

 [image: (missing alt)]

 Table of Contents

 ElasticSearch Cookbook Second Edition

 Credits

 About the Author

 Acknowledgments

 About the Reviewers

 www.PacktPub.com

 Support files, eBooks, discount offers, and more

 Why subscribe?

 Free access for Packt account holders

 Preface

 What this book covers

 What you need for this book

 Who this book is for

 Sections

 Getting ready

 How to do it…

 How it works…

 There's more…

 See also

 Conventions

 Reader feedback

 Customer support

 Downloading the example code

 Errata

 Piracy

 Questions

 1. Getting Started

 Introduction

 Understanding nodes and clusters

 Getting ready

 How it works...

 There's more...

 See also

 Understanding node services

 Getting ready

 How it works...

 Managing your data

 Getting ready

 How it works...

 There's more...

 Best practices

 See also

 Understanding clusters, replication, and sharding

 Getting ready

 How it works...

 There's more...

 Solving the yellow status...

 Solving the red status

 See also

 Communicating with ElasticSearch

 Getting ready

 How it works...

 Using the HTTP protocol

 Getting ready

 How to do it...

 How it works...

 There's more...

 Using the native protocol

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Using the Thrift protocol

 Getting ready

 How to do it...

 There's more...

 See also

 2. Downloading and Setting Up

 Introduction

 Downloading and installing ElasticSearch

 Getting ready

 How to do it…

 How it works...

 There's more...

 Setting up networking

 Getting ready

 How to do it...

 How it works...

 See also

 Setting up a node

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Setting up for Linux systems

 Getting ready

 How to do it...

 How it works...

 Setting up different node types

 Getting ready

 How to do it...

 How it works...

 Installing plugins in ElasticSearch

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Installing a plugin manually

 Getting ready

 How to do it...

 How it works...

 Removing a plugin

 Getting ready

 How to do it...

 How it works...

 Changing logging settings

 Getting ready

 How to do it...

 How it works...

 3. Managing Mapping

 Introduction

 Using explicit mapping creation

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Mapping base types

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Mapping arrays

 Getting ready

 How to do it...

 How it works...

 Mapping an object

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Mapping a document

 Getting ready

 How to do it...

 How it works...

 See also

 Using dynamic templates in document mapping

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Managing nested objects

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Managing a child document

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Adding a field with multiple mappings

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Mapping a geo point field

 Getting ready

 How to do it...

 How it works...

 There's more...

 Mapping a geo shape field

 Getting ready

 How to do it...

 How it works...

 See also

 Mapping an IP field

 Getting ready

 How to do it...

 How it works...

 Mapping an attachment field

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Adding metadata to a mapping

 Getting ready

 How to do it...

 How it works...

 Specifying a different analyzer

 Getting ready

 How to do it...

 How it works...

 See also

 Mapping a completion suggester

 Getting ready

 How to do it...

 How it works...

 See also

 4. Basic Operations

 Introduction

 Creating an index

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Deleting an index

 Getting ready

 How to do it...

 How it works...

 See also

 Opening/closing an index

 Getting ready

 How to do it...

 How it works...

 See also

 Putting a mapping in an index

 Getting ready

 How to do it...

 How it works...

 See also

 Getting a mapping

 Getting ready

 How to do it...

 How it works...

 See also

 Deleting a mapping

 Getting ready

 How to do it...

 How it works...

 See also

 Refreshing an index

 Getting ready

 How to do it...

 How it works...

 See also

 Flushing an index

 Getting ready

 How to do it...

 How it works...

 See also

 Optimizing an index

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Checking if an index or type exists

 Getting ready

 How to do it...

 How it works...

 Managing index settings

 Getting ready

 How to do it...

 How it works...

 There is more…

 See also

 Using index aliases

 Getting ready

 How to do it...

 How it works...

 There's more…

 Indexing a document

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Getting a document

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Deleting a document

 Getting ready

 How to do it...

 How it works...

 See also

 Updating a document

 Getting ready

 How to do it...

 How it works...

 See also

 Speeding up atomic operations (bulk operations)

 Getting ready

 How to do it...

 How it works...

 See also

 Speeding up GET operations (multi GET)

 Getting ready

 How to do it...

 How it works...

 See also...

 5. Search, Queries, and Filters

 Introduction

 Executing a search

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Sorting results

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Highlighting results

 Getting ready

 How to do it...

 How it works...

 See also

 Executing a scan query

 Getting ready

 How to do it...

 How it works...

 See also

 Suggesting a correct query

 Getting ready

 How to do it...

 How it works...

 See also

 Counting matched results

 Getting ready

 How to do it...

 How it works...

 See also

 Deleting by query

 Getting ready

 How to do it...

 How it works...

 See also

 Matching all the documents

 Getting ready

 How to do it...

 How it works...

 See also

 Querying/filtering for a single term

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Querying/filtering for multiple terms

 Getting ready

 How to do it...

 How it works…

 There's more...

 See also

 Using a prefix query/filter

 Getting ready

 How to do it...

 How it works…

 See also

 Using a Boolean query/filter

 Getting ready

 How to do it...

 How it works…

 See also

 Using a range query/filter

 Getting ready

 How to do it...

 How it works...

 There's more...

 Using span queries

 Getting ready

 How to do it...

 How it works...

 See also

 Using a match query

 Getting ready

 How to do it...

 How it works...

 See also

 Using an ID query/filter

 Getting ready

 How to do it...

 How it works...

 See also

 Using a has_child query/filter

 Getting ready

 How to do it...

 How it works...

 See also

 Using a top_children query

 Getting ready

 How to do it...

 How it works...

 See also

 Using a has_parent query/filter

 Getting ready

 How to do it...

 How it works...

 See also

 Using a regexp query/filter

 Getting ready

 How to do it...

 How it works...

 See also

 Using a function score query

 Getting ready

 How to do it...

 How it works...

 See also

 Using exists and missing filters

 Getting ready

 How to do it...

 How it works...

 Using and/or/not filters

 Getting ready

 How to do it...

 How it works...

 Using a geo bounding box filter

 Getting ready

 How to do it...

 How it works...

 See also

 Using a geo polygon filter

 Getting ready

 How to do it...

 How it works...

 See also

 Using geo distance filter

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Using a QueryString query

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Using a template query

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 6. Aggregations

 Introduction

 Executing an aggregation

 Getting ready

 How to do it...

 How it works...

 See also

 Executing the stats aggregation

 Getting ready

 How to do it...

 How it works...

 See also

 Executing the terms aggregation

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Executing the range aggregation

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Executing the histogram aggregation

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Executing the date histogram aggregation

 Getting ready

 How to do it...

 How it works...

 See also

 Executing the filter aggregation

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Executing the global aggregation

 Getting ready

 How to do it...

 How it works...

 Executing the geo distance aggregation

 Getting ready

 How to do it...

 How it works...

 See also

 Executing nested aggregation

 Getting ready

 How to do it...

 How it works...

 There's more…

 Executing the top hit aggregation

 Getting ready

 How to do it...

 How it works...

 See Also

 7. Scripting

 Introduction

 Installing additional script plugins

 Getting ready

 How to do it...

 How it works...

 There's more...

 Managing scripts

 Getting ready

 How to do it...

 How it works...

 See also

 Sorting data using script

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Computing return fields with scripting

 Getting ready

 How to do it...

 How it works...

 See also

 Filtering a search via scripting

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Updating a document using scripts

 Getting ready

 How to do it...

 How it works...

 There's more...

 8. Rivers

 Introduction

 Managing a river

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Using the CouchDB river

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Using the MongoDB river

 Getting ready

 How to do it...

 How it works...

 See also

 Using the RabbitMQ river

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Using the JDBC river

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Using the Twitter river

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 9. Cluster and Node Monitoring

 Introduction

 Controlling cluster health via the API

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Controlling cluster state via the API

 Getting ready

 How to do it...

 How it works...

 There's more...

 See also

 Getting cluster node information via the API

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Getting node statistics via the API

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Managing repositories

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Executing a snapshot

 Getting ready

 How to do it...

 How it works...

 There's more…

 Restoring a snapshot

 Getting ready

 How to do it...

 How it works...

 Installing and using BigDesk

 Getting ready

 How to do it...

 How it works...

 There's more…

 Installing and using ElasticSearch Head

 Getting ready

 How to do it...

 How it works...

 There's more…

 Installing and using SemaText SPM

 Getting ready

 How to do it...

 How it works...

 See also

 Installing and using Marvel

 Getting ready

 How to do it...

 How it works...

 See also

 10. Java Integration

 Introduction

 Creating an HTTP client

 Getting ready

 How to do it...

 How it works...

 There's more

 See also

 Creating a native client

 Getting ready

 How to do it...

 How it works...

 There's more

 See also

 Managing indices with the native client

 Getting ready

 How to do it...

 How it works...

 See also

 Managing mappings

 Getting ready

 How to do it...

 How it works...

 There's more

 See also

 Managing documents

 Getting ready

 How to do it...

 How it works...

 See also

 Managing bulk actions

 Getting ready

 How to do it...

 How it works...

 See also

 Building a query

 Getting ready

 How to do it...

 How it works...

 There's more

 See also

 Executing a standard search

 Getting ready

 How to do it...

 How it works...

 See also

 Executing a search with aggregations

 Getting ready

 How to do it...

 How it works...

 See also

 Executing a scroll/scan search

 Getting ready

 How to do it...

 How it works...

 There's more

 See also

 11. Python Integration

 Introduction

 Creating a client

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Managing indices

 Getting ready

 How to do it...

 How it works...

 See also

 Managing mappings

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Managing documents

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Executing a standard search

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Executing a search with aggregations

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 12. Plugin Development

 Introduction

 Creating a site plugin

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Creating a native plugin

 Getting ready

 How to do it...

 How it works...

 There's more…

 Creating a REST plugin

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Creating a cluster action

 Getting ready

 How to do it...

 How it works...

 See also

 Creating an analyzer plugin

 Getting ready

 How to do it...

 How it works...

 Creating a river plugin

 Getting ready

 How to do it...

 How it works...

 There's more…

 See also

 Index

ElasticSearch Cookbook Second Edition

ElasticSearch Cookbook Second Edition

Copyright © 2015 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing and its dealers and distributors, will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: December 2013
Second edition: January 2015
Production reference: 1230115
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78355-483-6

www.packtpub.com

Credits

Author

Alberto Paro

Reviewers

Florian Hopf
Wenhan Lu
Suvda Myagmar
Dan Noble
Philip O'Toole

Acquisition Editor

Rebecca Youé

Content Development Editor

Amey Varangaonkar

Technical Editors

Prajakta Mhatre
Rohith Rajan

Copy Editors

Hiral Bhat
Dipti Kapadia
Neha Karnani
Shambhavi Pai
Laxmi Subramanian
Ashwati Thampi

Project Coordinator

Leena Purkait

Proofreaders

Ting Baker
Samuel Redman Birch
Stephen Copestake
Ameesha Green
Lauren E. Harkins

Indexer

Hemangini Bari

Graphics

Valentina D'silva

Production Coordinator

Manu Joseph

Cover Work

Manu Joseph

About the Author

Alberto Paro is an engineer, project manager, and software developer. He currently works as a CTO at Big Data Technologies and as a freelance consultant on software engineering for Big Data and NoSQL solutions. He loves to study emerging solutions and applications mainly related to Big Data processing, NoSQL, natural language processing, and neural networks. He began programming in BASIC on a Sinclair Spectrum when he was 8 years old, and to date, has collected a lot of experience using different operating systems, applications, and programming.
In 2000, he graduated in computer science engineering at Politecnico di Milano with a thesis on designing multiuser and multidevice web applications. He assisted professors at the university for about a year. He then came in contact with The Net Planet Company and loved their innovative ideas; he started working on knowledge management solutions and advanced data mining products. In summer 2014, his company was acquired by a Big Data technologies company, where he currently works mainly using Scala and Python on state-of-the-art big data software (Spark, Akka, Cassandra, and YARN). In 2013, he started freelancing as a consultant for Big Data, machine learning, and ElasticSearch.
In his spare time, when he is not playing with his children, he likes to work on open source projects. When he was in high school, he started contributing to projects related to the GNOME environment (gtkmm). One of his preferred programming languages is Python, and he wrote one of the first NoSQL backends on Django for MongoDB (Django-MongoDB-engine). In 2010, he began using ElasticSearch to provide search capabilities to some Django e-commerce sites and developed PyES (a Pythonic client for ElasticSearch), as well as the initial part of the ElasticSearch MongoDB river. He is the author of ElasticSearch Cookbook as well as a technical reviewer Elasticsearch Server, Second Edition, and the video course, Building a Search Server with ElasticSearch, all of which are published by Packt Publishing.

Acknowledgments

It would have been difficult for me to complete this book without the support of a large number of people.
First, I would like to thank my wife, my children, and the rest of my family for their valuable support.
On a more personal note, I'd like to thank my friend, Mauro Gallo, for his patience.
I'd like to express my gratitude to everyone at Packt Publishing who've been involved in the development and production of this book. I'd like to thank Amey Varangaonkar for guiding this book to completion, and Florian Hopf, Philip O'Toole, and Suvda Myagmar for patiently going through the first drafts and providing valuable feedback. Their professionalism, courtesy, good judgment, and passion for this book are much appreciated.

About the Reviewers

Florian Hopf works as a freelance software developer and consultant in Karlsruhe, Germany. He familiarized himself with Lucene-based search while working with different content management systems on the Java platform. He is responsible for small and large search systems, on both the Internet and intranet, for web content and application-specific data based on Lucene, Solr, and ElasticSearch. He helps to organize the local Java User Group as well as the Search Meetup in Karlsruhe, and he blogs at http://blog.florian-hopf.de.

Wenhan Lu is currently pursuing his master's degree in computer science at Carnegie Mellon University. He has worked for Amazon.com, Inc. as a software engineering intern. Wenhan has more than 7 years of experience in Java programming. Today, his interests include distributed systems, search engineering, and NoSQL databases.

Suvda Myagmar currently works as a technical lead at a San Francisco-based start-up called Expect Labs, where she builds developer APIs and tunes ranking algorithms for intelligent voice-driven, content-discovery applications. She is the co-founder of Piqora, a company that specializes in social media analytics and content management solutions for online retailers. Prior to working for start-ups, she worked as a software engineer at Yahoo! Search and Microsoft Bing.

Dan Noble is a software engineer from Washington, D.C. who has been a big fan of ElasticSearch since 2011. He's the author of the Python ElasticSearch driver called rawes, available at https://github.com/humangeo/rawes. Dan focuses his efforts on the development of web application design, data visualization, and geospatial applications.

Philip O'Toole has developed software and led software development teams for more than 15 years for a variety of applications, including embedded software, networking appliances, web services, and SaaS infrastructure. His most recent work with ElasticSearch includes leading infrastructure design and development of Loggly's log analytics SaaS platform, whose core component is ElasticSearch. He is based in the San Francisco Bay Area and can be found online at http://www.philipotoole.com.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com, and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.
[image: Support files, eBooks, discount offers, and more]

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books.
Why subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print, and bookmark content
	On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.
To Giulia and Andrea, my extraordinary children.

Preface

One of the main requirements of today's applications is search capability. In the market, we can find a lot of solutions that answer this need, both in commercial as well as the open source world. One of the most used libraries for searching is Apache Lucene. This library is the base of a large number of search solutions such as Apache Solr, Indextank, and ElasticSearch.
ElasticSearch is written with both cloud and distributed computing in mind. Its main author, Shay Banon, who is famous for having developed Compass (http://www.compass-project.org), released the first version of ElasticSearch in March 2010.
Thus, the main scope of ElasticSearch is to be a search engine; it also provides a lot of features that allow you to use it as a data store and an analytic engine using aggregations.
ElasticSearch contains a lot of innovative features: it is JSON/REST-based, natively distributed in a Map/Reduce approach, easy to set up, and extensible with plugins. In this book, we will go into the details of these features and many others available in ElasticSearch.
Before ElasticSearch, only Apache Solr was able to provide some of these functionalities, but it was not designed for the cloud and does not use the JSON/REST API. In the last few years, this situation has changed a bit with the release of the SolrCloud in 2012. For users who want to more thoroughly compare these two products, I suggest you read posts by Rafał Kuć, available at http://blog.sematext.com/2012/08/23/solr-vs-elasticsearch-part-1-overview/.
ElasticSearch is a product that is in a state of continuous evolution, and new functionalities are released by both the ElasticSearch company (the company founded by Shay Banon to provide commercial support for ElasticSearch) and ElasticSearch users as plugins (mainly available on GitHub).
Founded in 2012, the ElasticSearch company has raised a total of USD 104 million in funding. ElasticSearch's success can best be described by the words of Steven Schuurman, the company's cofounder and CEO:
It's incredible to receive this kind of support from our investors over such a short period of time. This speaks to the importance of what we're doing: businesses are generating more and more data—both user- and machine-generated—and it has become a strategic imperative for them to get value out of these assets, whether they are starting a new data-focused project or trying to leverage their current Hadoop or other Big data investments.

ElasticSearch has an impressive track record for its search product, powering customers such as Fourquare (which indexes over 50 million venues), the online music distribution platform SoundCloud, StumbleUpon, and the enterprise social network Xing, which has 14 million members. It also powers GitHub, which searches 20 terabytes of data and 1.3 billion files, and Loggly, which uses ElasticSearch as a key value store to index clusters of data for rapid analytics of logfiles.
In my opinion, ElasticSearch is probably one of the most powerful and easy-to-use search solutions on the market. Throughout this book and these recipes, the book's reviewers and I have sought to transmit our knowledge, passion, and best practices to help readers better manage ElasticSearch.
What this book covers

Chapter 1, Getting Started, gives you an overview of the basic concepts of ElasticSearch and the ways to communicate with it.

Chapter 2, Downloading and Setting Up, shows the basic steps to start using ElasticSearch, from the simple installation to running multiple nodes.

Chapter 3, Managing Mapping, covers the correct definition of data fields to improve both the indexing and search quality.

Chapter 4, Basic Operations, shows you the common operations that are required to both ingest and manage data in ElasticSearch.

Chapter 5, Search, Queries, and Filters, covers the core search functionalities in ElasticSearch. The search DSL is the only way to execute queries in ElasticSearch.

Chapter 6, Aggregations, covers another capability of ElasticSearch: the possibility to execute analytics on search results in order to improve the user experience and drill down the information.

Chapter 7, Scripting, shows you how to customize ElasticSearch with scripting in different programming languages.

Chapter 8, Rivers, extends ElasticSearch to give you the ability to pull data from different sources such as databases, NoSQL solutions, and data streams.

Chapter 9, Cluster and Node Monitoring, shows you how to analyze the behavior of a cluster/node to understand common pitfalls.

Chapter 10, Java Integration, describes how to integrate ElasticSearch in a Java application using both REST and native protocols.

Chapter 11, Python Integration, covers the usage of the official ElasticSearch Python client and the Pythonic PyES library.

Chapter 12, Plugin Development, describes how to create the different types of plugins: site and native plugins. Some examples show the plugin skeletons, the setup process, and their build.

What you need for this book

For this book, you will need a computer running a Windows OS, Macintosh OS, or Linux distribution. In terms of the additional software required, you don't have to worry, as all the components you will need are open source and available for every major OS platform.
For all the REST examples, the cURL software (http://curl.haxx.se/) will be used to simulate the command from the command line. It comes preinstalled on Linux and Mac OS X operating systems. For Windows, it can be downloaded from its site and added in a PATH that can be called from the command line.

Chapter 10, Java Integration, and Chapter 12, Plugin Development, require the Maven build tool (http://maven.apache.org/), which is a standard tool to manage builds, packaging, and deploying in Java. It is natively supported on most of the Java IDEs, such as Eclipse and IntelliJ IDEA.

Chapter 11, Python Integration, requires the Python Interpreter installed on your computer. It's available on Linux and Mac OS X by default. For Windows, it can be downloaded from the official Python website (http://www.python.org). The examples in this chapter have been tested using version 2.x.

Who this book is for

This book is for developers and users who want to begin using ElasticSearch or want to improve their knowledge of ElasticSearch. This book covers all the aspects of using ElasticSearch and provides solutions and hints for everyday usage. The recipes have reduced complexity so it is easy for readers to focus on the discussed ElasticSearch aspect and easily and fully understand the ElasticSearch functionalities.
The chapters toward the end of the book discuss ElasticSearch integration with Java and Python programming languages; this shows the users how to integrate the power of ElasticSearch into their Java- and Python-based applications.

Chapter 12, Plugin Development, talks about the advanced use of ElasticSearch and its core extensions, so you will need some prior Java knowledge to understand this chapter fully.

Sections

This book contains the following sections:
Getting ready

This section tells us what to expect in the recipe, and describes how to set up any software or any preliminary settings needed for the recipe.

How to do it…

This section characterizes the steps to be followed for "cooking" the recipe.

How it works…

This section usually consists of a brief and detailed explanation of what happened in the previous section.

There's more…

It consists of additional information about the recipe in order to make the reader more anxious about the recipe.

See also

This section may contain references to the recipe.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "After the name and type parameters, usually a river requires an extra configuration that can be passed in the _meta property."
A block of code is set as follows:
cluster.name: elasticsearch
node.name: "My wonderful server"
network.host: 192.168.0.1
discovery.zen.ping.unicast.hosts: ["192.168.0.2","192.168.0.3[9300-9400]"]

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
cluster.name: elasticsearch
node.name: "My wonderful server"
network.host: 192.168.0.1
discovery.zen.ping.unicast.hosts: ["192.168.0.2","192.168.0.3[9300-9400]"]

Any command-line input or output is written as follows:

curl -XDELETE 'http://127.0.0.1:9200/_river/my_river/'

New terms and important words are shown in bold. Words you see on the screen, in menus or dialog boxes, for example, appear in the text like this: "If you don't see the cluster statistics, put your node address to the left and click on the connect button."
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title via the subject of your message.
If there is a topic you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you get the most from your purchase.
Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you. The code bundle is also available on GitHub at https://github.com/aparo/elasticsearch-cookbook-second-edition.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at <questions@packtpub.com>, and we will do our best to address the problem.

Chapter 1. Getting Started

In this chapter, we will cover:
	Understanding nodes and clusters
	Understanding node services
	Managing your data
	Understanding clusters, replication, and sharding
	Communicating with ElasticSearch
	Using the HTTP protocol
	Using the native protocol
	Using the Thrift protocol

Introduction

To efficiently use ElasticSearch, it is very important to understand how it works.
The goal of this chapter is to give the readers an overview of the basic concepts of ElasticSearch and to be a quick reference for them. It's essential to understand the basics better so that you don't fall into the common pitfall about how ElasticSearch works and how to use it.
The key concepts that we will see in this chapter are: node, index, shard, mapping/type, document, and field.
ElasticSearch can be used both as a search engine as well as a data store.
A brief description of the ElasticSearch logic helps the user to improve performance, search quality, and decide when and how to optimize the infrastructure to improve scalability and availability.
Some details on data replications and base node communication processes are also explained.
At the end of this chapter, the protocols used to manage ElasticSearch are also discussed.

Understanding nodes and clusters

Every instance of ElasticSearch is called a node. Several nodes are grouped in a cluster. This is the base of the cloud nature of ElasticSearch.
Getting ready

To better understand the following sections, some basic knowledge about the concepts of the application node and cluster are required.

How it works...

One or more ElasticSearch nodes can be set up on a physical or a virtual server depending on the available resources such as RAM, CPU, and disk space.
A default node allows you to store data in it to process requests and responses. (In Chapter 2, Downloading and Setting Up, we'll see details about how to set up different nodes and cluster topologies).
When a node is started, several actions take place during its startup, such as:
	The configuration is read from the environment variables and the elasticsearch.yml configuration file
	A node name is set by the configuration file or is chosen from a list of built-in random names
	Internally, the ElasticSearch engine initializes all the modules and plugins that are available in the current installationTip

Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

After the node startup, the node searches for other cluster members and checks its index and shard status.
To join two or more nodes in a cluster, the following rules must be observed:
	The version of ElasticSearch must be the same (v0.20, v0.9, v1.4, and so on) or the join is rejected.
	The cluster name must be the same.
	The network must be configured to support broadcast discovery (it is configured to it by default) and they can communicate with each other. (See the Setting up networking recipe in Chapter 2, Downloading and Setting Up.)

A common approach in cluster management is to have a master node, which is the main reference for all cluster-level actions, and the other nodes, called secondary nodes, that replicate the master data and its actions.
To be consistent in the write operations, all the update actions are first committed in the master node and then replicated in the secondary nodes.
In a cluster with multiple nodes, if a master node dies, a master-eligible node is elected to be the new master node. This approach allows automatic failover to be set up in an ElasticSearch cluster.

There's more...

There are two important behaviors in an ElasticSearch node: the non-data node (or arbiter) and the data container behavior.
Non-data nodes are able to process REST responses and all other operations of search. During every action execution, ElasticSearch generally executes actions using a map/reduce approach: the non-data node is responsible for distributing the actions to the underlying shards (map) and collecting/aggregating the shard results (redux) to be able to send a final response. They may use a huge amount of RAM due to operations such as facets, aggregations, collecting hits and caching (such as scan/scroll queries).
Data nodes are able to store data in them. They contain the indices shards that store the indexed documents as Lucene (internal ElasticSearch engine) indices.
Using the standard configuration, a node is both an arbiter and a data container.
In big cluster architectures, having some nodes as simple arbiters with a lot of RAM, with no data, reduces the resources required by data nodes and improves performance in searches using the local memory cache of arbiters.

See also

	The Setting up different node types recipe in Chapter 2, Downloading and Setting Up.

Understanding node services

When a node is running, a lot of services are managed by its instance. These services provide additional functionalities to a node and they cover different behaviors such as networking, indexing, analyzing and so on.
Getting ready

Every ElasticSearch server that is running provides services.

How it works...

ElasticSearch natively provides a large set of functionalities that can be extended with additional plugins.
During a node startup, a lot of required services are automatically started. The most important are:
	Cluster services: These manage the cluster state, intra-node communication, and synchronization.
	Indexing Service: This manages all indexing operations, initializing all active indices and shards.
	Mapping Service: This manages the document types stored in the cluster (we'll discuss mapping in Chapter 3, Managing Mapping).
	Network Services: These are services such as HTTP REST services (default on port 9200), internal ES protocol (port 9300) and the Thrift server (port 9500), applicable only if the Thrift plugin is installed.
	Plugin Service: This enables us to enhance the basic ElasticSearch functionality in a customizable manner. (It's discussed in Chapter 2, Downloading and Setting Up, for installation and Chapter 12, Plugin Development, for detailed usage.)
	River Service: It is a pluggable service running within ElasticSearch cluster, pulling data (or being pushed with data) that is then indexed into the cluster. (We'll see it in Chapter 8, Rivers.)
	Language Scripting Services: They allow you to add new language scripting support to ElasticSearch.Note
Throughout this book, we'll see recipes that interact with ElasticSearch services. Every base functionality or extended functionality is managed in ElasticSearch as a service.

Managing your data

If you are going to use ElasticSearch as a search engine or a distributed data store, it's important to understand concepts of how ElasticSearch stores and manages your data.
Getting ready

To work with ElasticSearch data, a user must have basic concepts of data management and JSON data format, which is the lingua franca to work with ElasticSearch data and services.

How it works...

Our main data container is called index (plural indices) and it can be considered as a database in the traditional SQL world. In an index, the data is grouped into data types called
mappings in ElasticSearch. A mapping describes how the records are composed (fields).
Every record that must be stored in ElasticSearch must be a JSON object.
Natively, ElasticSearch is a schema-less data store; when you enter records in it during the insert process it processes the records, splits it into fields, and updates the schema to manage the inserted data.
To manage huge volumes of records, ElasticSearch uses the common approach to split an index into multiple shards so that they can be spread on several nodes. Shard management is transparent to the users; all common record operations are managed automatically in the ElasticSearch application layer.
Every record is stored in only a shard; the sharding algorithm is based on a record ID, so many operations that require loading and changing of records/objects, can be achieved without hitting all the shards, but only the shard (and its replica) that contains your object.
The following schema compares ElasticSearch structure with SQL and MongoDB ones:
	
ElasticSearch

	
SQL

	
MongoDB

	
Index (Indices)

	
Database

	
Database

	
Shard

	
Shard

	
Shard

	
Mapping/Type

	
Table

	
Collection

	
Field

	
Field

	
Field

	
Object (JSON Object)

	
Record (Tuples)

	
Record (BSON Object)

There's more...

To ensure safe operations on index/mapping/objects, ElasticSearch internally has rigid rules about how to execute operations.
In ElasticSearch, the operations are divided into:
	Cluster/index operations: All clusters/indices with active write are locked; first they are applied to the master node and then to the secondary one. The read operations are typically broadcasted to all the nodes.
	Document operations: All write actions are locked only for the single hit shard. The read operations are balanced on all the shard replicas.

When a record is saved in ElasticSearch, the destination shard is chosen based on:
	The id (unique identifier) of the record; if the id is missing, it is autogenerated by ElasticSearch
	If routing or parent (we'll see it in the parent/child mapping) parameters are defined, the correct shard is chosen by the hash of these parameters

Splitting an index in shard allows you to store your data in different nodes, because ElasticSearch tries to balance the shard distribution on all the available nodes.
Every shard can contain up to 2^32 records (about 4.9 billion), so the real limit to a shard size is its storage size.
Shards contain your data and during search process all the shards are used to calculate and retrieve results. So ElasticSearch performance in big data scales horizontally with the number of shards.
All native records operations (such as index, search, update, and delete) are managed in shards.
Shard management is completely transparent to the user. Only an advanced user tends to change the default shard routing and management to cover their custom scenarios. A common custom scenario is the requirement to put customer data in the same shard to speed up his operations (search/index/analytics).
Best practices

It's best practice not to have a shard too big in size (over 10 GB) to avoid poor performance in indexing due to continuous merging and resizing of index segments.
It is also not good to over-allocate the number of shards to avoid poor search performance due to native distributed search (it works as map and reduce). Having a huge number of empty shards in an index will consume memory and increase the search times due to an overhead on network and results aggregation phases.

See also

	Shard on Wikipedia http://en.wikipedia.org/wiki/Shard_(database_architecture)

Understanding clusters, replication, and sharding

Related to shard management, there is the key concept of replication and
cluster status.
Getting ready

You need one or more nodes running to have a cluster. To test an effective cluster, you need at least two nodes (that can be on the same machine).

How it works...

An index can have one or more replicas; the shards are called primary if they are part of the primary replica, and secondary ones if they are part of replicas.
To maintain consistency in write operations, the following workflow is executed:
	The write operation is first executed in the primary shard
	If the primary write is successfully done, it is propagated simultaneously in all the secondary shards
	If a primary shard becomes unavailable, a secondary one is elected as primary (if available) and then the flow is re-executed

During search operations, if there are some replicas, a valid set of shards is chosen randomly between primary and secondary to improve its performance. ElasticSearch has several allocation algorithms to better distribute shards on nodes. For reliability, replicas are allocated in a way that if a single node becomes unavailable, there is always at least one replica of each shard that is still available on the remaining nodes.
The following figure shows some examples of possible shards and replica configuration:
[image: How it works...]
The replica has a cost in increasing the indexing time due to data node synchronization, which is the time spent to propagate the message to the slaves (mainly in an asynchronous way).
Note
To prevent data loss and to have high availability, it's good to have a least one replica; so your system can survive a node failure without downtime and without loss of data.

There's more...

Related to the concept of replication, there is the cluster status indicator that will show you information on the health of your cluster. It can cover three different states:
	Green: This shows that everything is okay
	Yellow: This means that some shards are missing but you can work on your cluster
	Red: This indicates a problem as some primary shards are missing

Solving the yellow status...

Mainly, yellow status is due to some shards that are not allocated.
If your cluster is in the recovery status (meaning that it's starting up and checking the shards before they are online), you need to wait until the shards' startup process ends.
After having finished the recovery, if your cluster is always in the yellow state, you may not have enough nodes to contain your replicas (for example, maybe the number of replicas is bigger than the number of your nodes). To prevent this, you can reduce the number of your replicas or add the required number of nodes. A good practice is to observe that the total number of nodes must not be lower than the maximum number of replicas present.

Solving the red status

This means you are experiencing lost data, the cause of which is that one or more shards are missing.
To fix this, you need to try to restore the node(s) that are missing. If your node restarts and the system goes back to the yellow or green status, then you are safe. Otherwise, you have obviously lost data and your cluster is not usable; the next action would be to delete the index/indices and restore them from backups or snapshots (if you have done them) or from other sources. To prevent data loss, I suggest having always a least two nodes and a replica set to 1 as good practice.
Note
Having one or more replicas on different nodes on different machines allows you to have a live backup of your data, which stays updated always.

See also

Setting up different node types in the next chapter.

Communicating with ElasticSearch

You can communicate with several protocols using your ElasticSearch server. In this recipe, we will take a look at the main protocols.
Getting ready

You will need a working instance of the ElasticSearch cluster.

How it works...

ElasticSearch is designed to be used as a RESTful server, so the main protocol is the HTTP, usually on port number 9200 and above. Thus, it allows using different protocols such as native and thrift ones.
Many others are available as extension plugins, but they are seldom used, such as memcached, couchbase, and websocket. (If you need to find more on the transport layer, simply type in Elasticsearch transport on the GitHub website to search.)
Every protocol has advantages and disadvantages. It's important to choose the correct one depending on the kind of applications you are developing. If you are in doubt, choose the HTTP Protocol layer that is the standard protocol and is easy to use.
Choosing the right protocol depends on several factors, mainly architectural and performance related. This schema factorizes advantages and disadvantages related to them. If you are using any of the protocols to communicate with ElasticSearch official clients, switching from a protocol to another is generally a simple setting in the client initialization.
	
Protocol

	
Advantages

	
Disadvantages

	
Type

	

HTTP

	
	Frequently used
	API is safe and has general compatibility for different versions of ES, although JSON is suggested

	
	HTTP overhead

	
	Text

	

Native

	
	Fast network layer
	Programmatic
	Best for massive indexing operations

	
	If the API changes, it can break the applications
	Requires the same version of the ES server
	Only on JVM

	
	Binary

	

Thrift

	
	Similar to HTTP

	
	Related to the Thrift plugin

	
	Binary

Using the HTTP protocol

This recipe shows us the usage of the HTTP protocol with an example.
Getting ready

You need a working instance of the ElasticSearch cluster. Using default configuration, ElasticSearch enables port number 9200 on your server to communicate in HTTP.

How to do it...

The standard RESTful protocol is easy to integrate.
We will see how easy it is to fetch the ElasticSearch greeting API on a running server on port 9200 using different programming languages:
	In BASH, the request will be:
curl –XGET http://127.0.0.1:9200

	In Python, the request will be:import urllib
result = urllib.open("http://127.0.0.1:9200")

	In Java, the request will be:import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.URL;
… truncated…
 try{ // get URL content
 URL url = new URL("http://127.0.0.1:9200");
 URLConnection conn = url.openConnection();// open the stream and put it into BufferedReader
 BufferedReader br = new BufferedReader(new InputStreamReader(conn.getInputStream()));

 String inputLine;
 while ((inputLine = br.readLine()) != null){
 System.out.println(inputLine);
 }
 br.close();
 System.out.println("Done");
}
 Catch (MalformedURLException e) {
 e.printStackTrace();
}
catch (IOException e){
 e.printStackTrace();
}

	In Scala, the request will be:scala.io.Source.fromURL("http://127.0.0.1:9200","utf-8").getLines.mkString("\n")

For every language sample, the response will be the same:
{
 "ok" : true,
 "status" : 200,
 "name" : "Payge, Reeva",
 "version" : {
 "number" : "1.4.0",
 "snapshot_build" : false
 },
 "tagline" : "You Know, for Search"
}

How it works...

Every client creates a connection to the server index / and fetches the answer. The answer is a valid JSON object. You can invoke the ElasticSearch server from any language that you like.
The main advantages of this protocol are:
	Portability: This uses Web standards so that it can be integrated in different languages (Erlang, JavaScript, Python, Ruby, and so on) or called via a command-line application such as cURL.
	Durability: The REST APIs don't change often. They don't break for minor release changes as native protocol does.
	Simple to use: This has JSON-to-JSON interconnectivity.
	Good support: This has much more support than other protocols. Every plugin typically supports a REST endpoint on HTTP.
	Easy cluster scaling: You can simply put your cluster nodes behind an HTTP load balancer to balance the calls such as HAProxy or NGinx.

In this book, a lot of the examples are done by calling the HTTP API via the command-line cURL program. This approach is very fast and allows you to test functionalities very quickly.

There's more...

Every language provides drivers for best integration with ElasticSearch or RESTful web services.
The ElasticSearch community provides official drivers that support the most used programming languages.

Using the native protocol

ElasticSearch provides a native protocol, used mainly for low-level communication between nodes, but very useful for fast importing of huge data blocks. This protocol is available only for Java Virtual Machine (JVM) languages and commonly is used in Java, Groovy, and Scala.
Getting ready

You need a working instance of the ElasticSearch cluster; the standard port number for native protocol is 9300.

How to do it...

The following are the steps required to use the native protocol in a Java environment (we'll discuss this in depth in Chapter 10, Java Integration):
	Before starting, we must be sure that Maven loads the Elasticsearch.jar file by adding the following code to the pom.xml file:<dependency>
 <groupId>org.elasticsearch</groupId>
 <artifactId>elasticsearch</artifactId>
 <version>1.4.1</version>
</dependency>

	Depending on the Elasticsearch.jar file, creating a Java client is quite easy:import org.elasticsearch.common.settings.ImmutableSettings;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.client.Client;
import org.elasticsearch.client.transport.TransportClient;
…
Settings settings = ImmutableSettings.settingsBuilder()
.put("client.transport.sniff", true).build();
 // we define a new settings
 // using sniff transport allows to autodetect other nodes
Client client = new TransportClient(settings)
 .addTransportAddress(new InetSocketTransportAddress("127.0.0.1", 9300));
 // a client is created with the settings

How it works...

To initialize a native client, a settings object is required, which contains some configuration parameters. The most important ones are:
	cluster.name: This is the name of the cluster
	client.transport.sniff: This allows you to sniff out the rest of the cluster and add them into its list of machines to use

With the settings object, it's possible to initialize a new client by giving an IP address and port a number (default 9300).

There's more...

The native protocol is the internal one used in ElasticSearch. It's the fastest protocol that is available to communicate with ElasticSearch.
The native protocol is an optimized binary and works only for JVM languages; to use this protocol, you need to include the elasticsearch.jar in your JVM project. Because it depends on ElasticSearch implementation, it must be the same version of ElasticSearch cluster.
For this reason, every time you update ElasticSearch, you need to update the elasticsearch.jar file on which it depends and if there are internal API changes, you need to update your code.
To use this protocol, you need to study the internals of ElasticSearch, so it's not as easy to use as HTTP and Thrift protocol.
Native protocol is useful for massive data import. But as ElasticSearch is mainly thought as a REST HTTP server to communicate with, it lacks support for everything that is not standard in the ElasticSearch core, such as the plugin's entry points. So using this protocol, you are unable to call entry points made by external plugins.
Note
The native protocol seems the most easy to integrate in a Java/JVM project. However, due to its nature that follows the fast release cycles of ElasticSearch, it changes very often. Also, for minor release upgrades, your code is more likely to be broken. Thus, ElasticSearch developers wisely tries to fix them in the latest releases.

See also

	The native protocol is the most used in the Java world and it will be deeply discussed in Chapter 10, Java Integration and Chapter 12, Plugin Development
	Further details on ElasticSearch Java API are available on the ElasticSearch website at http://www.elasticsearch.org/guide/en/elasticsearch/client/java-api/current/index.html

Using the Thrift protocol

Thrift is an interface definition language, initially developed by Facebook, used to define and create services. This protocol is now maintained by Apache Software Foundation.
Its usage is similar to HTTP, but it bypasses the limit of HTTP protocol (latency, handshake and so on) and it's faster.
Getting ready

You need a working instance of ElasticSearch cluster with the thrift plugin installed (https://github.com/elasticsearch/elasticsearch-transport-thrift/); the standard port for the Thrift protocol is 9500.

How to do it...

To use the Thrift protocol in a Java environment, perform the following steps:
	We must be sure that Maven loads the thrift library adding to the pom.xml file; the code lines are:<dependency>
 <groupId>org.apache.thrift</groupId>
 <artifactId>libthrift</artifactId>
 <version>0.9.1</version>
</dependency>

	In Java, creating a client is quite easy using ElasticSearch generated classes:import org.apache.thrift.protocol.TBinaryProtocol;
import org.apache.thrift.protocol.TProtocol;
import org.apache.thrift.transport.TSocket;
import org.apache.thrift.transport.TTransport;
import org.apache.thrift.transport.TTransportException;
import org.elasticsearch.thrift.*;
TTransport transport = new TSocket("127.0.0.1", 9500);
TProtocol protocol = new TBinaryProtocol(transport);
Rest.Client client = new Rest.Client(protocol);
transport.open();

	To initialize a connection, first we need to open a socket transport. This is done with the TSocket(host, port) setting, using the ElasticSearch thrift standard port 9500.
	Then the socket transport protocol must be encapsulated in a binary protocol, this is done with the TBinaryProtocol(transport) parameter.
	Now, a client can be initialized by passing the protocol. The Rest.Client utility class and other utility classes are generated by elasticsearch.thrift. It resides in the org.elasticsearch.thrift namespace.
	To have a fully working client, we must open the socket (transport.open()).
	At the end of program, we should close the client connection (transport.close()).

There's more...

Some drivers, to connect to ElasticSearch, provide an easy-to-use API to interact with Thrift without the boulder that this protocol needs.
For advanced usage, I suggest the use of the Thrift protocol to bypass some problems related to HTTP limits, such as:
	The number of simultaneous connections required in HTTP; Thrift transport efficiently uses resources
	The network traffic is light weight because it is binary and is very compact

A big advantage of this protocol is that on the server side it wraps the REST entry points so that it can also be used with calls provided by external REST plugins.

See also

	For more details on Thrift visit its Wikipedia page at: http://en.wikipedia.org/wiki/Apache_Thrift
	For more complete reference on the Thrift ElasticSearch plugin, the official documentation is available at https://github.com/elasticsearch/elasticsearch-transport-thrift/

Chapter 2. Downloading and Setting Up

In this chapter, we will cover the following topics:
	Downloading and installing ElasticSearch
	Setting up networking
	Setting up a node
	Setting up for Linux systems
	Setting up different node types
	Installing plugins in ElasticSearch
	Installing a plugin manually
	Removing a plugin
	Changing logging settings

Introduction

This chapter explains how to install and configure ElasticSearch, from a single developer machine to a big cluster, giving you hints on how to improve performance and skip misconfiguration errors.
There are different options to install ElasticSearch and set up a working environment for development and production.
When testing out ElasticSearch for a development cluster, the configuration tool does not require any configurations to be set in it. However, when moving to production, it is important to properly configure the cluster based on your data and use cases. The setup step is very important because a bad configuration can lead to bad results and poor performances, and it can even kill your server.
In this chapter, the management of ElasticSearch plugins is also discussed: installing, configuring, updating, and removing.

Downloading and installing ElasticSearch

ElasticSearch has an active community and the release cycles are very fast.
Because ElasticSearch depends on many common Java libraries (Lucene, Guice, and Jackson are the most famous), the ElasticSearch community tries to keep them updated and fixes bugs that are discovered in them and the ElasticSearch core. The large user base is also a source of new ideas and features to improve ElasticSearch use cases.
For these reasons, if it's possible, best practice is to use the latest available release (usually, the most stable release and with the least bugs).
Getting ready

You need an ElasticSearch supported operating system (Linux / Mac OS X / Windows) with JVM 1.7 or above installed. A web browser is required to download the ElasticSearch binary release.

How to do it…

In order to download and install an ElasticSearch server, we will perform the following steps:
	Download ElasticSearch from the web. The latest version is always downloadable at http://www.elasticsearch.org/download/. Different versions are available for different operating systems:	elasticsearch-{version-number}.zip: This is used for both Linux (or Mac OS X) and Windows operating systems
	elasticsearch-{version-number}.tar.gz: This is used for Linux and Mac operating systems
	elasticsearch-{version-number}.deb: This is used for a Debian-based Linux distribution (this also covers the Ubuntu family). It can be installed with the Debian command dpkg –i elasticsearch-*.deb.
	elasticsearch-{version-number}.rpm: This is used for Red Hat-based Linux distributions (this also covers the CentOS family). You can install this version with the command rpm –i elasticsearch-{version number}.rpm.Note
These packages contain everything to start using ElasticSearch. At the time of writing this book, the latest and most stable version of ElasticSearch is 1.4.0. To check whether this is the latest available version, please visit http://www.elasticsearch.org/download/.

	Extract the binary content:	After downloading the correct release for your platform, the installation consists of extracting the archive to a working directory.Note
Choose a working directory that is safe for charset problems and does not have a long path name (path name) in order to prevent problems when ElasticSearch creates its directories to store index data.

	For the Windows platform, a good directory can be c:\es, while on Unix and Mac OS X, you can use /opt/es.
	To run ElasticSearch, you need a Java Virtual Machine version 1.7 or above installed. For better performance, I suggest that you use the latest Sun/Oracle 1.7 version.
	If you are a Mac OS X user and you have installed Homebrew (http://brew.sh/), the first and second step is automatically managed by the brew install elasticsearch command.

	Now, start the ElasticSearch executable to check whether everything is working. To start your ElasticSearch server, just navigate to the installation directory and type either of the following command lines depending on your platform:	For Linux and Mac OS X:
bin/elasticsearch

	For Windows:
bin\elasticserch.bat

	Your server should now start, as shown in the following screenshot:[image: How to do it…]

How it works...

The ElasticSearch package generally contains three directories:
	bin: This contains the script to start and manage ElasticSearch. The most important scripts are:	elasticsearch(.bat): This is the main script file to start the ElasticSearch server
	plugin(.bat): This is a script to manage plugins

	config: This contains the ElasticSearch configurations. The most important files are:	elasticsearch.yml: This is the main configuration file for ElasticSearch
	logging.yml: This is the logging configuration file

	lib: This contains all the libraries required to run ElasticSearch

Another directory that will be present in the future is the plugins directory. It's the one that stores the plugin code.

There's more...

During the ElasticSearch startup, there are a lot of events that occur:
	A node name is chosen automatically (such as Robert Kelly) if it is not provided in elasticsearch.yml. The name is randomly taken from an in-code embedded ElasticSearch text file (src/main/resources/config/names.txt).
	A node name hash is generated for this node (such as, whqVp_4zQGCgMvJ1CXhcWQ).
	If there are plugins (native or site), they are loaded. In this example, there are no plugins.
	If it is not configured automatically, ElasticSearch binds to all the network addresses, using two ports:	Port 9300 is used for internal intranode communication
	Port 9200 is used for the HTTP REST API

	After the startup, if indices are available, they are restored.

If the given port numbers are already bound, ElasticSearch automatically increments the port number and tries to bind to them until a port is available (such as 9201, 9202, and so on). This feature is very useful when you want to fire up several nodes on the same machine for testing.
Many events are fired during ElasticSearch startup; we'll see them in detail in the upcoming recipes.

Setting up networking

Correctly setting up networking is very important for your nodes and cluster.
There are a lot of different installation scenarios and networking issues; we will cover two kinds of networking setups in this recipe:
	A standard installation with an autodiscovery working configuration
	A forced IP configuration, used if it is not possible to use autodiscovery

Getting ready

You need a working ElasticSearch installation, and you must know your current networking configuration (such as your IP addresses).

How to do it...

In order to configure networking, we will perform the following steps:
	With your favorite text editor application, open the ElasticSearch configuration file. Using the standard ElasticSearch configuration file (config/elasticsearch.yml), your node is configured to bind to all your machine interfaces and does an autodiscovery of the broadcasting events, which means that it sends signals to every machine in the current LAN and waits for a response. If a node responds to this, it can join and be a part of a cluster. If another node is available in the same LAN, it can join the cluster too.Note
Only nodes that run the same ElasticSearch version and cluster name (the cluster.name option in elasticsearch.yml) can join each other.

	To customize the network preferences, you need to change some parameters in the elasticsearch.yml file, such as:cluster.name: elasticsearch
node.name: "My wonderful server"
network.host: 192.168.0.1
discovery.zen.ping.unicast.hosts: ["192.168.0.2","192.168.0.3[9300-9400]"]

This configuration sets the cluster name to ElasticSearch, the node name, and the network address, it then tries to bind the node to the address given in the discovery section.

We can check the configuration when the node is being loaded. Now, start the server and check whether the networking is configured. The following code shows how it looks:
[...][INFO][node] [ESCookBook] version[1.4.0.beta1], pid[74304], build[f1585f0/2014-10-16T14:27:12Z]
[...][INFO][node] [ESCookBook] initializing ...
[...][INFO][plugins] [ESCookBook] loaded [transport-thrift, river-twitter, mapper-attachments, lang-python, lang-javascript], sites [head, HQ]
[...][INFO][node] [ESCookBook] initialized
[...][INFO][node] [ESCookBook] starting ...
[...][INFO][thrift] [ESCookBook] bound on port [9500]
[...][INFO][transport] [ESCookBook] bound_address {inet[/0:0:0:0:0:0:0:0:9300]}, publish_address {inet[/192.168.1.19:9300]}
[...][INFO][cluster.service] [ESCookBook] new_master [ESCookBook][YDYjr0XRQeyQIWGcLzRiVQ][MBPlocal][inet[/192.168.1.19:9300]], reason: zen-disco-join (elected_as_master)
[...][INFO][discovery] [ESCookBook] elasticsearch-cookbook/YDYjr0XRQeyQIWGcLzRiVQ
[...][INFO][http] [ESCookBook] bound_address {inet[/0:0:0:0:0:0:0:0:9200]}, publish_address {inet[/192.168.1.19:9200]}
[...][INFO][gateway] [ESCookBook] recovered [0] indices into cluster_state
[...][INFO][node] [ESCookBook] started

In this case, we see that:
	The transport layer binds to 0:0:0:0:0:0:0:0:9300 and 192.168.1.19:9300
	The REST HTTP interface binds to 0:0:0:0:0:0:0:0:9200 and 192.168.1.19:9200

OEBPS/graphics/4836OS_01_01.jpg
)

C {Shard:1 Replica:0}

) 1)
) 1)
) 08)
) 1)

@
g
-
g
&
o
B
5
2
4
@

D)) 1)
D)))
Il) 1)

A:{Shard:3 Replica:2}

OEBPS/graphics/PacktLibLogo.jpg

OEBPS/cover/cover.jpg
uick answers to common problems

ElasticSearch Cookbook

Second Edition

Over 130 advanced recipes to search, analyze, deploy, manage,
and monitor data effectively with ElasticSearch

Alberto Paro

OEBPS/graphics/4836OS_02_01.jpg
< elosticsearch-1.4.0.8etal 1.
LICENSE.txt NOTICE.txt READVE.textile bin
+ elasticsearch-1.4.0.Betal bin/elasticsearch
50,180] [INFO J[node

50, 180] [INFO][node

50,183] [INFO][plugins

52,157] [INFO][node

52,158] [INFO J[node

52,217] [INFO 1[transport

+11:52,233] [INFO][discovery
[2014-10-12 11:11:55,260] INFO J[cluster. service

anfig

1 [ESCookBook]
7 [ESCookBook]
7 [ESCookBook]
7 [ESCookBook]
7 [ESCookBook]
7 [ESCookBook]

1 [ESCookBook]
J [ESCookBook]

/192.168.1.19:9300]1, reason: zen-disco-join (elected_as_naster)

[2014-10-12 11:11:55,277][INFO [http
0]}

[2014-10-12 11:11:55,277][INFO [node
[2014-10-12 11:11:55,288] [INFO] [gateway

7 [ESCookBook]

1 [ESCookBook]
7 [ESCookBook]

data 1ib Togs

version[1.4.0.Betal], pid[31025], build[1f25669/2014-10-01T14:
initializing ...
loaded [, sites [
initialized

starting ...
bound_address {inet[/0;

3001}, publish_address {inet[/192.168.1.19:93

elasticsearch/t1Bcw-fbSual4rhNOaTBw
new_naster [ESCookBook] [£18cw-bSual4rhNOaTBw] [Albertos-MacBook-Pro-2. local][inet[

bound_address {inet[/0: 00]}, publish_oddress {inet[/192.168.1.19:92

started
recovered [0] indices into cluster_state

