
		
			[image: B16297_DevOps_Culture_and_Practice_with_OpenShift_LowRes.png]
		

		
			DevOps Culture and Practice with OpenShift

		

		
			Deliver continuous business value through people, processes, and technology

		

		
			Tim Beattie

			Mike Hepburn

			Noel O'Connor

			Donal Spring

		

		
			DevOps Culture and Practice with OpenShift

			Copyright © 2021 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Authors: Tim Beattie, Mike Hepburn, Noel O'Connor, and Donal Spring

			Illustrator: Ilaria Doria

			Technical Reviewer: Ben Silverman

			Managing Editors: Aditya Datar and Siddhant Jain

			Acquisitions Editor: Ben Renow-Clarke

			Production Editor: Deepak Chavan

			Editorial Board: Vishal Bodwani, Ben Renow-Clarke, Edward Doxey, Alex Patterson, Arijit Sarkar, Jake Smith, and Lucy Wan

			First Published: August 2021

			Production Reference: 1100821

			ISBN: 978-1-80020-236-8

			Published by Packt Publishing Ltd.Livery Place, 35 Livery Street, Birmingham, B3 2PB, UK.

			www.packt.com

		

		
			Praise for DevOps Culture and Practice with OpenShift

			"Creating successful, high-performing teams is no easy feat. DevOps Culture and Practice with OpenShift provides a step-by-step, practical guide to unleash the power of open processes and technology working together."

			—Jim Whitehurst, President, IBM

			"This book is packed with wisdom from Tim, Mike, Noel, and Donal and lovingly illustrated by Ilaria. Every principle and practice in this book is backed by wonderful stories of the people who were part of their learning journey. The authors are passionate about visualizing everything and every chapter is filled with powerful visual examples. There is something for every reader and you will find yourself coming back to the examples time and again."

			—Jeremy Brown, Chief Technology Officer/Chief Product Officer at Traveldoo, an Expedia Company

			"This book describes well what it means to work with Red Hat Open Innovation Labs, implementing industrial DevOps and achieving business agility by listening to the team. I have experienced this first hand. Using the approach explained in this book, we have achieved a level of collaboration and engagement in the team we had not experienced before, the results didn't take long and success is inevitable. What I have seen to be the main success factor is the change in mindset among team members and in management, which this approach helped us drive."

			—Michael Denecke, Head of Test Technology at Volkswagen AG

			"This book is crammed full to the brim with experience, fun, passion, and great practice. It contains all the ingredients needed to create a high performance DevOps culture...it's awesome!"

			—John Faulkner-Willcocks, Head of Coaching and Delivery Culture, JUST

			"DevOps has the opportunity to transform the way software teams work and the products they deliver. In order to deliver on this promise, your DevOps program must be rooted in people. This book helps you explore the mindsets, principles, and practices that will drive real outcomes."

			—Douglas Ferguson, Voltage Control Founder, Author of Magical Meetings and Beyond the Prototype

			"Fun and intense to read! Somehow, the authors have encapsulated the Red Hat culture and expression in this book."

			—Jonas Frydal, Director at Volvo Cars

			"This book is really valuable for me. I was able to map every paragraph I read to the journey we took during the residency with Red Hat Open Innovation Labs. It was such an intense but also rewarding time, learning so much about culture, openness, agile and how their combination can make it possible to deliver crucial business value in a short amount of time.

			Speaking from my personal experience, we enabled each other, my team bringing the deep knowledge in the industry and Red Hat's team bringing good practices for cloud-native architectures. This made it possible to reinvent how vehicle electronics technology is tested while pushing Red Hat‘s OpenShift in an industrial DevOps direction.

			I am looking forward to keeping a hard copy of the book at my desk for easy review."

			—Marcus Greul, Program Manager at CARIAD, a Volkswagen Group company

			"Innovation requires more than ideas and technology. It needs people being well led and the 'Open Leadership' concepts and instructions in DevOps Practice and Culture with OpenShift should be required reading for anyone trying to innovate, in any environment, with any team."

			—Patrick Heffernan, Practice Manager and Principal Analyst, Technology Business Research Inc.

			"Whoa! This has to be the best non-fiction DevOps book I've ever read. I cannot believe how well the team has captured the essence of what the Open Innovation Labs residency is all about. After reading, you will have a solid toolbox of different principles and concrete practices for building the DevOps culture, team, and people-first processes to transform how you use technology to act as a force multiplier inside your organization."

			—Antti Jaakkonen, Lean Agile Coach, DNA Plc

			"Fascinating! This book is a must-read for all tech entrepreneurs who want to build scalable and sustainable companies. Success is now handed to you."

			—Jeep Kline, Venture Capitalist, Entrepreneur

			"In a digital-first economy where technology is embedded in every business, innovation culture and DevOps are part and parcel of creating new organizational values and competitive advantages. A practical and easy to understand guide for both technology practitioners and business leaders is useful as companies accelerate their Digital Transformation (DX) strategies to thrive in a changed world."

			—Sandra Ng, Group Vice President, ICT Practice

			"DevOps Culture and Practice with OpenShift is a distillation of years of experience into a wonderful resource that can be used as a recipe book for teams as they form and develop, or as a reference guide for mature teams as they continue to evolve."

			—David Worthington, Agile Transformation Coach, DBS Bank, Singapore

		

		
			Table of Contents

			Foreword 	 i

			Preface 	 iii

			Acknowledgements 	 ix

			Section 1: Practices Make Perfect 	 1

			1. Introduction — Start with Why 	 3

			Why — For What Reason or Purpose? 	 4

			Why Should I Listen to These Folks? 	 5

			Where Did This Book Come From? 	 6

			Who Exactly Is This Book For? 	 8

			From I to T to M 	 10

			Conclusion 	 11

			2. Introducing DevOps and Some Tools 	 13

			The Value Chain 	 14

			The Gaps 	 16

			The Big List of Things to Do 	 16

			Demonstrating Value and Building the Right Thing 	 17

			How Do We Do the Things on Our List? 	 18

			Development to Operations 	 22

			People, Process, and Technology 	 24

			The Mobius Loop and the Open Practice Library 	 26

			Conclusion 	 32

			3. The Journey Ahead 	 33

			A Story about Telling a Practice 	 35

			PetBattle – the Backstory 	 36

			What about Legacy Systems? 	 37

			Borrowing Brilliance 	 38

			What to Expect from the Rest of This Book? 	 38

			What about Distributed Teams? 	 43

			Some Words about the World of 'Open' 	 44

			Conclusion 	 45

			Section 2: Establishing the Foundation 	 47

			4. Open Culture 	 53

			Why Is It Important? 	 54

			Information Radiators 	 56

			Can You Make Those Red Lights Go Green, Please? 	 56

			Culture 	 57

			Motivation 	 58

			PetBattle — Creating Autonomy, Mastery, and Purpose 	 60

			Social Contracts 	 61

			Do I Need One? If So, How Do I Build One? 	 63

			It's OK to Be Wrong 	 67

			Social Contracting for Distributed People 	 68

			Stop the World 	 70

			The Andon Cord and Psychological Safety 	 71

			We're Just Rebuilding the Same Experience. Stop the World! 	 72

			Losing Track of Original Purpose 	 73

			Real-Time Retrospective 	 75

			Team Identity 	 79

			Socializing 	 80

			Network Mapping 	 81

			Team Logo and Prime Directive 	 83

			Team Name + Building a Team Logo = the Beginning of Team Identity 	 84

			Creating a Team Identity with Distributed People 	 85

			Radiate Everything 	 86

			Radiating Everything When Distributed 	 88

			Team Sentiment 	 89

			Blending Team Sentiment with Other Practices 	 90

			Team Sentiment Achieving a Different Purpose – Banter! 	 92

			Team Sentiment with Distributed People 	 93

			Radiate Failures 	 93

			Radiating Failure – as Useful (If Not More) as Radiating Success 	 94

			Inspect and Adapt 	 96

			PetBattle — Establishing the Cultural Foundation 	 97

			Conclusion 	 99

			5. Open Environment and Open Leadership 	 101

			The Kodak Problem 	 103

			Learning from History 	 105

			Open Leadership 	 105

			Changing an Organization 	 106

			Leading Sustainable Change 	 107

			Achieving Greatness 	 109

			Giving Intent 	 109

			Moving Decisions to Where the Information Is 	 109

			Setting the Environment 	 109

			How Do We (as Leaders) Convince the Doubters? 	 110

			No Computers in the Company! The 1990s or the 1890s? 	 111

			Priority Sliders 	 112

			Running Priority Sliders with Distributed People 	 116

			The Space 	 117

			The Minimal Viable Space 	 120

			"We See What You Want To Do and Why and We'll Help You Get There" in Just 4 Weeks 	 121

			Virtual Spaces 	 123

			Conclusion 	 125

			6. Open Technical Practices – Beginnings, Starting Right 	 127

			Green from Go! 	 129

			Pair Programming and Mob Programming 	 130

			Mob to Learn, Pair to Build 	 131

			Containers and Being Container-Native 	 133

			Container History 	 133

			How Containers Work 	 134

			Pipelines — CI or CD or CD²? 	 137

			Derek the DevOps Dinosaur 	 137

			A Final Thought on Building Dinosaurs 	 143

			Continuous Integration 	 144

			Integrate Continuously 	 145

			Continuous Delivery 	 146

			Building Confidence in the Quality of the Software Delivery Pipeline 	 147

			Continuous Deployment (CD²) 	 149

			When the Work Is Done, Ship It! 	 150

			Everything-as-Code 	 152

			Can You Build a Second One of Those for Me, Please? 	 154

			Establishing the Technical Foundation for PetBattle 	 156

			Jenkins – Our Best Friend! 	 157

			Helm Overview 	 158

			Installing Jenkins Using Helm 	 160

			Developer Workflows 	 165

			GitFlow 	 165

			GitHub Flow 	 166

			Trunk-Based Development 	 167

			Too Many Choices — Tell Me What to Do 	 168

			Conclusion 	 170

			7. Open Technical Practices — The Midpoint 	 171

			The Big Picture 	 172

			PetBattle – Building a Big Picture 	 175

			GitOps 	 180

			ArgoCD 	 181

			If It's Not in Git, It's Not Real! 	 182

			Implementing GitOps 	 184

			Testing Testing Testing! 	 194

			The Test Automation Pyramid 	 195

			Testing in Practice 	 196

			Testing and the Definition of Done 	 198

			TDD or BDD or DDT 	 199

			BDD for Our Ops Tooling Python Library 	 202

			Product Owners Seeing Their Thoughts in Code! 	 204

			Example Mapping 	 204

			Example Mapping in the Field 	 205

			Non-functional Testing 	 207

			Performance Testing Sam's Code 	 208

			A Few Final Thoughts on Testing 	 211

			Emerging Architecture 	 211

			Observations from the Field 	 213

			Conclusion 	 217

			Section 3: Discover It 	 221

			8. Discovering the Why and Who 	 223

			The North Star 	 225

			PetBattle as a Business 	 230

			Our North Star at Open Innovation Labs 	 232

			Impact Mapping 	 233

			Start with the WHY — the Goal 	 235

			PetBattle – the Goal 	 237

			WHO Can Help Us Reach the Desired Effect? The Actors 	 239

			PetBattle – the Actors 	 239

			HOW Should Our Actors’ Behaviors Change? The Impacts 	 241

			PetBattle – the Impacts 	 241

			WHAT Should We Build? The Deliverables 	 243

			PetBattle – the Deliverables 	 244

			PetBattle – Placing Bets 	 248

			Hypothesis Examples 	 251

			Connecting Engineers to Business Outcomes 	 253

			Human-Centered Design 	 255

			UX Design and Empathy Mapping a PetBattle User 	 259

			Users Do Strange and Unexpected Things 	 261

			Empathy Mapping an Organization — Dev versus Ops 	 263

			Engineers Build Out Empathy Maps during User Interviews 	 265

			Conclusion 	 266

			9. Discovering the How 	 269

			Event Storming 	 270

			What Is Event Storming? 	 271

			The Ingredients 	 273

			The Recipe 	 274

			Event Storming with Doubters 	 285

			PetBattle Event Storm 	 287

			Final Thoughts on Event Storming 	 297

			Emerging Architecture 	 297

			Transitioning an Event Storm to an Emergent Architecture 	 299

			The Non-Functional Map 	 304

			From Non-Functional Map to Backlog 	 305

			Discovering the Case for Continuous Delivery 	 308

			Metrics-Based Process Map 	 309

			Finding and Making Improvements 	 311

			Improving through Iteration 	 312

			Scoping an Entire Engagement Using MBPM 	 313

			PetBattle – MBPM 	 316

			Conclusion 	 319

			10. Setting Outcomes 	 321

			What Is an Outcome? 	 322

			Outcomes versus Outputs 	 323

			Why Have Target Outcomes? 	 324

			How to Capture Target Outcomes 	 325

			Examples of Target Outcomes 	 327

			Visualizing Target Outcomes 	 329

			Optimizing Target Outcomes 	 330

			Chaining Target Outcomes with Other Practices 	 331

			PetBattle Target Outcomes 	 332

			The Balance of Three: People/Process/Technology 	 335

			Target Outcomes from a Telecoms Product – Stopwatch at the Ready! 	 337

			Differentiating between Primary Outcomes and Enabling Outcomes 	 338

			Software Delivery Metrics 	 340

			Platform Adoption Metrics 	 341

			Continuous Metrics Inspection 	 342

			Creating a Discovery Map 	 343

			Conclusion 	 346

			Section 4: Prioritize It 	 349

			11. The Options Pivot 	 353

			Value Slicing 	 355

			The Beer and the Curry 	 360

			One to Few to Many Slices of Value – Continuous Delivery 	 362

			PetBattle – Slicing Value towards Continuous Delivery 	 366

			Design of Experiments 	 373

			Qualitative versus Quantitative Feedback 	 374

			Impact and Effort Prioritization Matrix 	 377

			How-Now-Wow Prioritization 	 379

			The Design Sprint 	 382

			Forming the Initial Product Backlog 	 385

			PetBattle — Tracing Value through Discovery and Delivery Practices 	 388

			Product Backlog Refinement 	 389

			Prioritization 	 391

			Value versus Risk 	 391

			Cost of Delay and WSJF 	 392

			PetBattle – Prioritizing using WSJF 	 394

			Product Ownership 	 396

			Experimenting with Different Product Owners 	 398

			Patterns of Early Sprints and the Walking Skeleton 	 399

			Advanced Deployment Considerations 	 400

			A/B Testing 	 401

			Blue/Green Deployments 	 402

			Canary Releases 	 403

			Dark Launches 	 404

			Feature Flags 	 405

			PetBattle – Tech Spikes, Prototypes, Experiments, and Feature Implementations 	 406

			Reframing the Question – How Much Can I Borrow or How Much House Can I Afford? 	 408

			Research, Experiment, Implement 	 409

			Creating an Options Map 	 410

			Conclusion 	 412

			Section 5: Deliver It 	 415

			12. Doing Delivery 	 419

			Waterfall 	 421

			The Birth of Agile 	 424

			How Does OpenShift Help? 	 427

			Decision-Making Contexts 	 428

			The Cynefin Framework 	 428

			The Ferrari and the Rainforest 	 430

			When Does a Mobius Loop Mindset Make Sense? 	 432

			PetBattle—Complex, Complicated, or Clear? 	 433

			The Definition of Ready 	 435

			PetBattle – Definition of Ready 	 439

			Scrum 	 440

			The 3-5-3 Formation 	 441

			The Product Owner Role 	 442

			The ScrumMaster Role 	 443

			The Development Team Role 	 444

			The Product Backlog Artifact 	 445

			The Sprint Backlog Artifact 	 447

			The Product Increment Artifact 	 450

			Show Me the Product! 	 450

			The Sprint Planning Event 	 451

			The Daily Scrum Event 	 453

			The Sprint Review Event 	 455

			When WOULD We Have Uncovered This In a Traditional Mode of Delivery? 	 457

			The Sprint Retrospective Event 	 458

			The Pub Retro! 	 463

			A Sprint in the Life of PetBattle: Getting Ready 	 465

			A Sprint in the Life of PetBattle: Sprint 1 Planning 	 467

			A Sprint in the Life of PetBattle: Sprint 1 Delivery 	 470

			A Sprint in the Life of PetBattle: Sprint 1 Review And Retrospective 	 471

			Using Scrum with distributed people 	 472

			When should we stop Scrumming? 	 474

			Teams asking questions that suggest we've matured out of Scrum 	 474

			Kanban 	 475

			Kanban Board! 	 476

			PetBattle – Release Early, Release Often, Release Continuously 	 478

			The Definition of Done 	 478

			PetBattle – Definition of Done 	 479

			Bad Agile Smells 	 482

			Conclusion 	 483

			13. Measure and Learn 	 485

			Metrics-Driven Transformation 	 486

			Where to Measure and Learn 	 487

			The Showcase 	 488

			The Retrospective 	 488

			The Retrospective – an Engineering Perspective 	 489

			Inspecting the Build Stats at Retrospectives 	 491

			Experiments – the Results! 	 492

			User Testing 	 493

			Usability Testing 	 493

			"We Are Not Our Users" 	 494

			Guerrilla Testing 	 496

			Guerrilla testing with a box of donuts in a busy Dublin bank! 	 496

			PetBattle Usability Testing 	 497

			What to Measure? 	 499

			Measuring Service Delivery and Operational Performance (SDO) 	 499

			Pelorus 	 502

			Measuring Lean Metrics 	 502

			Measuring SLOs, SLAs, and SLIs 	 503

			PetBattle Service Levels 	 504

			Measuring Security 	 505

			PetBattle Security 	 506

			Measuring Performance 	 507

			PetBattle Performance 	 508

			Measuring Deployment Pain 	 509

			Measuring Culture 	 510

			Measuring Application Metrics 	 511

			PetBattle Application Metrics 	 511

			Measuring Infrastructure Platform Costs and Utilization 	 512

			Measuring Resources and Services 	 514

			User Experience Analytics 	 515

			PetBattle User Experience Analytics 	 516

			Visualize Measurable Outcomes 	 516

			Proactive Notification 	 517

			Altering the Customers 	 518

			Having Fun with Notifications and the Build! 	 518

			Creating a Delivery Map 	 522

			Conclusion 	 524

			Section 6: Build It, Run It, Own It 	 527

			14. Build It 	 531

			Cluster Resources 	 533

			Existing PetBattle Architecture 	 533

			PetBattle Components 	 535

			Plan of Attack 	 537

			Running PetBattle 	 538

			Argo CD 	 543

			Trunk-Based Development and Environments 	 545

			The Anatomy of the App-of-Apps Pattern 	 546

			Build It – CI/CD for PetBattle 	 549

			The Big Picture 	 549

			The Build 	 551

			The Bake 	 552

			The Deploy 	 553

			System Test 	 554

			Promote 	 555

			Choose Your Own Adventure 	 558

			Jenkins–The Frontend 	 559

			Connect Argo CD to Git 	 559

			Secrets in Our Pipeline 	 563

			The Anatomy of a Jenkinsfile 	 572

			Branching 	 579

			Webhooks 	 580

			Jenkins 	 581

			Bringing It All Together 	 581

			What's Next for Jenkinsfile 	 584

			Tekton–The Backend 	 585

			Tekton Basics 	 585

			Reusable Pipelines 	 588

			Build, Bake, Deploy with Tekton 	 589

			Triggers and Webhooks 	 593

			GitOps our Pipelines 	 595

			Which One Should I Use? 	 596

			Conclusion 	 598

			15. Run It 	 599

			The Not Safe For Families (NSFF) Component 	 600

			Why Serverless? 	 600

			Generating or Obtaining a Pre-trained Model 	 601

			The OpenShift Serverless Operator 	 603

			Deploying Knative Serving Services 	 604

			Invoking the NSFF Component 	 607

			Let's Talk about Testing 	 611

			Unit Testing with JUnit 	 612

			Service and Component Testing with REST Assured and Jest 	 613

			Service Testing with Testcontainers 	 616

			End-to-End Testing 	 617

			Pipelines and Quality Gates (Non-functionals) 	 621

			SonarQube 	 621

			Perf Testing (Non-Functional) 	 627

			Resource Validation 	 633

			Image Scanning 	 636

			Linting 	 638

			Code Coverage 	 639

			Untested Software Watermark 	 642

			The OWASP Zed Attack Proxy (ZAP) 	 643

			Chaos Engineering 	 644

			Accidental Chaos Testing 	 646

			Advanced Deployments 	 648

			A/B Testing 	 649

			The Experiment 	 649

			Matomo – Open Source Analytics 	 650

			Deploying the A/B Test 	 652

			Understanding the results 	 655

			Blue/Green deployments 	 656

			Deployment previews 	 658

			Conclusion 	 660

			16. Own It 	 661

			Observability 	 661

			Probes 	 662

			Domino Effect 	 664

			Fault Tolerance 	 664

			Logging 	 665

			Tracing 	 666

			Metrics 	 666

			Configuring Prometheus To Retrieve Metrics From the Application 	 669

			Visualizing the Metrics in OpenShift 	 671

			Querying using Prometheus 	 671

			Visualizing Metrics Using Grafana 	 672

			Metadata and Traceability 	 673

			Labels 	 673

			Software Traceability 	 676

			Annotations 	 677

			Build Information 	 677

			Alerting 	 678

			What Is an Alert? 	 678

			Why Alert? 	 678

			Alert Types 	 679

			Managing Alerts 	 680

			User-Defined Alerts 	 680

			OpenShift Alertmanager 	 684

			Service Mesh 	 685

			Why Service Mesh? 	 685

			Aside – Sidecar Containers 	 686

			Here Be Dragons! 	 687

			Service Mesh Components 	 688

			PetBattle Service Mesh Resources 	 689

			Operators Everywhere 	 693

			Operators Under the Hood 	 695

			Control Loops 	 695

			Operator Scopes 	 696

			Operators in PetBattle 	 697

			Service Serving Certificate Secrets 	 700

			Conclusion 	 701

			Section 7: Improve It, Sustain It 	 703

			17. Improve It 	 705

			What Did We Learn? 	 707

			Did We Learn Enough? 	 708

			We Need Two Apps, Not One! 	 709

			"Just Enough" Leads to Continuous Everything 	 710

			Learning from Security Experts 	 712

			Always Improve Metrics and Automation 	 713

			Revisiting the Metrics-Based Process Map 	 714

			My management only really understand numbers and spreadsheets 	 714

			Improve the Technology 	 718

			Long Live the Team 	 719

			Visualizing the Transition from I to T to M 	 719

			Wizards and Cowboys 	 721

			Conclusion 	 722

			18. Sustain It 	 723

			The Journey So Far 	 724

			Infectious Enthusiasm 	 726

			Demo Day 	 728

			Documenting the Journey 	 730

			Sketching the Experience 	 731

			Walk the Walls 	 732

			Written Showcases 	 733

			Word of Mouth 	 734

			Mind-Blowing Metrics That Cannot Be Ignored 	 734

			Transitioning From One Team To Seven Teams 	 735

			More Teams, More Application Products 	 738

			The Power of Three Iterations in Enablement 	 739

			The App Does Something This Week That It Didn’t Do Last Week! 	 740

			Bolster the Foundations 	 741

			Sustaining the Technology 	 742

			The Double Mobius Loop – Platform and Application Product 	 747

			Connecting Many Levels of Product Teams 	 749

			Conclusion 	 752

			Appendix A – OpenShift Sizing Requirements for Exercises 	 755

			How To Resize Storage in Your CRC Virtual Machine 	 758

			Tekton Persistent Storage 	 758

			Appendix B – Additional Learning Resources 	 761

			Index 	 763

		

		
			
			

		

		
			Foreword

		

		
			Over the past two decades, as the popularity of Agile and Lean approaches hit the mainstream, many new frameworks have emerged, each promising to solve your problems if you just bought their secret sauce. Yet the pioneers in the early days didn't get the answers handed to them; instead, they had to figure out the recipes through trial and error. This relentless discovery and invention process led to great leaps forward; it drove the most innovative companies in the world. So the question is, why did we stop reinventing? When was it enough to follow guidelines rather than constantly evolve and grow?

			A common problem for organizations is to stay competitive in a constantly evolving market. Competitors emerge fast and disrupt the playing field. To deal with this challenge, organizations hire expensive creative agencies to run ideation workshops in the hope that they can spark new ideas and future proof their organization. But it doesn't stick. Bringing in someone else's creative talent that leaves when the workshops are over doesn't breed an innovation culture.

			Red Hat recognized that to help their clients innovate, a model was needed that could be fully customized and adapted it to their needs. A model that would help organizations build their own innovation culture. To help people learn to fish rather than fishing for them. By blending Mobius, an open innovation model, with Red Hat's open culture, organizations can create their own process that builds up their innovation muscle. That creates their own process, develops their own people, and applies technology in novel ways to achieve their desired outcomes faster.

			With pragmatic stories from the trenches, the team at Red Hat Open Innovation Labs has created an essential handbook. It takes you on a journey from Day One, from setting up the workspace to practical tips on getting a team to gel and collaborate on their real-world challenges. We get to see under the covers how the DevOps culture emerges through stories and photos. Rather than keeping their secret sauce recipe, Red Hat is following its own principles of being open and sharing its knowledge in a pragmatic, easy-to-follow way.

			This book brings together the key ingredients: the people, processes, and technology. It's like having a great travel guide that gives you the tips you need when you need them. I also love that the authors speak with candor and share their real-world war stories, including the mistakes and pitfalls.

			The last thing I will say is that the idea of fun is integral to the book, from the simple how-to guides to the engaging illustrations and photos. This book is the culmination of the learning collected along the way and I hope this book brings forth great ideas that can help shape the future and create not only awesome products, but awesome organizations.

			

			Gabrielle Benefield

			Founder, Mobius Loop

		

		
			
			

		

		
			Preface

		

		
			About

			This section briefly introduces the authors, the coverage of this book, the skills you'll need to get started, and the hardware and software needed to complete all of the technical topics.

		

		
			About DevOps Culture and Practice with OpenShift

			DevOps Culture and Practice with OpenShift features many different real-world practices - some people-related, some process-related, some technology-related - to facilitate successful DevOps, and in turn OpenShift, adoption within your organization. It introduces many DevOps concepts and tools to connect culture and practice through a continuous loop of discovery, pivots, and delivery underpinned by a foundation of collaboration and software engineering.

			Containers and container-centric application lifecycle management are now an industry standard, and OpenShift has a leading position in a flourishing market of enterprise Kubernetes-based product offerings. DevOps Culture and Practice with OpenShift provides a roadmap for building empowered product teams within your organization.

			This guide brings together lean, agile, design thinking, DevOps, culture, facilitation, and hands-on technical enablement all in one book. Through a combination of real-world stories, a practical case study, facilitation guides, and technical implementation details, DevOps Culture and Practice with OpenShift provides tools and techniques to build a DevOps culture within your organization on Red Hat’s OpenShift Container Platform.

			About the authors

			Tim Beattie is Global Head of Product and a Senior Principal Engagement Lead for Red Hat Open Innovation Labs. His career in product delivery spans 20 years as an agile and lean transformation coach - a continuous delivery & design thinking advocate who brings people together to build meaningful products and services whilst transitioning larger corporations towards business agility. He lives in Winchester, UK, with his wife and dog, Gerrard the Labrador (the other Lab in his life) having adapted from being a cat-person to a dog-person in his 30s.

			Mike Hepburn is Global Principal Architect for Red Hat Open Innovation Labs and helps customers transform their ways of working. He spends most of his working day helping customers and teams transform the way they deliver applications to production with OpenShift. He co-authored the book "DevOps with OpenShift" and loves the outdoors, family, friends, good coffee, and good beer. Mike loves most animals, not the big hairy spiders (Huntsman) found in Australia, and is generally a cat person unless it's Tuesday, when he is a dog person.

			Noel O'Connor is a Senior Principal Architect in Red Hat's EMEA Solutions Practice specializing in cloud native application and integration architectures. He has worked with many of Red Hat's global enterprise customers in both Europe, Middle East & Asia. He co-authored the book "DevOps with OpenShift" and he constantly tries to learn new things to varying degrees of success. Noel prefers dogs over cats but got overruled by the rest of the team.

			Donal Spring is a Senior Architect for Red Hat Open Innovation Labs. He works in the delivery teams with his sleeves rolled up tackling anything that's needed - from coaching and mentoring the team members, setting the technical direction, to coding and writing tests. He loves technology and getting his hands dirty exploring new tech, frameworks, and patterns. He can often be found on weekends coding away on personal projects and automating all the things. Cats or Dogs? He likes both :)

			About the illustrator

			Ilaria Doria is an Engagement Lead and Principal at Red Hat Open Innovation Labs. In 2013, she entered into the Agile arena becoming a coach and enabling large customers in their digital transformation journey. Her background is in end-user experience and consultancy using open practices to lead complex transformation and scaling agile in large organizations. Colorful sticky notes and doodles have always been a part of her life, and this is why she provided all illustrations in the book and built all digital templates. She is definitely a dog person.

			About the reviewer

			Ben Silverman is currently the Chief Architect for the Global Accounts team at Cincinnati Bell Technology Services. He is also the co-author of the books OpenStack for Architects, Mastering OpenStack, OpenStack – Design and Implement Cloud Infrastructure, and was the Technical Reviewer for Learning OpenStack (Packt Publishing).

			When Ben is not writing books he is active on the Open Infrastructure Superuser Editorial Board and has been a technical contributor to the Open Infrastructure Foundation Documentation Team (Architecture Guide). He also leads the Phoenix, Arizona Open Infrastructure User Group. Ben is often invited to speak about cloud and Kubernetes adoption, implementation, migration, and cultural impact at client events, meetups, and special vendor sessions.

			Learning Objectives

			
					Implement successful DevOps practices and in turn OpenShift within your organization

					Deal with segregation of duties in a continuous delivery world

					Understand automation and its significance through an application-centric view

					Manage continuous deployment strategies, such as A/B, rolling, canary, and blue-green

					Leverage OpenShift’s Jenkins capability to execute continuous integration pipelines

					Manage and separate configuration from static runtime software

					Master communication and collaboration enabling delivery of superior software products at scale through continuous discovery and continuous delivery

			

			Audience

			This book is for anyone with an interest in DevOps practices with OpenShift or other Kubernetes platforms.

			This DevOps book gives software architects, developers, and infra-ops engineers a practical understanding of OpenShift, how to use it efficiently for the effective deployment of application architectures, and how to collaborate with users and stakeholders to deliver business-impacting outcomes.

			Approach

			This book blends to-the-point theoretical explanations with real-world examples to enable you to develop your skills as a DevOps practitioner or advocate.

			Hardware and software requirements

			There are five chapters that dive deeper into technology. Chapter 6, Open Technical Practices - Beginnings, Starting Right and Chapter 7, Open Technical Practices - The Midpoint focuses on boot-strapping the technical environment. Chapter 14, Build It, Chapter 15, Run It, and Chapter 16, Own It cover the development and operations of features into our application running on the OpenShift platform.

			We recommend all readers, regardless of their technical skill, explore the concepts explained in these chapters. Optionally, you may wish to try some of the technical practices yourself. These chapters provide guidance in how to do that.

			The OpenShift Sizing requirements for running these exercises are outlined in Appendix A.

			Conventions

			Code words in the text, database names, folder names, filenames, and file extensions are shown as follows:

			We are going to cover the basics of component testing the PetBattle user interface using Jest. The user interface is made of several components. The first one you see when landing on the application is the home page. For the home page component, the test class is called home.component.spec.ts:

			describe('HomeComponent', () => {

			 let component: HomeComponent;

			 let fixture: ComponentFixture<HomeComponent>;

			 beforeEach(async () => {...

			 });

			 beforeEach(() => {...

			 });

			 it('should create', () => {

			 expect(component).toBeTruthy();

			 });

			});

			Downloading resources

			All of the technology artifacts are available in this book's GitHub repository at https://github.com/PacktPublishing/DevOps-Culture-and-Practice-with-OpenShift/

			High resolution versions of all of the visuals including photographs, diagrams and digital artifact templates used are available at https://github.com/PacktPublishing/DevOps-Culture-and-Practice-with-OpenShift/tree/master/figures

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			We are aware that technology will chage over time and APIs will evolve. For the latest changes of technical content, have a look at the book's GitHub repository above. If you want to contact us directly for any issue you've encountered, please raise an issue in this repository.

		

		
			Acknowledgements

		

		
			First and foremost, we'd like to thank those on the front line who dealt with and are dealing with COVID-19 and its impact. Their incredible contributions to maintaining and strengthening our communities cannot be overstated.

			We'd also like to thank those in the Open Source community who collaborate and contribute to make all the products we use better every day. This includes the many contributors to the Open Practice Library1, with special thanks to the individuals who have driven the Open Practice Library from its initial idea to where it is now including Justin Holmes, Ryan de Beasi, Matt Takane, Riley Ghiles, Jerry Becker, and Donna Benjamin. We thank the Mobius Outcome Delivery community who have evolved an inspiring mental model and navigators through complexity with extra special thanks to the founder of this community, Gabrielle Benefield, for all her support in providing the framework that we've anchored this book around.

			
			We'd like to thank our internal and external reviewers for their effort in keeping us on the straight and narrow, correcting us, challenging us, and driving continuous improvement into this book - Chris Baynham-Hughes, Charley Beattie, Donna Benjamin, Jeremy Brown, Margaret Dineen, Cansu Kavili Oernek, David Eva, Oli Gibson, Kari Mayhew, Brid Mackey, Ed Seymour, Mike Walker, and the whole team at Packt Publishing.

			Thank you to our many colleagues and customers of Red Hat, Red Hat Open Innovation Labs, and of our previous companies for providing us with our experiences, stories and tips that we have shared in this book.

			
				1	https://github.com/openpracticelibrary/openpracticelibrary/graphs/contributors

			

			On a personal level:

			
			
			
				
					[image:]
				

				Tim - Thank you so much to my wife, Charley, for being such an immense support and encouragement in helping me write this book and in everything I do. I also want to express my thanks to my extended family including my Mum, Chantelle, Bev, Ivy, Henry, Kieran, and Sharon as well as all my friends and colleagues, past and present, who have all helped develop me and my career. Finally, I dedicate this to my late Dad who I know would be very proud of this and who I miss every day.

			

						
				
					[image:]
				

				Mike - We wrote this book during COVID-19 times. You would think that might make it easier, being locked away, gaining weight. In fact, for everyone globally, it has been a time of turmoil and stress, so I want to thank everyone involved for sticking with it, especially my immediate family who have supported me all the way. I am going to repeat my favorite quote from Harry S. Truman - "It is amazing what you can accomplish if you do not care who gets the credit". To the amazing community that has provided the ideas that have gone into this book, thank you.

			

			
				
					[image:]
				

				Noel - To Mags, Michael, and Sean, thanks for all your support and patience. We're still not getting a cat though :-) Also thanks to Noel and Mary, I told you this IT thing would be interesting.

			

			
				
					[image:]
				

				Donal - I have to start by saying thank you to my awesome wife, Natasha Carroll. When we started writing this book, it was just the two of us and now we have a small boy Cillian and Louis the pup. Finding time to carve out to finish the book could only be done with her rallying and support. Thanks to my Mum and Dad for encouraging me to get into IT and leading me down the path I'm on. The experiences shared in this book come from all the amazing teams I've been in over the years. They've shaped my opinions and the learnings shared here, so thank you all.

			

			
				
					[image:]
				

				Ilaria - First thanks to Noel and Tim. When I heard they started a book, I asked if I could help. I was going through a hard time, and they said, "yes, why not? Why don't you do the illustrations?" I was not conscious of what that meant and realized only after a few months the effort and how many new things I had to learn and practice! I have also to thank Furo, my husband, and my parents who always encouraged me in trusting I could do it, and I did it ;)

			

			

			

				
		

		
			Section 1: Practices Make Perfect

		

		
			In this section, we are going to introduce the book, where it came from, and how it's organized.

			Chapter 1, Introduction – Start with Why focuses on the book's purpose and the target audience. Chapter 2, Introducing DevOps and Some Tools explains, in our words, what DevOps is and how it helps speed up the value chain of product development. We'll explore what this chain is and the bottlenecks that DevOps culture and practices address. We'll introduce a couple of important tools that we'll use throughout the book to navigate around the use of many different types of practices we're going to apply. In Chapter 3, The Journey Ahead, we will introduce how we use real-world stories and the case study we'll use throughout the book that will outline how the remaining six sections of the book are organized.

			This will set us up to build a foundation and start a journey of continuous discovery, options, and continuous delivery.

		

		
			
			

		

		
			1. Introduction — Start with Why

		

		
			You've picked up this book and have started reading it — thank you very much!

			Perhaps you read the back cover and it gave you just enough information to be inquisitive enough to open the book up and read some more. Maybe a friend or colleague told you about it and recommended it to you. Maybe you have stumbled upon it for another reason. Whatever the reason, we're very happy you've taken some time out of your day to start reading this and we hope you get some value from it and want to keep reading it.

			Before going into any kind of detail regarding what this book is about and what it's going to cover, we want to start with why. This is a practice we use to create a common vision of purpose. Why have we written this book? What problems is it trying to solve and who is the intended audience?

			
				
					[image:]
				

			

			Figure 1.1: Creating a common vision of purpose

			Why — For What Reason or Purpose?

			While this book may have been positioned as a book about technology, it is, at most, only one-third about technology. DevOps is really all about collaboration. We wrote this book because we want to increase your understanding of DevOps, collaboration, and cultural and engineering practices on a container platform such as OpenShift. We want to make moving to DevOps easier and provide a clearer path for you to apply DevOps using OpenShift. We want to excite you when reading this and give you some inspiration as to how you can apply DevOps principles and practices. We want to equip you to go out and try these new techniques and practices.

			As you progress through this book, we want you to continually measure the usefulness (impact/value) of using these new techniques. In fact, every time you try something out, we want you to think about and measure what impact it had.

			That impact might be at an individual level: What impact did trying that thing out have on me or a customer or a user? For example, has it reduced my cycle time to complete a set of delivery activities? Alternatively, it might be an impact on a team or a department you work in: Has team satisfaction been increased? What did we, as a group of people, achieve from that? The impact might even be felt at organizational or societal level: Has it reduced the number of operational incidents impacting customers? We believe you will quickly start to see positive effects in all of these aspects. As a result, maybe you'll leave us nice reviews and tell all your friends about this book. If not, perhaps you can pivot and use this book as a doorstop or a monitor stand, which, of course, will give you a different type of value!

			If you don't know where to start with how to go about measuring value, read on — we promise we'll cover that.

			What we've just done is started using one of the practices and techniques used in writing this book. We have used the Start with why practice, which is something we always strive to do with every team or organization we work with.

			So, what is a practice? A practice is an activity that helps teams achieve specific goals. It's not just an idea; it's something that you do repeatedly in order to hone or polish a skill. Practices have the following attributes:

			
					Empowering: The practices in this book will help teams discover and deliver iteratively.

					Concise: They can be read in a few minutes.

					Agnostic: Practices don't require the team to follow a specific framework.

					Proven: Practices have been tested in the real world.

					Repeatable: Practices can be used more than once.

			

			Hopefully, throughout this book, you'll see examples of us practicing what we preach through the experiences, stories, and tips we will share from our real-world delivery experience, which includes stories such as these:

			
					The story about when we worked with an insurance company to rebuild one of their applications using DevOps and OpenShift but had a stop the world moment (a practice we'll talk about in the next section) when we realized we were redeveloping an app that users did not want and were not using!

					The story of when we worked with a European automotive company and kick-started modern application development and agile practices with one of their teams, only for the product owner to question how they were going to prove to management that this was a better way of working when management only work with spreadsheets and numbers.

					The story of the telecom company that suffered huge outages and non-functional problems over a festive period and were keen to learn new cultural and engineering practices to drive an auto-scaling and self-healing approach to their infrastructure and applications.

			

			Why Should I Listen to These Folks?

			Before you read any more from the four folks writing this book, perhaps it's worth taking a step back and sharing a bit of background as to where all our anecdotes, theories, stories, and tips come from.

			We all work for Red Hat. In particular, we are all a part of Red Hat's services organization, which means that we all regularly interact with, and deliver professional services to, Red Hat customers. This ranges from helping with installation and supporting the early adoption of Red Hat technology to driving large transformation programs underpinned by Red Hat technology and Red Hat's culture.

			Red Hat's culture is relatively unique as it is entirely based on open source culture and open organizations (of which Red Hat is one of the largest examples). This means that the Red Hat organization is run under a set of characteristics that are closely aligned with open source culture and philosophy. They include collaboration, community, inclusivity, adaptability, and transparency. We highly recommend learning more about Red Hat's open organization philosophy by reading Jim Whitehurst's The Open Organization1.

			
			A lot of the experience that has informed this book and the stories and tips we will share emanate from engagements led by Red Hat Open Innovation Labs (or Labs for short). Labs provides an immersive and open approach to creating new ways of working that can help our customers and their teams develop digital solutions and accelerate business value using open technology and open culture. The main offering provided by Labs is called the residency, which is a four- to twelve-week timeboxed engagement where client's engineers are matched one-on-one with Red Hat's technology and culture specialists.

			Between the four authors, we've been involved in over 50 Open Innovation Labs' residencies around the world, in addition to many other professional services engagements. Due to the relatively short nature of Labs residencies, we get to learn very quickly different techniques, different approaches, and different practices. We get to see what works well and what doesn't work so well. We get to build up a huge collection of stories and tips. This book is all about sharing those stories and tips.

			Where Did This Book Come From?

			The title of this book is an evolution of a training enablement program that the authors have developed named DevOps Culture and Practice Enablement. This is an immersive training course run by Red Hat, providing enablement to Red Hat customers, partners, and employees.

			We initially created the course because the services area of Red Hat we are working in was growing, and we needed a way to consistently increase the enthusiasm and shared understanding behind the practices and culture we were using globally, with our customers, and within our own organization. We wanted to do this by exploring all of the principal practices we had found to be successful in taking many products to market with our customers. This included practices to help understand the why and drive the discovery of products, as well as practices that would help us safely, securely, and confidently deliver in an iterative and incremental manner. And then there was the third outcome, which was having fun. We really couldn't see the point in all of this if you couldn't have some fun, banter, and enjoyment as you went along — it's one of the key ingredients of that mysterious word culture.

			
				1	https://www.redhat.com/en/explore/the-open-organization-book

			

			
			One of the key success factors behind this was injecting lots of experience and real-life stories into our delivery and using a lot of our practices on ourselves to deliver the course. Every time we run the course, we use the definition of done2 practice to explain to participants that every practice we are going to teach on the course will be presented in a consistent way, following this process:

			
			
					Introducing the practice with the theory and an overview of what it is, why you should use it, and how to use it

					A hands-on practical exercise so everyone participating can leave the course having had a go at using the practice and having gained some learning and experience from it

					A real-world example of the practice being used in action on a real customer delivery project or product development initiative

			

			The core practices taught in this course vary from discovery practices, such as impact mapping and event storming, to delivery practices, such as sprint planning and retrospectives. They include a set of practices we've found to be very powerful in establishing high-performing, long-lived product teams, such as social contracts, team sentiment practices, and mob and pair programming. They include the engineering practices that many coming to the course would have most strongly associated with the term DevOps, such as continuous integration, continuous delivery, test-driven development, and infrastructure as code.

			One of the unique aspects of this course is its appeal to a broad audience. It is not exclusively for technologists or designers. In fact, we embraced the idea of having cross-functional groups of people spanning from engineers to project managers, from infrastructure experts to user experience designers. We felt this course offered the opportunity to break down silos. We intentionally do not run different tracks for different types of people. The aim is for participants to have a shared understanding of all of the practices that can be applied to truly appreciate and enable a DevOps culture.

			Having run this course more than a hundred times globally, we've learned volumes from it and have continuously improved it as we've gone along.

			Faced with the opportunity to write a new book about DevOps with OpenShift and to apply new learnings and more up-to-date technologies from Stefano Picozzi, Mike Hepburn, and Noel O'Connor's existing book, DevOps with OpenShift – Cloud Deployments Made Easy, we considered what the important ingredients are to make DevOps with OpenShift a success for any organization choosing to adopt the technology.

			
				2	https://openpracticelibrary.com/practice/definition-of-done/

			

			The success factors are all based on people, processes, and technology through the application of the many practices we've used with our customers globally and, in particular, the kinds of practices we were introducing and enabling using DevOps culture and practice enablement.

			This book's purpose is to enable you to understand and be ready to apply the many different practices — some people-related, some process-related, some technology-related — that will make DevOps culture and practice with OpenShift a success within your organization.

			Who Exactly Is This Book For?

			This book is intended for a broad audience — anyone who is in any way interested in DevOps practices and/or OpenShift or other Kubernetes platforms. One of the first activities for us to undertake was to get together and list the different personas and types of reader we intended to write for. These included the following:

			
				
					[image:]
				

			

			Figure 1.2: The intended audience

			
					Caoimhe, a technical lead who looks after a team of people who develop software. She wants to learn more about DevOps so she can help adopt great DevOps practices.

					Fionn, a project manager who is responsible for a set of legacy software applications and wants to modernize his team's approach to make use of this DevOps thing he's heard lots of people talking about.

					Padraig, an Agile coach who is very experienced in applying Agile delivery frameworks such as Scrum and wants to further his skills and experience with DevOps. He feels that this will really add value to the teams he is coaching.

					Tadhg, a user experience designer who wants to better understand what other people in the company's development team do with his designs and how he can collaborate with them to deliver products.

					Séamus, who is an IT leader executing his company's technology strategy to adopt containers and cloud-native technology across the company's entire IT estate. He has chosen OpenShift Container Platform (OCP) as the strategic product to support this. He wants to ensure that OCP generates a fast return on investment and that there is a large uptake across all IT teams in his organization.

					Aroha, the CIO of the organization. She wants to ensure that the company's people are aligned with company strategy and getting the very best out of the technology and the organizational decisions being made to drive the strategy. She's motivated for the business to become more agile and adapt quickly if and when market conditions change. She wants to read about what similarly sized organizations in different industries (including in her own industry) have successfully done and what they saw as being the critical success factors.

					Siobhán, an infrastructure engineer who has been using Kubernetes for many years and is now part of a team introducing OCP to her organization. She wants to ensure that the platform is configured to support her team's goals and wants to know how she can best work with development teams so that they get the maximum value out of the technology.

					Eimar, a project manager who has spent two decades delivering IT projects through up-front planning, tracking deliverables against plans, and managing risks, issues, and dependencies with strong project reporting and stakeholder management skills. She gets frustrated by the amount of time it takes to ship software and not being able to address user needs and fixes quickly. She sees the benefit of moving to a more product-centric approach rather than a project-centric one. She would like to re-skill herself to be a product manager. In doing this, she wants to be able to test and adapt quickly, ship deliverables quicker, adapt to changing market conditions, and also improve performance, uptime, recovery times, and more.

					Finn, a system tester who takes great pride in quality assuring software before it is shipped to customers. His business analysis background helps him develop comprehensive testing approaches and scripts and, over the years, he's also led performance testing, security testing, and operability testing. He's keen to learn how he can introduce more automation to his work and branch out to other forms of testing.

			

			From I to T to M

			With this book, we want people to move away from being I-shaped, where they are a specialist in one skill or one field. We want them to become more T-shaped, where they still have a depth of skill and experience in a particular field (such as infrastructure or UX design), but they also have an appreciation and breadth of knowledge across all the other skills that people bring to make up a cross-functional team. This could be a frontend engineer, for example, who also works side by side with the API engineer.

			A great cross-functional team is one where the full team holds all the skills and experience they need. They are empowered to take a new requirement from a user or business stakeholder through to production. A team could be made up of lots of I-shaped people, but this type of team quickly becomes dependent on specific individuals who can be a blocker when they are not available. For example, if a database change is needed to expose a new API but only one team member has the knowledge to be able to do this, the team can quickly become stuck. If the team is full of more T-shaped members, there is a greater opportunity for collaboration, sharing, and partnerships across the team and less reliance on individuals:

			
				
					[image:]
				

			

			Figure 1.3: Skills transformation

			We want this book to help I-shaped people become more T-shaped and perhaps even become M-shaped. M-shaped people are inspired to deepen their learning, take it into other fields, and hold multiple skills, thereby building stronger cross-functional teams.

			Conclusion

			This chapter presented a brief overview of why we wrote this book and who it is intended for.

			We introduced ourselves and how we will be using our applied knowledge, experience, and learnings to write this book full of stories and examples.

			We examined the different personas we are targeting in this book and how we intend to help move these focused I-shaped people into more T-shaped or M-shaped to build stronger cross functional teams.

			In the next chapter, we will introduce DevOps and some tools we will use during the book to organize and explain DevOps practices.

		

		
			
			

		

		
			2. Introducing DevOps and Some Tools

		

		
			What Does It Mean to Be DevOps in a Container World? People have different perceptions about DevOps, what it means, and how it works.

			In this chapter, we are going to explain our view on DevOps and the bottlenecks and challenges that DevOps focuses on addressing. We will introduce the idea of a value chain in software product delivery and how we can use different techniques from lean, agile, and DevOps communities to optimize and speed up the value chain.

			We will also introduce some tools, such as the Mobius Loop and the Open Practice Library that we will use to navigate our way through the many practices utilized in the rest of the book.

			DevOps is a bit of a buzzword at the moment! It seems that for every decade in technology, there is a new buzzword associated with it.

			Throughout the 2010s, Agile was that buzzword—This is going to be an Agile project, or We're going to use Agile to deliver this, or We're going to use the Agile methodology were common phrases that many of us have heard. It was (and still is) often used incorrectly about delivering software faster. In fact, Agile is focused more around delivering business value earlier and more frequently and driving a culture of continuous learning. Agile has now officially grown up—it had its 18th birthday in February 2019. Even after all this time, we still love to use the values and principles of the Agile Manifesto1 created back in 2001.

			
			Containers is another buzzword these days. We see it being used by individuals without them necessarily understanding the full meaning of what a container is and why people, teams, and organizations would benefit by utilizing them.

			So, with this book being about DevOps and OpenShift (a container management platform), we're going to de-buzzify these terms and talk about very practical, real world experience and examples of the real value behind DevOps and OpenShift containers.

			Let's take a look back in time and see where we believe these phenomena came from.

			We all have worked in IT for a number of decades (some more decades than others!). While chatting over a beer and looking back at our experiences of delivering IT projects, we recognized some common characteristics in all our IT projects that have been constant. We also identified a set of gaps in the value chain of delivering IT projects that, for us, seemed to slow things down.

			The Value Chain

			Every project we've ever worked on has had some kind of end customer or user. Sometimes they have been external users, such as an online shopper wanting to use their mobile app to buy the latest set of Justin Bieber bedsheets! Other times, they have been teams internal to an organization, such as an operations team or a particular department within a company. One common denominator we all agree on is that the objective of our work was always having smiley, happy customers:

			

			
				
					[image:]
				

			

			Figure 2.1: Happy customers — The ultimate goal of organizations

			
				1	www.agilemanifesto.org

			

			Between us, we have helped many organizations, from the public sector and finance to retail and charities. We've seen it all! As we reminisced, we discussed the end result of some of our projects; we thought about our why — there was almost always some kind of monetary value aspect associated with the reason for us being there. There were other motivations, too, such as increased customer satisfaction, reduced risk, and improved security and performance, but the bottom line is that an essential part of any of our commercial customers' business is to make money and reduce costs.

			So, in the end, value was often linked to money in some shape or form. Three of us authors are Irish and the fourth is from New Zealand, so we felt it was appropriate to reflect this as a pot of gold!

			
				
					[image:]
				

			

			

			Figure 2.2: Profits — A common goal of every commercial organization

			The 1990 book The Machine That Changed the World, written by James Womack, Daniel Jones, and Daniel Roos, first introduced the term value stream. The idea was further popularized by the book Lean Thinking, written by the same authors. According to them, the value stream is the sequence of activities an organization undertakes to deliver on a customer request. More broadly, a value stream is the sequence of activities required to design, produce, and deliver a good or service to a customer, and it includes the dual flows of information and material. Most value streams are highly cross-functional: the transformation of a customer request to a good or service flows through many functional departments or work teams within the organization:

			
				
					[image:]
				

			

			Figure 2.3: Customers dreaming of the pot of gold

			Let's visualize this as our customers dreaming of that pot of gold. They're constantly thinking about how they can get the most out of their products or ideas to generate the most gold. So, how do they go about doing this?

			The Gaps

			We're going to explore the gaps in the value chain between customers and organization's business people, between business people and development people, and between development people and operations people.

			The Big List of Things to Do

			The first gap in the software development process that we consistently saw was the process of collecting information from end customers and forming a list of customer requirements:

			
				
					[image:]
				

			

			Figure 2.4: Understanding and collecting customer requirements

			Our early projects often involved long phases of business analysts documenting every possible requirement they could conceivably think of into epic volumes of business requirements — documents. The goal was to pre-empt every conceivable customer journey or scenario and to cover all the bases by building specifications that included every possible eventuality. Sounds rigid, right? What if we made an incorrect assumption?

			Demonstrating Value and Building the Right Thing

			The second gap revolved around demonstrating value to customers. Usually, the project being undertaken was set up to include all of the features and ideas needed so that they could be released together. Once the project was in production, it would only have a small operations budget to support minor enhancements and problem resolution. Sounds like it might take a long time to get the application into the end users' hands, right?

			There are two reasons we call these gaps. First, the process was lengthy — months, sometimes years, would elapse between starting a project and signing off on the requirements. Second, trying to collect every possible requirement before delivering anything would mean no real benefit to the end customer for years and often, the wrong functionality was built and delivered to an unhappy customer:

			
				
					[image:]
				

			

			Figure 2.5: Using human-centered practices to understand customer needs

			This gap of not building the right thing has been plugged in recent years by the emergence of human-centered design and design thinking. These are a set of practices that put the end user at the center of capturing the needs and requirements of a product.

			We gather the information by talking directly to users and forming greater empathy2 with them:

			
			
				
					[image:]
				

			

			Figure 2.6: Merriam-Webster definition of 'empathy'

			In this book, we'll explore how techniques such as impact mapping, event storming, and human-centered design can aid the software development process. We'll also explore other practices to help us define solutions and features and crucially ensure that the solution is connected to business value. We'll show how the act of coupling research activities such as user interface prototypes and technical spikes with experimentation inform product backlogs that are well prioritized according to delivered business value. We will show you how using just enough information can lead to a better-understood product.

			How Do We Do the Things on Our List?

			Let's consider the second gap in delivering value to users. This gap focuses on moving from a shopping list of TODO items into working software.

			The traditional approach is to sign off and confirm a finite set of requirements that have undergone the lengthy process of business analysis and capture. The scope of the project is locked down and a stringent change control process and governance is put in place for dealing with any deviation from the documented requirements.

			
				2	https://www.merriam-webster.com/dictionary/empath

			

			A team of software designers and architects then gets to work, producing a high-level design (HLD) that will deliver a solution or set of solutions according to the business requirements specified. These requirements also go through a formal review process by key project stakeholders and, once signed off, become the reference source for the solution scope.

			Often, different design documents are written in the next phase - detail design documents, program specifications, data designs, logical architecture blueprints, physical architecture solutions, and many more. Each of these is written to support a defined, dated, and signed-off version of the HLD, which itself, is signed off against a defined set of business requirement specifications:

			

			
				
					[image:]
				

			

			Figure 2.7: Traditional application development lifecycle

			Any changes to the earlier documents have direct time and cost implications for reassessing and updating each of the following design documents. Software development teams may have been involved in the production or review of some of these documents. However, they are often encouraged not to start any coding or development activities until these designs have been locked down. Some organizations reduce project costs by not onboarding development teams until this stage. Development is often siloed by function and unaware of the big picture with limited automated testing.

			At a predefined point in the project plan, all developers are expected to have delivered their coded components to a testing environment. Perhaps each developer manually builds and deploys their own code to the testing environment. Some larger programs seek economies of scale by setting up build infrastructure teams who do this on behalf of all developers. Once all components had been delivered, a separate team of testers starts executing the hundreds of test scripts they had been writing in the preceding weeks and months to test the solution according to business requirements and HLD documentation. This is the first time some components are integrated and tested together. Of course, problems and bugs drive reworking by development teams and designers to fix such issues.

			Just as there are different levels of design documentation, testing often undergoes different levels of testing, with one starting when the previous phase is completed. A test manager would sign off on a set of test results, signaling that the next level of testing could start. Testing would range from a set of component integration testing to wider system integration testing, security and penetration testing, performance testing, failover and operability testing, and finally, user acceptance testing!

			The final stage before the big-bang go-live of a solution would often be user acceptance testing, involving a set of focus users and the test system. In many cases, it could often be months or years before this first user saw the implemented system. Once user acceptance of the solution was signed off, the green light was given to deploy to the production environment. Finally, with the software in the hands of real end users, business revenue could hopefully be generated from all this work.

			You're probably thinking that this process sounds long and drawn out — well in truth, it was! Many programs hit delays at different points along the way and what started out as a multi-month project plan ended up being years long. For the curious, there is even a list of some epic failures on Wikipedia: https://en.wikipedia.org/wiki/List_of_failed_and_overbudget_custom_software_projects.

			Often, business conditions would change during the development period. New feature requests would be generated. During testing, gaps in the requirements would emerge that no one considered during the analysis and requirements capture. The market didn't stand still during development and competitor companies may have started to innovate quicker. The competition would even provide more feature requests, in a process akin to a feature comparison war.

			Of course, there was always some kind of change control procedure to handle new scope like this. In a complex program of work, the lead time to get features added to the work plan could range from months to years. In order to get something into production, program executives would simply say no to any more change and just focus on getting to the end of the project plan.

			This meant that solutions finally delivered to production were somewhat underwhelming to users several years after the first requirements were discussed. Time and industry had moved on. The biggest frustration of these programs was that they were frequently delivered late, were over budget, and often delivered a solution that lacked user satisfaction or quality.

			Stepping back a little, we had this huge gap of converting lists of features into a software deliverable. The process known as Waterfall due to the nature of separate phases of work flowing down to the next phase was associated with very lengthy times:

			
				
					[image:]
				

			

			Figure 2.8: Traditional deliverables with its drawbacks failed to achieve customer satisfaction

			Let's think about how we plug that second gap with more modern software development processes. How do modern developers manage to translate user needs into working software solutions much more quickly compared to previous ways of working?

			The formation of the Agile movement in 2001, led by the 17 IT individuals who wrote the Agile Manifesto, has triggered alternative approaches and mindsets toward delivering software. Many of the individuals involved in writing the Agile Manifesto had been tackling many of the problems described by Waterfall development. Jeff Sutherland and Ken Shwaber had created the Scrum framework for software development, which included delivering small incremental releases of value much more frequently — they used the term sprint, which was a fixed timebox ranging from one to four weeks (usually being two weeks), during which a set of events and roles would work together such that big solutions could be delivered iteratively and incrementally. Kent Beck and Ron Jefferies led much of the eXtreme Programming (XP) movement, focusing on delivering faster releases of value and working on key practices that helped drive more efficiency into review, testing, and release processes, using better collaboration and increased automation:

			
				
					[image:]
				

			

			Figure 2.9: Implementation of DevOps practices leading to faster delivery and better products

			In this book, we'll show you different software delivery practices and how our experience using a mixture of different practices from Scrum, Kanban, XP, Lean, and some scaling frameworks helps deliver value quicker. All the underlying practices are simply tools to help close the gap between an idea or requirement being captured and it being delivered. This has been an area we have sought to continuously improve to a level where the gaps are minimized and we're working in a mode of continuous delivery.

			Development to Operations

			There is one more gap to plug in our efforts to optimize the software delivery process. The third gap is the one between development teams and operations teams.

			In our Waterfall process, we had reached the point where the signed-off solution exited user acceptance testing and went through a big-bang go-live. So, what happened next?

			Often, a whole new team responsible for maintenance and support would then pick up the solution. The people who work in this new team were not involved in any of the design, development, or testing, so additional time would be built into the project plan for knowledge transfer. The delivery team would write lengthy documentation in the hope that this would be a useful resource for future operations teams.

			At this point, the package of software would metaphorically be thrown over the wall from the army of developers to the group of operation engineers. The operations teams often had to learn about the software the hard way by investigating production incidents, addressing bugs that were not found previously, and handling new scenarios not considered during the requirement planning stage:

			

			
				
					[image:]
				

			

			Figure 2.10: Aspiring to bring down the wall between development and operations teams

			To plug this gap, we must bring development and operations teams together. Tear down that wall and remove the silos! Bringing down the wall forms new teams that are focused on development and operations activities. These teams are collectively responsible for the whole solution and can design the solution according to each others' needs.

			The term DevOps was coined by the idea that we no longer have siloed development and operations teams. In recent years, we've seen various other terms emerge from this idea, such as DevSecOps, BizDevOps, DesOps and even BizDesDevSecOps!

			Note

			BizDesDevSecOps is a bit of a mouthful, so we're going to use the term product team to describe it throughout this book. It addresses the ultimate goal of plugging all gaps in the software development process and bringing down all the walls.

			

			
				
					[image:]
				

			

			Figure 2.11: Plugging the gaps in the software delivery process

			Note that we will not use the DevOps team term DevOps team — the idea of having a team or even an individual purely focused on DevOps runs counter to what the DevOps philosophy is all about — collaboration, cross-functionality, and the removal of silos. How many times have you seen ads on LinkedIn or other sites looking for DevOps engineers? The invention of the DevOps engineer or the DevOps team could be seen as creating just another silo.

			People, Process, and Technology

			DevOps is really all about collaboration. It's about taking pride in, and ownership of, the solution you're building by bringing down walls and silos and by removing bottlenecks and obstacles. This speeds up the value stream connecting the customer's perceived need to the product delivery.

			Technology alone will never solve all your business problems. No matter how good the platform or software product you are evaluating or being sold, unless your organization has learned to adopt the correct balance of people aspects, process changes, and technology adoption, the objectives will not be met.

			This book is about finding the right combination of people, process, and technology changes needed to maximize business outcomes on a continuous basis. This requires changes in mindset and changes in behavior. This book will look at the behavioral change that we have seen be most effective with the hundreds of organizations we have collectively worked with. We've observed that such mindset and behavioral change is needed across all roles and that we need to break down the silos we see inside organizations, which, as we saw previously, is what drives the gaps and inefficiencies in software development:

			
				
					[image:]
				

			

			 Figure 2.12: A healthy balance between people, process, and technology

			Everyone in an organization should care about people, process engineering, and technology in order to drive the desired outcomes. We want to break down the silos between these three pillars and bring them closer together. A reader who may be more interested and focused in one of these three things will get as much (if not more) value from learning about the other two things.

			This means a hardcore software engineer or architect can pick up some great insights and guidance on why people, culture, and collaboration are equally important for their role.

			Someone who has previously been an expert in project management methodologies and is now learning about more agile delivery practices such as Scrum can also use this book to learn about modern technology approaches such as GitOps, CI/CD, and serverless. They can learn why these are important to understand and appreciate so that they can articulate the business value such approaches bring to organizations.

			A leader who is concerned about employee retention can learn how the mastery of these modern tech practices of iterative and incremental delivery strategies can maximize the opportunities for organizational success through the delivery of highly valuable products being used by happy customers.

			The Mobius Loop and the Open Practice Library

			In this book, we're going to explore lots of different practices. We're going to explain what they are and why we use them. We're going to give you some guidance on how to use them. We're going to share some real-world examples of how we've used them and, where possible, we'll even show them in action. Using our Pet Battle case study (more on that later), we're going to bring them to life in a fun way and we'll share the best tips that we've picked up in the field.

			A problem we hit a few years ago when working with our customers' new teams was explaining how and when you might want to use different practices and in what order. What practice should we start with? What practice links nicely to the output produced from a previous practice, and so on?

			To help with this, we have made use of an open-source navigator tool called Mobius. This was created by Gabrielle Benefield and Ryan Shriver. There is a huge amount of great material, including a number of open-sourced canvases and artifacts, available at www.mobiusloop.com. Red Hat Open Innovation Labs makes use of this open-source material in all of its residencies and in its DevOps culture and practice enablement courses.3 We will use it in this book to structure the content and the sections.

			
			
			

			
				
					[image:]
				

			

			Figure 2.13: The Mobius loop4

			
				3	https://github.com/rht-labs/enablement-docs

			

			
				4	The Mobius Loop (https://mobiusloop.com/) resources by Gabrielle Benefield and Ryan Shriver used here and throughout this book are licensed under CC BY 3.0. Later in the book, images include an additional modification of a foundation layer. For more information please see https://creativecommons.org/licenses/by/3.0/

			

			Mobius is a framework that connects discovery and delivery and can be used to connect strategy to products to operations. The common denominator is measurable outcomes. Mobius is used to understand, align, and share measurable target outcomes so they can be tested and validated.

			There are a number of principles that underpin the Mobius navigator:

			
					Outcomes over outputs: We focus on delivering tangible impacts or outcomes to people as opposed to delivering lots of features that may not drive outcomes.

					Multi-options strategy (options pivot): We look to build a list of options, a list of research initiatives, experiments, and implementation features that can be used to test hypotheses about whether those research initiatives, experiments, and implementation features will indeed drive the anticipated outcomes.

					Rapid delivery: We aim to use short iterations of delivery with regular feedback and measurement as we strive toward the idea of continuous delivery.

					Continuous learning and improvement: happens throughout the cycle so that our next set of options yield an even better impact on outcomes.

			

			There are seven core elements to the Mobius approach across a continuous and never-ending flow. They can be visualized on a single canvas that is open source and made available under a creative commons license at www.mobiusloop.com:

			
					Why describes the purpose. Why are we doing this? What is the problem we are trying to solve? What is the idea we are trying to pursue?

					Who focuses on the end users. Who are we trying to solve the problem for?

					Outcomes are where we want to get to with these people, the changes in their human behavior that influences big results, and how we will measure the customer and business impacts delivered.

					Options are the potential solutions that could deliver these outcomes. They help define the hypotheses we can go on to test and help us find the simplest way to achieve the desired outcome with the least amount of effort or output.

					Deliver is the cycle where we run experiments to deliver a solution or set of solutions to users so we can measure the impact.

					Measure is where we assess what happened as a result of delivering the solution or set of solutions. We check whether the impact of the solution delivered the desired outcomes and assess how much of an impact we achieved.

					Learn is the feedback loop that takes us back to the options pivot. We learn from what we delivered and assess what to do next. Have we delivered enough to make an assessment? Do we go right back around the delivery loop again? Have we reached our target outcomes or invalidated assumptions from our learnings? Do we return to the discovery loop?

			

			Personas such as Tadhg, our user experience designer, would typically spend a lot of time in the discovery loop. Personas such as Caoimhe, our technical lead, would traditionally be focused on the delivery loop. Personas such as Fionn, our project manager, would typically spend a lot of time here establishing outcomes and gathering options. But, as we seek to move to cross-functional teams of T- or M-shaped people, we really benefit from everyone being involved at every stage of the Mobius loop. And Mobius creates a common language based on targeted measurable outcomes.

			You can apply the same principles of outcome-driven thinking for strategy, product, and services delivery to enabling business and technical operations — we'll return to this idea later in the book.

			Mobius is powerful because it's framework agnostic. It integrates with many existing frameworks and methods you may already be familiar with — Scrum, Kanban, design thinking, Lean UX, Business Model Generation, Lean startup, and many other great frameworks that have surfaced during the last couple of decades. You don't have to reinvent the wheel or replace everything you already like and that works for you.

			You can capture key information on a discovery map, an options map, and a delivery map — all of these are open source artifacts available under Creative Commons at www.mobiusloop.com:

			

			
				
					[image:]
				

			

			Figure 2.14: Using the Discovery, Options, and Delivery canvases of the Mobius loop

			When Red Hat Open Innovation Labs started using Mobius, we placed all of our practices around the Mobius loop. Some practices clearly aligned with the discovery loop and, in particular, the Why & Who end of the discovery loop. Practices such as impact mapping, start-at-the-end, and empathy mapping are great at uncovering the answers posed in this section of the loop. We'll get into the detail of these practices in subsequent chapters of this book.

			Practices such as event storming and user story mapping were very helpful in establishing and visualizing outcomes on the other side of the discovery loop. Again, we'll look at these practices in detail and share some great examples of their effect.

			Practices such as design sprints, how-might-we, and product backlog refinement would help determine and organize the series of options available attempting to drive toward outcomes.

			Practices such as sprint planning would help plan and execute the incremental delivery of products toward outcomes. We'll explore these iterative delivery practices and how different Agile frameworks can be used with Mobius.

			Practices such as showcases and retrospectives would help with capturing measure-and-learn data from incremental delivery.

			We still had a large number of practices that we did not feel naturally fitted into one of the loops or the options pivot. When we laid out all of the remaining practices that we had all used with numerous customers very effectively, we found they fitted into one of two areas. One set of practices were all focused on creating culture and collaboration. The other practices were all technical engineering practices that supported the concept of continuous delivery.

			When explaining these practices to others, we talked about these being very important practices to put in place, but not necessarily practices that you would schedule. For example, you will learn that practices such as impact mapping on the discovery loop are important scheduled workshops that you execute and occasionally revisit in the future. Practices such as sprint planning, showcases, and retrospectives on the delivery loop are also tightly scheduled when working in an iterative delivery framework. But the practices associated with culture and collaboration or those associated with technical engineering were more like practices that you use all the time, continuously.

			Practices such as social contracts and definition of done are not one-time-only practices where you bring the artifact out on a schedule. These are living and breathing artifacts that teams use all the time in their day-to-day work. Likewise, continuous integration, test automation, and infrastructure as code — these are not the types of practices you schedule one or two times a week. These are practices that you do all the time. They are practices in the foundation of where and how we're working. In order to effectively practice continuous delivery and continuous discovery as presented by the Mobius loop, we need to have a strong foundation of culture, collaboration, and technical engineering practices.

			To visualize this, we added the foundation to the Mobius loop:

			

			
				
					[image:]
				

			

			Figure 2.15: Adding a foundation to the Mobius loop

			This graphic has become a simple visualization tool that helps us navigate the ever-growing list of practices and techniques we use to achieve continuous discovery and continuous delivery of digital products:

			
				
					[image:]
				

			

			Figure 2.16: Practicing continuous discovery and delivery through the Mobius loop

			Open Innovation Labs Residencies involves traveling around the Mobius loop a few times, usually starting from discovery before proceeding to delivery and then pivoting a few times to either more delivery or returning to discovery continuously. We find that, in order for this to be sustainable, you must build a foundation of culture and collaboration and you must build a strong foundation of technical engineering practices.

			Open Innovation Labs kick-started an open source, community-driven project called the Open Practice Library. The Open Practice Library is a community-driven repository of practices and tools. These are shared by people currently using them day-to-day for people looking to be inspired with new ideas and experience.

			All of the practices you read about in this book have been contributed to the Open Practice Library and, throughout the book, we will use the Mobius loop and the foundation of culture, collaboration, and technical practices as a reference point to determine where and how all our open practices fit together to deliver great DevOps culture and practice with OpenShift.

			An important characteristic of Mobius and the Open Practice Library is that it is not prescriptive. It is not a methodology. It does not tell you exactly which practice to use when and where. Think of the Open Practice Library as a box of tools — a really well-organized toolbox with lots of compartments and shelves. The practices have been organized into compartments that help with discovery and, in particular, the why and who, followed by deriving outcomes. There is a drawer containing all the tools that help form, organize, and prioritize options and how to pivot later in the cycle. There is a portion of the toolbox with all of the tools that help with delivery — whether that be iterative and incremental delivery associated with agile practices or single delivery associated with Waterfall. There are tools to help capture and understand the measurements and learning from delivery. Finally, there is a huge drawer of tools used to establish culture, collaboration, and technical engineering excellence. These are often the first tools we go to grab when starting a piece of work.

			Conclusion

			In this chapter, we introduced the value chain in software product delivery and explored how traditional ways of working brought inefficiencies, bottlenecks and gaps between users, business stakeholders, development teams, and operational teams.

			We explored some of the techniques that have been used to plug these gaps and how a balanced focus on people, process, and technology is needed by all involved.

			Finally, we introduced the open-source navigator tool called Mobius that connects discovery and delivery in an infinite loop and can connect strategy to product to operations with a common denominator of measurable outcomes. The Open Practice Library uses mobius on a foundation of culture and technology to navigate between an evolving number of open practices — many of which will be explained in subsequent chapters.

			In the next chapter, we're going to outline how we'll approach the rest of the book by introducing our case study and the structure for the remaining sections.

		

		
			
			

		

		
			3. The Journey Ahead

		

		
			As we conclude the first section of this book, this chapter will explain the journey we intend to take you through the remaining sections.

			This will include how we intend to not just tell you about practices and techniques but also show them in action and apply them. We'll introduce a fun case study and real world stories to do this.

			One of the challenges of writing a book intended to be read by a diverse group of people with different skill sets and backgrounds is how to write it in such a way that means it can be consumed, understood, and appreciated by all. From tech leads, infrastructure engineers, and OpenShift specialists, to Agile coaches, user experience designers, and project managers, to IT leaders and CXOs, we want you to grasp a shared understanding of what's behind all the practices being taught and the principles that underpin then.

			The topics covered are going to range from how to capture behaviors in an empathy map using human-centered design practices to considering observability within applications using performance metrics. It will look at ways to help product owners prioritize value versus risk while also addressing instrumentation for applications, image tagging, and metadata!

			Similar to the definition of done practice we use on our DevOps culture and practice enablement course, we're going to use a few different approaches in this book to help you with your journey:

			
					Explaining the culture and practice

					Showing the culture and practice

					Applying the culture and practice

			

			To explain the culture and practice, we will introduce what the practice is and why and where we've chosen to use it, and give some guidance on how to use it. In some ways, this is the easy part.

			We have a saying among us that we prefer to show, not tell. It's easy to research and write a load of words. It's far more compelling to visually show a practice in action and the effect it is having. To show the culture and practice, we have a few techniques:

			
					As much as possible, we'll aim to make use of visualization techniques such as sketch notes, diagrams, and other charts. You will have seen a few of these, beautifully drawn by Ilaria Doria, in this section already, and hopefully, they have helped bring the words to life a little.

					Where we can show you a practice in action through photographs or reproduced artifacts, we will do so. Where possible, we have made the diagrams and other visual artifacts open source, and they are available at https://github.com/PacktPublishing/DevOps-Culture-and-Practice-with-OpenShift/.

					We find stories and real-world examples the best way to explain a practice and the value it brings. So, from time to time, we will break away and tell a story that one or more of the authors have experienced connected with these practices. We'll visually tell these stories on their own by having a box around the story. Let's start with one now:

			

			
			
			A Story about Telling a Practice

				
					[image:]
				

		
			In December 2005, I was working in the billing workstream of a large telecommunications billing system replacement program in the UK. I'd been working on this program for 18 months already at this point. It was a 10-year program to replace all legacy billing systems with a more modern COTS software and introduce some new business capability enabling flexible and changeable product management.

			I lead the billing interfaces workstream and was responsible for the delivery of interfaces between billing systems and third parties such as banks, BACS, and the treasury.

			Our workstream was having our Christmas dinner in a pub near the office. We'd chosen this pub because most of us had been to the same pub 12 months previously for last year's Christmas dinner. It was funny to see so many of us in the same place around the same time of year 12 months on.

			When I was there, I reflected on the last 12 months and what had been achieved by our expensive team of consultants during the period. It dawned on me that 12 months ago, we were entering the design phase of a major release of the program. We were running a series of workshops over several weeks to map out the different work products and deliverables required for the release.

			12 months on, we were still in that design phase. A workstream of over 60 people had spent a year writing, rewriting, refining, and writing again design documents, more design documents, variations of design documents, technical clarification notes against design documents, and even change requests against design documents. At this point, no code had been written, no tests had been run, and no software had been released. All we had produced from 12 months was lots of design documents and lots of meetings.

			I remember feeling somewhat underwhelmed by the impact of what we'd achieved in the last year. I said to myself then, There has to be a better way of delivering software.

			Finally, we want to apply some of the culture and practices for real. To help us do that, we are going to use a simple, fun case study about a small start up organization going through some of the challenges and hurdles associated with creating a DevOps culture and establishing DevOps practices. This story will represent an anonymized account of some of the things we've seen in the field with our customers using these practices.

			We'll regularly return to this story of applying DevOps culture and practices using OpenShift in shaded boxes. Let's get this rolling with the backstory — we hope you're ready for this!

			
			PetBattle – the Backstory

			Pictures of domestic cats are some of the most widely viewed content on the internet1. Is this true? Who knows! Maybe it's true. What we do know is that they make a great backstory for the example application we use in this book to help explain a number of DevOps practices:

			
								[image:]

			
			Figure 3.1: PetBattle — The backstory

			PetBattle is a hobbyist app, started for fun, hacked around with so that the authors can Cat versus Cat battle each other in a simple online forum. A My cat is better than your cat type of thing. There are very few bells and whistles to the initial architecture — there is a simple web-based user interface and an API layer coupled with a NoSQL database.

			PetBattle begins life deployed on a single virtual machine. It's online but not attracting a lot of visitors. It's mainly frequented by the authors' friends and family.

			While on holiday in an exotic paradise, one of the authors happensed to meet an online influencer. They date, they have a holiday romance, and PetBattle suddenly becomes Insta-famous! Nearly overnight, there was a drastically increased number of players, the PetBattle server crashes, and malicious pictures of not cats start appearing on the child-friendly application.

			Back from holiday, the authors suddenly find themselves needing to earn a living from PetBattle and decide that developing a business and a production-ready version of the hobbyist app is now a viable thing to do.

			

			
				1	https://en.wikipedia.org/wiki/Cats_and_the_Internet

			

			The scene is set for the PetBattle founders to go on an exciting journey embracing DevOps culture and practice with OpenShift.

			What about Legacy Systems?

			People often associate Agile and DevOps with greenfield, brand-new development and see it as only applicable to start-ups and those with the luxury to start again. What about legacy systems? is a common question we get asked.

			We'll show throughout this book that the Mobius loop and the foundation can apply to any kind of project and any kind of technology; greenfield or brownfield, small web app or large mainframe, on-premises infrastructure delivery or hybrid cloud technology.

			We tend to start our journey on the Mobius loop at the discovery part (after building the base foundation of culture, collaboration, and technical practices). But you don't have to start there. In fact, you can start anywhere on the loop. The most important tip is to make sure you regularly travel around all parts of the loop. Do not get stuck in delivery loops and never return to discovery to revisit hypotheses and assumptions previously made. Do not get stuck in discovery where you're moving so slowly, you're getting stuck in analysis paralysis and risk missing market windows and never delivering value. Most importantly, never forget to keep building on the foundation of culture, collaboration, and technical practices.

			Borrowing Brilliance

			Before we start to dive deeper into the detail, we should take a moment to point out that we did not write or dream up any of the practices in this book. The practices in this book and in the Open Practice Library are a growing list of contributions of some brilliant minds. We have borrowed that brilliance and will attribute it to the brilliant minds that came up with it. We hope we have attributed everyone correctly and any omissions are purely accidental.

			What we have attempted to do with this book is show how these practices, when connected together, have delivered some highly impactful outcomes for organizations and show some of the underlying principles needed to enable those outcomes.

			What to Expect from the Rest of This Book?

			So, you've almost made it to the end of this first section. Thanks for sticking with us so far! We hope you're feeling suitably enthused and motivated to read some more and have enough trust in us to want to read what we've written.

			If you need just a little bit more information about what to expect, here's a short overview.

			Section 2 — Establishing the Foundation

			In this section, we'll look much deeper into the importance of establishing a foundation both culturally and technically. We'll look again at the purpose motive — the start with why that we kicked off this book with and how that should be the starting point for any product or any team. We'll look at some of our favorite and most powerful practices we've used to help create the foundation and culture of collaboration — social contracts, stop-the-world andon cords, real-time retrospectives, creating team identity, and getting into the habit of visualizing everything and having a cycle of inspection and adaptation. A relentless focus on creating an environment of psychological safety is a key success factor when establishing the foundation. We'll explain what this is and how we can help achieve it.

			We'll explore how executive sponsorship can enable and impede a successful foundation and explore deeper what it means to be open in terms of technology and culture. We'll look into how Agile decision-making works and some of the useful tools and practices that can help with this. And we'll look at the adoption approach and how to convince the doubters and skeptics!

			From a technical foundation perspective, we're going to share some of our most successful approaches, including the visualization of technology through a big picture, the green from go philosophy, and how we treat everything as code. We'll introduce some of the baseline metrics we've used to measure the success and impact of DevOps culture and practices. We'll even set the scene for some of the technical practice trade offs and approaches to consider when creating your foundation — GitFlow — versus Trunk-based development, setting up development workflows, considering different types of testing, and setting up an environment for pairing and mobbing.

			To show and not tell, establishing the foundation is about turning the picture on the left into the picture on the right:

			

			
				
					[image:]
				

			

			Figure 3.2: Collaboration within the organization

			Section 3 — Discover It

			Here, we'll dive into the discovery loop of Mobius and look at some of the best ways to use it. We'll share some of our favorite and most impactful practices from the Open Practice Library that have helped us in the discovery loop, including impact mapping, human-centered design, and event storming.

			We'll look at how this relates to technology and the idea of emerging architecture and enabling true continuous delivery.

			From a business perspective, we'll explore the difference between outcomes and outputs and how we're trying to move from the idea of more features being better to creating powerful outcomes with fewer features. We'll explore some practices for how we can continuously measure outcomes and how we can radiate information from the entire discovery loop on open source canvases.

			To show and not tell, we'll look at moving discovery from looking like what you see on the left to what you see on the right:

			
				
					[image:]
				

			

			Figure 3.3: Practicing discovery through impact mapping, human-centric design, and event storming

			Section 4 — Prioritize It

			Here, we'll dive into the options pivot of Mobius and see why living, breathing, and always-changing options are important. We'll explore practices such as user story mapping and value slicing that help us with this and share some of the gotcha stories we have of where this has been misunderstood and misused. We'll look at how we go about building that initial product backlog using discovery that leads to options pivot practices. We'll look at different types of items that end up in product backlogs, which range from research work to experimentation work and implementation work. We'll look at some economic prioritization models and how to assess the trade-offs between value and risk with the mindset of continuous experimentation and continuous learning. We have lots of stories to share — some with a specific focus area and some with a thin thread of learning across many areas.

			To show and not tell, we'll see how prioritization can go from looking like what's on the left to what's on the right:

			
				
					[image:]
				

			

			Figure 3.4: Using the Options pivot to prioritize backlog items

			Section 5 — Deliver It

			In this section, we'll look at Agile delivery and where and when it is applicable according to levels of complexity and simplicity. We'll also look at Waterfall and the relative merits and where it might be appropriate. We'll explore different agile frameworks out there and how all of them relate to the Open Practice Library and Mobius loop. We'll explore the importance of visualization and of capturing measurements and learning. Technology-wise, we'll look at how advanced deployment techniques now available help underpin some of the experimentation and learning approaches being driven.

			To show and not tell, we'll see about getting delivery from looking like the picture on the left to something like the picture on the right:

			
				
					[image:]
				

			

			Figure 3.5: Practicing delivery through visualization and measurements

			Section 6 — Build It, Run It, Own It

			This section really focuses on technology as an enabler and why it is important to have an application platform.

			We'll return to the philosophy of everything-as-code and look at Git and Helm as enablers for this. We'll dive deeper into containers and the cloud-native (the cloud, the platform, and the container) ecosystem. We'll explore OpenShift and Cloud IDE, as well as pipelines that enable continuous integration, including Jenkins and Tekton. We'll explore emerging deployment and configuration approaches, such as GitOps through ArgoCD, with guidance on how and where to store configuration. We'll explore advanced deployment techniques, such as A/B testing, feature toggles, canary deployments, and blue/green deployments, and how these are used with business outcome experimentation. We'll look at non-functional aspects of DevOps practices, including Open Policy Agent (OPA), the scanning of images, DevSecOps, BaseImage, and chain builds. We'll look at some functional and non-functional testing. We'll explore operational aspects such as app chassis, image tagging, metadata and labeling instrumentation, Knative and serverless, and observability in terms of business versus app performance metrics. We'll reference Service Mesh and focus on operators for management and day 2 operation considerations.

			To show and not tell, we'll explore taking building and running from being what you see on the left to what you see on the right:

			
				
					[image:]
				

			

			Figure 3.6: Creating the right environment for doing DevOps

			Section 7 — Improve It, Sustain It

			As we come out of the delivery loop, we'll ask, Did we learn enough? Should we pivot or go round the delivery loop again? We'll see how we're entering a continuous learning cycle – not a one-time thing. Assumptions are proven or disproven during delivery loops. We explore the world of technical debt and how we can bring qualitative and quantitative metrics from the platform, the feature, and the app dev workflow to help radiate this. We'll seek how to take measurements and learning from delivery back into discovery artifacts, such as event storms, metrics-based process maps, and user research.

			We'll learn how to blend everything covered in the discovery loop, the options pivot, the delivery loop, and the foundation to help sustain this way of working. This is what enables double-loop learning for continuous discovery and continuous delivery.

			Long lived, cross-functional product teams learn to build it, run it, and own it. In this section, we'll look at some of the practices that help them sustain it.

			What role does leadership have to play in all of this? We'll show how to visualize the connection between leadership strategy, product development, and platform operations, all being driven by intent and informed by information and metrics.

			We'll explore approaches to scaling everything described in the book and how a culture of following principles is more important than pure religious use of practices.

			What about Distributed Teams?

			When you look at the photographs in the previous section, you may have noticed that the world that we’re moving towards involves people collaborating together. We are in the same space, around big white boards with lots of colourful sticky notes.

			A common question we receive from leaders, executives and customers is how easy is it to apply these practices such as Event Storming or Social Contracting when people are not in the same location.

			During the last couple of decades, there has been a steady increase in offshore and nearshore development models. Some organisations have been restructured resulting in different parts of the organisation being located in certain areas of the world. In some situations, this has resulted in a more siloed organisation with larger walls between different parts of it due to geography, time zones and lack of face-to-face collaboration.

			Our answer to whether the people, process and technology practices we’re going to explore in this book can be used with distributed teams is yes, they can.

			However, the speed at which a distributed team will discover, deliver and learn is very unlikely to ever be as fast as the same team working together co-located. The ability to learn and learn fast is foundational to the whole way of working. Therefore we always seek opportunities to find the fastest way to learn and remove bottlenecks that might slow down a team's learning. Working distributed in nearly all situations we’ve observed is a bottleneck.

			Until 2020, questions around whether use of these practices can be applied with distribution have been motivated by offshore teams, availability of skills and, ultimately, cost. Large System Integrators have spent the 2000s investing billions in nearshore and offshore development centres so it’s understandable why they will want to do everything possible to enable teams in those centres to be able to use agile, lean and DevOps practices. For Agilistas, this can be frustrating as the focus of agile is very much on switching the conversation to be about value rather than cost and how to continuously learn and improve in order to optimise value.

			The year 2020 saw a new and significantly enhanced motivation for distributed teams - the COVID-19 global pandemic. We were in the early stages of writing this book when the pandemic was declared and governments started talking about lockdowns and other severe restrictions. From March 2020, most if not all people reading this book will recall that their working and personal lives changed significantly. The vast majority of IT development and operations was suddenly performed from employees’ homes. The opportunity to co-locate for any kind of in-person collaboration was severely restricted by companies, by governments and, given health risk, was a detractor for individuals themselves.

			Like most, we had to pivot our own work and modify our own ways of working with our customers during the pandemic. Regardless of preference or prior thinking on distributed working, we now had to explore and invest in distributed working practices. For us personally, this meant the launch of the Open Innovation Labs Virtual Residency and other services to be provided remotely and distributed.

			When we released this first section of this book as an early preview for feedback, we were strongly encouraged by our readers to explore distributed use of practices more than we were originally planning to. So, we will. In each of the sections of this book, we’ll include a section to share our experience of applying practices with distributed teams. This will include stories and experiences from the field during 2020 when we did this and the many learnings we got from doing so. Where relevant, we’ll also include details and links to digital templates that have supported us.

			A note of caution. Just investing in a tool like Mural or Miro and having access to a bunch of templates will not enable you to carry on as normal with all the practices and techniques you may have used in a room. We’ve already outlined the importance of getting the balance of people, process and technology change to get successful DevOps Culture and Practice. When switching to using distributed mode - teams need extra and continued focus on people, process, and technology.

			Some Words about the World of 'Open'

			The term open has been used several times in this book already and it will be used many times more. We work for an open organization, a company built on open source principles and characteristics. We're using the experiences of Open Innovation Labs to tell many of our stories, and all the practices we're using are captured and will continue to evolve in the Open Practice Library.

			
				
					[image:]
				

			

			Figure 3.7: Default to open

			We strongly believe that open culture and open practices using open technology makes the best cocktail for successful transformation.

			Conclusion

			In this chapter, we introduced PetBattle and the backstory of the hobbyist app that will form our fun case study we'll use throughout this book.

			We also introduced how we'll regularly break out into real stories and examples from work we've done with our customers.

			Finally, we set out the remaining sections of the book and what we'll explore in each of those sections.

			Our introduction is complete. Let’s start working our way round the Mobius Loop and exploring our most used practices. Before we get onto the loop, we’re going to the foundation the loop will stand on. In the next chapter we’ll start by building the very important foundation of culture.

		

		
			Section 2: Establishing the Foundation

		

		
			In Section 1, Practices Make Perfect, we introduced DevOps and the practices and tools we're going to use to navigate around the Mobius Loop, which we also introduced. Before we get onto the loop, we're going to build a foundation for the loop to stand on. This is a foundation focused on building culture and technology:

			
				
					[image:]
				

			

			Figure 4.0.1: The Foundation – setting the scene

			When you hear the word Foundation, what do you think of? A lot of people will think of the foundations of the building you are currently sitting or standing in. As you know, you cannot just turn up and start building a house on top of some land. I mean, theoretically, you could. But not if you wanted something to stand the test of time and more importantly meet building regulations! First, you need to build a solid foundation. That means going beneath the surface of where you're going to build. The taller the building, the deeper and stronger the foundations need to be.

			When you think about it, this kind of applies to anything in life. When you lay a solid foundation, incrementally building on top of it has a much higher chance of success. Think about your education, your health, your fitness, your career, and your life. The successes you enjoy are because of the foundations and what you have been able to build on top of them.

			What happens when you build on top of a weak foundation? Well, generally, it's not good news:

			
				
					[image:]
				

			

			Figure 4.0.2: Building on a weak foundation

			When working with organizations to build applications to run on OpenShift Container Platform (OCP), we see much greater success and return of business value when those organizations invest time and expertise to build a foundation and a solid approach for their development and operations.

			In Section 1, we introduced DevOps and some tools we're going to use throughout this book—namely the Mobius Loop and the Open Practice Library. The Mobius Loop acts as a navigator tool for teams seeking to apply DevOps on a journey of continuous discovery and continuous delivery. The principles we've just discussed about needing a solid foundation before building anything also apply in the field of software design. We therefore added a foundation in our Open Practice Library. Before we even think about putting any teams, people, or products onto that Mobius Loop, we need to build a foundation. And not just a flimsy and minimal foundation – we need to build a rock-solid foundation. One that is going to support fast movement and an increasing number of folks jumping on the loop above it. What do we mean by a foundation? We mean a foundation of culture and technical practices:

			
				
					[image:]
				

			

			Figure 4.0.3: Focus on the foundation underpinning the Mobius Loop

			At Red Hat Open Innovation Labs, we meticulously drive an outcomes-based delivery approach. The Mobius Loop acts as our navigator. It is a visualization tool that helps us to navigate, identify, and articulate the practices that we use at different points of our DevOps journey.

			When we are on the Discovery Loop, we identify and use practices that help us answer the question of Why – why are we embarking on this journey? What problems are we trying to solve? Who are we trying to solve them for and what do we know about them? What is our great idea? We also use practices on the Discovery Loop to help us identify and set target measurable outcomes for the business and their customers.

			When we are at the Options Pivot, we use practices to identify how we are going to achieve measurable outcomes. What are the ideas we have that we could implement to help us get there? What are the hypotheses that have resulted from our discovery that we can test, run experiments on, and conduct research? How can we prioritize these options so we deliver value more quickly?

			When we are on the Delivery Loop, we are using practices to do the work identified on the Options Pivot – implementing the features, running the experiments, and conducting the research. We crucially also use practices that allow us to take measurements and capture learning about the impact of our delivery. And, as we return back into the Options Pivot, we assess what we should do next based on those measurements and learning.

			The Mobius Loop is this infinite, continuous journey of continuous discovery, Options Pivots, and continuous delivery of measurable business outcomes that matter. We use practices on the Mobius Loop that typically have defined start and end points. The practices are designed to help a team advance around the loops – for example, in their Discovery process, to make their way to options and a decision point.

			When creating the Open Practice Library – a toolbox to store all of these practices – we found that many of them did not necessarily fit within the Discovery or Delivery Loops. Their nature was ongoing, or continuous. For example, we use many practices and techniques that help establish and drive a culture of collaboration. We use tools that help increase the energy, autonomy, and empowerment of product teams. We use practices that help drive an environment built on information radiation, transparency, and continuous learning. The concept of the Foundation beneath the Mobius Loop was added to explain these kinds of practices. These practices are designed to make it easy for teams to do the right thing by default. They are practices that we use to build a foundation of culture. There are also many technical practices that we use on an ongoing basis. The first instinct might be to associate these practices with delivery and argue that they should belong to the Delivery Loop. However, there is a subtle difference given that practices sitting on the Delivery Loop tend to be time-boxed, scheduled bursts of activity that help drive delivery. Practices such as Sprint Planning, Showcases, and user acceptance testing events (all of which we'll explore in detail in Section 5, Deliver It) tend to be scheduled at a particular time in the week or iteration. There are a host of practices that you would not schedule in the same way that you would, for example, a Sprint Planning session. These include practices such as continuous integration and continuous delivery, Infrastructure as Code or, in fact, Everything as Code, and practices around automation, such as test automation. You don't do a couple of hours of continuous integration every Wednesday morning! You don't schedule a period for Infrastructure as Code at the end of the week. These are things you do all the time, and doing them all the time is what makes them so powerful. The Foundation beneath the Mobius Loop is also used to explain these kinds of practices – practices that help build a foundation of technical engineering excellence.

			Similarly, Discovery-type practices tend to be focused events run at a particular time, sometimes multiple times as teams do multiple iterations of the Discovery Loop. The practices that we'll examine in detail in Section 3, Discover It, are all executed by a group of people gathering to focus on that activity for a period of time. Practices more focused on generating culture, such as creating a team charter and social contract to define ways of working (which will be introduced in the next chapter, Chapter 4, Open Culture) do not sit on the Discovery Loop. This is because teams get the most value out of these practices when they use them all the time. They don't get their social contract out for half an hour on Monday morning and then never consider it until the next Monday morning! This is why we build them into the Foundation.

			Now an important aspect of the Foundation and, in fact, the whole Open Practice Library, is that it does not prescribe or mandate any one practice over another. This is not another methodology or framework that spells out, in a prescriptive way, the tools and practices that someone or some team must use to achieve an outcome. We use the Mobius Loop and the Foundation to visualize the different practices we are choosing to use. There is no right answer to say how many practices you should use when building a foundation of culture and collaboration.

			We find that if you don't focus on or prioritize these practices at all, teams struggle to achieve outcomes, remain stuck in old ways of working, or fall back into the status quo when attempting change. Many organizations send their staff on a two-day Scrum training course and try to implement it by the book, only to struggle to see the impact of moving toward business agility. Scrum is primarily focused on the Delivery Loop and Options Pivot and organizations are not considering the cultural change or technical practices needed to sustain and promote the benefits that Scrum practices provide.

			In this section of the book, we will show you how to build an initial foundation of culture, collaboration, and the required technical practices, so that your house will stand for a very long time!

			You may have taken a peek at the Open Practice Library following its introduction in Section 1, Practices Make Perfect. If you applied the filter to look at all the foundation practices in the Open Practice Library, you will see that there are a lot! You may be wondering, Do I need to use all those practices?

			The answer is no. The foundation of the Open Practice Library is a growing selection of tools and practices that will help grow an open culture. You don't need to use them all but you should start with at least a few. You may even have a few of your own! Ask yourself whether you are achieving an open culture and whether the tools you are using are working well for you.

		

		
			
			

		

		
			4. Open Culture

		

		
			Many development teams, operations teams, and even cross-functional product teams have a tendency to jump straight into the technological aspect of the project. Let's set up pipelines, let's automate our infrastructure, let's write some code! It's such a natural temptation to dive straight in without investing at least some time in establishing a cultural foundation. It can also lead to ineffective and unnecessary complexity.

			Don't worry, we will get to the technology in Chapter 6, Open Technical Practices – Beginnings, Starting Right. But, before we do, we want to talk about open culture and open leadership. In this chapter, we are going to explore what open culture is and why it proves to be such a critical enabler for development and operations.

			Open culture stems from a performance-oriented approach to collaborative work. It provides motivated teams of individuals with an environment where they can be continuously inspired to work together and feel a sense of autonomy, mastery, and purpose. We are going to explore what these three elements entail and provide some good and bad examples of them.

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

OEBPS/Images/B16297_02_06.jpg
empathy noun
Save Word

em-pa-thy | \'em-pa-the @\

Definition of empathy

1 :the action of understanding, being aware of, being sensitive to, and vicariously
experiencing the feelings, thoughts, and experience of another of either the past
or present without having the feelings, thoughts, and experience fully
communicated in an objectively explicit manner

also : the capacity for this

OEBPS/Images/B16297_02_14.jpg
ovmwy orTions whar ouncenow
conTexT @ ° 9 Ly 7 | PRORITY 2

ACTIONS ooG 4 DONE % IMPACT 2 &

[NS\GHTS 5§ INS\GHTS

OEBPS/Images/B16297_03_05.jpg
B8 Software Defivery Performance
‘Lead Time for Change Deployment Frequency Mean Time to Restore Change Failure Rate

13.27 hour 14 1.69 day 29%

i g e S St ot e
| I 260 |
| s — v \
| [\

samer | I oy |

OEBPS/Images/B16297_02_05.jpg

OEBPS/Images/B16297_02_07.jpg
Change Control Process and Governance
0

4

Formal stign D'ff Project Manager

Formal review process
0 Poose
(0
Bustness
Avchitect
g o wm
Developer

o

Operations

+ € + $ % £ +Mowe5

For every change everything has to be reassessed

OEBPS/Images/B16297_02_13.jpg
WHY §WHO

what is the problem to solve or idea to
pursue? Who are the target customers
and what do they need?

OUTCOMES

How will we meet the customer and
business needs?

DELIVER

Ruw experiments and deliver to
0P r’ow customers

How will we achieve the outcomes?

MEASURE & LEARN

Measure the impact and Learn what
we should do next

OEBPS/Images/B16297_03_07.jpg
THE WOPLD OF
OPEN

OEBPS/Images/B16297_03_04.jpg

OEBPS/Images/B16297_02_04.jpg

OEBPS/Images/B16297_02_08.jpg

OEBPS/Images/author_face_1.jpg

OEBPS/Images/B16297_02_12.jpg
Reweass
Q\W\Q %/ﬁ
Tudnedlogy
R

OEBPS/Images/Tim.jpg

OEBPS/Images/B16297_03_03.jpg

OEBPS/Images/B16297_01_03.jpg
A TM

S‘Pecia/ist NU//‘i’[umf:bnal Muth funclional
One SKill Knowledge K MO:J_ ledge

+
One Depth Skl Hulh‘}a)f DQP'H? Skills

@

OEBPS/Images/B16297_02_11.jpg

OEBPS/Images/B16297_01_02.jpg

OEBPS/Images/B16297_03_02.jpg

OEBPS/Images/B16297_02_10.jpg

OEBPS/Images/B16297_04.0.3.jpg
D
CULTURE FOUNDATION TECHNICAL

OEBPS/Images/B16297_01_01.jpg
Stsrt wilh
wHY You Do IT

Before
How You bo1r

And
WHAT You Do

It was the

I HAVE 4 DRegm

Speech

see Simpn Sinek”
& Stefel plamstions

N

(o)
G
7

nolt the

g(l L a pgw

Sfe@cé

OEBPS/Images/B16297_02_01.jpg

OEBPS/Images/B16297_03_01.jpg
et Battle @ HOME

It's Cat Vs Cat in this purrfect competition.

The challenge is tough as these cats are all very fur-midable! There can be only one winner in this a-paw-ling competition, could you pawsibly choose just one cat?? You must be kitten-me!!

W Add your cat the competition

& Third Place Cat % 3

¢ Current TopCat % 6

é

& Second Place Cat % 4

(& Refresh the Leaderboard

OEBPS/Text/toc.xhtml

		

		Contents

			

						DevOps Culture and Practice with OpenShift

						Praise for DevOps Culture and Practice with OpenShift

						Foreword

						Preface

					

								About DevOps Culture and Practice with OpenShift

							

										About the authors

										About the illustrator

										About the reviewer

										Learning Objectives

										Audience

										Approach

										Hardware and software requirements

										Conventions

										Downloading resources

							

						

					

				

						Acknowledgements

					

								On a personal level:

					

				

						Section 1: Practices Make Perfect

						1. Introduction — Start with Why

					

								Why — For What Reason or Purpose?

								Why Should I Listen to These Folks?

								Where Did This Book Come From?

								Who Exactly Is This Book For?

							

										From I to T to M

							

						

								Conclusion

					

				

						2. Introducing DevOps and Some Tools

					

								The Value Chain

								The Gaps

							

										The Big List of Things to Do

										Demonstrating Value and Building the Right Thing

										How Do We Do the Things on Our List?

										Development to Operations

							

						

								People, Process, and Technology

								The Mobius Loop and the Open Practice Library

								Conclusion

					

				

						3. The Journey Ahead

					

								A Story about Telling a Practice

								PetBattle – the Backstory

								What about Legacy Systems?

								Borrowing Brilliance

								What to Expect from the Rest of This Book?

							

										Section 2 — Establishing the Foundation

										Section 3 — Discover It

										Section 4 — Prioritize It

										Section 5 — Deliver It

										Section 6 — Build It, Run It, Own It

										Section 7 — Improve It, Sustain It

										What about Distributed Teams?

										Some Words about the World of 'Open'

							

						

								Conclusion

					

				

						Section 2: Establishing the Foundation

						4. Open Culture

					

								Why Is It Important?

								Information Radiators

							

										Can You Make Those Red Lights Go Green, Please?

							

						

								Culture

								Motivation

							

										PetBattle — Creating Autonomy, Mastery, and Purpose

							

						

								Social Contracts

							

										Do I Need One? If So, How Do I Build One?

										It's OK to Be Wrong

										Social Contracting for Distributed People

							

						

								Stop the World

							

										The Andon Cord and Psychological Safety

										We're Just Rebuilding the Same Experience. Stop the World!

										Losing Track of Original Purpose

							

						

								Real-Time Retrospective

								Team Identity

							

										Socializing

										Network Mapping

										Team Logo and Prime Directive

										Team Name + Building a Team Logo = the Beginning of Team Identity

										Creating a Team Identity with Distributed People

							

						

								Radiate Everything

							

										Radiating Everything When Distributed

							

						

								Team Sentiment

							

										Blending Team Sentiment with Other Practices

										Team Sentiment Achieving a Different Purpose – Banter!

										Team Sentiment with Distributed People

										Radiate Failures

										Radiating Failure – as Useful (If Not More) as Radiating Success

							

						

								Inspect and Adapt

								PetBattle — Establishing the Cultural Foundation

								Conclusion

					

				

						5. Open Environment and Open Leadership

					

								The Kodak Problem

								Learning from History

								Open Leadership

								Changing an Organization

								Leading Sustainable Change

								Achieving Greatness

							

										Giving Intent

										Moving Decisions to Where the Information Is

										Setting the Environment

										How Do We (as Leaders) Convince the Doubters?

										No Computers in the Company! The 1990s or the 1890s?

							

						

								Priority Sliders

							

										Running Priority Sliders with Distributed People

							

						

								The Space

							

										The Minimal Viable Space

										"We See What You Want To Do and Why and We'll Help You Get There" in Just 4 Weeks

										Virtual Spaces

							

						

								Conclusion

					

				

						6. Open Technical Practices – Beginnings, Starting Right

					

								Green from Go!

								Pair Programming and Mob Programming

							

										Mob to Learn, Pair to Build

							

						

								Containers and Being Container-Native

							

										Container History

										How Containers Work

							

						

								Pipelines — CI or CD or CD²?

							

										Derek the DevOps Dinosaur

										A Final Thought on Building Dinosaurs

										Continuous Integration

										Integrate Continuously

										Continuous Delivery

										Building Confidence in the Quality of the Software Delivery Pipeline

										Continuous Deployment (CD²)

										When the Work Is Done, Ship It!

							

						

								Everything-as-Code

							

										Can You Build a Second One of Those for Me, Please?

										Establishing the Technical Foundation for PetBattle

										Jenkins – Our Best Friend!

										Helm Overview

										Installing Jenkins Using Helm

							

						

								Developer Workflows

							

										GitFlow

										GitHub Flow

										Trunk-Based Development

										Too Many Choices — Tell Me What to Do

							

						

								Conclusion

					

				

						7. Open Technical Practices — The Midpoint

					

								The Big Picture

							

										PetBattle – Building a Big Picture

							

						

								GitOps

							

										ArgoCD

										If It's Not in Git, It's Not Real!

										Implementing GitOps

							

						

								Testing Testing Testing!

							

										The Test Automation Pyramid

										Testing in Practice

										Testing and the Definition of Done

										TDD or BDD or DDT

										BDD for Our Ops Tooling Python Library

										Product Owners Seeing Their Thoughts in Code!

										Example Mapping

										Example Mapping in the Field

										Non-functional Testing

										Performance Testing Sam's Code

										A Few Final Thoughts on Testing

							

						

								Emerging Architecture

								Observations from the Field

							

										Patterns per Square Meter

										Expect Failures and Deal with It

										The Hammer

										Resumé-Driven Development

										Wear Different Hats

										Social Media-Driven Development — Keeping Up with the Cool Kids

										Good Service Design

										Technical Design Group-Think

										Human Resources and Time Are Your Most Valuable Assets

										Information Leakage – Data Centricity Matters

										Some Final Musings on Architecture

							

						

								Conclusion

					

				

						Section 3: Discover It

						8. Discovering the Why and Who

					

								The North Star

							

										PetBattle as a Business

										Our North Star at Open Innovation Labs

							

						

								Impact Mapping

							

										Start with the WHY — the Goal

										PetBattle – the Goal

										WHO Can Help Us Reach the Desired Effect? The Actors

										PetBattle – the Actors

										HOW Should Our Actors’ Behaviors Change? The Impacts

										PetBattle – the Impacts

										WHAT Should We Build? The Deliverables

										PetBattle – the Deliverables

										PetBattle – Placing Bets

										Hypothesis Examples

										Connecting Engineers to Business Outcomes

							

						

								Human-Centered Design

							

										UX Design and Empathy Mapping a PetBattle User

										Users Do Strange and Unexpected Things

										Empathy Mapping an Organization — Dev versus Ops

										Engineers Build Out Empathy Maps during User Interviews

							

						

								Conclusion

					

				

						9. Discovering the How

					

								Event Storming

							

										What Is Event Storming?

										The Ingredients

										The Recipe

										Event Storming with Doubters

										PetBattle Event Storm

										Final Thoughts on Event Storming

							

						

								Emerging Architecture

							

										Transitioning an Event Storm to an Emergent Architecture

							

						

								The Non-Functional Map

							

										From Non-Functional Map to Backlog

							

						

								Discovering the Case for Continuous Delivery

							

										Metrics-Based Process Map

										Finding and Making Improvements

										Improving through Iteration

										Scoping an Entire Engagement Using MBPM

										PetBattle – MBPM

							

						

								Conclusion

					

				

						10. Setting Outcomes

					

								What Is an Outcome?

							

										Outcomes versus Outputs

										Why Have Target Outcomes?

										How to Capture Target Outcomes

										Examples of Target Outcomes

										Visualizing Target Outcomes

										Optimizing Target Outcomes

										Chaining Target Outcomes with Other Practices

										PetBattle Target Outcomes

										The Balance of Three: People/Process/Technology

										Target Outcomes from a Telecoms Product – Stopwatch at the Ready!

							

						

								Differentiating between Primary Outcomes and Enabling Outcomes

							

										Software Delivery Metrics

										Platform Adoption Metrics

										Continuous Metrics Inspection

							

						

								Creating a Discovery Map

								Conclusion

					

				

						Section 4: Prioritize It

						11. The Options Pivot

					

								Value Slicing

							

										The Beer and the Curry

										One to Few to Many Slices of Value – Continuous Delivery

										PetBattle – Slicing Value towards Continuous Delivery

							

						

								Design of Experiments

							

										Qualitative versus Quantitative Feedback

							

						

								Impact and Effort Prioritization Matrix

								How-Now-Wow Prioritization

								The Design Sprint

								Forming the Initial Product Backlog

							

										PetBattle — Tracing Value through Discovery and Delivery Practices

										Product Backlog Refinement

							

						

								Prioritization

							

										Value versus Risk

										Cost of Delay and WSJF

										PetBattle – Prioritizing using WSJF

							

						

								Product Ownership

							

										Experimenting with Different Product Owners

										Patterns of Early Sprints and the Walking Skeleton

							

						

								Advanced Deployment Considerations

							

										A/B Testing

										Blue/Green Deployments

										Canary Releases

										Dark Launches

										Feature Flags

										PetBattle – Tech Spikes, Prototypes, Experiments, and Feature Implementations

										Reframing the Question – How Much Can I Borrow or How Much House Can I Afford?

							

						

								Research, Experiment, Implement

								Creating an Options Map

							

										PetBattle – The Options Map

							

						

								Conclusion

					

				

						Section 5: Deliver It

						12. Doing Delivery

					

								Waterfall

								The Birth of Agile

							

										How Does OpenShift Help?

							

						

								Decision-Making Contexts

							

										The Cynefin Framework

										The Ferrari and the Rainforest

										When Does a Mobius Loop Mindset Make Sense?

										PetBattle—Complex, Complicated, or Clear?

							

						

								The Definition of Ready

							

										PetBattle – Definition of Ready

							

						

								Scrum

							

										The 3-5-3 Formation

										The Product Owner Role

										The ScrumMaster Role

										The Development Team Role

										The Product Backlog Artifact

										The Sprint Backlog Artifact

										The Product Increment Artifact

										Show Me the Product!

										The Sprint Planning Event

										The Daily Scrum Event

										The Sprint Review Event

										When WOULD We Have Uncovered This In a Traditional Mode of Delivery?

										The Sprint Retrospective Event

										The Pub Retro!

										A Sprint in the Life of PetBattle: Getting Ready

										A Sprint in the Life of PetBattle: Sprint 1 Planning

										A Sprint in the Life of PetBattle: Sprint 1 Delivery

										A Sprint in the Life of PetBattle: Sprint 1 Review And Retrospective

										Using Scrum with distributed people

										When should we stop Scrumming?

										Teams asking questions that suggest we've matured out of Scrum

										Kanban

										Kanban Board!

										PetBattle – Release Early, Release Often, Release Continuously

							

						

								The Definition of Done

							

										PetBattle – Definition of Done

							

						

								Bad Agile Smells

								Conclusion

					

				

						13. Measure and Learn

					

								Metrics-Driven Transformation

								Where to Measure and Learn

							

										The Showcase

										The Retrospective

										The Retrospective – an Engineering Perspective

										Inspecting the Build Stats at Retrospectives

										Experiments – the Results!

										User Testing

										Usability Testing

										"We Are Not Our Users"

										Guerrilla Testing

										Guerrilla testing with a box of donuts in a busy Dublin bank!

										PetBattle Usability Testing

							

						

								What to Measure?

							

										Measuring Service Delivery and Operational Performance (SDO)

										Pelorus

										Measuring Lean Metrics

										Measuring SLOs, SLAs, and SLIs

										PetBattle Service Levels

										Measuring Security

										PetBattle Security

										Measuring Performance

										PetBattle Performance

										Measuring Deployment Pain

										Measuring Culture

										Measuring Application Metrics

										PetBattle Application Metrics

										Measuring Infrastructure Platform Costs and Utilization

										Measuring Resources and Services

										User Experience Analytics

										PetBattle User Experience Analytics

							

						

								Visualize Measurable Outcomes

							

										Proactive Notification

										Altering the Customers

										Having Fun with Notifications and the Build!

							

						

								Creating a Delivery Map

							

										PetBattle – the Delivery Map

							

						

								Conclusion

					

				

						Section 6: Build It, Run It, Own It

						14. Build It

					

								Cluster Resources

								Existing PetBattle Architecture

							

										PetBattle Components

										Plan of Attack

							

						

								Running PetBattle

								Argo CD

								Trunk-Based Development and Environments

								The Anatomy of the App-of-Apps Pattern

								Build It – CI/CD for PetBattle

							

										The Big Picture

										The Build

										The Bake

										The Deploy

										System Test

										Promote

										Choose Your Own Adventure

							

						

								Jenkins–The Frontend

							

										Connect Argo CD to Git

										Secrets in Our Pipeline

										The Anatomy of a Jenkinsfile

										Branching

										Webhooks

										Jenkins

										Bringing It All Together

										What's Next for Jenkinsfile

							

						

								Tekton–The Backend

							

										Tekton Basics

										Reusable Pipelines

										Build, Bake, Deploy with Tekton

										Triggers and Webhooks

										GitOps our Pipelines

							

						

								Which One Should I Use?

								Conclusion

					

				

						15. Run It

					

								The Not Safe For Families (NSFF) Component

							

										Why Serverless?

										Generating or Obtaining a Pre-trained Model

										The OpenShift Serverless Operator

										Deploying Knative Serving Services

										Invoking the NSFF Component

										Let's Talk about Testing

										Unit Testing with JUnit

										Service and Component Testing with REST Assured and Jest

										Service Testing with Testcontainers

										End-to-End Testing

							

						

								Pipelines and Quality Gates (Non-functionals)

							

										SonarQube

										Perf Testing (Non-Functional)

										Resource Validation

										Image Scanning

										Linting

										Code Coverage

										Untested Software Watermark

										The OWASP Zed Attack Proxy (ZAP)

										Chaos Engineering

										Accidental Chaos Testing

							

						

								Advanced Deployments

							

										A/B Testing

										The Experiment

										Matomo – Open Source Analytics

										Deploying the A/B Test

										Understanding the results

										Blue/Green deployments

										Deployment previews

							

						

								Conclusion

					

				

						16. Own It

					

								Observability

							

										Probes

										Domino Effect

										Fault Tolerance

										Logging

										Tracing

										Metrics

										Configuring Prometheus To Retrieve Metrics From the Application

										Visualizing the Metrics in OpenShift

										Querying using Prometheus

										Visualizing Metrics Using Grafana

							

						

								Metadata and Traceability

							

										Labels

										Software Traceability

										Annotations

										Build Information

							

						

								Alerting

							

										What Is an Alert?

										Why Alert?

										Alert Types

										Managing Alerts

										User-Defined Alerts

										OpenShift Alertmanager

							

						

								Service Mesh

							

										Why Service Mesh?

										Aside – Sidecar Containers

										Here Be Dragons!

										Service Mesh Components

										PetBattle Service Mesh Resources

							

						

								Operators Everywhere

							

										Operators Under the Hood

										Control Loops

										Operator Scopes

										Operators in PetBattle

										Service Serving Certificate Secrets

							

						

								Conclusion

					

				

						Section 7: Improve It, Sustain It

						17. Improve It

					

								What Did We Learn?

								Did We Learn Enough?

							

										We Need Two Apps, Not One!

							

						

								"Just Enough" Leads to Continuous Everything

							

										Learning from Security Experts

										Always Improve Metrics and Automation

										Revisiting the Metrics-Based Process Map

										My management only really understand numbers and spreadsheets

							

						

								Improve the Technology

								Long Live the Team

							

										Visualizing the Transition from I to T to M

										Wizards and Cowboys

							

						

								Conclusion

					

				

						18. Sustain It

					

								The Journey So Far

								Infectious Enthusiasm

							

										Demo Day

										Documenting the Journey

										Sketching the Experience

										Walk the Walls

										Written Showcases

										Word of Mouth

										Mind-Blowing Metrics That Cannot Be Ignored

										Transitioning From One Team To Seven Teams

							

						

								More Teams, More Application Products

								The Power of Three Iterations in Enablement

							

										The App Does Something This Week That It Didn’t Do Last Week!

							

						

								Bolster the Foundations

								Sustaining the Technology

								The Double Mobius Loop – Platform and Application Product

							

										Connecting Many Levels of Product Teams

							

						

								Conclusion

					

				

						Appendix A – OpenShift Sizing Requirements for Exercises

					

								How To Resize Storage in Your CRC Virtual Machine

							

										Tekton Persistent Storage

							

						

					

				

						Appendix B – Additional Learning Resources

						Index

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

OEBPS/Images/Donal.jpg

OEBPS/Images/B16297_04_0_2.jpg

OEBPS/Images/B16297_DevOps_Culture_and_Practice_with_OpenShift_LowRes.png
7 e ——,
DevOps Culture

and Practice with
OpenShift

Deliver continuous business value through people,
processes, and technology

ra
, I
&@/

Tim Beattie | Mike Hepburn | Noel O'Connor | Donal Spring
Illustrations by llaria Doria

e

OEBPS/Images/B16297_02_03.jpg

OEBPS/Images/B16297_02_16.jpg

OEBPS/Images/B16297_04.0.1.jpg
WHY §WHO DELIVER

what is the problem to solve or idea to Ruw experiments and deliver to
pursue? Who are the target customers OP f/ow customers

and what do they need? How will we achteve the outcomes?

How CAN we BuiLD
AN OPEN CULTURE

WHAT TECHNICAL PRACTICES
CAN WE USE TO DELI\VER
CONTINVOUSLY?

CAN WE INCREASE
TEAM PSYCHOLOGICAL

SAFETY !

MEASURE & LEARN

Measure the impact and learn what
we should do next

OUTCOMES

How will we meet the customer and
business needs?

OEBPS/Images/Noel.jpg

OEBPS/Images/Mike.jpg

OEBPS/Images/B16297_02_09.jpg

OEBPS/Images/B16297_02_02.jpg

OEBPS/Images/B16297_02_15.jpg
WHY DELIVER

DISCQVERY DELIVERY

PTION
OUTCOME S QEEESL(\JI?NE

D
CULTURE FOUNDATION TECHNICAL

OEBPS/Images/B16297_03_06.jpg

OEBPS/Images/Ilaria.jpg

