

 [image: Cover.png]

 Windows Server Automation with PowerShell Cookbook

 Fifth Edition

 Powerful ways to automate, manage, and administrate Windows Server 2022 using PowerShell 7.2

 Thomas Lee

 [image:]

 BIRMINGHAM—MUMBAI

 Windows Server Automation with PowerShell Cookbook

 Fifth Edition

 Copyright © 2023 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Senior Publishing Product Manager: Aaron Tanna

 Acquisition Editor – Peer Reviews: Gaurav Gavas

 Project Editor: Meenakshi Vijay

 Content Development Editor: Liam Draper

 Copy Editor: Safis Editing

 Technical Editor: Karan Sonawane

 Proofreader: Safis Editing

 Indexer: Subalakshmi Govindhan

 Presentation Designer: Rajesh Shirsath

 Developer Relations Marketing Executive: Meghal Patel

 First published: March 2013

 Second edition: September 2017

 Third edition: February 2019

 Fourth edition: July 2021

 Fifth edition: January 2023

 Production reference: 1270123

 Published by Packt Publishing Ltd.

 Livery Place

 35 Livery Street

 Birmingham

 B3 2PB, UK.

 ISBN 978-1-80461-423-5

 www.packt.com

 Contributors

 About the author

 Thomas Lee is a consultant, trainer, and writer from England and has been in the IT business since the late 1960s. After graduating from Carnegie Mellon University, Thomas joined ComShare, where he was a systems programmer building the Commander II time-sharing operating system, a forerunner of today’s cloud computing paradigm. In the mid 1970s, he moved to ICL to work on the VME/K operating system. After a sabbatical in 1980 and 1981, he joined what is today known as Accenture, leaving in 1988 to run his own consulting and training business, which is still active today.

 Thomas worked for Microsoft in Redmond to develop both multiple Microsoft official training courses and several chapters on DNS for the Windows Server 2003 Resource kit. Later, Thomas also worked for both QA (as Chief Technologist), and for Global Knowledge as Chief Architect. In both roles, he developed and delivered training for a variety of customers, including Microsoft.

 Today, Thomas writes, trains, and consults. He is a site moderator and PowerShell group administrator at the popular SpiceWorks.com site. He is responsible for and a major contributor to the Microsoft PowerShell Community blog (https://devblogs.microsoft.com/powershell-community/).

 Thomas holds numerous Microsoft certifications, including MCSE (one of the first in the world) and later versions, MCT (25 years), and has been awarded Microsoft’s MVP award 17 times. Over the years, he has written and contributed to a variety of books on Windows and TCP/IP.

 He lives today in a cottage in the English countryside with his family, a nice wine cellar, and a huge collection of live recordings by The Grateful Dead and The Jerry Garcia Band.

 About the reviewer

 Mike Roberts is a PowerShell ninja not only in his profession, but also teaches it on his blog: https://gngr.ninja. Through his blog, he hopes to inspire others by showing them what different technologies are capable of.

 I am eternally grateful for the support of my family, and Destiny. Thank you!

 Join our community on Discord

 Join our community’s Discord space for discussions with the author and other readers:

 https://packt.link/SecNet

 [image:]

 Contents

 	Preface

 	Who this book is for

 	What this book covers

 	To get the most out of this book

 	Get in touch

 	Installing and Configuring PowerShell 7

 	Introduction

 	Systems used in the chapter

 	Installing PowerShell 7

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Installing PowerShell 7 Using Chocolatey

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Using the PowerShell 7 Console

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Building PowerShell 7 Profile Files

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Exploring Installation Artifacts

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Installing VS Code

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Installing the Cascadia Code Font

 	How to do it...

 	How it works...

 	There’s more...

 	Exploring PSReadLine

 	How to do it...

 	How it works...

 	There’s more...

 	Managing PowerShell 7 in the Enterprise

 	Introduction

 	The system used in the chapter

 	Utilizing Windows PowerShell Compatibility

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Installing RSAT

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Exploring Package Management

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Exploring PowerShellGet and the PS Gallery

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Creating and Using a Local Package Repository

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Establishing a Script Signing Environment

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Working With Shortcuts and the PSShortCut Module

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Working With Archive Files

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Searching for Files Using the Everything Search Tool

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Exploring .NET

 	Introduction

 	The system used in the chapter

 	Exploring .NET Assemblies

 	Getting ready

 	How to do it...

 	How it works…

 	There’s more...

 	Exploring .NET Classes

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Exploring .NET Methods

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Creating a C# Extension

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Creating a cmdlet

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing Active Directory

 	Introduction

 	The systems used in the chapter

 	Installing a Forest Root Domain

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Testing an AD installation

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Installing a Replica Domain Controller

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Installing a Child Domain

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Creating and Managing AD Users and Groups

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing AD Computers

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Adding/Removing Users Using a CSV Files

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Creating Group Policy Objects

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Reporting on AD Users

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Reporting on AD Computers

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing AD Replication

 	Getting ready

 	How to do it…

 	How it works…

 	There’s more…

 	Managing Networking

 	Introduction

 	The systems used in the chapter

 	Configuring IP Addressing

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Testing Network Connectivity

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Installing DHCP

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Configuring DHCP Scopes and Options

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Using DHCP

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Configuring a DHCP Reservation

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Implementing DHCP Fail Over/Load Balancing

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Implementing DNS in the Enterprise

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing DNS Zones and Resource Records

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Configuring DNS Forwarding

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Implementing Enterprise Security

 	Introduction

 	The systems used in the chapter

 	Implementing Just Enough Administration (JEA)

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Examining Applications and Services Logs

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Discovering Logon Events in the Event Log

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Deploying PowerShell Group Policies

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Using PowerShell Script Block Logging

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Configuring AD Password Policies

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing Windows Defender Antivirus

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing Storage

 	Introduction

 	The systems used in the chapter

 	Managing Disks

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing File Systems

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Exploring PowerShell Providers and the FileSystem Provider

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing Storage Replica

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Deploying Storage Spaces

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing Shared Data

 	Introduction

 	The systems used in the chapter

 	Managing NTFS File and Folder Permissions

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Securing Your SMB File Server

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Creating and Securing SMB Shares

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Accessing SMB Shares

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Creating an iSCSI Target

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Using an iSCSI Target

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Implementing FSRM Filestore Quotas

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Implementing FSRM Filestore Reporting

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Implementing FSRM Filestore Screening

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing Printing

 	Introduction

 	The systems used in the chapter

 	Installing and Sharing Printers

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Publishing a Printer to Active Directory

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Changing the Spooler Directory

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Changing Printer Drivers

 	Getting ready

 	How to do it...

 	How it works...

 	Printing a Test Page

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing Printer Security

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Creating a Printer Pool

 	Getting ready

 	How to do it…

 	How it works...

 	There’s more...

 	Exploring Windows Containers

 	Introduction

 	The systems used in the chapter

 	Configuring a container host

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Deploying sample containers

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Deploying IIS in a container

 	Getting ready

 	How to do it…

 	How it works...

 	There’s more...

 	Using a Dockerfile to create a custom container

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing Hyper-V

 	Introduction

 	The systems used in the chapter

 	Installing Hyper-V inside Windows Server

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more…

 	See also

 	Creating a Hyper-V VM

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Using PowerShell Direct

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Using Hyper-V VM groups

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Configuring the VM hardware

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Configuring VM networking

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Implementing nested virtualization

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing the VM state

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing a VM and VM storage movement

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing VM replication

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing VM checkpoints

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Creating a Hyper-V report

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Debugging and Troubleshooting Windows Server

 	Introduction

 	The systems used in the chapter

 	Using PSScriptAnalyzer

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Performing BASIC Network Troubleshooting

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Using Get-NetView to Diagnose Network Issues

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Using Best Practices Analyzer

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Exploring PowerShell Script Debugging

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing Windows Server with Window Management Instrumentation (WMI)

 	Introduction

 	WMI architecture

 	The systems used in the chapter

 	Exploring WMI Architecture in Windows

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Exploring WMI Namespaces

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Exploring WMI Classes

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Obtaining WMI Class Instances

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Using WMI Methods

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Using WMI Events

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Implementing Permanent WMI Eventing

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing Windows Update Services

 	Introduction

 	The systems used in the chapter

 	Installing Windows Server Update Services

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Configuring WSUS Update Synchronization

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Configuring the Windows Update Client

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Creating Computer Target Groups

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Configuring WSUS Automatic Approvals

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Managing WSUS Updates

 	Getting ready

 	How to do it...

 	How it works...

 	There’s more...

 	Other Books You May Enjoy

 	Index

 Landmarks

 	
 Cover

 	
 Index

 Preface

 PowerShell was first introduced to the world at the Professional Developer’s conference in Los Angeles in 2003 by Jeffrey Snover. Monad, as it was originally known, represented a complete revolution in managing host servers. A white paper written around that time, The Monad Manifesto (refer to http://www.jsnover.com/blog/2011/10/01/monad-manifesto/), remains an amazing analysis of the problem at the time – that of managing large numbers of Windows Server systems. A key takeaway is that the GUI does not scale to the, whereas PowerShell can and does.

 PowerShell has transformed the management of complex, network-based Windows infrastructure and, increasingly, non-Windows and cloud infrastructures. Knowledge of PowerShell and how to get the most from PowerShell is now obligatory for any IT professional. The popular adage continues to be true: Learn PowerShell or learn golf.

 Windows PowerShell was developed on Windows for Windows administrators. PowerShell 7, the open-source successor, is also available for Mac and most of the more popular Linux distributions as well as Windows. This book, however, concentrates on PowerShell within a Windows environment.

 This book takes you through the use of PowerShell 7.2 in various scenarios using many of the rich set of features included in Windows Server 2022. This preface introduces what is in the book, along with some tips on how to get the most out of it.

 Who this book is for

 This book is aimed at IT professionals, including system administrators, system engineers, architects, and consultants who need to understand PowerShell 7 to simplify and automate their daily tasks. The recipes in this book have been tested on the latest versions of Windows Server 2022.

 What this book covers

 Chapter 1, Installing and Configuring PowerShell 7, shows you how you can install and configure both PowerShell 7 and VS Code, which replaces the Windows PowerShell Integrated Scripting Environment (ISE) as well as installing a new font, Cascadia Code. This chapter also examines the PowerShell 7 environment, including examining the PSReadLine module.

 Chapter 2, Managing PowerShell 7 in the Enterprise, looks at how you can use various PowerShell 7 features that might be more common within larger enterprises. These include the Remote Server Administration Tools (RSAT), package management and the PowerShell Gallery, and creating a local module repository. The chapter also looks at PowerShell script signing, using short cuts, and working with archive (.zip) files.

 Chapter 3, Exploring .NET, examines .NET, which provides the foundation for PowerShell 7. The chapter looks at .NET assemblies, classes, and methods. The chapter concludes with showing you how to create simple C#-based PowerShell extensions, as well as a full PowerShell cmdlet.

 Chapter 4, Managing Active Directory, examines how to install, manage, and leverage Active Directory, including installing domains and child domains, managing AD objects, and leveraging Group Policy. This chapter also shows how you can use a CSV to create multiple AD user accounts.

 Chapter 5, Managing Networking, shows you how to manage Windows networking with PowerShell. Networks are today central to almost every organization and this chapter looks at a variety of network-related tasks, including looking at new ways (with PowerShell) to do old things, such as setting up DNS, DHCP, and DHCP failover and load balancing.

 Chapter 6, Implementing Enterprise Security, looks at security aspects within the context of an enterprise environment. The chapter looks at Just Enough Administration (JEA), which limits the actions an administrator can perform remotely). The chapter also looks at the event log, and PowerShell 7’s script block logging, setting PowerShell 7 related Group policies and configuring a fine-grained AD password policy. The chapter concludes by looking at the Windows Defender AV product built into Windows Server.

 Chapter 7, Managing Storage, looks at managing storage in Windows Server, including locally attached devices and Windows Storage Spaces. The chapter also looks at managing Storage Replica, a feature of Windows Server 2022.

 Chapter 8, Managing Shared Data, examines different ways to share data and manage your shared data with Windows Server and PowerShell, including managing NTFS permissions, creating and securing SMB shares, and setting up and using iSCSI. The chapter concludes by looking at File Server Resource Manager (FSRM), a feature of Windows Server, and managing FSRM quotas, file screening, and reporting.

 Chapter 9, Managing Printing, shows you how to manage printers, printer queues, and printer drivers as well as how to set up a printer pool. You will also examine how to print a test page.

 Chapter 10, Exploring Windows Containers, shows you how to install the Containers feature in Windows Server 2022, and use sample containers you can download. You can use containers to create a website and create a custom container using a Docker file.

 Chapter 11, Managing Hyper-V, demonstrates the use of Hyper-V. This chapter shows you how to build and deploy VMs with Hyper-V. This includes nested Hyper-V running a Hyper-V VM inside another Hyper-V VM, which is useful in many scenarios.

 Chapter 12, Debugging and Troubleshooting Windows Server, looks at a number of aspects of both reactive and proactive troubleshooting. This includes using the PowerShell script debugger, getting events from the event log, and using the Best Practice Analyzer contained in Windows Server.

 Chapter 13, Managing Window Server with Window Management Instrumentation (WMI), examines WMI and enables you to investigate WMI namespaces, classes, and class occurrences. You retrieve information from WMI classes, update WMI using WMI methods, and manage WMI events, including WMI permanent eventing.

 Chapter 14, Managing Windows Update Services, examines how you can install, configure, and manage the Windows Server Update Service (WSUS). This chapter shows how to manage a Windows feature that has no PowerShell 7 commands and does not work natively in PowerShell 7.

 To get the most out of this book

 I designed and wrote this book based on some assumptions and with some constraints. Please read this section to understand how I intended the book to be used and what I have assumed about you. This should help you to get the most out of this book.

 The first assumption I made in writing this book is that you know the very basics of Windows PowerShell. For that reason, this book is not a PowerShell tutorial. The recipes in this book make use of a wide range of PowerShell features, including WMI, Remoting, AD, and so on, but you need to know the basics of PowerShell. The book was developed using Windows 10/11 and Windows Server 2022.

 The second, related, assumption is that you have a reasonable background in Windows infrastructure, including AD, networking, and storage. The recipes in each chapter provide an overview of the various technologies. I’ve tried to provide good links for more information on the topics in this book. The recipes are designed to show you the basics of how to manage aspects of Windows Server and how you might adapt them for your environment.

 You start your exploration by installing and configuring PowerShell 7 and VS Code, and creating Hyper-V VMs to test out each chapter’s recipes. I built and tested the recipes in this book step-by-step (i.e., not running the entire recipe as a single script file). If you run a recipe as a single step, some of the output may not be what you see here, due to how PowerShell formats objects.

 Once you have any recipe working, try to re-factor the recipe’s code into your own reusable functions. In some cases, we build simple functions as a guide to richer scripts you could build. Once you have working and useful functions, incorporate them into organizational or personal modules and reuse the code.

 As any author knows, writing PowerShell scripts for publication in a book is a layout and production nightmare. To reduce the issues specifically with line width and line wrapping, I have made extensive use of methods that ensure the command line width fits in the book’s chapters without wrapping. Many recipes use hash tables, property splatting, and other devices to ensure that every line of every recipe is 73 characters or less, and that there are no unintended line breaks. I hope there are not too many issues with layout!

 Many of the cmdlets, commands, and object methods used in this book produce output that may not be all that helpful or useful, particularly in production. Some cmdlets generate output that would fill many pages of this book but with little added value. For this reason, many recipes pipe cmdlet output to Out-Null. Feel free to remove this where you want to see more details. I have also adjusted the output in many cases to avoid wasted white space. Thus, if you test a recipe, you may see the output that is laid out a bit differently, but it should contain the same information. Finally, remember that the specific output you see may be different based on your environment and the specific values you use in each step.

 To write this book, I created a VM farm consisting of 14 Windows Server 2022 hosts. My main development host was a well-configured Windows 11 system (with 128 GB RAM, 2 x 16 core Xeon processors, and several fast SSDs). My host runs all the VMs in this book simultaneously. If your computing power is more modest, you can spin up just the VMs you need. I suggest you have a minimum of 16GB of RAM.

 To assist in writing this book, I have also created a set of scripts that build the Hyper-V VMs, which I then used to develop and test the recipes in this book. I have published these scripts at: https://github.com/doctordns/ReskitBuildScripts. I have also published some details of the network of VMs created by using these scripts, complete with hostnames and IP addresses, at: https://github.com/doctordns/ReskitBuildScripts/blob/master/ReskitNetwork.md. The full set of VMs, at the end of writing this, took up around 500 GB of storage. Fortunately, storage is cheap! The GitHub repository has more details on the scripts and how to run them. If you have any issues with the scripts, please file an issue on GitHub and I can assist.

 The build scripts are pretty easy to use, and I have added details on how to approach these scripts in the Readme.md file.

 PowerShell 7 provides great feature coverage for managing Windows Server 2022 using PowerShell. PowerShell offers considerable flexibility in what commands you use in your scripts. While PowerShell cmdlets are generally your first choice, in some cases, you need to dip down into .NET or into WMI to get to objects, properties, and methods that PowerShell cmdlets do not provide.

 An important aspect of the recipes in this book is the use of third-party modules obtained from the PowerShell Gallery. A rich and vibrant PowerShell community has created a substantial amount of functionality for you to use. The PowerShell Gallery is a repository provided by Microsoft. With PowerShell, you can, download and use the resources available in the Gallery. The NTFSSecurity module, for example, makes it easier to manage the Access Control List (ACL) on NTFS files and folders.

 I have tested all the code provided in this book. It worked when I tested it and did what it says (at least during the writing stage). I have taken some liberties regarding the layout and formatting of screenshots to cater to the book’s production and printing process, but you should get the same results when you run these scripts.

 The book production process is very complex, and errors can creep in during production. So if you find a step in any recipe that fails, file an issue in my GitHub repository for this book, and for generic issues, please post issues to the Spiceworks PowerShell forum at .

 When writing the recipes, I use full cmdlet names with all parameter names spelled out in full. This approach makes the text a bit longer, but hopefully easier to read and understand. I have also used a variety of different ways you can achieve results.

 In writing this book, I set out to create content around many features of Windows Server 2022. To publish the book, I have to avoid going too deep into every Windows Feature. I have had to decide which Windows Server features (and commands) to show and which not to cover since every chapter could easily have become its own book. To paraphrase Jeffrey Snover, to ship is to choose. I hope I chose well.

 Some recipes in this book rely on you having run other recipes in previous chapters. These related recipes worked well when we wrote and tested them and hopefully work for you as well. If you have problems with any recipes, raise issues on my GitHub repository, and I can take a look and help.

 Finally, there is a fine line between PowerShell and Windows Server features. To use PowerShell to manage any Windows feature, you need to understand the Windows feature as well as understand PowerShell. The chapters provide short overviews of the Windows Server features, and I have provided links to help you get more information. And as ever, Bing and Google are your best friends.

 Download the example code files

 The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/Windows-Server-Automation-with-PowerShell-Cookbook-5th-edition. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 The full and up-to-date repository for this book’s scripts is at: https://github.com/doctordns/PacktPS72/.

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/SlBcp.

 Conventions used

 There are a number of text conventions used throughout this book.

 CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “ The System.IO.FileInfo class has a static method new() that enables you to create a new file.”

 Any command-line input or output is written as follows:

 $Manifest = Get-Content -Path $Mod.Path
$Manifest | Select-Object -First 20

 Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, words in menus or dialog boxes appear in the text like this. For example: “ Click on Open File to run the .NET SDK installer.”

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form. Alternatively post an issue in GitHub at https://github.com/doctordns/PacktPS72/issues.

 Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

 Share your thoughts

	Once you’ve read Windows Server Automation with PowerShell Cookbook, Fifth Edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

 Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

	

 Download a free PDF copy of this book

 Thanks for purchasing this book!

 Do you like to read on the go but are unable to carry your print books everywhere?Is your eBook purchase not compatible with the device of your choice?

 Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

 Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

 The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

 Follow these simple steps to get the benefits:

 	Scan the QR code or visit the link below[image:]
 https://packt.link/free-ebook/9781804614235

 	Submit your proof of purchase

 	That’s it! We’ll send your free PDF and other benefits to your email directly

 1

 Installing and Configuring PowerShell 7

 This chapter covers the following recipes:

 	Installing PowerShell 7

 	Installing PowerShell 7 Using Chocolatey

 	Using the PowerShell 7 Console

 	Building PowerShell 7 Profile Files

 	Exploring Installation Artifacts

 	Installing VS Code

 	Installing the Cascadia Code Font

 	Exploring PSReadLine

 Introduction

 Microsoft Windows PowerShell was first introduced to the public in 2003, and released formally, as Windows PowerShell v1, in 2006. Microsoft has released multiple versions of Windows PowerShell. Microsoft plans to support Windows PowerShell 5.1 for a long time, but no new features are likely.

 In 2016, the PowerShell development team began working on an open-source version of PowerShell based on the open-source version of .NET Core (later renamed to just .NET). You can read the announcement by Jeffrey Snover here: https://azure.microsoft.com/blog/powershell-is-open-sourced-and-is-available-on-linux/. This new version is just PowerShell (or PowerShell 7).

 The initial versions (PowerShell 6.X) represented, in effect, a proof of concept – you could run the core functions and features of PowerShell across the Windows, Mac, and Linux platforms. Those early versions also enabled the development team to implement all the necessary tooling to allow future development. But they were quite limited in supporting the rich needs of the IT professional community.

 With the release of PowerShell 7.0 came improved parity with Windows PowerShell. A few modules did not work with PowerShell 7, and a few more operated via a compatibility mechanism. PowerShell 7.0 shipped in 2019 and was followed by version 7.1 and version 7.2 (released in late 2021). This book uses the term “PowerShell 7” to include PowerShell 7.0, 7.1, and 7.2. If there are version-specific issues, the chapters call those out specifically.

 Microsoft does not include PowerShell 7 in Windows, thus you have to install it on each system. And as ever, you have options including direct from GitHub and via other installers such as Chocolatey.

 Once you have installed PowerShell 7, you can use it just as you used the Windows PowerShell console to run commands or scripts. You can run it from a shortcut on the desktop, from the start panel, from a shortcut on the taskbar, or just run the executable. The name of the executable for PowerShell 7 is pwsh.exe (versus powershell.exe for Windows PowerShell).

 Another important difference is that PowerShell 7 uses different profile file locations from Windows PowerShell. This feature allows you to customize your profiles to use the new PowerShell 7 features. And that, in turn, enables you to run both Windows PowerShell and PowerShell 7 side by side without interference.

 Most IT pros who have used Windows PowerShell are familiar with the Integrated Scripting Environment (ISE). The ISE was a great tool you used with Windows PowerShell. However, you cannot use the ISE with PowerShell 7. A very worthy successor to the ISE is Visual Studio Code (VS Code), an open-source editing project that provides all the features of the ISE and a great deal more. Installation of VS Code is optional but relatively straightforward.

 Microsoft also developed a new font, Cascadia Code, to coincide with the launch of VS Code. This font is a nice improvement over Courier or other mono-width fonts. All screenshots of working code in this book use this new font.

 PSReadLine is a PowerShell module designed to provide color-coding of PowerShell scripts in the PowerShell 7 Console. The module, included with PowerShell 7 by default, makes editing at the command line easier and more on par with the features available in Linux shells. You can also use the later versions of PSReadLine with Windows PowerShell.

 Systems used in the chapter

 This chapter is all about getting you started with PowerShell 7 – installing and configuring your environment to make the most out of PowerShell 7. In this chapter, you use a single host, SRV1, as follows:

 [image:]
 Figure 1.1: Host in use for this chapter

 In later chapters, you will use additional servers and promote SRV1 to be a domain-based server rather than being in a workgroup.

 Installing PowerShell 7

 As mentioned, PowerShell 7 is not installed in Windows by default, at least not at the time of writing. The PowerShell team made PowerShell 7.1 available from the Microsoft Store, which is useful to install PowerShell 7.1 or later on Windows 10/11 systems. Windows Server does not support the Microsoft Store.

 You have other methods of installing PowerShell 7 on your systems. The first option is to use the Install-PowerShell.ps1 script, which you download from GitHub, as shown in this recipe. You can also use this recipe on Windows 10 hosts. This approach has the advantage of being the most up-to-date source of the latest versions of PowerShell.

 Getting ready

 This recipe uses SRV1, a Windows Server workgroup host. There are no features of applications loaded on this server (yet).

 You can use either the Windows PowerShell console or the ISE for this recipe.

 How to do it...

 	Setting an execution policy for Windows PowerShell
 Set-ExecutionPolicy -ExecutionPolicy Unrestricted -Force

 	Updating help text for Windows PowerShell
 Update-Help -Force | Out-Null

 	Ensuring the C:\Foo Folder exists
 $LFHT = @{
 ItemType = 'Directory'
 ErrorAction = 'SilentlyContinue' # should it already exist
}
New-Item -Path C:\Foo @LFHT | Out-Null

 	Downloading PowerShell 7 installation script from GitHub
 Set-Location -Path C:\Foo
$URI = 'https://aka.ms/install-powershell.ps1'
Invoke-RestMethod -Uri $URI |
 Out-File -FilePath C:\Foo\Install-PowerShell.ps1

 	Viewing Installation Script Help
 Get-Help -Name C:\Foo\Install-PowerShell.ps1

 	Installing PowerShell 7.2
 $EXTHT = @{
 UseMSI = $true
 Quiet = $true
 AddExplorerContextMenu = $true
 EnablePSRemoting = $true
}
C:\Foo\Install-PowerShell.ps1 @EXTHT | Out-Null

 	Installing the preview and daily builds (for the adventurous)
 C:\Foo\Install-PowerShell.ps1 -Preview -Destination C:\PSPreview |
 Out-Null
C:\Foo\Install-PowerShell.ps1 -Daily -Destination C:\PSDailyBuild |
 Out-Null

 	Creating Windows PowerShell default profiles
 # First the ISE
$URI = 'https://raw.githubusercontent.com/doctordns/PACKTPS72/master' +
 '/scripts/goodies/Microsoft.PowerShell_Profile.ps1'
$ProfileFile = $Profile.CurrentUserCurrentHost
New-Item -Path $ProfileFile -Force -WarningAction SilentlyContinue |
 Out-Null
(Invoke-WebRequest -Uri $URI -UseBasicParsing).Content |
 Out-File -FilePath $ProfileFile
Now profile for ConsoleHost
$ProfilePath = Split-Path -Path $ProfileFile
$ChildPath = 'Microsoft.PowerShell_profile.ps1'
$ConsoleProfile = Join-Path -Path $ProfilePath -ChildPath $ChildPath
(Invoke-WebRequest -Uri $URI -UseBasicParsing).Content |
 Out-File -FilePath $ConsoleProfile

 	Checking versions of PowerShell 7 loaded
 Get-ChildItem -Path C:\pwsh.exe -Recurse -ErrorAction SilentlyContinue

 How it works...

 In step 1, you set the execution policy for Windows PowerShell to Unrestricted. This step, which produces no output, simplifies the installation and setup of PowerShell. In production, you may wish to set PowerShell’s execution policy to be more restrictive.

 Most of the scripts in this book should run successfully using a more restrictive setting. To simplify things, this recipe sets the execution policy to Unrestricted.

 In step 2, you update the help text files for Windows PowerShell, which produces output like this:

 [image:]
 Figure 1.2: Updating help files

 Note that after installing PowerShell 7, PowerShell prompts you to download help text (not shown in this figure) the first time you use Get-Help.

 In step 3, you create a folder, C:\Foo. This book uses this folder as a place to put files used by the book’s recipes. For example, this recipe stores the PowerShell installation file in this folder from which you execute the script to install PowerShell 7. Also, note that this step mixes spatting, using hash tables, and direct parameter specification. You can always mix and match.

 With step 4, you download the PowerShell installation script from GitHub. Although you can look in C:\Foo to examine the script, this step produces no output.

 The installation script is a PowerShell script. In step 5, you use Get-Help to get details on the script, as shown here:

 [image:]
 Figure 1.3: Getting help information from the installation script

 In step 6, you use the installation script to install PowerShell 7 on SRV1, with output like this:

 [image:]
 Figure 1.4: Installing PowerShell 7

 PowerShell 7 is a work in progress. On most weekdays, the PowerShell team builds updated versions of PowerShell. Monthly, the team also releases preview versions of the next major version. At time of writing, the current preview is 7.3 Preview 3 – but that should change by the time you read this and the team releases new previews. The daily and preview builds are usually very stable and allow you to try out new features that may be in the next major release. The daily build enables you to view progress on a specific bug or feature. You may find it useful to install both of these. Note that if you install preview/daily builds as shown in this recipe, you also need to ensure you keep them up to date as time goes by – Microsoft’s update services do not update these side-by-side installations.

 In step 7, you install the latest preview build along with the latest build of PowerShell, which looks like this:

 [image:]
 Figure 1.5: Installing the preview and daily builds

 PowerShell, like Windows PowerShell, uses profile files to enable you to configure PowerShell each time you run it (whether in the PowerShell console or as part of VS Code).

 In step 8, you download sample PowerShell profile scripts and save them locally, which produces no output. This step assumes you are running the script from the ISE – the first part creates an ISE profile while the second establishes a PowerShell profile for the Console Host.

 The executable name for PowerShell 7 is pwsh.exe. In step 9, you view the versions of this file as follows:

 [image:]
 Figure 1.6: Checking PowerShell 7 versions loaded

 As you can see, there are three versions of PowerShell 7 installed on SRV1: the latest full release, the latest preview, and the build of the day.

 There’s more...

 In step 1, you update the execution policy for Windows PowerShell. While this simplifies the installation and configuration of hosts, it may be unduly permissive for your environment, and you can change it as needed. Don’t forget, though, PowerShell’s execution policy is not truly a security mechanism – it just slows down an inexperienced administrator. For a good explanation of PowerShell’s Security Guiding Principles, see https://devblogs.microsoft.com/powershell/powershells-security-guiding-principles/.

 In step 2, you updated the help files for Windows PowerShell. This step is optional, but later steps can prompt you to update your help files if you skip it. Installing the most up-to-date help files also adds many conceptual help topics to help you get more out of PowerShell.

 In step 4, you use a shortened URL to download the Install-PowerShell.ps1 script. When you use Invoke-RestMethod, PowerShell discovers the underlying target URL for the script. The short URL allows Microsoft and the PowerShell team to publish a well-known URL and then have the flexibility to move the target location should that be necessary. The target URL, at the time of writing, is https://raw.githubusercontent.com/PowerShell/PowerShell/master/tools/install-powershell.ps1.

 In step 6, you use the installation script to install PowerShell 7 on SRV2. This step installs PowerShell 7.2.2, as you can see, using an MSI. The MSI, which you install silently without any user notification, updates the system execution path to add the PowerShell 7 installation folder. At the time of writing, the latest released version of PowerShell is 7.2.2. In step 7, you install the latest preview build (a foretaste of things to come in the next version of PowerShell) and the daily build (for the brave). The code here retrieves the latest supported version of PowerShell 7, plus the preview and daily builds. When you run this recipe, the versions you install are going to be later than what is shown here.

 In step 8, you create two sample profile files: an ISE profile and a profile for the console host. Windows PowerShell uses the profile when you launch the PowerShell console. PowerShell 7 also uses the profile (when you run PowerShell 7 in the console or Microsoft Terminal).

 In step 9, you can see that you have installed PowerShell 7 (into C:\Program Files) and the latest daily build and preview versions. The specific file versions you see may differ from the output shown here, reflecting the relentless progress of the PowerShell team.

 Installing PowerShell 7 Using Chocolatey

 Chocolatey is a third-party package management tool for Windows. Chocolatey has a large set of packages you can install, and the Chocolatey tool (choco.exe) provides a rich set of management features. You can install Chocolatey on both Windows Client machines (Windows 10/11 and earlier versions) and, as this recipe demonstrates, you can also install Chocolatey on Windows Server.

 Chocolatey has a very large online registry of Windows packages that you can install, simplifying the deployment of applications in your environment. Read more about the company and its products at its website, https://chocolatey.org/.

 Getting ready

 You run this recipe on SRV1 after you have installed PowerShell 7. The method shown here installs PowerShell 7 using an MSI package. In the Installing PowerShell 7 recipe, you installed PowerShell 7 using the MSI. With PowerShell already installed, this recipe installs Chocolatey but would fail gracefully attempting to reinstall PowerShell 7. If you want to test the installation of PowerShell 7 using Chocolatey, you should remove PowerShell 7.

 Run this script using the PowerShell ISE.

 How to do it...

 	Downloading the installation script for Chocolatey
 $ChocoIns = 'C:\Foo\Install-Chocolatey.ps1'
$DI = New-Object System.Net.WebClient
$DI.DownloadString('https://community.chocolatey.org/install.ps1') |
 Out-File -FilePath $ChocoIns

 	Viewing the installation help file
 C:\Foo\Install-Chocolatey.ps1 -?

 	Installing Chocolatey
 C:\Foo\Install-Chocolatey.ps1

 	Configuring Chocolatey
 choco feature enable -n allowGlobalConfirmation

 	Finding PowerShell (PWSH) on Chocolatey
 choco find pwsh

 	Installing PowerShell 7 using choco.exe
 choco install powershell-core –force

 How it works...

 In step 1, you download the Chocolatey installation script. You need this script to install Chocolatey. This step produces no output.

 In step 2, you use Get-Help to view the help information for the Chocolatey install script, with output like this:

 [image:]
 Figure 1.7: Viewing the Chocolatey installation script help details

 In step 3, you use the installation script to download and install Chocolatey on SRV1. The output looks like this:

 [image:]
 Figure 1.8: Installing Chocolatey

 In step 4, you use choco.exe to set certain feature options with the following output:

 [image:]
 Figure 1.9: Setting Chocolatey global options

 In step 5, you use choco.exe to find PowerShell packages that you can install using Chocolatey.

 The output looks like this:

 [image:]
 Figure 1.10: Finding PowerShell on Chocolatey

 In step 6, you install PowerShell 7 using Chocolatey. There is a lot of output, which looks like this:

 [image:]
 Figure 1.11: Installing PowerShell 7

 There’s more...

 In step 1, you open a new Windows PowerShell 7 console. Make sure you run the console as the local administrator.

 In step 6, you install PowerShell 7 (7.2.2, as you can see in the output). The result shows the successful installation of PowerShell.

 If you do not uninstall PowerShell 7, then when you run this step, you will see different output, indicating that you have already installed the product, and thus, the installation fails gracefully.

 Using the PowerShell 7 Console

 Once you have installed PowerShell 7, you can explore the PowerShell 7 console irrespective of your installation method. In the main, the PowerShell 7 console is similar to the Windows PowerShell console, but you should notice a few differences.

 Getting ready

 You run this recipe on SRV1 after you have installed PowerShell 7. You can install PowerShell 7 using the installation script (as in the Installing PowerShell 7 recipe), Chocolatey (as in the Installing PowerShell 7 using Chocolatey recipe), or any other mechanism. You run this recipe in the PowerShell 7 console – pwsh.exe.

 How to do it...

 	Viewing the PowerShell version
 $PSVersionTable

 	Viewing the $Host variable
 $Host

 	Looking at the PowerShell process (PWSH)
 Get-Process -Id $PID |
 Format-Custom -Property MainModule -Depth 1

 	Looking at resource usage statistics
 Get-Process -Id $PID |
 Format-List CPU,*Memory*

 	Updating the PowerShell 7 help files
 $Before = Get-Help -Name about_*
Update-Help -Force | Out-Null
$After = Get-Help -Name about_*
$Delta = $After.Count - $Before.Count
"{0} Conceptual Help Files Added" -f $Delta

 	Determining available commands
 Get-Command |
 Group-Object -Property CommandType

 	Examining the Path Variable
 $env:path.split(';')

 How it works...

 In step 1, you view the PowerShell version information contained in $PSVersionTable, which produces output like this:

 [image:]
 Figure 1.12: Viewing the $PSVersionTable variable

 In step 2, you view the contents of the $Host variable, which contains details of the PowerShell host (i.e., the PowerShell 7 console), which looks like this:

 [image:]
 Figure 1.13: Viewing $Host

 In step 3, you view the details of the PowerShell process (pwsh.exe) with output like this:

 [image:]
 Figure 1.14: Viewing the pwsh process

 In step 4, you can observe the resources used by this process by using Get-Process and viewing the resource-related properties, with output like this:

 [image:]
 Figure 1.15: Viewing the pwsh resource usage

 It is always useful to get the most up-to-date help files, which you can do using Update-Help. In step 5, you update the PowerShell 7 help files and count the number of conceptual help files resulting from updating help. The output of this step looks like this:

 [image:]
 Figure 1.16: Updating the PowerShell 7 help files

 In step 6, you use Get-Command to determine the number of commands available to a newly installed version of PowerShell 7.2.2 (in this case!) on a freshly installed version of Windows Server 2022. The output looks like this:

 [image:]
 Figure 1.17: Updating the PowerShell 7 help files

 In the final step, step 7, you review the contents of the path environment variable, with output like this:

 [image:]
 Figure 1.18: Viewing the available commands in PowerShell 7

 There’s more...

 In step 1, you examine the $PSVersion built-in variable. At the time of writing, the latest released version of PowerShell 7 is 7.2.2, as you can see in the output. However, when you run this step, you may discover you have installed a later version.

 You run pwsh.exe to start PowerShell 7 via the console. PowerShell has a built-in variable, $PID, which holds the Windows process ID for the current PowerShell console. This variable can be useful if you have multiple consoles open at one time. You can use Get-Process, as shown in step 2, specifying the process ID, to get details of this PowerShell process.

 Building PowerShell 7 Profile Files

 Profile files are PowerShell scripts that PowerShell runs at startup. They are easy to create and support a range of deployment scenarios. They enable you to customize your PowerShell environment. See this article on Microsoft’s PowerShell Community blog for more details on PowerShell profile files: https://devblogs.microsoft.com/powershell-community/how-to-make-use-of-powershell-profile-files/.

 In this recipe, you examine profile files, download a sample PowerShell profile file, and install it on SRV1. This profile is just for the console. In a later recipe, you install VS Code and create a VS Code-specific profile.

 Getting ready

 You run this recipe on SRV1 after you have installed PowerShell 7. You should begin this recipe by opening up a PowerShell 7 console.

 How to do it...

 	Discovering the profile filenames
 $ProfileFiles = $PROFILE | Get-Member -MemberType NoteProperty
$ProfileFiles | Format-Table -Property Name, Definition

 	Checking for the existence of each PowerShell profile file
 Foreach ($ProfileFile in $ProfileFiles){
 "Testing $($ProfileFile.Name)"
 $ProfilePath = $ProfileFile.Definition.split('=')[1]
 If (Test-Path -Path $ProfilePath){
 "$($ProfileFile.Name) DOES EXIST"
 "At $ProfilePath"
 }
 Else {
 "$($ProfileFile.Name) DOES NOT EXIST"
 }
 ""
}

 	Discovering a Current User/Current Host profile
 $CUCHProfile = $PROFILE.CurrentUserCurrentHost
"Current User/Current Host profile path: [$CUCHPROFILE]"

 	Creating a Current User/Current Host profile for the PowerShell 7 console
 $URI = 'https://raw.githubusercontent.com/doctordns/PacktPS72/master/' +
 'scripts/goodies/Microsoft.PowerShell_Profile.ps1'
New-Item $CUCHProfile -Force -WarningAction SilentlyContinue |
 Out-Null
(Invoke-WebRequest -Uri $URI).Content |
 Out-File -FilePath $CUCHProfile

 	Exiting from the PowerShell 7 console
 Exit

 	Restarting the PowerShell 7 console and viewing the profile output at startup
 Get-ChildItem -Path $PROFILE

 How it works...

 In step 1, you use the $Profile built-in variable to obtain the filenames of the four profile files in PowerShell, with output like this:

 [image:]
 Figure 1.19: Obtaining the PowerShell profile filenames

 In step 2, you check to see which, if any, of the four profiles exist, with output like this:

 [image:]
 Figure 1.20: Checking for the existence of the profile files

 The profile file most IT pros use is the Current User/Current Host profile (aka $Profile). In step 3, you discover the filename for this profile file, with the following output:

 [image:]
 Figure 1.21: Viewing the name of the Current User/Current Host profile file

 In step 4, you download a sample PowerShell console profile file from GitHub. This step creates no output. After making a new profile file, in step 5, you exit PowerShell 7. After restarting the console, in step 6, you view the details of this profile file. The output from this step looks like this:

 [image:]
 Figure 1.22: Viewing the name of the Current User/Current Host profile file

 There’s more...

 In step 1, you view the built-in profile filenames. As you can see, PowerShell has four profile files you can use. These files enable you to configure a given PowerShell host or all hosts for one or all users. As you can see in step 2, none of the four profile files exist by default.

 In step 4, you create the Current User/Current Host profile file based on a code sample you download from GitHub. This profile file is a starting point and demonstrates many things you can do in a profile file.

 In step 6, you view the profile file you created earlier. Also, notice that the prompt has changed – the current working directory when you start PowerShell is now C:\Foo.

 Exploring Installation Artifacts

 Installing PowerShell 7 creates some artifacts that may be useful to better understand how PowerShell 7 and Windows PowerShell differ. The installation folder for PowerShell, as well as the folders holding PowerShell modules, are different from Windows PowerShell.

 Getting ready

 You run this recipe on SRV1 after you have installed PowerShell 7 and have added a profile file.

 How to do it...

 	Checking the version table for the PowerShell 7 console
 $PSVersionTable

 	Examining the PowerShell 7 installation folder
 Get-ChildItem -Path $env:ProgramFiles\PowerShell\7 -Recurse |
 Measure-Object -Property Length -Sum

 	Viewing the PowerShell 7 configuration JSON file
 Get-ChildItem -Path $env:ProgramFiles\PowerShell\7\powershell*.json |
 Get-Content

 	Checking the initial Execution Policy for PowerShell 7
 Get-ExecutionPolicy

 	Viewing module folders
 $I = 0
$ModPath = $env:PSModulePath -split ';'
$ModPath |
 Foreach-Object {
 "[{0:N0}] {1}" -f $I++, $_
 }

 	Checking the modules
 $TotalCommands = 0
Foreach ($Path in $ModPath){
 Try {
 $Modules = Get-ChildItem -Path $Path -Directory -ErrorAction Stop
 "Checking Module Path: [$Path]"
 }
 catch [System.Management.Automation.ItemNotFoundException] {
 "Module path [$path] DOES NOT EXIST ON $(hostname)"
 }
 $TotalCommands = 0
 foreach ($Module in $Modules) {
 $Cmds = Get-Command -Module ($Module.name)
 $TotalCommands += $Cmds.Count
 }
}

 	Viewing the totals of the commands and modules
 $Mods = (Get-Module * -ListAvailable | Measure-Object).count
"{0} modules providing {1} commands" -f $Mods,$TotalCommands

 How it works...

 In step 1, you start the PowerShell 7 console on SRV1. The console should look like this:

 [image:]
 Figure 1.23: Checking PowerShell Version information

 In step 2, you use Measure-Object to determine how many files exist in the PowerShell installation folder and how much space those files occupy on the disk. The output of this step looks like this:

 [image:]
 Figure 1.24: Examining the PowerShell 7 installation folder

 PowerShell 7 uses the PWSH.JSON file (in the installation folder) to hold certain key settings. In step 3, you examine this file for PowerShell 7.2.2, with output like this:

 [image:]
 Figure 1.25: Viewing the PWSH.JSON configuration file

 In step 4, you check the current execution policy for PowerShell 7, with output as follows:

 [image:]
 Figure 1.26: Checking the PowerShell 7 execution policy

 PowerShell 7, by default, loads modules from a series of folders as described in the PowerShell variable $PSModulepath variable. In step 5, you display the default module folders for PowerShell 7, with output like this:

 [image:]
 Figure 1.27: Viewing the module folders for PowerShell 7

 In step 6, you look at the modules in each module path and determine the total number of commands available via these modules. The output from this step looks like this:

 [image:]
 Figure 1.28: Counting the commands available

 In the final step in this recipe, step 7, you view the number of modules and commands provided in those modules, with output like this:

 [image:]
 Figure 1.29: Counting the commands available

 There’s more...

 In step 1, you open a new Windows PowerShell console and view the PowerShell version details. In this case, this is version 7.2.2, although, by the time you read this, the PowerShell team may have created newer versions.

 As you can see in step 2, the PowerShell pwsh.json file contains both the execution policy and a list of modules that PowerShell 7 should never attempt to load (as these three modules are known to not work with PowerShell 7, even using the Windows PowerShell compatibility mechanism). For reasons best known to themselves, the owners of these modules have declined the opportunity to port them over to work with PowerShell 7, although that may change.

 In step 4, you view the current PowerShell 7 execution policy. Note that this policy is independent of the Windows PowerShell execution policy.

 In step 5, you view the current module folders. This step uses .NET composite formatting and the PowerShell -f operator. PowerShell provides you with numerous ways to output this information that you may use, including simple variable expansion. Using the method shown in this step can give you more control over the formatting. You can see another example of this type of formatting in step 7.

 Installing VS Code

 The Windows PowerShell ISE was a great tool that Microsoft first introduced with Windows PowerShell v2 (and vastly improved with v3). This tool has reached feature completeness, and Microsoft has no plans for further development.

 However, in its place is Visual Studio Code or VS Code. This open-source tool provides an extensive range of features for IT pros and others. For IT professionals, this should be your editor of choice. VS Code is highly customizable, as the range of extensions demonstrates. While there is a learning curve (as for any new product), VS Code contains all the features you found in the ISE and a lot more.

 VS Code, and the available extensions, are works in progress and are constantly evolving and improving. Each new release brings additional features. A recent addition from Draw.IO, for example, is the ability to create diagrams directly in VS Code. Take a look at this post for more details on this diagram tool: https://tfl09.blogspot.com/2020/05/over-weekend-i-saw-tweet-announcing-new.html.

 There is a wealth of extensions you might be able to use, depending on your workload. For more details on VS Code, see https://code.visualstudio.com/. And for more information on the many VS Code extensions, you might be able to use https://code.visualstudio.com/docs/editor/extension-gallery#:~:text=You%20can%20browse%20and%20install,on%20the%20VS%20Code%20Marketplace.

 For many IT pros using PowerShell 7, an important extension is the PowerShell Integrated Console. This extension implements a separate PowerShell host, the Visual Studio Code Host. This extension implements the same four profile file files, which you can view. However, the AllUsers/This host and Current User/This Host profile files have the name Microsoft.VSCode_profile.ps1. These profile files mean you can use the PowerShell Console host (and its associated profile files) by default but use the VS Code Host when you edit PowerShell files. It is easy to get confused at first. Remember that you only see the VS Code host by default when you open a PowerShell file.

 Getting ready

 You run this recipe on SRV1 after you have installed PowerShell 7. You run the first part of this recipe in the PowerShell 7 console. Once you have completed installing VS Code, you do the remainder of this recipe using VS Code.

 How to do it...

 	Downloading the VS Code installation script from the PS Gallery
 $VscPath = 'C:\Foo'
$RV = "2.8.5.208"
Install-PackageProvider -Name 'nuget' -RequiredVersion $RV -Force|
 Out-Null
Save-Script -Name Install-VSCode -Path $ VscPath
Set-Location -Path $ VscPath

 	Reviewing the installation help details
 Get-Help -Name C:\Foo\Install-VSCode.ps1

 	Running the installation script and adding in some popular extensions
 $Extensions = 'Streetsidesoftware.code-spell-checker',
 'yzhang.markdown-all-in-one',
 'hediet.vscode-drawio'
$InstallHT = @{
 BuildEdition = 'Stable-System'
 AdditionalExtensions = $Extensions
 LaunchWhenDone = $true
}
.\Install-VSCode.ps1 @InstallHT | Out-Null

 	Exiting from VS Code by clicking on File/Exit.

 	Restarting VS Code as an administrator.

 	Click on Start, type code, and hit return.

 	Opening a VS Code Terminal and running PowerShell 7 as administrator.

 	Use the Terminal menu to open a new terminal.

 	Creating a profile file for VS Code
 $SAMPLE =
 'https://raw.githubusercontent.com/doctordns/PACKT-PS7/master/' +
 'scripts/goodies/Microsoft.VSCode_profile.ps1'
(Invoke-WebRequest -Uri $Sample).Content |
 Out-File $Profile

 	Updating local user settings for VS Code
 # 8. Updating local user settings for VS Code
$JSON = @'
{
 "workbench.colorTheme": "Visual Studio Light",
 "powershell.codeFormatting.useCorrectCasing": true,
 "files.autoSave": "onWindowChange",
 "files.defaultLanguage": "powershell",
 "editor.fontFamily": "'Cascadia Code',Consolas,'Courier New'",
 "workbench.editor.highlightModifiedTabs": true,
 "window.zoomLevel": 1
}
'@
$Path = $Env:APPDATA
$CP = '\Code\User\Settings.json'
$Settings = Join-Path $Path -ChildPath $CP
$JSON |
 Out-File -FilePath $Settings

 	Creating a shortcut to VS Code
 $SourceFileLocation = "$env:ProgramFiles\Microsoft VS Code\Code.exe"
$ShortcutLocation = "C:\foo\vscode.lnk"
Create a new wscript.shell object
$WScriptShell = New-Object -ComObject WScript.Shell
$Shortcut = $WScriptShell.CreateShortcut($ShortcutLocation)
$Shortcut.TargetPath = $SourceFileLocation
Save the Shortcut to the TargetPath
$Shortcut.Save()

 	Creating a shortcut to PowerShell 7
 $SourceFileLocation = "$env:ProgramFiles\PowerShell\7\pwsh.exe"
$ShortcutLocation = 'C:\Foo\pwsh.lnk'
Create a new wscript.shell object
$WScriptShell = New-Object -ComObject WScript.Shell
$Shortcut = $WScriptShell.CreateShortcut($ShortcutLocation)
$Shortcut.TargetPath = $SourceFileLocation
#Save the Shortcut to the TargetPath
$Shortcut.Save()

 	Building an updated Layout XML file
 $XML = @'
<?xml version="1.0" encoding="utf-8"?>
<LayoutModificationTemplate
 xmlns="http://schemas.microsoft.com/Start/2014/LayoutModification"
 xmlns:defaultlayout=
 "http://schemas.microsoft.com/Start/2014/FullDefaultLayout"
 xmlns:start="http://schemas.microsoft.com/Start/2014/StartLayout"
 xmlns:taskbar="http://schemas.microsoft.com/Start/2014/TaskbarLayout"
 Version="1">
<CustomTaskbarLayoutCollection>
<defaultlayout:TaskbarLayout>
<taskbar:TaskbarPinList>
 <taskbar:DesktopApp DesktopApplicationLinkPath="C:\Foo\vscode.lnk" />
 <taskbar:DesktopApp DesktopApplicationLinkPath="C:\Foo\pwsh.lnk" />
</taskbar:TaskbarPinList>
</defaultlayout:TaskbarLayout>
</CustomTaskbarLayoutCollection>
</LayoutModificationTemplate>
'@
$XML | Out-File -FilePath C:\Foo\Layout.Xml

 	Importing the start layout XML file. Note: You get an error if this is not run in an elevated session
 Import-StartLayout -LayoutPath C:\Foo\Layout.Xml -MountPath C:\

 	Creating a profile file for the PWSH 7 consoles
 $ProfileFolder = Join-Path ($Env:homeDrive+ $env:HOMEPATH) 'Documents\PowerShell'
$ProfileFile2 = 'Microsoft.PowerShell_Profile.ps1'
$ConsoleProfile = Join-Path -Path $ProfileFolder -ChildPath $ProfileFile2
New-Item $ConsoleProfile -Force -WarningAction SilentlyContinue |
 Out-Null
$URI2 = 'https://raw.githubusercontent.com/doctordns/PACKT-PS7/master/' +
 "scripts/goodies/$ProfileFile2"
(Invoke-WebRequest -Uri $URI2).Content |
 Out-File -FilePath $ConsoleProfile

 	Logging off
 logoff.exe

 	Logging into Windows to observe the updated taskbar

 How it works...

 In step 1, you get the VS Code installation script from the PS Gallery, which produces no output. In step 2, you view the help information from the Install-VSCode.ps1 script file, with output like this:

 [image:]
 Figure 1.30: Viewing the Install-VSCode.ps1 help information

 In step 3, you install VS Code, with output that looks like this:

 [image:]
 Figure 1.31: The PowerShell 7 console

 After installing VS Code, the installation script starts VS Code (as an ordinary user) with output that looks like this:

 [image:]
 Figure 1.32: The initial VS Code window

 In step 4, you exit out of this VS Code instance, and in step 5, you restart VS Code but run it as an administrator. With these two steps, you open VS Code as an administrator.

 In step 6, you use the VS Code GUI to create a new terminal, with output like this:

 [image:]
 Figure 1.33: Running a new terminal

 In the next steps, which generate no console output, you configure VS Code for your environment. In step 7, you create a new profile file specifically for the VS Code PowerShell extension. In step 8, you update the VS Code local user settings. In step 9, you create a shortcut to the VS Code executable (code.exe) and save it in C:\Foo. In step 10, you create a new shortcut for the PowerShell 7 console, which you also store in C:\Foo. In step 11, you build an XML file describing the Windows toolbar. In step 12, you import the new start bar layout (but note it does not take effect until you log in again). Then in step 13, you create profiles for the new PowerShell 7 console, also based on the downloaded profile file. Finally, in step 14, you log off SRV1.

 In step 15, you log in again to Windows as the local administrator. When you log in, you can see the new Windows toolbar, with shortcuts for the PowerShell 7 console and VS Code, like this:

 [image:]
 Figure 1.34: Viewing the updated Windows toolbar

 There’s more...

 In step 1, you open a new Windows PowerShell 7 console. Make sure you run the console as the local administrator.

 In step 15, you can see the updated Window toolbar with shortcuts to the Windows PowerShell console, VS Code, and the PowerShell 7 console.

 Installing the Cascadia Code Font

 Fonts, like color schemes in general, are a very personal thing. Some people love the comic sans font, for example, while others loathe it. Some love dark themes, and others don’t. For programming, including PowerShell (with the console, VS Code, and possibly even Notepad), fixed-width fonts are easier to use. But the choice of which font is always a personal preference.

 As part of the Visual Studio Code launch, Microsoft also created a new and free font that you can download and use at the PowerShell 7 console and inside VS Code. This recipe shows how you can download the font, install it, and set this font to be the default in VS Code.

 This recipe shows how to install the Cascadia Code font, but you can choose many great fonts. See this article on (arguably!) the ten best fonts for use with VS Code: https://toastofcode.com/best-fonts-for-programming-with-vscode/.

 And should you want to use a different font for VS Code, you can adapt this recipe to make use of whatever font you wish. Or use the VS Code settings menus to change the font as you may want.

 How to do it...

 	Getting download locations
 $CascadiaRelURL =
 'https://github.com/microsoft/cascadia-code/releases'
$CascadiaRelease = Invoke-WebRequest -Uri $CascadiaRelURL
$Fileleaf = ($CascadiaRelease.Links.href |
 Where-Object { $_ -match $CascadiaFont } |
 Select-Object -First 1)
$CascadiaPath = 'https://github.com' + $FileLeaf
$CascadiaFile = 'C:\Foo\CascadiaFontDL.zip'

 	Downloading the Cascadia Code font file archive
 Invoke-WebRequest -Uri $CascadiaPath -OutFile $CascadiaFile

 	Expanding the font archive file
 $FontFolder = 'C:\Foo\CascadiaCode'
Expand-Archive -Path $CascadiaFile -DestinationPath $FontFolder

 	Installing the Cascadia Code font
 $FontFile = 'c:\Foo\CascadiaCode\ttf\CascadiaCode.ttf'
$FontShellApp = New-Object -Com Shell.Application
$FontShellNamespace = $FontShellApp.Namespace(0x14)
$FontShellNamespace.CopyHere($FontFile, 0x10)

 How it works...

 In step 1, you determine the location of the latest release of the font and set a variable to the location to download the font.

 In step 2, you use Invoke-WebRequest to download the font archive. Then in step 3, you use Expand-Archive to expand the archive. Finally, in step 4, you install the Cascadia font.

 The steps in this recipe produce no console output – but you can see the change in VS Code after you run these steps.

 There’s more...

 In step 1, you determine the location of the latest release of the Cascadia Code font on GitHub. The font is heavily used and has been subject to minor updates and improvements over time. This step ensures you get the latest version. The remaining steps expand the downloaded archive and then install the font. Once you complete this recipe, you should observe the font inside VS Code.

 In step 2, you download the latest version of the font – but as a ZIP archive, which, in step 3, you expand and then install (in step 4).

 Exploring PSReadLine

 Early versions of PowerShell were monochrome, although the terminal (conhost.exe) did provide some limited coloring. These versions of Windows PowerShell also lacked some of the cool features found in Linux shells.

 With PowerShell 4, PowerShell included a new module, PSReadLine. The module provides a command-line editing experience that is on a par with the best of the Linux command shells (e.g., BASH). The PSReadLine module provides additional console editing features within both PowerShell 7 and Windows PowerShell.

 When you type into a PowerShell console, PSReadLine intercepts your keystrokes to provide syntax coloring, simple syntax error notification, etc. PSReadLine enables you to customize your environment to suit your personal preferences. Some key features of the module include:

 	Syntax coloring of the command-line entries

 	Multiline editing

 	History management

 	Customizable key bindings

 	Highly customizable

 For an overview of PSReadLine, see https://learn.microsoft.com/powershell/module/psreadline/about/about_psreadline. And for more details, you can view the PSReadLine’s GitHub README file: https://github.com/PowerShell/PSReadLine/blob/master/README.md.

 There are several minor issues you may need to understand. One issue is the naming of this module. The original name of the module was PSReadline. At some point, the module’s developers changed the module’s name to PSReadLine (capitalizing the L character in the module name). Unfortunately, that change caused Update-Help to fail since there is case sensitivity in module names). You can fix this by manually updating the module’s folder name from PSReadline to PSReadLine.

 Another issue arises if you use VS Code. The PSReadLine module ships natively with PowerShell 7. If you use VS Code’s PowerShell Integrated Terminal, you cannot load any newer version of PSReadline. At least until the development team updates the PowerShell extension to utilize the updated version of PSReadLine. This is by design. For most IT pros, this probably does not matter much. But you may find later versions of PSReadLine contains features you want – if so, you should be able to use the Preview (i.e., beta!) version of the PowerShell extension, which supports the latest version of PSReadLine.

 A final issue relates to changes made at V2. With the module’s V2 release, the dev team made some changes that were not backward compatible. But be aware that some older scripts may need adjusting. Many blog articles, for example, use the older V1 syntax for Set-PSReadLineOption, which fails with later versions of the module. You may still see the old syntax if you use your search engine to discover examples. Likewise, some of the examples in this recipe fail should you run them utilizing PSReadline V1. Over time, though, the documentation and blog posts should catch up.

 You run this recipe on SRV1 after you have installed PowerShell 7. Run this recipe in VS Code after configuring VS Code and loading the Cascadia Code font.

 How to do it...

 	Getting commands in the PSReadline module
 Get-Command -Module PSReadLine

 	Getting the first 10 PSReadLine key handlers
 Get-PSReadLineKeyHandler |
 Select-Object -First 10
 Sort-Object -Property Key |
 Format-Table -Property Key, Function, Description

 	Discovering a count of unbound key handlers
 $Unbound = (Get-PSReadLineKeyHandler -Unbound).count
"$Unbound unbound key handlers"

 	Getting the PSReadline options
 Get-PSReadLineOption

 	Determining the VS Code theme name
 $Path = $Env:APPDATA
$CP = '\Code\User\Settings.json'
$JsonConfig = Join-Path $Path -ChildPath $CP
$ConfigJSON = Get-Content $JsonConfig
$Theme = $ConfigJson |
 ConvertFrom-Json |
 Select-Object -ExpandProperty 'workbench.colorTheme'

 	Changing the VS Code colors
 If ($Theme -eq 'Visual Studio Light') {
 Set-PSReadLineOption -Colors @{
 Member = "'e[33m"
 Number = "'e[34m"
 Parameter = "'e[35m"
 Command = "'e[34m"
 }
}

 How it works...

 In step 1, you use Get-Command to discover commands in the PSReadLine module, with

 [image:]
 Figure 1.35: Discovering commands in the PSReadLine module

 In step 2, you use Get-PSReadLineKeyHandler to discover some of the key handlers implemented by PSReadline, with output like this:

 [image:]
 Figure 1.36: Viewing ten PSReadLine key handlers

 In step 3, you calculate how many key handers are unbound and are available for you to use. The output from this step is:

 [image:]
 Figure 1.37: Counting unbound key handlers

 PSReadLine has many options you can set. In step 4, you use the Get-PSReadLineOption command to view the option settings, with output like this:

 [image:]
 Figure 1.38: Counting unbound key handlers

 In step 5, you determine the current VS Code theme, and in step 6, you change the PowerShell token colors, but only if the theme set is the Visual Studio Light theme. These two steps produce no console output.

 There’s more...

 In step 1, you open a new Windows PowerShell console. Make sure you run the console as the local administrator.

 In step 3, you view the first ten of the PSReadLine’s key handlers. Using PowerShell, PSReadLine captures specific keyboard sequences (e.g., Alt + L) and uses an assigned key handler to carry out some action. Typing Alt + L clears the terminal window (in VS Code and the PowerShell console). PSReadline implements a range of key handers with plenty of room for you to customize the editing experience and provide significant customization of the shell. As you can see in step 3, you can use over 100 key combinations to implement your own customizations.

 The screenshots throughout most of this book use this color theme. You could extend your profile files to update token colors each time you start a VS Code terminal.

 Join our community on Discord

 Join our community’s Discord space for discussions with the author and other readers:

 https://packt.link/SecNet

 [image:]

 2

 Managing PowerShell 7 in the Enterprise

 This chapter covers the following recipes:

 	Utilizing Windows PowerShell Compatibility

 	Installing RSAT

 	Exploring Package Management

 	Exploring PowerShellGet and the PS Gallery

 	Creating and Using a Local PowerShell Repository

 	Establishing a Script Signing Environment

 	Working With Shortcuts and the PSShortCut Module

 	Working With Archive Files

 	Searching for Files Using the Everything Search Tool

 Introduction

 For an IT professional in an enterprise environment (and even in smaller ones), PowerShell 7 provides a platform to manage your environment. Many of the commands you need to carry out typical operations come with PowerShell 7, augmented by the commands provided with Windows Server feature tools. In addition, you can obtain third-party modules to extend your capabilities.

 Automation, today, means using commands that come from many sources. Some are built-in, but there are gaps. Those gaps can be filled by modules you can obtain from the community and via the PowerShell Gallery. In many cases, you can make use of .NET and WMI classes.

 When all else fails, there is often a command-line tool.

 As you blend these tools into your workflow, you need to be aware of how a given set of commands work as well as the objects returned. You also need to deal with the mismatch. The Get-ADComputer command, for example, returns the name of the computer in AD in the Name property. Most commands that interact with a given computer use the parameter ComputerName.

 In building Windows Server 2022, Microsoft did not update most of the role/feature management tools to support PowerShell 7. These tools work natively in Windows PowerShell but many do not work directly in PowerShell 7. The reason for this is that Microsoft based Windows PowerShell on Microsoft’s .NET Framework, whereas PowerShell 7 is based on the open source .NET. The .NET team did not port all the APIs from the .NET Framework into .NET. Thus many of the role/feature commands that you can run in Windows PowerShell do not run natively since .NET did not implement a certain .NET Framework.

 To get around this, PowerShell 7 comes with a Windows PowerShell compatibility solution. When you attempt to use some of the older commands (i.e., those that live in the System32 Windows directory), PowerShell 7 creates a PowerShell remoting session on the current host based on a Windows PowerShell 5.1 endpoint. Then, using implicit remoting, PowerShell creates and imports a script module of proxy functions that invoke the underlying commands in the remoting session. This enables you to use commands, such as Add-WindowsFeature, more or less seamlessly. You will examine the Windows PowerShell compatibility feature in Utilizing Windows PowerShell Compatibility.

 Most of Windows Server 2022’s features and roles provide management tools you can use to manage the role or feature. You can also install and use these feature tools on any host allowing you to manage features across your network, as you can see in Installing RSAT.

 You can also find and utilize third-party modules that can improve your PowerShell experience. PowerShell implements a set of built-in package management commands, as you can see in Exploring Package Management.

 Some organizations create their own private package repositories. These enable their organizations to share corporate modules inside the corporate network. You will create a new package repository in the Creating and Using a Local PowerShell Repository recipe.

 PowerShell 7, like Windows PowerShell, supports the use of digitally signed scripts. You can configure PowerShell to run only properly signed scripts as a way of improving the organization’s security. It is straightforward to establish a code-signing environment, using self-signed certificates, as you investigate in the Establishing a code-signing environment recipe.

 To simplify the use of commands in an interactive environment, you may find it convenient to create shortcuts you can place on the desktop or in a folder of shortcuts. In Working With Shortcuts and the PSShortCut Module, you will manage shortcuts.

 A common problem you can face when automating your environment is the management of archive files. As you saw in Installing Cascadia Code font, you can often get components delivered as a ZIP file. In Working With Archive Files, you examine commands for managing these files.

 Windows, Windows Server, and Windows applications have grown significantly both in scope and the files that support them. Sometimes, finding key files you need can be challenging, especially on larger file servers.

 The system used in the chapter

 This chapter is all about using PowerShell 7 in an enterprise environment and configuring your environment to make the most out of PowerShell 7. In this chapter, you use a single host, SRV1, as follows:

 [image:]
 Figure 2.1: Host in use for this chapter

 In later chapters, you will use additional servers and will promote SRV1 to be a domain-based server rather than being in a workgroup.

 Utilizing Windows PowerShell Compatibility

 The PowerShell 7 Windows Compatibility solution allows you to use older Windows PowerShell commands whose developers have not (yet) ported the commands to work natively in PowerShell 7. PowerShell 7 creates a special remoting session into a Windows PowerShell 5.1 endpoint, loads the modules into the remote session, then uses implicit remoting to expose proxy functions inside the PowerShell 7 session. This remoting session has a unique session name, WinPSCompatSession. Should you use multiple Windows PowerShell modules, PowerShell 7 loads them all into a single remoting session. Also, this session uses the “process” transport mechanism versus Windows Remote Management (WinRM). WinRM is the core transport protocol used with PowerShell remoting. The process transport is the transport used to run background jobs; it has less overhead than using WinRM, so is more efficient.

 An example of the compatibility mechanism is using Get-WindowsFeature, a cmdlet inside the ServerManager module. You use the command to get details of features that are installed, or not, inside Windows Server. You use other commands in the ServerManager module to install and remove features. Unfortunately, the Windows Server team has not yet updated this module to work within PowerShell 7. Via the compatibility solution, the commands in the ServerManager module enable you to add, remove, and view features. The Windows PowerShell compatibility mechanism allows you to use existing Windows PowerShell scripts in PowerShell 7, although with some very minor caveats.

 When you invoke commands in PowerShell 7, PowerShell uses its command discovery mechanism to determine which module contains your desired command. In this case, that module is the ServerManager Windows PowerShell module. PowerShell 7 then creates the remoting session and, using implicit remoting, imports the commands in the module as proxy functions. You then invoke the proxy functions to accomplish your goal. For the most part, this is totally transparent. You use the module’s commands, and they return the object(s) you request. A minor caveat is that the compatibility mechanism does not import Format-XML for the Windows PowerShell module. The result is that the default output of some objects is not the same. There is a workaround for this, which is to manually install Format-XML.

 With implicit remoting, PowerShell creates a function inside a PowerShell 7 session with the same name and parameters as the actual command (in the remote session). Once you import the module into the compatibility session, you can view the function definition in the Function drive (Get-Item Function:Get-WindowsFeature | Format-List -Property *). The output shows the proxy function definition that PowerShell 7 creates when it imports the remote module.

 When you invoke the command by name, e.g., Get-WindowsFeature, PowerShell runs the function. The function then invokes the remote cmdlet using the steppable pipeline. Implicit remoting is a complex feature that is virtually transparent in operation. You can read more about implicit remoting at https://www.techtutsonline.com/implicit-remoting-windows-powershell/.

 And for more information on Windows PowerShell compatibility, see: https://learn.microsoft.com/powershell/module/microsoft.powershell.core/about/about_windows_powershell_compatibility.

 Getting ready

 You run this recipe on SRV1 after you have installed PowerShell 7.

 How to do it...

 	Importing the ServerManager module
 Import-Module -Name ServerManager

 	Viewing module details
 Get-Module -Name ServerManager |
 Format-List

 	Displaying a Windows feature
 Get-WindowsFeature -Name 'TFTP-Client'

 	Running the same command in a remoting session
 $Session = Get-PSSession -Name WinPSCompatSession
Invoke-Command -Session $Session -ScriptBlock {
 Get-WindowsFeature -Name 'TFTP-Client' |
 Format-Table
}

 	Getting the path to Windows PowerShell modules
 $Paths = $env:PSModulePath -split ';'
$S32Path = $Paths |
 Where-Object {$_.ToString() -match 'system32'}
"System32 path: [$S32Path]"

OEBPS/Images/B18878_01_01.png
Windows Server 2022

Initial Reskit Workgroup

OEBPS/Images/B18878_02_01.png
I~

SRV1
Windows Server 2022

Initial Reskit Workgroup

OEBPS/Images/B18878_01_19.png
PS C:\Users\Adninistrator> # 1. Discovering the profile file names
PS C:\Users\Adninistrator> $ProfileFiles = $PROFILE | Get-Member -HemberType NoteProperty
PS C:\Users\Adninistrator> $ProfileFiles | Format-Table -Property Name, Definition

Nane Definition
AlLUsersAllHosts string AllusersALlHosts:
AllusersCurrentHost string AllUsersCurrentHost=C:\Progran Files\Powershell\7\Microsoft.Pomershell_profile.psl
CurrentUserAllHosts string CurrentuserAllHosts=C:\Users\Administrator\Docunents\Powershell\profile.psl

CurrentiserCurrentHost string CurrentiserCurrentHost=C:\Uisers\Adninistrator\Documents\Pomershell\Microsoft power

\Progran Files\Powershell\7\profile.ps1

OEBPS/Images/B18878_01_36.png
[# 2. Getting the first 10 PSReadLine key handlers

Ky |
Foreat-Table -broperty Key, Function, Description
Basic wiing functions

Shiftsenter the cursor to the next Line without atteapting to execute the input
haracter

oy Copy e Tine
catee CopyOrCancelline Either copy selected text to the clipboard, or 1f 1o text is selected, cancel editing the Line with Cancelline.
Catex Cut Doleto setacted region pLacing doteted text in the systen Slipbonrd

OEBPS/Images/B18878_01_27.png
PS C:\Foo> # 5. Viewing module folders
PS C:\Foo> $1 = @
SModPath = $env:PsModulePath -split ';'
$ModPath |
Foreach-Object {
[{o:Ne}] {1} -f $T++, $_

[8] C:\Users\Administrator\Documents\PowerShell\Modules:
[1] C:\Program Files\Powershell\Modules

[2] c:\program files\powershe11\7\Modules

[3] C:\Program Files\WindowsPowershell\Modules

[4] C:\WINDOWS\system32\WindowsPowerShell\v1.8\Modules

OEBPS/Images/B18878_01_28.png
PS C:\Foo>|# 6. Checking the modules

PS C:\Foo> $TotalConnands = 6

PS C:\Foo> Foreach ($Path in $HodPath){

Try { $Modules = Get-ChildIten -Path $Path -Directory -Errorction Stop
"Checking Hodule Path: [$Path]”

3

Catch [System. Hanagement . Automation. ItemNotFoundException] {
"Module path [$path] DOES NOT EXIST ON $(hostname)”

3

$TotalConnands = 6

Foreach ($Module in $Modules) {
$Cnds = Get-Command -Module ($Hodule.nane)
$TotalConmands += $Cnds.Count

i

I

Module path [C:\Users\Administrator\Docunents\Powershell\Hodules] DOES NOT EXIST ON SRV1
Module path [C:\Program Files\Powershell\Hodules] DOES NOT EXIST ON SRV1

Checking Module Path: [c:\program files\powershell\7\Hodules]

Checking Module Path: [C:\Program Files\WindowsPowershell\Modules]

Checking Module Path: [C:\WINDOWS\system32\WindowsPowerShell\v1.8\Modules]

OEBPS/Images/blockquote-top.png

OEBPS/Images/B18878_01_35.png
PS C:\Foo>|# 1.Getting commands in the PSReadLine module
PS C:\Foo>|Get-Command -Module PSReadLine

CommandType Name Version Source

Function PsConsoleHostReadLine 2.1.0 PSReadLine
Cmdlet Get-PSReadLinekeyHandler 2.1.0 PSReadLine
Cmdlet Get-PSReadLineOption 2.1.0 PSReadLine
Cmdlet Remove-PSReadLinekeyHandler 2.1.8 PSReadLine
Cmdlet Set-PSReadLinekeyHandler 2.1.0 PSReadLine
Cmdlet Set-PSReadLineOption 2.1.0 PSReadLine

OEBPS/Images/B18878_QR_Free_PDF.png

OEBPS/Images/B18878_01_18.png
PS C:\WINDOWS\system32>
PS C:\WINDOWS\system32>
C:\WINDOWS\system32>

C: \WINDOWS

7. Examining the Path Variable
$env:path.split(';")

C: \WINDOWS\system32\Kbem
C: \WINDOWS\system32\WindowsPowershel1\v1.o

C: \WINDOWS\System32\OpenSSH\
C:\Programata\chocolatey\bin

C:\Program Files\PowerShell\7\
C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps

OEBPS/Images/B18878_01_37.png
PS C:\Foo>
PS C:\Foo>
PS C:\Foo>

3. Discovering a count of unbound key handlers
$Unbound = (Get-PSReadLinekeyHandler -Unbound).count
"$Unbound unbound key handlers”

116 unbound key handlers

OEBPS/Images/B18878_01_02.png
PS C:\WINDOWS\systen32> # 2. Update help text for Windows Pomershell
PS C:\WINDOWS \systen3z> Update-Help —Force |
out-null
Update-Help : Failed to update Help for the module(s) ‘Configefender, Configbefenderperfornance, Dism, Get-NetView,
Kds, Wicrosoft.ServerCore.sConfig, NetQos, Pcsvevice, PKI, PSReadline, RemoteDesktop, StorageBusCache,
VMbirectstorage, Whea, WindowsUpdate’ with UI culture(s) {en-Us} : Unable to retrieve the HelpInfo XML
File for UI culture en-us.
Make sure the HelpInfoUri property in the module manifest is valid or check your network connection
and then try the command again
At line:1 char:l
+ Update-Help —Force |
Pt ——
+ categoryInfo : Resourceunavailable: (:) [Update-Help], Exception
+ FullyQualifiedErrorTd : UnableToRetrieveHelpInfoXal,icrosoft.Powershell.Connands.UpdateHelpCommand

OEBPS/Images/B18878_01_11.png
PS C:\WINDOWS\systen32>[# 6. Installing Pomershell-7 using choco.exe
PS C:\WINDOWS\systen32> | choco install powershell-core

Chocolatey v1.1.0

Installing the following package:
powershell-core

By installing, you accept Licenses for the packages.

Progress: Downloading powershell-core 7.2.2... %
Progress: Downloading powershell-core 7.2.2... 166%

powershell-core v7.2.2 [Approved]
powershell-core package files install completed. Performing other installation steps.
7.2.2
WARNING: If you started this package under Powershell core, replacing an in-use version may be unpredictable, require mu
Ltiple attempts or produce errors.
Downloading powershell-core 64 bit
fron *https://github.con/Ponershell/Ponershell/releases/donnload/v7.2.2/Powershell-7.2. 2-win-xGu.msi"

Progress: % - Saving 13.39 KB of 101.8 HB
Progress: 106% - Completed download of C:\Users\Administrator\Appoata\Local\Tenp\2\chocolatey\ponershell-core\7.2.2\Pone
rShell-7.2.2-win-x6u.msi (101.8 HB).

Download of Pomershell-7.2.2-win-x6d.nsi (101.8 B) completed.

Hashes match.

Installing powershell-core. ..

powershell-core has been installed.

+ INSTRUCTIONS: Your syste default WINDOWS Powershell version has not been changed.

* Powershell CORE 7.2.2, was installed to: "C:\Program Files\PowerShell\7"

* To start Pomershell Core 7.2.2, at a prompt or the start menu execute:

. “push. exe”

Or start it fron the desiktop o start menu shortcut installed by this package.
This 45 your new default version of Pomershell CORE (push.exe).

As of OpenSSH ©.6.22.0 Universal Installer, a script is distributed that allows

setting the default shell for openssh. You' could call it with code Like this:

T+ (Test-path "C:\Progran Files\openssh-winGi\Set-SSHDefaultShell.ps1%) .

{8 "C:\Progran Files\openssh-winGu\Set-SSHDefaultshell.ps1® [PARMMETERS])

Learn more with this:
Get-Help "C:\Progran Files\openssh-win6u\Set-SsHpefaultshell.ps1®

or her
https: //github. con/Darminds/Chocopackages/blob/main/openssh/readae .nd -
powershell-core may be able to be automatically uninstalled.

Environment Vars (like PATH) have changed. Close/recpen your shell to

see the changes (or in pomershell/cnd.exe just type ‘refreshenv:).

The install of powershell-core was successful.

Software installed as 'msi’, install location is likely default.

Chocolatey installed 1/1 packages.
see the log for details (C:\Programpata\chocolatey\logs\ehocotatey.10g).

Enjoy using Chocolatey? Explore more amazing features to take your
experience to the next level at
https://chocolatey. org/compare

OEBPS/Images/tip.png

OEBPS/Images/B18878_01_10.png
PS C:\WINDOWS\system32> # 5. Finding PowerShell (PWSH) on Chocolatey
PS C:\WINDOWS\system32> choco find push

Chocolatey v1.1.0

pwsh 7.2.2 [Approved]

powershell.portable 7.1.3 [Approved] Downloads cached for licensed users
powershell-core 7.2.2 [Approved] Downloads cached for licensed users <
powershell-preview 7.2.4.20210411 [Approved] Downloads cached for licensed users
4 packages found.

OEBPS/Images/B18878_01_17.png
PS C:\Users\Administrator> # 6. Determining available commands
PS C:\Users\Administrator> Get-Command
Group-Object -Property CommandType

Group

58 Alias {Add-AppPackage, Add-AppPackagevolume, Add-AppProvisionedPackage, ...
1136 Function {A:, Add-BCDataCacheExtension, Add-DnsClientDohServerAddress.
587 Cmdlet {Add-AppxPackage, Add-AppxProvisionedPackage, Add-AppxVolume

OEBPS/Images/blockquote-bottom.png

OEBPS/Images/B18878_01_16.png
PS C:\Users\Administrator> # 5. Updating the Powershell 7 help files
PS C:\Users\Administrator> $Before = Get-Help -Name about_*
PS C:\Users\Administrator> Update-Help -Force | Out-Null
Update-Help: Failed to update Help for the module(s) 'ConfigDefenderPerformance, Dism, kds,
NetQos, Pcsvbevice, PRI, PSReadline, Whea, WindowsUpdate' with UT culture(s) {en-US} :
One or more errors occurred. (Response status code does not indicate success:
404 (The specified blob does not exist.).).
English-US help content is_available_and_can_be installed using: Update-Help -UICulture en-US.
PS C:\Users\Administrator>| $After = Get-Help -Name about_*
PS C:\Users\Administrator> $Delta = $After.Count - $Before.Count
PS C:\Users\Administrator> {6} Conceptual Help Files Added” -f $Delta
136 Conceptual Help Files Added <

OEBPS/Images/B18878_01_03.png
PS C:\WINDOWS\systen32>|# 5. Viewing Installation script Help

PS C:\WINDOWS\systen32> Get-Help -Name C:\Foo\Install-Pomershell.psi

Install-Powershell.psl [-Destination <string>] [-daily] [-DoNotOverwrite] [-AddToath] [-Preview] [<Commonarameters>]
Install-powershell.psl [-UseMsI] [-Quiet] [-AddExplorerContextMenu] [-EnablepsRemoting] [-Preview] [<CommonParameters>]

OEBPS/Images/B18878_01_20.png
PS C:\Users\Adninistrator> [2. Checking for the existence of each Powershell profile files
PS C:\Users\Adninistrator> Foreach ($Profilefile in $ProfileFiles){
“Testing $($ProfileFile.Name)"
$Profilepath = $ProfileFile.Definition.split(‘'=")[1]
I (Test-path $Profilepath){
“$($ProfileFile.Nane) DOES EXIST"
"At $Profilepath”
¥
Else {
"$($ProfileFile.Name) DOES NOT EXIST"

Testing AllusersallHosts
AllUsersAllHosts DOES NOT EXIST

Testing AllUsersCurrentHost
AllUsersCurrentHost DOES NOT EXIST

Testing CurrentUserAllHosts
CurrentUserAllHosts DOES NOT EXIST

CurrentUserCurrentHost DOES NOT EXIST

OEBPS/Images/B18878_01_33.png
) File Edit Selecon View Go Run - Get Started - PacktPS72 - Visual Studio Code (dmi. D G (0 08 — O X

X Getstarted x o -
start Walkthroughs
3 Newie
> P cetstarted with s code

D Openfie Discover the best customizations to make VS
B Opon Folder. Codeyour.

B Learn the Fundamentals

Jump ight nto VS Code and get an overview

Recent of the must-have features.

You have no recent folders, open a folder to start.

& Boost your Productivity

/| Show welcon

page on startup

PROBLEMS OUTPUT DEBUG

ONSOLE TERMINAL Bpwh +v 0 8 ~ x

Powershell 7.2.2
Copyright (c) Microsoft Corporation.

https://aka.ms/powershell
Type ‘help’ to get help.

In Customisations for [CONsoleHOSt] r—
on skt

Logged on as srvI\adninistrator

Setting hone o C:\Foo

Scredrk created for Reskit\Adninistrator

Conplated Custontsations to SVI

75 C:\Foo>

OEBPS/Images/Cover.png
EXPERT INSIGHT

Windows Server
Automation with

PowerShell
Cookbook

Powerful ways to aut and inistrate
Windows Server 2022 using PowerShell 7.2

Fifth Edition

Thomas Lee (quk'I')

OEBPS/Images/B18878_01_29.png
PS C:\Foo> # 7. Viewing totals of commands and modules
PS C:\Foo> $Mods = (Get-Module * -ListAvailable I Measure-Object).count
PS C:\Foo>|"{@} modules providing {1} commands" -f $Mods,$TotalCommands

69 modules providing 1562 commands <

OEBPS/Images/New_Packt_Logo.png
<PACKD

OEBPS/Images/B18878_01_34.png

OEBPS/Images/B18878_01_04.png
PS C:\WINDOWS\systen32> # 6. Installing Powershell 7.2
PS C:\MINDOWS\systens2> EXTHT = o

usenst strue
quiet strue
AddExpLorerContexthen = Strue
EnablepsRenoting Strue

1
PS C:\WINDOWS\systen32> C:\Foo\Install-Powershell.psl GEXTHT | Out-Null

VERBOSE: About to download package from 'https://github.com/PowerShell/PowerShell/releases/download/v7.2.2/Powershell-7.2.

e

OEBPS/Images/B18878_01_21.png
P C:\Users\Adninistrator> # 3. Discovering Current User/Current Host Profile
PS C:\Users\Administrator> SCUCHProfile = SPROFILE.CurrentUserCurrentHost

PS C:\Users\administrator» "Current User/Current Host profile path: [SCUCHPROFILE]®
Current User/Current Host profile path: [C:\Users\Adninistrater\Docunents\Ponershell\Nicrosoft.Powershell_profile.ps1] «—

OEBPS/Images/B18878_01_06.png
PS C:\Foo> # 9. Checking versions of Powershell 7 loaded
Get-ChildItem -Path C:\pwsh.exe -Recurse -ErrorAction SilentlyContinue

Directory: C:\Program Files\Powershell\7

Hode LasturiteTine Length Name

08/03/2022 23:21 287632 push.exe

Directory: C:\PSDailyBuild

Hode LastWriteTine Length Name

29/63/2022 18:24 286164 push.exe

Directory: C:\PSPreview

Hode LasturiteTine Length Name

18/63/2022 17:04 281512 push.exe

OEBPS/Images/B18878_01_31.png
PS C:\Foo>
PS C:\Foo>

PS C:\Foo>

PS C:\Foo>

Installing
Installing

3. Running the installation script and adding in some popular extensions
$Extensions = 'Streetsidesoftware.code-spell-checker',

*yzhang. markdown-all-in-one’ ,

'hediet.vscode-drawio’

$InstallHT = e{
Buildedition = 'Stable-Systenm'
AdditionalExtensions = $Extensions
LaunchwhenDone = $true

3
-\Install-vsCode.psl @InstallHT

extensions.
extension 'ms-vscode.powershell’.

Extension 'ms-vscode.powershell' v2621.12.0 was successfully installed.

Installing
Installing
Installing

extension Streetsidesoftware.code-spell-checker...
extensions...
extension 'streetsidesoftware.code-spell-checker'...

Extension 'streetsidesoftware.code-spell-checker' v2.1.11 was successfully installed.

Installing
Installing
Installing

extension yzhang.markdown-all-in-one. ..
extensions. ...
extension 'yzhang.markdown-all-in-one’...

Extension 'yzhang.markdown-all-in-one’ v3.4.6 was successfully installed.

Installing
Installing
Installing

extension hediet.vscode-drawio. ..
extensions. ..
extension 'hediet.vscode-drawio’...

Extension 'hediet.vscode-drawio' v1.6.4 was successfully installed.

Installation complete, starting Visual Studio Code (64-bit)...

OEBPS/Images/B18878_01_14.png
Ps C:\Users\Administrator> # 3. Looking at the Powershell process (PUSH)
PS C:\Users\Administrator> Get-Process -Id $PID |
Format-Custon -Property MainModule -Depth 1

class Process
1
MainModule =
class ProcessModule

HoduleNane = push.exe
FileName = C:\Program Files\Powershell\7\push.exe « —
BaseAddress = 149762355292168

ModuleNenorysize = 303104

EntryPointAddress = 140762355373392

FileversionInfo = File: C:\Program Files\Powershell\7\push.exe <«—
InternalName: push. dLL

originalFilename: push.dll

Fileversion: 7.2.2.568

Filebescription: push

Product: Powershell

Productversion: 7.2.2 SHA: 9027d1au33831dcabdBel68f65a893bec63boclb
Debug: False

patched: False

PreRelease: False

privatesuild False

Specialbuild: False

Languag Language Neutral

site =

Container =

Size = 296

Company = Microsoft Corporation

FileVersion = 7.2.2.500

ProductVersion = 7.2.2 SHA: 9827d1au33831dcabd8el08f652893bec63bocib
Description = push

Product = Powershell

OEBPS/Images/B18878_01_22.png
PS C:\Foo> # 6. Restarting the Powershell 7 console and viewing the profile output at startup
PS C:\Foo>| Get-ChildItem -Path $PROFILE

Directory:

:\Users\Administrator\Documents\PowerShell

LastiiriteTine Length Name

01/04/2022 12:01 1225 Microsoft.Povershell_profile.psi

OEBPS/Images/B18878_01_05.png
P5 C:\WINOOWS\systen32:
P C:\WIHoOWS\systens

Destination: c:\psprevis

Abaue <o domlond paciage from IhEcps://gi<hud. con/pomershell /ponershel/relesses/domnlond/ ..

Powershell has been inst
P C:\WTH0ONS\systen3z>

Destination: C:\pspaily

g
About to download package From *https://pscoretestdata.blob. core. windons.net/v1-
Pomershell has been installed at c:

7. Installing the preview and daily builds (for the adventurous)

€:\Foo\Instatl-Powershell.ps1 -previen -Destination C:\PSPreview |

outwal /

-previen. 3/Ponershell-7.3.6-provien.3-s

in-xeu. 21!

Ci\Foakinstatt-povershelL psi “oally ~pestination CA\Psoaltysalia | /
Out-ull

-6a11y26220520-1 /Pomershel1-7.3.6-4ai1y26220329. 1 win-x6d. 21p"

psoailysuild

OEBPS/Images/B18878_01_07.png
PS C:\WINDOWS\systen32> # 2. Viewing the installation help file
PS C:\WINDOWS\systen32> C:\Foo\Install-Chocolatey.psl -7

NAME
C:\Foo\Install-Chocolatey ps1

SYNOPSIS
Downloads and installs Chocolatey on the local machine.

SYNTAX
C:\Foo\Install-Chocolatey.psl [-ChocolateyDownloadurl <String>’
[-Chocolateyversion <string>]
[-UseNativeunzip]
[-IgnoreProxy]
[<ConmonParancters>]

c:\Foo\Install-Chocolatey.ps1 [-ChocolateyDounloadurl <string>’
[-ChocolateyVersion <string>]
[-UseNativeunzip]
[-IanoreProxy]
[-Proxyurl <string>]
[-ProxyCredential <PsCredential>]
[<CommonParameters>]

DESCRIPTION
Retrieves the Chocolatey nupkg for the latest or a specified version, and
downloads and installs the application to the local machine

RELATED LINKS
For organizational deployments of Chocolatey, please see
https://docs. chocolatey . org/en-us/guides/organizations/organizational-deploynent-guide

REMARKS
To see the examples, type: "get-help C:\Foo\Install-Chocolatey.psl -examples"
For more information, type: "get-help C:\Foo\Install-Chocolatey.psl -detailed:
For technical information, type: "get-help C:\Foo\Install-Chocolatey.psl —full"
For online help, type: "get-help C:\Foo\Install-Chocolatey.psl -online"

OEBPS/Images/B18878_01_24.png
PS C:Foo>| # 2. Examining the Powershell 7 installation folder
PS C:Foo>| Get-ChildItem -Path $env:ProgramFiles\Powershell\7 -Recurse |
Measure-Object -Property Length -Sum

Count 1013 ———
Average

Sun 267906359
Maxinum :

Mininum

Property : Length

OEBPS/Images/B18878_01_15.png
PS C:\Users\Administrator> # 4. Looking at resource usage statistics
PS C:\Users\Administrator> Get-Process -Id $PID |
Format-List CPU,*Memory*

cPu 2.71875
NonpagedSystenMemorySize6t : 66888

NonpagedSystenMenorysize 66888
PagedMemorysizest : 48328704
PagedMemorySize : 48328784
PagedSystenMemorySizesu : 428712
PagedsystenMenorysize : 428712
PeakPagedMenorySizesu : 49778688
PeakpagedMenorysize : 49778688
PeakvirtualMemorySizesd : 2204178198528
PeakvirtualMemorysize : 859975680
PrivateMenorysizest : 48328704
PrivateMenorysize : 48328764
VirtualMemorysizest : 2204171736944

VirtualMemorySize : 853508896

OEBPS/Images/B18878_01_23.png
Foo> # 1. Checking the version table for Powershell 7 console
PS C:\Foo> |$PSVersionTable

Name Value

Psversion e —
PSEdition core

GitCommitId 7R

o5, Microsoft Windows 10.0.20348

Platforn Win3aNT

PSConpatibleversions {1.0, 2.0, 3.0, 4.0, 5.0, 5.1.10032.0, 6.0.0, 6.1.0, 6.2.0, 7.0.0, 7.1.0, 7.2.2}
PSRenotingProtocolversion o

serializationversion 1.1.0.1

WsManstackVersion)

OEBPS/Images/B18878_01_32.png
) File i

Selection View Go Run Terminol Help ‘Get Started - Visual Studio Code [Administrator] oQoie - o

@ 9 cestored x

0
¥
~

< Getstarted

{3 Get tarted with VS Code

Discover the best customizations to make

VS Code yours . .
O Choose the look you want
The rght color palete helps you focus on s oark
your cods, s assy on your ayes, and s
simply more fun to use N
T U eybowd shortct (oK CuteT) .
ark High Contrast Uigh High Cont

Syncto and from other devices.
See More Themes.

) One shortcut to access everything

) Rich support for al your languages

O 0pan up your code

 MarkDone Nextsection =

Code collects usage data. Read our privacy statement and learn how to 0pt o

OEBPS/Images/info.png

OEBPS/Images/B18878_01_25.png
PS C:\Foo> # 3. Viewing Powershell 7 configuration JSON file
PS C:\Foo> Get—ChildTtem —Path Senv:ProgramFiles\PowerShell\7\powershell*.json |

Get—Content
{

Microsoft.Powershell:ExecutionPolicy”: "RemoteSigned",
“WindowsPowershellCompatibilityModuleDenyLis
"PSScheduledJob”,
"BestPractices”,
“UpdateServices”

]
}

OEBPS/Images/B18878_01_38.png
PS C:\Foo> | # 4. Getting the PSReadline option:
PS C:\Foo> Get-PSReadLinelption

Edithode + Windons.
AddTohistoryHandler : Systen.Func'2[Systen. String, Systen.Object]
HistorylioDuplicates : True

HistorySavePath \Users\Adainistrator\AppData\Roaning\Hicrosoft\Hindons\
BellStyle Audible

DingDuration 50

DingTone 1221

CommandsToValidateScriptBlockirguments : {For€ach-Object, %, Invoke-Conmand, ica, Heasure-Command, New-Hodule, nmo,
Register—EngineEvent Register-ObjectEvent, Repister-HHIEVent, Set-PShreaipo

s SEartton, Sajb, Prace-Comand, theh,Use-Transaction, ihere-0h3ect, 3, where}

ConnandValidationHandler
ConpletionQueryItens.
HaximusKil1RingCount
ShonToolTips
ViMlodeIndicator
WordDeliniters
AnsiEscapeTineout

Defaul tTokenColor

OperatorColor
ParaneterColor
InlinePredictionColor
SelectionColor
stringColor

TypeColor
VariableColor

OEBPS/Images/B18878_01_12.png
PS C:\Users\Adninistrator>
PS C:\Users\Adninistrator>

Name

psversion
psedition

GitComnitrd

os

Platforn
PsCompatibleversions
PsRemotingProtocolversion
serializationversion
WSManStackversion

1. Viewing the Powershell version
$PsversionTable

Value
7.2.2
Core.
7.2.2
Microsoft Wwindows 16.6.203u8
Win32NT

1.6, 2.0, 3.0, 4.80}

OEBPS/Images/B18878_01_09.png
PS C:\WINDOWS\system32> # 4.Configuring Chocolatey
PS C:\WINDOWS\system32>|choco feature enable -n allowGlobalConfirmation

Chocolatey v1.1.0
Enabled allowGlobalConfirmation

OEBPS/Images/B18878_01_26.png
PS C:\Foo> # 4. Checking initial Execution Policy for PowerShell 7
PS C:\Foo> |Get-ExecutionPolicy

Remotesigned «

OEBPS/Images/B18878_01_13.png
PS C:\Users\Administrator>[# 2. Viewing the $Host variable
PS C:\Users\Administrator> $Host

Name : ConsoleHost <
Version 722 ————

Instanceld €9582¢28~FC21-U6fa-8e93-Uc1738cIeed3

ur : System.Management .Automation.Internal.Host. InternalHostUserInterface
CurrentCulture : en-GB

CurrentUICulture : en-US

Privatepata Microsoft.Powershell.ConsoleHost+ConsoleColorProxy

Debuggerenabled : True

IsRunspacePushed : False
Runspace System.Management .Automation.Runspaces.LocalRunspace

OEBPS/Images/QR_Code10140329682765546.png

OEBPS/Images/B18878_01_30.png
PS C:\Foo># 2. Reviewing the installation help details
PS C:\Foo> Get-Help -Name C:\Foo\Install-VsCode.psl

NAME

:\Foo\Install-vscode.psi

SvHoPSTS
Installs Visual Studio Code, the Powershell extension, and optionally
a list of additional extensions.

SYNTAX
C:\Foo\Install-vscode.psl [[-Architecture] <string>] [[-BuildEdition] <String>] [[-AdditionalExtensions]
<string[]>] [-Launchwhendone] [-EnableContexthenus] [-WhatIf] [-Confirm] [<CommonParameters>]

DESCRIPTION
This script can be used to easily install Visual Studio Code and the
Powershell extension on your machine. You may also specify additional
extensions to be installed using the -AdditionalExtensions parameter.
The -LaunchWhenbone parameter will cause VS Code to be launched as
soon as dnstallation has completed

Please contribute improvements to this script on GitHub!

https://github.con/Powershell/vscode-powershell/blob/master/scripts/Install-VsCode . psl

RELATED LINKS

REMARKS
To see the examples, type: "Get-Help C:\Foo\Tnstall-USCode psi ~Fxamplest
For more information, type: "Get-Help C:\Foo\Install-VSCode.ps1 -Detailed"
For technical information, type: "Get-Help C:\Foo\Install-VsCode.psl —Full"

OEBPS/Images/B18878_01_08.png
PS C:\WINDOWS\system32> # 3. Installing Chocolatey
PS C:\WINDOWS\system32> C:\Foo\Install-Chocolatey.psl

Forcing web requests to allow TLS v1.2 (Required for requests to Chocolatey.org)
Gelling latest version of the Chocolatey package for download.
Not using proxy.
Getting Chocolatey from https://comnunity.chocolatey.org/api/v2/package/chocolatey/1.1.0.
Downloading https://comnunity.chocolatey.org/api/v2/package/chocolatey/1.1.0 to
C:\Users\ADHINI~1\AppData\Local\Temp\2\chocolatey\chocoInstall\chocolatey. zip
Not using proxy.
Extracting C:\Users\ADHINI~1\AppData\Local\Temp\2\chocolatey\chocoInstall\chocolatey.zip to
C:\Users\ADHINI~1\AppData\Local\Tenp\2\chocolatey\chocoInstall
Installing Chocolatey on the local machine
Creating ChocolateyInstall as an environment variable (targeting *Machine')
setting ChocolateyInstall to 'C:\ProgramData\chocolatey"
WARNING: It's very likely you will need to close and reopen your shell
before you can use choco.
Restricting write permissions to Adninistrators
We are setting up the Chocolatey package repository.
The packages themselves go to 'C:\Programbata\chocolatey\lib’
(i_e. C:\ProgramData\chocolatey\lib\yourPackageName)
A shim file for the command line goes to 'C:\Programbata\chocolatey\bin®
and points to an executable in 'C:\ProgramData\chocolatey\lib\yourPackageName' .

Creating Chocolatey folders if they do not already exist.

WARNING: You can safely ignore errors related to missing log files when
upgrading from a version of Chocolatey less than 6.9.9.
'Batch file could not be found' is also safe to ignore.
'The system cannot find the file specified’ - also safe.
chocolatey.nupkg file not installed in lib.
Attempting to locate it from bootstrapper.
PATH environment variable does not have C:\ProgramData\chocolatey\bin in it. Adding...
Adding Chocolatey to the profile. This will provide tab completion, refreshenv, etc.
WARNING: Chocolatey profile installed. Reload your profile - type . $profile
Chocolatey (choco.exe) is now ready.
You can call choco from anywhere, command line or powershell by typing choco.
Run choco /7 for a list of functions.
You may need to shut down and restart powershell and/or consoles
first prior to using choco.
Ensuring Chocolatey commands are on the path
Ensuring chocolatey.nupkg is in the lib folder

