1 = np.array([1,2,3])

 

for e in list:

 print(e)

 

for e in arr1:

 print(e)



Listing 1.2 initializes the variable list, which is a Python list, and also the variable arr1, which is a NumPy array. The next portion of Listing 1.2 contains two loops, each of which iterates through the elements in list and arr1. As you can see, the syntax is identical in both loops. The output from launching Listing 1.2 is here:

1

2

3

1

2

3





Appending Elements to Arrays (1)



Listing 1.3 displays the contents of append1.py that illustrates how to append elements to a NumPy array and a Python list.


LISTING 1.3: append1.py



import numpy as np

 

arr1 = np.array([1,2,3])

 

# these do not work:

#arr1.append(4)

#arr1 = arr1 + [5]

 

arr1 = np.append(arr1,4)

arr1 = np.append(arr1,[5])

 

for e in arr1:

 print(e)

 

arr2 = arr1 + arr1

 

for e in arr2:

 print(e)



Listing 1.3 initializes the variable list, which is a Python list, and also the variable arr1, which is a NumPy array. The output from launching Listing 1.3 is here:

1

2

3

4

5

2

4

6

8

10





Appending Elements to Arrays (2)



Listing 1.4 displays the contents of append2.py that illustrates another example of appending elements to a NumPy array and a Python list.


LISTING 1.4: append2.py



import numpy as np

 

arr1 = np.array([1,2,3])

arr1 = np.append(arr1,4)

 

for e in arr1:

 print(e)

 

arr2 = arr1 + arr1

 

for e in arr2:

 print(e)



Listing 1.4 initializes the variable arr1, which is a NumPy array. Notice that NumPy arrays do not have an “append” method: this method is available through NumPy itself. Once again, note that one difference between Python lists and NumPy arrays: the “+” operator concatenates Python lists, whereas this operator doubles the elements in a NumPy array. The output from launching Listing 1.4 is here:

4

2

4

6





Multiply Lists and Arrays



Listing 1.5 displays the contents of multiply1.py that illustrates how to multiply elements in a Python list and a NumPy array.


LISTING 1.5: multiply1.py



import numpy as np

 

list1 = [1,2,3]

arr1  = np.array([1,2,3])

 

print('list:  ',list1)

print('arr1:  ',arr1)

print('2*list:',2*list)

print('2*arr1:',2*arr1)



Listing 1.5 contains a Python list called list and a NumPy array called arr1. The print() statements display the contents of list and arr1 as well as the result of doubling list1 and arr1. Recall that “doubling” a Python list is different from doubling a NumPy array, which you can see in the output from launching Listing 1.5:

('list:  ', [1, 2, 3])

('arr1:  ', array([1, 2, 3]))

('2*list:', [1, 2, 3, 1, 2, 3])

('2*arr1:', array([2, 4, 6]))





Doubling the Elements in a List



Listing 1.6 displays the contents of double_list1.py that illustrates one way to double the elements in a Python list.


LISTING 1.6: double_list1.py



import numpy as np

 

list1 = [1,2,3]

list2 = []

 

for e in list1:

 list2.append(2*e)

 

print('list1:',list1)

print('list2:',list2)



Listing 1.6 contains a Python list called list1 and an empty Python list called list2. The next code snippet iterates through the elements of list1 and appends them to the variable list2. The pair of print() statements display the contents of list1 and list2 to show you that they are the same. The output from launching Listing 1.6 is here:

('list: ', [1, 2, 3])

('list2:', [2, 4, 6])





Lists and Exponents



Listing 1.7 displays the contents of exponent_list1.py that illustrates how to compute exponents of the elements in a Python list.


LISTING 1.7: exponent_list1.py



import numpy as np

 

list1 = [1,2,3]

list2 = []

 

for e in list1:

 list2.append(e*e) # e*e = squared

 

print('list1:',list1)

print('list2:',list2)



Listing 1.7 contains a Python list called list1 and an empty NumPy list called list2. The next code snippet iterates through the elements of list1 and appends the square of each element to the variable list2. The pair of print() statements display the contents of list1 and list2. The output from launching Listing 1.7 is here:

('list1:', [1, 2, 3])

('list2:', [1, 4, 9])





Arrays and Exponents



Listing 1.8 displays the contents of exponent_array1.py that illustrates how to compute exponents of the elements in a NumPy array.


LISTING 1.8: exponent_array1.py



import numpy as np

 

arr1 = np.array([1,2,3])

arr2 = arr1**2

arr3 = arr1**3

 

print('arr1:',arr1)

print('arr2:',arr2)

print('arr3:',arr3)



Listing 1.8 contains a NumPy array called arr1 followed by two NumPy arrays called arr2 and arr3. Notice the compact manner in which the NumPy arr2 is initialized with the square of the elements in in arr1, followed by the initialization of the NumPy array arr3 with the cube of the elements in arr1. The three print() statements display the contents of arr1, arr2, and arr3. The output from launching Listing 1.8 is here:

('arr1:', array([1, 2, 3]))

('arr2:', array([1, 4, 9]))

('arr3:', array([ 1,  8, 27]))





Math Operations and Arrays



Listing 1.9 displays the contents of mathops_array1.py that illustrates how to compute exponents of the elements in a NumPy array.


LISTING 1.9: mathops_array1.py



import numpy as np

 

arr1 = np.array([1,2,3])

sqrt = np.sqrt(arr1)

log1 = np.log(arr1)

exp1 = np.exp(arr1)

 

print('sqrt:',sqrt)

print('log1:',log1)

print('exp1:',exp1)



Listing 1.9 contains a NumPy array called arr1 followed by three NumPy arrays called sqrt, log1, and exp1 that are initialized with the square root, the logarithm, and the exponential value of the elements in arr1, respectively. The three print() statements display the contents of sqrt, log1, and exp1. The output from launching Listing 1.9 is here:

('sqrt:', array([1.        , 1.41421356, 1.73205081]))

('log1:', array([0.        , 0.69314718, 1.09861229]))

('exp1:', array([2.71828183, 7.3890561,  20.08553692]))




Working with “-1” Subranges with Vectors

Listing 1.10 displays the contents of npsubarray2.py that illustrates how to use “-1” for ranges of elements in a NumPy array.


LISTING 1.10: npsubarray2.py



import numpy as np

 

# -1 => "all except the last element in . . ." (row or col)

 

arr1  = np.array([1,2,3,4,5])

print('arr1:',arr1)

print('arr1[0:-1]:',arr1[0:-1])

print('arr1[1:-1]:',arr1[1:-1])

print('arr1[::-1]:', arr1[::-1]) # reverse!



Listing 1.10 contains a NumPy array called arr1 followed by four print statements, each of which displays a different subrange of values in arr1. The output from launching Listing 1.10 is here:



('arr1:',       array([1, 2, 3, 4, 5]))

('arr1[0:-1]:', array([1, 2, 3, 4]))

('arr1[1:-1]:', array([2, 3, 4]))

('arr1[::-1]:', array([5, 4, 3, 2, 1]))






Working with “-1” Subranges with Arrays



Listing 1.11 displays the contents of np2darray2.py that illustrates how to select different ranges of elements in a two-dimensional NumPy array.


LISTING 1.11: np2darray2.py



import numpy as np

 

# -1 => "the last element in . . ." (row or col)

 

arr1  = np.array([(1,2,3),(4,5,6),(7,8,9),(10,11,12)])

print('arr1:',        arr1)

print('arr1[-1,:]:',  arr1[-1,:])

print('arr1[:,-1]:',  arr1[:,-1])

print('arr1[-1:,-1]:',arr1[-1:,-1])



Listing 1.11 contains a NumPy array called arr1 followed by four print statements, each of which displays a different subrange of values in arr1. The output from launching Listing 1.11 is here:

(arr1:', array([[1,  2,  3],

               [4,  5,  6],

               [7,  8,  9],

               [10, 11, 12]]))

(arr1[-1,:]]',   array([10, 11, 12]))

(arr1[:,-1]:',   array([3,  6,  9, 12]))

(arr1[-1:,-1]]', array([12]))





Other Useful NumPy Methods



In addition to the NumPy methods that you saw in the code samples prior to this section, the following (often intuitively named) NumPy methods are also very useful.

The method np.zeros() initializes an array with 0 values.

The method np.ones() initializes an array with 1 values.

The method np.empty()initializes an array with 0 values.

The method np.arange() provides a range of numbers:

The method np.shape() displays the shape of an object:

The method np.reshape()  <= very useful!

The method np.linspace() <= useful in regression

The method np.mean() computes the mean of a set of numbers:

The method np.std() computes the standard deviation of a set of numbers:

Although the np.zeros() and np.empty() both initialize a 2D array with 0, np.zeros() requires less execution time. You could also use np.full(size, 0), but this method is the slowest of the three methods.

The reshape() method and the linspace() method are very useful for changing the dimensions of an array and generating a list of numeric values, respectively. The reshape() method appears in TensorFlow code, and the linspace() method is useful for generating a set of numbers in linear regression (discussed in Chapter 8). The mean() and std() methods are useful for calculating the mean and the standard deviation of a set of numbers. For example, you can use these two methods in order to resize the values in a Gaussian distribution so that their mean is 0 and the standard deviation is 1. This process is called standardizing a Gaussian distribution.



Arrays and Vector Operations



Listing 1.12 displays the contents of array_vector.py that illustrates how to perform vector-based operations on the elements in a NumPy array.


LISTING 1.12: array_vector.py



import numpy as np

 

a = np.array([[1,2], [3, 4]])

b = np.array([[5,6], [7,8]])

 

print('a:       ', a)

print('b:       ', b)

print('a + b:   ', a+b)

print('a - b:   ', a-b)

print('a * b:   ', a*b)

print('a / b:   ', a/b)

print('b / a:   ', b/a)



print('a.dot(b):',a.dot(b))

Listing 1.12 contains two NumPy arrays called a and b followed by eight print statements, each of which displays the result of invoking various arithmetic operations on the NumPy arrays a and b. The output from launching Listing 1.12 is here:

('a    :   ', array([[1, 2], [3, 4]]))

('b    :   ', array([[5, 6], [7, 8]]))

('a + b:   ', array([[ 6,  8], [10, 12]]))

('a - b:   ', array([[-4, -4], [-4, -4]]))

('a * b:   ', array([[ 5, 12], [21, 32]]))

('a / b:   ', array([[0, 0], [0, 0]]))

('b / a:   ', array([[5, 3], [2, 2]]))

('a.dot(b):', array([[19, 22], [43, 50]]))





NumPy and Dot Products (1)



Listing 1.13 displays the contents of dotproduct1.py that illustrates how to perform the dot product on the elements in a NumPy array.


LISTING 1.13: dotproduct1.py



import numpy as np

 

a = np.array([1,2])

b = np.array([2,3])

 

dot2 = 0

for e,f in zip(a,b):

 dot2 += e*f

 

print('a:   ',a)

print('b:   ',b)

print('a*b: ',a*b)

print('dot1:',a.dot(b))

print('dot2:',dot2)



Listing 1.13 contains two NumPy arrays called a and b followed by a simple loop that computes the dot product of a and b. The next section contains five print statements that display the contents of a and b, their inner product that’s calculated in three different ways. The output from launching Listing 1.13 is here:

('a:   ', array([1, 2]))

('b:   ', array([2, 3]))

('a*b: ', array([2, 6]))

('dot1:', 8)

('dot2:', 8)





NumPy and Dot Products (2)



NumPy arrays support a “dot” method for calculating the inner product of an array of numbers, which uses the same formula that you use for calculating the inner product of a pair of vectors. Listing 1.14 displays the contents of dotproduct2.py that illustrates how to calculate the dot product of two NumPy arrays.


LISTING 1.14: dotproduct2.py



import numpy as np

 

a = np.array([1,2])

b = np.array([2,3])

 

print('a:          ',a)

print('b:          ',b)

print('a.dot(b):   ',a.dot(b))

print('b.dot(a):   ',b.dot(a))

print('np.dot(a,b):',np.dot(a,b))

print('np.dot(b,a):',np.dot(b,a))



Listing 1.14 contains two NumPy arrays called a and b followed by six print statements that display the contents of a and b, and also their inner product that’s calculated in three different ways. The output from launching Listing 1.14 is here:

('a:          ', array([1, 2]))

('b:          ', array([2, 3]))

('a.dot(b):   ', 8)

('b.dot(a):   ', 8)

('np.dot(a,b):', 8)

('np.dot(b,a):', 8)





NumPy and the “Norm” of Vectors



The norm of a vector (or an array of numbers) is the length of a vector, which is the square root of the dot product of a vector with itself. NumPy also provides the sum() and square() functions that you can use to calculate the norm of a vector.

Listing 1.15 displays the contents of array_norm.py that illustrates how to calculate the magnitude (norm) of a NumPy array of numbers.


LISTING 1.15: array_norm.py



import numpy as np

a = np.array([2,3])

asquare = np.square(a)

asqsum  = np.sum(np.square(a))

anorm1  = np.sqrt(np.sum(a*a))

anorm2  = np.sqrt(np.sum(np.square(a)))

anorm3  = np.linalg.norm(a)

 

print('a:      ',a)

print('asquare:',asquare)

print('asqsum: ',asqsum)

print('anorm1: ',anorm1)

print('anorm2: ',anorm2)

print('anorm3: ',anorm3)



Listing 1.15 contains an initial NumPy array called a, followed by the NumPy array asquare and the numeric values asqsum, anorm1, anorm2, and anorm3. The NumPy array asquare contains the square of the elements in the NumPy array a, and the numeric value asqsum contains the sum of the elements in the NumPy array asquare.

Next, the numeric value anorm1 equals the square root of the sum of the square of the elements in a. The numeric value anorm2 is the same as anorm1, computed in a slightly different fashion. Finally, the numeric value anorm3 is equal to anorm2, but as you can see, anorm3 is calculated via a single NumPy method, whereas anorm2 requires a succession of NumPy methods.

The last portion of Listing 1.15 consists of six print statements, each of which displays the computed values. The output from launching Listing 1.15 is here:

('a:      ', array([2, 3]))

('asquare:', array([4, 9]))

('asqsum: ', 13)

('anorm1: ', 3.605551275463989)

('anorm2: ', 3.605551275463989)

('anorm3: ', 3.605551275463989)





NumPy and Other Operations



NumPy provides the “*” operator to multiply the components of two vectors to produce a third vector whose components are the products of the corresponding components of the initial pair of vectors. This operation is called a Hadamard product. If you then add the components of the third vector, the sum is equal to the inner product of the initial pair of vectors.

Listing 1.16 displays the contents of otherops.py that illustrates how to perform other operations on a NumPy array.


LISTING 1.16: otherops.py



import numpy as np

 

a = np.array([1,2])

b = np.array([3,4])

 

print('a:           ',a)

print('b:           ',b)

print('a*b:         ',a*b)

print('np.sum(a*b): ',np.sum(a*b))

print('(a*b.sum()): ',(a*b).sum())



Listing 1.16 contains two NumPy arrays called a and b, followed five print statements that display the contents of a and b, their Hadamard product, and also their inner product that’s calculated in two different ways. The output from launching Listing 1.16 is here:

('a:           ', array([1, 2]))

('b:           ', array([3, 4]))

('a*b:         ', array([3, 8]))

('np.sum(a*b): ', 11)

('(a*b.sum()): ', 11)





NumPy and the reshape() Method



NumPy arrays support the reshape() method that enables you to restructure the dimensions of an array of numbers. In general, if a NumPy array contains m elements, where m is a positive integer, then that array can be restructured as an m1 x m2 NumPy array, provided that m1 and m2 are positive integers such that m1*m2 = m.

Listing 1.17 displays the contents of numpy_reshape.py that illustrates how to use the reshape() method on a NumPy array.


LISTING 1.17: numpy_reshape.py



import numpy as np

 

x = np.array([[2, 3], [4, 5], [6, 7]])

print(x.shape) # (3, 2)

 

x = x.reshape((2, 3))

print(x.shape) # (2, 3)

print('x1:',x)

 

x = x.reshape((-1))

print(x.shape) # (6,)

print('x2:',x)

 

x = x.reshape((6, -1))

print(x.shape) # (6, 1)

print('x3:',x)

 

x = x.reshape((-1, 6))

print(x.shape) # (1, 6)

print('x4:',x)



Listing 1.17 contains a 3x2 NumPy array called x, followed by a set of invocations of the reshape() method that reshape the dimensions of x. The first invocation of the reshape() method changes the shape of x from 3x2 to 2x3. The second invocation changes the shape of x from 2x3 to 6x1. The third invocation changes the shape of x from 1x6 to 6x1. The final invocation changes the shape of x from 6x1 to 1x6 again.

Each invocation of the reshape() method is followed by a print() statement so that you can see the effect of the invocation. The output from launching Listing 1.17 is here:

(3, 2)

(2, 3)

('x1:', array([[2, 3, 4],

      [5, 6, 7]]))

(6,)

('x2:', array([2, 3, 4, 5, 6, 7]))

(6, 1)

('x3:', array([,

      [3],

      [4],

      [5],

      [6],

      [7]]))



(1, 6)



Calculating the Mean and Standard Deviation



If you need to review these concepts from statistics (and perhaps also the mean, median, and mode as well), please read the appropriate section in Appendix A.

NumPy provides various built-in functions that perform statistical calculations, such as the following list of methods:

np.linspace() <= useful for regression

np.mean()

np.std()



The np.linspace()method generates a set of equally spaced numbers between a lower bound and an upper bound. The np.mean() and np.std() methods calculate the mean and standard deviation, respectively, of a set of numbers. Listing 1.18 displays the contents of sample_mean_std.py that illustrates how to calculate statistical values from a NumPy array.


LISTING 1.18: sample_mean_std.py



import numpy as np

 

x2 = np.arange(8)

print 'mean = ',x2.mean()

print 'std  = ',x2.std()

 

x3 = (x2 - x2.mean())/x2.std()

print 'x3 mean = ',x3.mean()

print 'x3 std  = ',x3.std()



Listing 1.18 contains a NumPy array x2 that consists of the first eight integers. Next, the mean() and std() that are “associated” with x2 are invoked in order to calculate the mean and standard deviation, respectively, of the elements of x2. The output from launching Listing 1.18 is here:

('a:           ', array([1, 2]))

('b:           ', array([3, 4]))




Trimmed Mean and Weighted Mean

In addition to the arithmetic mean, there are variants that are known as weighted mean and a trimmed mean (also called a truncated mean).

A trimmed mean is known as a robust estimate (i.e., a metric that is not sensitive to outliers). As a simple example of a trimmed mean, suppose that you have five scores for the evaluation of a product: simply drop the highest and lowest scores and then compute the average of the remaining three scores. If you have multiple sets of five scores, repeat the preceding process and then compute the average of the set of trimmed mean values.

A weighted mean is useful when sample data represents different groups in a dataset. Assigning a larger weight to groups that are under-represented yields a weighted mean that more accurate represents the various groups in the dataset. However, keep in mind that outliers can affect the mean as well as the weighted mean.

The weighted mean is the same as the expected value. In case you are unfamiliar with the notion of an expected value, suppose that the set P = {p1,p2,...,pn} is a probability distribution, which means that the numeric values in the set P must be nonnegative and have a sum equal to 1. In addition, suppose that V = {v1,v2,...,vn} is a set of numeric scores that are assigned to n features of a product M. The values in the set V are probably positive integers in some range (e.g., between 1 and 10).

Then the expected value E(M) for that product is computed as follows:

E(M) = p1*v1 + p2*v2 + ... + pn*vn



The preceding formula is the same formula for calculating the weighted mean of a set of numbers.



Code Sample with Mean and Standard Deviation

The code sample in this section extends the code sample in the previous section with additional statistical values, and the code can be used for any data distribution. Keep in mind that the code sample uses random numbers simply for the purposes of illustration: after you have launched the code sample, replace those numbers with values from a CSV file or some other dataset containing meaningful values.

Moreover, this section does not provide details regarding the meaning of quartiles, but you can learn about quartiles here:

https://en.wikipedia.org/wiki/Quartile

Listing 1.19 displays the contents of stat_values.py that illustrates how to display various statistical values from a NumPy array of random numbers.


LISTING 1.19: stat_values.py



import numpy as np

 

from numpy import percentile

from numpy.random import rand

 

# generate data sample

data = np.random.rand(1000)

 

# calculate quartiles, min, and max

quartiles = percentile(data, [25, 50, 75])

data_min, data_max = data.min(), data.max()

 

# print summary information

print('Minimum:  %.3f' % data_min)

print('Q1 value: %.3f' % quartiles[0])

print('Median:   %.3f' % quartiles)

print('Mean Val: %.3f' % data.mean())

print('Std Dev:  %.3f' % data.std())

print('Q3 value: %.3f' % quartiles)

print('Maximum:  %.3f' % data_max)



The data sample (shown in bold) in Listing 1.19 is from a uniform distribution between 0 and 1. The NumPy percentile() function calculates a linear interpolation between observations, which is needed to calculate the median on a sample with an even number of values. As you can surmise, the NumPy functions min() and max() calculate the smallest and largest values in the data sample. The output from launching Listing 1.19 is here:

Minimum:  0.000

Q1 value: 0.237

Median:   0.500

Mean Val: 0.495

Std Dev:  0.295

Q3 value: 0.747

Maximum:  0.999



As a prelude, Appendix F contains more detailed information about matplotlib in order to plot various charts and graphs. However, the Python code samples in the next several sections contain some rudimentary APIs from matplotlib. The code samples start with simple examples of line segments, followed by an introduction to linear regression.




Working with Lines in the Plane (Optional)



This section contains a short review of lines in the Euclidean plane, so you can skip this section if you are comfortable with this topic. A minor point that’s often overlooked is that lines in the Euclidean plane have infinite length. If you select two distinct points of a line, then all the points between those two selected points is a line segment. A ray is a “half infinite” line: when you select one point as an endpoint, then all the points on one side of the line constitutes a ray.

For example, the points in the plane whose y-coordinate is 0 is a line and also the x-axis, whereas the points between (0,0) and (1,0) on the x-axis form a line segment. In addition, the points on the x-axis that are to the right of (0,0) form a ray, and the points on the x-axis that are to the left of (0,0) also form a ray.

For simplicity this book uses the terms “line” and “line segment” interchangeably. Just in case you’re a bit fuzzy on the details, here is the equation of any (non-vertical) line in the Euclidean plane:

y = m*x + b



The value of m is the slope of the line and the value of b is the y-intercept (i.e., the point (0,b) where the nonvertical line intersects the y-axis). Alternatively, the following form for a line in the plane is a more general equation that also includes vertical lines:

a*x + b*y + c = 0



However, we won’t be working with vertical lines, so we’ll stick with the first formula. Figure 1.1 displays three horizontal lines whose equations (from top to bottom) are y = 3, y = 0, and y = -3, respectively.


[image: image]
Figure 1.1 A Graph of Three Horizontal Line Segments.

Figure 1.2 displays two slanted lines whose equations are y = x and y = −x, respectively.


[image: image]
Figure 1.2 A Graph of Two Diagonal Line Segments.

Figure 1.3 displays two slanted parallel lines whose equations are y = 2*x and y = 2*x+3, respectively.


[image: image]
Figure 1.3 A Graph of Two Slanted Parallel Line Segments.

Figure 1.4 displays a piece-wise linear graph consisting of connected line segments.

Now that you have seen some basic examples of lines in the Euclidean plane, let’s look at some code samples that use NumPy and Matplotlib to display scatter plots of points in the plane.

[image: image]
Figure 1.4 A PieceWise Linear Graph of Line Segments.



Plotting a Line with NumPy and Matplotlib



Listing 1.20 displays the contents of np_plot.py that illustrates how to plot multiple points on a line in the plane.


LISTING 1.20: np_plot.py



import numpy as np

import matplotlib.pyplot as plt

x = np.random.randn(15,1)

y = 2.5*x + 5 + 0.2*np.random.randn(15,1)

 

plt.scatter(x,y)

plt.show()



Listing 1.20 starts with two import statements, followed by the initialization of x as a set of random values via the NumPy randn() API. Next, y is assigned a range of values that consist of two parts: a linear equation with input values from the x values, which is combined with a randomization factor. Figure 1.5 displays the output generated by the code in Listing 1.20.


[image: image]
Figure 1.5 A Dataset with Potential Linear Regression.



Plotting a Quadratic with NumPy and Matplotlib



Listing 1.21 displays the contents of np_plot_quadratic.py that illustrates how to plot a quadratic function in the plane.


LISTING 1.21: np_plot_quadratic.py



import numpy as np

import matplotlib.pyplot as plt

 

x = np.linspace(-5,5,num=100)[:,None]

y = -0.5 + 2.2*x +0.3*x**3+ 2*np.random.randn(100,1)

 

plt.plot(x,y)

plt.show()



Listing 1.21 starts with two import statements, followed by the initialization of x as a range of values via the NumPy linspace() API. Next, y is assigned a range of values that fit a quadratic equation, which are based on the values for the variable x. Figure 1.6 displays the output generated by the code in Listing 1.21.

Now that you have seen an assortment of line graphs and scatterplots, let’s delve into linear regression, which is the topic of the next section.

[image: image]
Figure 1.6 A Dataset with Potential Linear Regression.



What is Linear Regression?



Linear regression finds the equation of the best-fitting hyperplane that approximates a dataset, where a hyperplane has degree one less than the dimensionality of the dataset. In particular, if the dataset is in the Euclidean plane, the hyperplane is simply a line; if the dataset is in 3D the hyperplane is a plane.

Linear regression is suitable when the points in a dataset are distributed in such a way that they can reasonably be approximated by a hyperplane. If not, then you can try to fit other types of surfaces to the points in the dataset.

Keep in mind two other details. First, the best-fitting hyperplane does not necessarily intersect all (or even most of) the points in the dataset. In fact, the best-fitting hyperplane might not intersect any points in the dataset. The purpose of a best-fitting hyperplane is to approximate the points in dataset as closely as possible. Second, linear regression is not the same as curve fitting, which attempts to find a polynomial that passes through a set of points.

Some details about curve fitting: given n points in the plane (no two of which have the same x value), there is a polynomial of degree less than or equal to n-1 that passes through those points. Thus, a line (which has degree one) will pass through any pair of non-vertical points in the plane. For any triple of points in the plane, there is a quadratic equation or a line that passes through those points.

In some cases a lower degree polynomial is available. For instance, consider the set of 100 points of the form (x, x): The x value equals the y value, and the line y = x (a polynomial of degree one) passes through all of those points.

However, keep in mind that the extent to which a line “represents” a set of points in the plane depends on how closely those points can be approximated by a line.


What is Multivariate Analysis?

Multivariate analysis generalizes the equation of a line in the Euclidean plane, and it has the following form:

y = w1*x1 + w2*x2 + . . . + wn*xn + b



As you can see, the preceding equation contains a linear combination of the variables x1, x2, . . ., xn. In this book, we will usually work with datasets that involve lines in the Euclidean plane.



What about Nonlinear Datasets?

Simple linear regression finds the best-fitting line that approximates a dataset, but what happens if the dataset does not fit a line in the plane? This is an excellent question! In such a scenario, we look for other curves to approximate the dataset, such a quadratic, cubic, or higher-degree polynomials. However, these alternatives involve trade-offs, as we’ll discuss later.

Another possibility is to use a continuous piece-wise linear function, which is a function that comprises a set of line segments, where adjacent line segments are connected. If one or more pairs of adjacent line segments are not connected, then it’s a piece-wise linear function (i.e., the function is discontinuous). In either case, line segments have degree one, which involves lower computational complexity than higher order polynomials.

Thus, given a set of points in the plane, try to find the “best fitting” line that approximates those points, after addressing the following questions:


	How do we know that a line “fits” the data?


	What if a different type of curve is a better fit?


	What does “best fit” mean?




One way to check if a line fits the data well is through a simple visual check: display the data in a graph and if the data conforms to the shape of a line reasonably well, then a line might be a good fit. However, this is a subjective decision, and a sample dataset that does not fit a line is displayed in Figure 1.7.

Figure 1.7 displays a dataset containing four points that do not fit a line.

[image: image]
Figure 1.7 A Nonlinear Dataset.

However, if a line does not appear to be a good fit for the data, then perhaps a quadratic or cubic (or even higher degree) polynomial has the potential of being a better fit. Let’s defer the nonlinear scenario and let’s make the assumption that a line would be a good fit for the data. There is a well-known technique for finding the “best fitting” line for such a dataset, and it’s called mean squared error (MSE).




The MSE Formula



Figure 1.8 displays the formula for the MSE. Translated into English: the MSE is the average of the sum of the squares of the difference between an actual y value and the predicted y value, where the latter is the y value that each datapoint would have if that datapoint were actually on the best-fitting line.

Figure 1.8 displays the formula for MSE (Mean Squared Error) for calculating the best-fitting line for a set of points in the plane.

[image: image]
Figure 1.8 The MSE Formula.


Other Error Types

Although we will only discuss MSE for linear regression in this book, there are other types of formulas that you can use for linear regression, some of which are listed here:


	MSE


	RMSE


	RMSPROP


	MAE




The MSE is the basis for the preceding error types. For example, root mean squared error (RMSE) is the square root of MSE.

However, mean absolute error (MAE) is the average of the sum of the absolute value of the differences of the y terms (not the square of the differences of the y terms).

The RMSProp optimizer utilizes the magnitude of recent gradients to normalize the gradients. Maintain a moving average over the RMS gradients, and then divide that term by the current gradient.

Although it’s easier to compute the derivative of MSE (because it’s a differentiable function), it’s also true that MSE is more susceptible to outliers, more so than MAE. The reason is simple: a squared term can be significantly larger than adding the absolute value of a term. For example, if a difference term is 10, then the squared term 100 is added to MSE, whereas only 10 is added to MAE. Similarly, if a difference term is −20, then the squared term 400 is added to MSE, whereas only 20 (which is the absolute value of −20) is added to MAE.



Nonlinear Least Squares

When predicting housing prices, where the dataset contains a wide range of values, techniques such as linear regression or random forests can cause the model to overfit (discussed in Chapter 7), which means that the model does not generalize well to other datasets.

In this scenario, you can try an error metric such as relative error that reduces the importance of fitting the samples with the largest values. This technique is called non-linear least squares, which may use a log-based transformation of labels and predicted values.




Calculating the MSE Manually



Let’s look at two simple graphs, each of which contains a line that approximates a set of points in a scatter plot. Notice that the line segment is the same for both sets of points, but the datasets are slightly different. We will manually calculate the MSE for both datasets and determine which value of MSE is smaller.

Figure 1.9 displays a set of points and a line that is a potential candidate for best-fitting line for the data.

[image: image]
Figure 1.9 A Line Graph that Approximates Points of a Scatter Plot.

The MSE for the line in Figure 1.9 is computed as follows:

MSE = [(-2)*(-2) + 2*2]/7 = 8/7



Look at Figure 1.10 that also displays a set of points and a line that is a potential candidate for best-fitting line for the data.


[image: image]
Figure 1.10 A Line Graph that Approximates Points of a Scatter Plot.

The MSE for the line in Figure 1.10 is computed as follows:

MSE = [1*1 + (-1)*(-1) + (-1)*(-1) + 1*1]/7 = 4/7



Thus, the line in Figure 1.10 has a smaller MSE than the line in Figure 1.9, which might have surprised you (or did you guess correctly?)

In these two figures we calculated the MSE easily and quickly, but in general it’s significantly more tedious. For instance, if we plot 10 points in the Euclidean plane that do not closely fit a line, with individual terms that involve non-integer values, we would probably need a calculator. A better solution involves NumPy functions, as discussed in the next section.



Find the Best-Fitting Line with NumPy



Earlier in this chapter you saw examples of lines in the plane, including horizontal, slanted, and parallel lines. Most of those lines have a positive slope and a non-zero value for their y-intercept. Although there are scatterplots of datapoints in the plane where the best-fitting line has a negative slope, the examples in this book involve scatterplots whose best-fitting line has a positive slope.

Listing 1.22 displays the contents of plot_best_fit2.py that illustrates how to determine the bestfitting line for a set of points in the Euclidean plane. The solution is based on so-called “closed form” formulas that are available from Statistics.


LISTING 1.22: plot_best_fit2.py



import numpy as np

 

xs = np.array([1,2,3,4,5], dtype=np.float64)

ys = np.array([1,2,3,4,5], dtype=np.float64)

 

def best_fit_slope(xs,ys):

 m = (((np.mean(xs)*np.mean(ys))-np.mean(xs*ys)) /

      ((np.mean(xs)**2) - np.mean(xs**2)))

 b = np.mean(ys) - m * np.mean(xs)

 

 return m, b

 

m,b = best_fit_slope(xs,ys)

print('m:',m,'b:',b)



Listing 1.22 starts with two NumPy arrays xs and ys that are initialized with the first five positive integers. The Python function best_fit_slope() calculate the optimal values of m (the slope) and b (the y-intercept) of a set of numbers. The output from Listing 1.22 is here:

m: 1.0 b: 0.0



Notice that the NumPy arrays xs and ys are identical, which means that these points lie on the line y=x whose slope is 1. By simple extrapolation, the point (0,0) is also a point on the same line. Hence, the y-intercept of this line must equal 0.

Figure 1.11 displays another line segment that approximates a scatter plot consisting of a larger number of points.

[image: image]
Figure 1.11 A Line Graph that Approximates a Generalized Scatter Plot.

If you are really interested, you can search online to find the derivation for the values of m and b. In this chapter we’re going to skip the derivation, and proceed with examples of calculating the MSE. The first example involves calculating the MSE manually, followed by an example that uses NumPy formulas to perform the calculations.



Calculating MSE by Successive Approximation (1)



This section contains a code sample that uses a simple technique for successively determining better approximations for the slope and y-intercept of a best-fitting line. Recall that an approximation of a derivative is the ratio of “delta y” divided by “delta x.” The delta values calculate the difference of the y values and the difference of the x values, respectively, of two nearby points (x1,y1) and (x2,y2) on a function. Hence, the delta-based approximation ratio is (y2-y1)/(x2-x1).

The technique in this section involves a simplified approximation for the delta values: we assume that the denominators are equal to 1. As a result, we need only calculate the numerators of the “delta” values: in this code sample, those numerators are the variables dw and db.

Listing 1.23 displays the contents of plain_linreg1.py that illustrates how to compute the MSE with simulated data.


LISTING 1.23: plain_linreg1.py



import numpy as np

import matplotlib.pyplot as plt

 

X = [0,0.12,0.25,0.27,0.38,0.42,0.44,0.55,0.92,1.0]

Y = [0,0.15,0.54,0.51,0.34,0.1, 0.19,0.53,1.0,0.58]

 

losses = []

 

#Step 1: Parameter initialization

W = 0.45 # the initial slope

b = 0.75 # the initial y-intercept

 

for i in range(1, 100):

 #Step 2: Calculate Loss

 Y_pred = np.multiply(W, X) + b

 loss_error = 0.5 * (Y_pred - Y)**2

 loss = np.sum(loss_error)/10

 

 #Step 3: Calculate dw and db

 db = np.sum((Y_pred - Y))

 dw = np.dot((Y_pred - Y), X)

 losses.append(loss)

 

 #Step 4: Update parameters:

 W = W - 0.01*dw

 b = b - 0.01*db

 

 if i%10 == 0:

   print("Loss at", i,"iteration = ", loss)

 

#Step 5: Repeat via a for loop with 1000 iterations

 

#Plot loss versus # of iterations

print("W = ", W,"& b = ",  b)

plt.plot(losses)

plt.ylabel('loss')

plt.xlabel('iterations (per tens)')

plt.show()



Listing 1.23 defines the variables X and Y that are simple arrays of numbers (this is our dataset). Next, the losses array is initialized as an empty array, and we will append successive loss approximations to this array. The variables W and b correspond to the slope and y-intercept, and they are initialized with the values 0.45 and 0.75, respectively (feel free to experiment with these values).

The next portion of Listing 1.23 is a for loop that executes 100 times. During each iteration, the variables Y_pred, loss_error, and loss are computed, and they correspond to the predicted value, the error, and the loss, respectively. (Remember: we are performing linear regression). The value of loss (which is the error for the current iteration) is then appended to the losses array.

Next, the variables dw and db are calculated: these correspond to “delta w” and “delta b” that we’ll use to update the values of W and b, respectively. The code is reproduced here:

#Step 4: Update parameters:

W = W - 0.01*dw

b = b - 0.01*db



Notice that dw and db are both multiplied by the value 0.01, which is the value of our “learning rate” (you can experiment with this value as well).

The next code snippet displays the current loss, which is performed every tenth iteration through the loop. When the loop finishes execution, the values of W and b are displayed, and a plot is displayed that shows the loss values on the vertical axis and the loop iterations on the horizontal axis. The output from Listing 1.23 is here:

Loss at 10 iteration =  0.04114630674619491

Loss at 20 iteration =  0.026706242729839395

Loss at 30 iteration =  0.024738889446900423

Loss at 40 iteration =  0.023850565034634254

Loss at 50 iteration =  0.0231499048706651

Loss at 60 iteration =  0.02255361434242207

Loss at 70 iteration =  0.0220425055291673

Loss at 80 iteration =  0.021604128492245713

Loss at 90 iteration =  0.021228111750568435

W =  0.47256473531193927 & b =  0.19578262688662174



Figure 1.12 displays the plot of loss-versus-iterations for Listing 1.23.


[image: image]
Figure 1.12 A Plot of Loss-versus-Iterations.



Calculating MSE by Successive Approximation (2)



In the previous section, you saw how to calculate “delta” approximations in order to determine the equation of a best-fitting line for a set of points in a 2D plane. The example in this section generalizes the code in the previous section by adding an outer loop that represents the number of epochs. The number of epochs specifies the number of times that an inner loop is executed.

Listing 1.24 displays the contents of plain_linreg2.py that illustrates how to compute the MSE with simulated data.


LISTING 1.24: plain_linreg2.py



import numpy as np

import matplotlib.pyplot as plt

 

# %matplotlib inline

X = [0,0.12,0.25,0.27,0.38,0.42,0.44,0.55,0.92,1.0]

Y = [0,0.15,0.54,0.51, 0.34,0.1,0.19,0.53,1.0,0.58]

 

#uncomment to see a plot of X versus Y values

#plt.plot(X,Y)

#plt.show()

 

losses = []

#Step 1: Parameter initialization

W = 0.45

b = 0.75



epochs = 100

lr = 0.001

 

for j in range(1, epochs):

 for i in range(1, 100):

   #Step 2: Calculate Loss

   Y_pred = np.multiply(W, X) + b

   Loss_error = 0.5 * (Y_pred - Y)**2

   loss = np.sum(Loss_error)/10

 

   #Step 3: Calculate dW and db

   db = np.sum((Y_pred - Y))

   dw = np.dot((Y_pred - Y), X)

   losses.append(loss)

 

   #Step 4: Update parameters:

   W = W - lr*dw

   b = b - lr*db

 

   if i%50 == 0:

     print("Loss at epoch", j,"= ", loss)

 

#Plot loss versus # of iterations

print("W = ", W,"& b = ",  b)

plt.plot(losses)

plt.ylabel('loss')

plt.xlabel('iterations (per tens)')

plt.show()



Compare the new contents of Listing 1.24 (shown in bold) with the contents of Listing 1.23: the changes are minimal, and the main difference is to execute the inner loop 100 times for each iteration of the outer loop, which also executes 100 times. The output from Listing 1.24 is here:

('Loss at epoch', 1, '= ', 0.07161762489862147)

('Loss at epoch', 2, '= ', 0.030073922512586938)

('Loss at epoch', 3, '= ', 0.025415528992988472)

('Loss at epoch', 4, '= ', 0.024227826373677794)

('Loss at epoch', 5, '= ', 0.02346241967071181)

('Loss at epoch', 6, '= ', 0.022827707922883803)

('Loss at epoch', 7, '= ', 0.022284262669854064)

('Loss at epoch', 8, '= ', 0.02181735173716673)

('Loss at epoch', 9, '= ', 0.021416050179776294)

('Loss at epoch', 10, '= ', 0.02107112540934384)

// details omitted for brevity

('Loss at epoch', 90, '= ', 0.018960749188638278)

('Loss at epoch', 91, '= ', 0.01896074755776306)

('Loss at epoch', 92, '= ', 0.018960746155994725)

('Loss at epoch', 93, '= ', 0.018960744951148113)

('Loss at epoch', 94, '= ', 0.018960743915559485)

('Loss at epoch', 95, '= ', 0.018960743025451313)

('Loss at epoch', 96, '= ', 0.018960742260386375)

('Loss at epoch', 97, '= ', 0.018960741602798474)

('Loss at epoch', 98, '= ', 0.018960741037589136)

('Loss at epoch', 99, '= ', 0.018960740551780944)

('W = ', 0.6764145874436108, '& b = ', 0.09976839618922698)



Figure 1.13 displays the plot of loss-versus-iterations for Listing 1.24.

[image: image]
Figure 1.13 A Plot of Loss-versus-Iterations.

Notice that Figure 1.13 has 10,000 iterations on the horizontal axis, whereas Figure 1.12 has only 100 iterations on the horizontal axis.



What is Jax?



Jax is an open source package that uses more modern techniques to speed up NumPy and Python computations on CPUs, GPUS, and TPUs, which is probably why Jax has been called “NumPy on steroids”. The Jax documentation is here:

https://jax.readthedocs.io/en/latest/developer.html

You can build Jax in two steps from its source code (with or without CUDA) as described in the preceding link, or you can install Jax on your machine via pip3, as shown here:

pip3 install jaxlib



Jax is also the default for Trax (see Appendix E), and you can also set Jax in Google Colaboratory.

In case you’re interested, tf.experimental.numpy implements NumPy on TensorFlow, as described here:

https://www.tensorflow.org/api_docs/python/tf/experimental/numpy



Google Colaboratory



Depending on the hardware, GPU-based TF 2 code can be 10 times faster than CPU-based TF 2 code. However, the price of a good GPU can be a significant factor. Although NVIDIA provides GPUs, those consumer-based GPUs are not optimized for multi-GPU support (which is supported by TF 2).

Fortunately Google Colaboratory is an affordable alternative that provides free GPU support, and also runs as a Jupyter notebook environment. In addition, Google Colaboratory executes your code in the cloud and involves zero configuration, and it’s available here:

https://colab.research.google.com/notebooks/welcome.ipynb

The preceding Jupyter notebook is suitable for training simple models and testing ideas quickly. Google Colaboratory makes it easy to upload local files, install software in Jupyter notebooks, and even connect Google Colaboratory to a Jupyter runtime on your local machine.

Some of the supported features of Colaboratory include TF 2 execution with GPUs, visualization using Matplotlib, and the ability to save a copy of your Google Colaboratory notebook to Github by using File > Save a copy to GitHub.

Moreover, you can load any Jupyter notebook on GitHub by just adding the path to the URL colab.research.google.com/github/ (see the Colaboratory website for details).

Google Colaboratory has support for other technologies such as HTML and SVG, enabling you to render SVG-based graphics in notebooks that are in Google Colaboratory. In case you’re interested, you can launch Tensorboard inside a Google Colaboratory notebook with the following command (replace the specified directory with your own location):

%tensorboard --logdir /logs/images



Keep in mind the following details about Google Colaboratory. First, whenever you connect to a server in Google Colaboratory, you start what’s known as a session. You can execute the code in a session with a CPU (the default), a GPU, or a TPU, and you can execute your code without any time limit for your session. However, if you select the GPU option for your session, only the first 12 hours of GPU execution time are free. Any additional GPU time during that same session incurs a small charge (see the website for those details).

The other point to keep in mind is that any software that you install in a Jupyter notebook during a given session will not be saved when you exit that session. For example, the following code snippet installs TFLearn in a Jupyter notebook:

!pip install tflearn



When you exit the current session and at some point later you start a new session, you need to install TFLearn again, as well as any other software (such as Github repositories) that you also installed in any previous session.

Incidentally, you can also run TF 2 code and TensorBoard in Google Colaboratory, with support for CPUs, GPUs, and TPU. Navigate to this link for more information:

https://colab.research.google.com


Uploading CSV Files in Google Colaboratory

Listing 1.25 displays the contents upload_csv_file.ipynb that illustrates how to upload a CSV file in a Google Colaboratory notebook.


LISTING 1.25: upload_csv_file.ipynb



import pandas as pd

 

from google.colab import files

uploaded = files.upload()

df = pd.read_csv("weather_data.csv")

print("dataframe df:")

df



Listing 1.25 uploads the CSV file weather_data.csv whose contents are not shown here because they are not important for this example. The code shown in bold is the Colaboratory-specific code that is required to upload the CSV file. When you launch this code, you will see a small button labeled “Browse,” which you must click and then select the CSV file that is listed in the code snippet. After doing so, the rest of the code is executed and you will see the contents of the CSV file displayed in your browser session.




Summary



This chapter introduced you to the NumPy package for Python. You learned how to write Python scripts containing loops, arrays, and lists. You also saw how to work with dot products, the reshape() method, plotting with Matplotlib (discussed in more detail in Appendix F), and examples of linear regression.

Then you learned how to work with subranges of arrays, and also negative subranges of vectors and arrays, both of which are very useful for extracting portions of datasets in machine learning tasks. You also saw various other NumPy operations, such as the reshape() method that is extremely useful (and very common) when working with images files.

Next, you learned how to use NumPy for linear regression, the mean squared error (MSE), and how to calculate MSE with the NumPy linspace() method. Finally, you learned about Google Colaboratory, which provides CPU, GPU, and TPU support for the execution of Jupyter notebooks in the cloud.






CHAPTER 2

INTRODUCTION TO PANDAS



 




This chapter introduces you to Pandas and provides various code samples that illustrate some of its useful features. As you will see, the purpose of each section is self-explanatory, and they have a succinct style that focuses on the code samples. If you are familiar with these topics, feel free to skim through the material and peruse the code samples, just in case they contain some new information.

The first part of this chapter contains a brief introduction to Pandas and some of its useful features. This section contains code samples that illustrate some features of data frames and a brief discussion of series, which are two of the main features of Pandas.

The second part of this chapter discusses various types of data frames that you can create, such as numeric and Boolean data frames. In addition, you will see examples of creating data frames with NumPy functions and random numbers. You will also see examples of converting between Python dictionaries and JSON-based data, and also how to create a Pandas data frame from JSON-based data.


What is Pandas?



Pandas is a Python package that is compatible with other Python packages, such as NumPy, Matplotlib, and so forth. Install Pandas by opening a command shell and invoking this command for Python 3.x:

pip3 install pandas



In many ways the semantics of the APIs in the Pandas library are similar to a spreadsheet, along with support for xsl, xml, html, csv file types. Pandas provides a data type called a DataFrame with extremely powerful functionality, which is discussed in the next section.

Pandas data frames support a variety of input types, such as ndarrays, lists, dicts, or Series.

Pandas also provides another data type called Pandas Series that provides another mechanism for managing data. In addition to performing an online for more details regarding Series, the following article contains a good introduction:

https://towardsdatascience.com/20-examples-to-master-pandas-series-bc4c68200324



Pandas Options and Settings

You can change default values of environment variables in Pandas, an example of which is shown here:

import pandas as pd

display_settings = {

   'max_columns': 8,

   'expand_frame_repr': True,  # Wrap to multiple pages

   'max_rows': 20,

   'precision': 3,

   'show_dimensions': True

}

 

for op, value in display_settings.items():

pd.set_option("display.{}".format(op), value)



Include the preceding code block in your own code if you want Pandas to display a maximum of 20 rows and 8 columns, and floating point numbers displayed with 3 decimal places. Set expand_frame_rep to True if you want the output to “wrap around” to multiple pages. The preceding for loop iterates through display_settings and sets the options equal to their corresponding values.

In addition, the following code snippet displays all Pandas options and their current values in your code:

print(pd.describe_option())



There are various other operations that you can perform with options and their values (such as the pd.reset() method for resetting values), as described in the Pandas user guide:

https://pandas.pydata.org/pandas-docs/stable/user_guide/options.html



Pandas Data Frames

In simplified terms, a Pandas data frame is a two-dimensional data structure, and it’s convenient to think of the data structure in terms of rows and columns. Data frames can be labeled (rows as well as columns), and the columns can contain different data types. The source of the dataset for a Pandas data frame can be a data file, a database table, a web service, and so forth. Pandas data frame features include:


	Data Frame Methods


	Data Frame Statistics


	Grouping, Pivoting, and Reshaping


	Handle Missing Data


	Join Data Frames




The Pandas code samples in this chapter show you almost all the features in the preceding list.



Data Frames and Data Cleaning Tasks

The specific tasks that you need to perform depend on the structure and contents of a dataset. In general you will perform a workflow with the following steps, not necessarily always in this order (and some might be optional). All of the following steps can be performed with a Pandas data frame:


	Read data into a data frame


	Display top of data frame


	Display column data types


	Display nonmissing values


	Replace NA with a value


	Iterate through the columns


	Statistics for each column


	Find Missing Values


	Total missing values


	Percentage of missing values


	Sort table values


	Print summary information


	Columns with > 50% missing


	Rename columns




This chapter contains sections that illustrate how to perform many of the steps in the preceding list.



Alternatives to Pandas

Before delving into Pandas code samples, there are alternatives to Pandas that offer very useful features, some of which are in the following list:


	PySpark (for large datasets)


	Dask (for distributed processing)


	Modin (faster performance)


	Datatable (R data.table for Python)




The inclusion of these alternatives is not intended to diminish Pandas: indeed, you might not need any of the functionality in the preceding list. However, you might need such functionality in the future, so it’s worthwhile for you to know about these alternatives now (and there may be even more powerful alternatives at some point in the future).



A Pandas Data Frame with NumPy Example



Listing 2.1 displays the contents of pandas_df.py that illustrates how to define several Pandas data frames and display their contents.


LISTING 2.1: pandas_df.py



import pandas as pd

import numpy as np

 

myvector1 = np.array([1,2,3,4,5])

print("myvector1:")

print(myvector1)

print()

 

mydf1 = pd.DataFrame(myvector1)

print("mydf1:")

print(mydf1)

print()

 

myvector2 = np.array([i for i in range(1,6)])

print("myvector2:")

print(myvector2)

print()

 

mydf2 = pd.DataFrame(myvector2)

print("mydf2:")

print(mydf2)

print()

 

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])

print("myarray:")

print(myarray)

print()

 

mydf3 = pd.DataFrame(myarray)

print("mydf3:")

print(mydf3)

print()



Listing 2.1 starts with standard import statements for Pandas and NumPy, followed by the definition of two one-dimensional NumPy arrays and a two-dimensional NumPy array. The NumPy syntax ought to be familiar to you from the examples in Chapter 1. Each NumPy variable is followed by a corresponding Pandas data frame mydf1, mydf2, and mydf3. Now launch the code in Listing 2.1 and you will see the following output, and you can compare the NumPy arrays with the Pandas data frames:

myvector1:

[1 2 3 4 5]

 

mydf1:

   0

0  1

1  2

2  3

3  4

4  5

 

myvector2:

[1 2 3 4 5]

 

mydf2:

  0

0  1

1  2

2  3

3  4

4  5

 

myarray:

[[  10   30   20]

[  50   40   60]

[1000 2000 3000]]

 

mydf3:

     0     1     2

0    10    30    20

1    50    40    60

2  1000  2000  3000



By contrast, the following code block illustrates how to define a Pandas Series:

names = pd.Series(['SF', 'San Jose', 'Sacramento'])

sizes = pd.Series([852469, 1015785, 485199])

df = pd.DataFrame({ 'Cities': names, 'Size': sizes })

print(df)



Create a Python file with the preceding code (along with the required import statement) and when you launch that code you will see the following output:

   City name    sizes

0          SF   852469

1    San Jose  1015785

2  Sacramento   485199





Describing a Pandas Data Frame



Listing 2.2 displays the contents of pandas_df_describe.py that illustrates how to define a Pandas Data frame that contains a 3×3 NumPy array of integer values, where the rows and columns of the data frame are labeled. Various other aspects of the data frame are also displayed.


LISTING 2.2: pandas_df_describe.py



import numpy as np

import pandas as pd

 

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])

 

rownames = ['apples', 'oranges', 'beer']

colnames = ['January', 'February', 'March']

 

mydf = pd.DataFrame(myarray, index=rownames, columns=colnames)

print("contents of df:")

print(mydf)

print()

 

print("contents of January:")

print(mydf['January'])

print()

 

print("Number of Rows:")

print(mydf.shape[0])

print()

 

print("Number of Columns:")

print(mydf.shape)

print()

 

print("Number of Rows and Columns:")

print(mydf.shape)

print()

 

print("Column Names:")

print(mydf.columns)

print()

 

print("Column types:")

print(mydf.dtypes)

print()

 

print("Description:")

print(mydf.describe())

print()



Listing 2.2 starts with two standard import statements followed by the variable myarray, which is a 3×3 NumPy array of numbers. The variables rownames and colnames provide names for the rows and columns, respectively, of the Pandas data frame mydf, which is initialized as a Pandas data frame with the specified datasource (i.e., myarray).

The first portion of the output below requires a single print statement (which simply displays the contents of mydf). The second portion of the output is generated by invoking the describe() method that is available for any Pandas data frame. The describe() method is very useful: you will see various statistical quantities, such as the mean, standard deviation minimum, and maximum performed by columns (not rows), along with values for the 25th, 50th, and 75th percentiles. The output of Listing 2.2 is here:

contents of df:

        January  February  March

apples        10        30     20

oranges       50        40     60

beer        1000      2000   3000

 

contents of January:

apples       10

oranges      50

beer       1000

Name: January, dtype: int64

 

Number of Rows:

3

 

Number of Columns:

3

 

Number of Rows and Columns:

(3, 3)

 

Column Names:

Index(['January', 'February', 'March'], dtype='object')

 

Column types:

January     int64

February    int64

March       int64

dtype: object

 

Description:

          January     February        March

count     3.000000     3.000000     3.000000

mean    353.333333   690.000000  1026.666667

std     560.386771  1134.504297  1709.073823

min      10.000000    30.000000    20.000000

25%      30.000000    35.000000    40.000000

50%      50.000000    40.000000    60.000000

75%     525.000000  1020.000000  1530.000000

max    1000.000000  2000.000000  3000.000000





Pandas Boolean Data Frames



Pandas supports Boolean operations on Data frames, such as the logical OR, the logical AND, and the logical negation of a pair of Data frames. Listing 2.3 displays the contents of pandas_boolean_df.py that illustrates how to define a Pandas data frame whose rows and columns are Boolean values.


LISTING 2.3: pandas_boolean_df.py



import pandas as pd

 

df1 = pd.DataFrame({'a': [1, 0, 1], 'b': [0, 1, 1] }, dtype=bool)

df2 = pd.DataFrame({'a': [0, 1, 1], 'b': [1, 1, 0] }, dtype=bool)

 

print("df1 & df2:")

print(df1 & df2)

 

print("df1 | df2:")

print(df1 | df2)

 

print("df1 ^ df2:")

print(df1 ^ df2)



Listing 2.3 initializes the Data frames df1 and df2, and then computes df1 & df2, df1 | df2, df1 ^ df2, which represent the logical AND, the logical OR, and the logical negation, respectively, of df1 and df2. The output from launching the code in Listing 2.3 is here:

df1 & df2:

      a      b

0  False  False

1  False   True

2   True  False

df1 | df2:

     a     b

0  True  True

1  True  True

2  True  True

df1 ^ df2:

      a      b

0   True   True

1   True  False

2  False   True





Transposing a Pandas Data Frame

The T attribute (as well as the transpose function) enables you to generate the transpose of a Pandas data frame, similar to a NumPy ndarray. The transpose operation switches rows to columns and columns to rows. For example, the following code snippet defines a Pandas data frame df1 and then displays the transpose of df1:

df1 = pd.DataFrame({'a': [1, 0, 1], 'b': [0, 1, 1] }, dtype=int)

 

print("df1.T:")

print(df1.T)



The output is here:

df1.T:

   0  1  2

a  1  0  1

b  0  1  1



The following code snippet defines Pandas data frames df1 and df2 and then displays their sum:

df1 = pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, dtype=int)

df2 = pd.DataFrame({'a' : [3, 3, 3], 'b' : [5, 5, 5] }, dtype=int)

 

print("df1 + df2:")

print(df1 + df2)



The output is here:

df1 + df2:

   a  b

0  4  5

1  3  6

2  4  6





Pandas Data Frames and Random Numbers



Listing 2.4 displays the contents of pandas_random_df.py that illustrates how to create a Pandas data frame with random numbers.


LISTING 2.4: pandas_random_df.py



import pandas as pd

import numpy as np

 

df = pd.DataFrame(np.random.randint(1, 5, size=(5, 2)), columns=['a','b'])

df = df.append(df.agg(['sum', 'mean']))

 

print("Contents of data frame:")

print(df)



Listing 2.4 defines the Pandas data frame df that consists of 5 rows and 2 columns of random integers between 1 and 5. Notice that the columns of df are labeled “a” and “b.” In addition, the next code snippet appends two rows consisting of the sum and the mean of the numbers in both columns. The output of Listing 2.4 is here:

         a    b

0      1.0  2.0

1      1.0  1.0

2      4.0  3.0

3      3.0  1.0

4      1.0  2.0

sum   10.0  9.0

mean   2.0  1.8



Listing 2.5 displays the contents of pandas_combine_df.py that illustrates how to combine Pandas data frames.


LISTING 2.5: pandas_combine_df.py



import pandas as pd

import numpy as np

 

df = pd.DataFrame({'foo1' : np.random.randn(5),

                  'foo2' : np.random.randn(5)})

 

print("contents of df:")

print(df)

 

print("contents of foo1:")

print(df.foo1)

 

print("contents of foo2:")

print(df.foo2)



Listing 2.5 defines the Pandas data frame df that consists of 5 rows and 2 columns (labeled “foo1” and “foo2”) of random real numbers between 0 and 5. The next portion of Listing 2.5 displays the contents of df and foo1. The output of Listing 2.5 is here:




contents of df:

      foo1      foo2

0  0.274680 _0.848669

1 _0.399771 _0.814679

2  0.454443 _0.363392

3  0.473753  0.550849

4 _0.211783 _0.015014

contents of foo1:

0    0.256773

1    1.204322

2    1.040515

3   _0.518414

4    0.634141

Name: foo1, dtype: float64

contents of foo2:

0   _2.506550

1   _0.896516

2   _0.222923

3    0.934574

4    0.527033

Name: foo2, dtype: float64





Reading CSV Files in Pandas



Pandas provides the read_csv() method for reading the contents of CSV files. For example, Listing 2.6 displays the contents of sometext.txt that contains labeled data (spam or ham), and Listing 2.7 displays the contents of read_csv_file.py that illustrates how to read the contents of a CSV file.


LISTING 2.6: sometext.csv



type    text

ham     Available only for today

ham     I'm joking with you

spam    Free entry in 2 a wkly comp

ham     U dun say so early hor

ham     I don't think he goes to usf

spam    FreeMsg Hey there

ham     my brother is not sick

ham     As per your request Melle

spam    WINNER!! As a valued customer




LISTING 2.7: read_csv_file.py



import pandas as pd

import numpy as np

 

df = pd.read_csv('sometext.csv', delimiter='\t')

 

print("=> First five rows:")

print(df.head(5))



Listing 2.7 reads the contents of sometext.csv, whose columns are separated by a tab (“\t”) delimiter. Launch the code in Listing 2.7 and you will see the following output:

=> First five rows:

  type                           text

0   ham      Available only for today

1   ham           I'm joking with you

2  spam   Free entry in 2 a wkly comp

3   ham        U dun say so early hor

4   ham  I don't think he goes to usf



The default value for the head() method is 5, but you can display the first n rows of a data frame df with the code snippet df.head(n).

You can also use the sep parameter specifies a different separator, and the names parameter specifies the column names in the data that you want to read, an example of which is here:

df2 = pd.read_csv("data.csv",sep="|",

                 names=["Name","Surname","Height","Weight"])



Pandas also provides the read_table() method for reading the contents of CSV files, which uses the same syntax as the read_csv() method.



The loc() and iloc() Methods in Pandas



If you want to display the contents of a record in a data frame, specify the index of the row in the Pandas loc() method. For example, the following code snippet displays the data by feature name in a Data frame df:

df.loc[feature_name]



Select the first row of the “height” column in a Data frame:

df.loc([0], ['height'])



However, the following code snippet uses the iloc() function to display the first 8 records of the name column with this code snippet:

df.iloc[0:8]['name']





Converting Categorical Data to Numeric Data



One common task in machine learning involves converting a feature containing character data into a feature that contains numeric data. Listing 2.8 displays the contents of cat2numeric.py that illustrates how to replace a text field with a corresponding numeric field.


LISTING 2.8: cat2numeric.py



import pandas as pd

import numpy as np

 

df = pd.read_csv('sometext.csv', delimiter='\t')

 

print("=> First five rows (before):")

print(df.head(5))

print("-------------------------")

print()

 

# map ham/spam to 0/1 values:

df['type'] = df['type'].map( {'ham':0 , 'spam':1} )

 

print("=> First five rows (after):")

print(df.head(5))

print("-------------------------")



Listing 2.8 initializes the data frame df with the contents of the CSV file sometext.csv, and then displays the contents of the first five rows by invoking df.head(5), which is also the default number of rows to display.

The next code snippet in Listing 2.8 invokes the map() method to replace occurrences of ham with 0 and replace occurrences of spam with 1 in the column labeled type, as shown here:

df['type'] = df['type'].map( {'ham':0 , 'spam':1} )



The last portion of Listing 2.8 invokes the head() method again to display the first five rows of the dataset after having renamed the contents of the column type. Launch the code in Listing 2.8 and you will see the following output:

=> First five rows (before):

  type                          text

0   ham     Available only for today

1   ham           I'm joking with you

2  spam  Free entry in 2 a wkly comp

3   ham        U dun say so early hor

4   ham  I don't think he goes to usf

-------------------------

 

=> First five rows (after):

  type                          text

0     0     Available only for today

1     0           I'm joking with you

2     1  Free entry in 2 a wkly comp

3     0        U dun say so early hor

4     0  I don't think he goes to usf

-------------------------



As another example, Listing 2.9 displays the contents of shirts.csv and Listing 2.10 displays the contents of shirts.py that illustrates four techniques for converting categorical data to numeric data.


LISTING 2.9: shirts.csv



type,ssize

shirt,xxlarge

shirt,xxlarge

shirt,xlarge

shirt,xlarge

shirt,xlarge

shirt,large

shirt,medium

shirt,small

shirt,small

shirt,xsmall

shirt,xsmall

shirt,xsmall




LISTING 2.10: shirts.py



import pandas as pd

 

shirts = pd.read_csv("shirts.csv")

print("shirts before:")

print(shirts)

print()

 

# TECHNIQUE #1:

#shirts.loc[shirts['ssize']=='xxlarge','size'] = 4

#shirts.loc[shirts['ssize']=='xlarge', 'size'] = 4

#shirts.loc[shirts['ssize']=='large',  'size'] = 3

#shirts.loc[shirts['ssize']=='medium', 'size'] = 2

#shirts.loc[shirts['ssize']=='small',  'size'] = 1

#shirts.loc[shirts['ssize']=='xsmall', 'size'] = 1

 

# TECHNIQUE #2:

#shirts['ssize'].replace('xxlarge', 4, inplace=True)

#shirts['ssize'].replace('xlarge',  4, inplace=True)

#shirts['ssize'].replace('large',   3, inplace=True)

#shirts['ssize'].replace('medium',  2, inplace=True)

#shirts['ssize'].replace('small',   1, inplace=True)

#shirts['ssize'].replace('xsmall',  1, inplace=True)

 

# TECHNIQUE #3:

#shirts['ssize'] = shirts['ssize'].apply({'xxlarge':4, 'xlarge':4, 'large':3, 'medium':2, 'small':1, 'xsmall':1}.get)

 

# TECHNIQUE #4:

shirts['ssize'] = shirts['ssize'].replace(regex='xlarge', value=4)

shirts['ssize'] = shirts['ssize'].replace(regex='large',  value=3)

shirts['ssize'] = shirts['ssize'].replace(regex='medium', value=2)

shirts['ssize'] = shirts['ssize'].replace(regex='small',  value=1)

 

print("shirts after:")

print(shirts)



Listing 2.10 starts with a code block of six statements that uses direct comparison with strings to make numeric replacements. For example, the following code snippet replaces all occurrences of the string xxlarge with the value 4:

shirts.loc[shirts['ssize']=='xxlarge','size'] = 4



The second code block consists of six statements that use the replace() method to perform the same updates, an example of which is shown here:

shirts['ssize'].replace('xxlarge', 4, inplace=True)



The third code block consists of a single statement that use the apply() method to perform the same updates, as shown here:

shirts['ssize'] = shirts['ssize'].apply({'xxlarge':4, 'xlarge':4, 'large':3, 'medium':2, 'small':1, 'xsmall':1}.get)



The fourth code block consists of four statements that use regular expressions to perform the same updates, an example of which is shown here:

shirts['ssize'] = shirts['ssize'].replace(regex='xlarge', value=4)



Since the preceding code snippet matches xxlarge as well as xlarge, we only need four statements instead of six statements. If you are unfamiliar with regular expressions, you can read Appendix C. Now launch the code in Listing 2.10 and you will see the following output:

shirts before

    type     size

0   shirt  xxlarge

1   shirt  xxlarge

2   shirt   xlarge

3   shirt   xlarge

4   shirt   xlarge

5   shirt    large

6   shirt   medium

7   shirt    small

8   shirt    small

9   shirt   xsmall

10  shirt   xsmall

11  shirt   xsmall

 

shirts after:

    type  size

0   shirt     4

1   shirt     4

2   shirt     4

3   shirt     4

4   shirt     4

5   shirt     3

6   shirt     2

7   shirt     1

8   shirt     1

9   shirt     1

10  shirt     1

11  shirt     1





Matching and Splitting Strings in Pandas



Listing 2.11 displays the contents of shirts_str.py that illustrates how to match a column value with an initial string and also how to split a column value based on a letter.


LISTING 2.11: shirts_str.py



import pandas as pd

 

shirts = pd.read_csv("shirts.csv")

print("shirts:")

print(shirts)

print()

 

print("shirts starting with xl:")

print(shirts[shirts.ssize.str.startswith('xl')])

print()

 

print("Exclude 'xlarge' shirts:")

print(shirts[shirts['ssize'] != 'xlarge'])

print()

 

print("first three letters:")

shirts['sub1'] = shirts['ssize'].str[:3]

print(shirts)

print()

 

print("split ssize on letter 'a':")

shirts['sub2'] = shirts['ssize'].str.split('a')

print(shirts)

print()

 

print("Rows 3 through 5 and column 2:")

print(shirts.iloc[2:5, 2])

print()



Listing 2.11 initializes the data frame df with the contents of the CSV file shirts.csv, and then displays the contents of df. The next code snippet in Listing 2.11 uses the startswith() method to match the shirt types that start with the letters xl, followed by a code snippet that displays the shorts whose size does not equal the string xlarge.

The next code snippet uses the construct str[:3] to display the first three letters of the shirt types, followed by a code snippet that uses the split() method to split the shirt types based on the letter “a.”

The final code snippet invokes iloc[2:5,2] to display the contents of rows 3 through 5 inclusive, and only the second column. The output of Listing 2.11 is here:

shirts:

    type    ssize
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