

 [image: (missing alt)]

 Table of Contents

 Unity 5.x Cookbook

 Credits

 Foreword

 About the Authors

 About the Reviewers

 www.PacktPub.com

 Support files, eBooks, discount offers, and more

 Why subscribe?

 Free access for Packt account holders

 Preface

 What this book covers

 What you need for this book

 Who this book is for

 Sections

 Getting ready

 How to do it…

 How it works…

 There's more…

 See also

 Conventions

 Reader feedback

 Customer support

 Downloading the example codes and color images

 Errata

 Piracy

 Questions

 1. Core UI – Messages, Menus, Scores, and Timers

 Introduction

 The big picture

 Displaying a "Hello World" UI text message

 Getting ready

 How to do it...

 How it works...

 There's more...

 Styling substrings with Rich Text

 Displaying a digital clock

 Getting ready

 How to do it...

 How it works...

 There's more...

 The Unity tutorial for animating an analogue clock

 Displaying a digital countdown timer

 Getting ready

 How to do it...

 How it works...

 Creating a message that fades away

 Getting ready

 How to do it...

 How it works...

 Displaying a perspective 3D text message

 Getting ready

 How to do it...

 How it works...

 There's more...

 We have to make this text crawl like it does in the movie

 Where to learn more

 Displaying an image

 Getting ready

 How to do it...

 How it works...

 There's more...

 Working with Sprites and UI Image components

 See also

 Creating UI Buttons to move between scenes

 How to do it...

 How it works...

 There's more...

 Visual animation for the button mouse-over

 Animating button properties on mouse over

 Organizing images inside panels and changing panel depths via buttons

 Getting ready

 How to do it...

 How it works...

 There's more...

 Moving up or down by just one position, using scripted methods

 Displaying the value of an interactive UI Slider

 How to do it...

 How it works...

 Displaying a countdown timer graphically with a UI Slider

 Getting ready

 How to do it...

 How it works...

 Displaying a radar to indicate the relative locations of objects

 Getting ready

 How to do it...

 How it works...

 The Start() method

 The Update() method

 The FindAndDisplayBlipsForTag(…) method

 The NormalisedPosition(…) method

 The CalculateBlipPosition(…) method

 The DrawBlip() method

 Creating UIs with the Fungus open-source dialog system

 How to do it...

 How it works...

 Setting custom mouse cursor images

 Getting ready

 How to do it...

 How it works...

 There's more...

 Custom cursors for mouse over UI controls

 Input Fields component for text entry

 How to do it...

 How it works...

 There's more...

 Executing a C# method to respond each time the user changes the input text content

 Toggles and radio buttons via Toggle Groups

 Getting ready

 How to do it...

 How it works...

 There's more...

 Adding more Toggles and a Toggle Group to implement mutually-exclusive radio buttons

 Conclusion

 2. Inventory GUIs

 Introduction

 The big picture

 Creating a simple 2D mini-game – SpaceGirl

 Getting ready

 How to do it...

 How it works...

 Displaying single object pickups with carrying and not-carrying text

 Getting ready

 How to do it...

 How it works...

 There's more...

 The separation of view logic

 Displaying single object pickups with carrying and not-carrying icons

 Getting ready

 How to do it...

 How it works...

 Displaying multiple pickups of the same object with text totals

 Getting ready

 How to do it...

 How it works...

 Displaying multiple pickups of the same object with multiple status icons

 Getting ready

 How to do it...

 How it works...

 Revealing icons for multiple object pickups by changing the size of a tiled image

 Getting ready

 How to do it...

 How it works...

 Displaying multiple pickups of different objects as a list of text via a dynamic List<> of PickUp objects

 Getting ready

 How to do it...

 How it works...

 There's more...

 Order items in the inventory list alphabetically

 Displaying multiple pickups of different objects as text totals via a dynamic Dictionary<> of PickUp objects and "enum" pickup types

 Getting ready

 How to do it...

 How it works...

 Generalizing multiple icon displays using UI Grid Layout Groups (with scrollbars!)

 Getting ready

 How to do it...

 How it works...

 There's more...

 Add a horizontal scrollbar to the inventory slot display

 The automation of PlayerInventoryDisplay getting references to all the slots

 Automatically changing the grid cell size based on the number of slots in inventory

 Add some help methods to the Rect Transform script class

 Conclusion

 3. 2D Animation

 Introduction

 The big picture

 Flipping a sprite horizontally

 Getting ready

 How to do it...

 How it works...

 Animating body parts for character movement events

 Getting ready

 How to do it...

 How it works...

 Creating a 3-frame animation clip to make a platform continually animate

 Getting ready

 How to do it...

 How it works...

 Making a platform start falling once stepped-on using a Trigger to move animation from one state to another

 Getting ready

 How to do it...

 How it works...

 Creating animation clips from sprite sheet sequences

 Getting ready

 How to do it...

 How it works...

 Conclusion

 4. Creating Maps and Materials

 Introduction

 Creating and saving texture maps

 The big picture

 Specular workflow

 The metallic workflow

 Other material properties

 Unity samples and documentation

 Creating a basic material with Standard Shader (Specular setup)

 Getting ready

 How to do it...

 How it works...

 There's more...

 Setting the texture type for an image file

 Combining the map with color

 Adapting a basic material from Specular setup to Metallic

 Getting ready

 How to do it...

 How it works...

 Applying Normal maps to a material

 Getting ready

 How to do it...

 How it works...

 There's more...

 Adding Transparency and Emission maps to a material

 Getting ready

 How to do it...

 How it works...

 There's more...

 Using texture maps with Transparent Mode

 Avoiding issues with the semi-transparent objects

 Emitting light over other objects

 Highlighting materials at mouse over

 Getting ready

 How to do it...

 How it works...

 There's more...

 Adding Detail maps to a material

 Getting ready

 How to do it...

 How it works...

 Fading the transparency of a material

 How to do it...

 How it works...

 There's more...

 Playing videos inside a scene

 Getting ready

 How to do it...

 How it works...

 There's more...

 Conclusion

 Resources

 References

 Tools

 5. Using Cameras

 Introduction

 The big picture

 Creating a picture-in-picture effect

 Getting ready

 How to do it...

 How it works...

 There's more...

 Making the picture-in-picture proportional to the screen's size

 Changing the position of the picture-in-picture

 Preventing the picture-in-picture from updating on every frame

 See also

 Switching between multiple cameras

 Getting ready

 How to do it...

 How it works...

 There's more...

 Using a single-enabled camera

 Triggering the switch from other events

 See also

 Making textures from screen content

 Getting ready

 How to do it...

 How it works...

 There's more...

 Applying your texture to a material

 Using your texture as a screenshot

 See also

 Zooming a telescopic camera

 Getting ready...

 How to do it...

 How it works...

 There's more...

 Displaying a mini-map

 Getting ready...

 How to do it...

 How it works...

 There's more...

 Covering a wider or narrower area

 Changing the map's orientation

 Adapting your mini-map to other styles

 Creating an in-game surveillance camera

 Getting ready

 How to do it...

 How it works...

 6. Lights and Effects

 Introduction

 The big picture

 Lights

 Environment Lighting

 Emissive materials

 Projector

 Lightmaps and Light Probes

 The Lighting window

 Using lights and cookie textures to simulate a cloudy day

 Getting ready

 How to do it...

 How it works...

 There's more...

 Creating Spot Light cookies

 Creating Point Light Cookies

 Adding a custom Reflection map to a scene

 Getting ready

 How to do it...

 How it works...

 There's more...

 Mapping coordinates

 Sharp reflections

 Maximum size

 Creating a laser aim with Projector and Line Renderer

 Getting ready

 How to do it...

 How it works...

 Reflecting surrounding objects with Reflection Probes

 Getting ready

 How to do it...

 How it works...

 There's more...

 Setting up an environment with Procedural Skybox and Directional Light

 Getting ready

 How to do it...

 How it works...

 Lighting a simple scene with Lightmaps and Light Probes

 Getting ready

 How to do it...

 How it works...

 There's more...

 Conclusion

 7. Controlling 3D Animations

 Introduction

 The big picture

 Configuring a character's Avatar and idle animation

 Getting ready

 How to do it...

 How it works...

 There's more...

 Moving your character with root motion and Blend Trees

 Getting ready

 How to do it...

 How it works...

 There's more...

 Mixing animations with Layers and Masks

 Getting ready

 How to do it...

 How it works...

 There's more...

 Organizing States into Sub-state Machines

 Getting ready

 How to do it...

 How it works...

 Transforming the Character Controller via script

 Getting ready

 How to do it...

 How it works...

 Adding rigid props to animated characters

 Getting ready

 How to do it...

 How it works...

 There's more...

 Using Animation Events to throw an object

 Getting ready

 How to do it...

 How it works...

 Applying Ragdoll physics to a character

 Getting ready

 How to do it...

 How it works...

 There's more...

 Rotating the character's torso to aim a weapon

 Getting ready

 How to do it...

 How it works...

 There's more...

 8. Positions, Movement and Navigation for Character GameObjects

 Introduction

 The big picture

 Player control of a 2D GameObject (and limiting the movement within a rectangle)

 Getting ready

 How to do it...

 How it works...

 See also

 Player control of a 3D GameObject (and limiting the movement within a rectangle)

 How to do it...

 How it works...

 Choosing destinations – find the nearest (or a random) spawn point

 Getting ready

 How to do it...

 How it works...

 There's more...

 Choosing the nearest spawn point

 Avoiding errors due to an empty array

 See also

 Choosing destinations – respawn to the most recently passed checkpoint

 Getting ready

 How to do it...

 How it works...

 NPC NavMeshAgent to seek or flee destination while avoiding obstacles

 Getting ready

 How to do it...

 How it works...

 There's more...

 Constantly updating the NavMeshAgent destination to Player's character current location

 Constantly update NavMeshAgent destination to flee away from Player's character current location

 Create a mini point-and-click game

 NPC NavMeshAgent to follow the waypoints in a sequence

 Getting ready

 How to do it...

 How it works...

 There's more...

 More efficient to avoid using NavMeshes for waypoints

 Working with arrays of waypoints

 Increased flexibility with a WayPoint class

 Controlling the object group movement through flocking

 Getting ready

 How to do it...

 How it works...

 There's more...

 Learn more about flocking Artificial Intelligence

 Conclusion

 9. Playing and Manipulating Sounds

 Introduction

 The big picture

 Matching the audio pitch to the animation speed

 Getting ready

 How to do it...

 How it works...

 There's more...

 Changing the Animation/Sound Ratio

 Accessing the function from other scripts

 Simulating acoustic environments with Reverb Zones

 Getting ready

 How to do it...

 How it works...

 There's more...

 Attaching the Audio Reverb Zone component to Audio Sources

 Making your own Reverb settings

 Preventing an Audio Clip from restarting if it is already playing

 Getting ready

 How to do it...

 How it works...

 See also

 Waiting for audio to finish playing before auto-destructing an object

 Getting ready

 How to do it...

 How it works...

 See also

 Adding volume control with Audio Mixers

 Getting ready

 How to do it...

 How it works...

 There's more...

 Playing with Audio Production

 See also

 Making a dynamic soundtrack with Snapshots

 Getting ready

 How to do it...

 How it works...

 There's more...

 Reducing the need for multiple audio clips

 Dealing with audio file formats and compression rates

 Applying Snapshots to background noise

 Getting creative with effects

 See also

 Balancing in-game audio with Ducking

 Getting ready

 How to do it...

 How it works...

 See also

 10. Working with External Resource Files and Devices

 Introduction

 The big picture

 Loading external resource files – using Unity Default Resources

 Getting ready

 How to do it...

 How it works...

 There's more...

 Loading text files with this method

 Loading and playing audio files with this method

 See also

 Loading external resource files – by downloading files from the Internet

 Getting ready

 How to do it...

 How it works...

 There's more...

 Converting from Texture to Sprite

 Downloading a text file from the Web

 The WWW class and the resource contents

 See also

 Loading external resource files – by manually storing files in the Unity Resources folder

 Getting ready

 How to do it...

 How it works...

 There's more...

 Avoiding cross-platform problems with Path.Combine() rather than "/" or "\"

 See also

 Saving and loading player data – using static properties

 Getting ready

 How to do it...

 How it works...

 There's more...

 Hiding the score before the first attempt completed

 See also

 Saving and loading player data – using PlayerPrefs

 Getting ready

 How to do it...

 How it works...

 See also

 Saving screenshots from the game

 Getting ready

 How to do it...

 How it works...

 There's more...

 Setting up a leaderboard using PHP/MySQL

 Getting ready

 How to do it...

 How it works...

 There's more...

 Extracting the full leaderboard data as XML for display within Unity

 Using the secret game codes to secure your leaderboard scripts

 See also

 Loading game data from a text file map

 Getting ready

 How to do it...

 How it works...

 Managing Unity project code using Git version control and GitHub hosting

 Getting ready

 How to do it...

 How it works...

 There's more...

 Learn more about Distributed Version Control Systems (DVCS)

 Using Bitbucket and SourceTree

 Using the command line rather than Git-client application

 See also

 Publishing for multiple devices via Unity Cloud

 Getting ready

 How to do it...

 How it works...

 There's more...

 Learn more about Unity Cloud

 See also

 11. Improving Games with Extra Features and Optimization

 Introduction

 The big picture

 Pausing the game

 Getting ready

 How to do it...

 How it works...

 There's more...

 Learning more about QualitySettings

 See also

 Implementing slow motion

 Getting ready

 How to do it...

 How it works...

 There's more...

 Customizing the slider

 Adding Motion Blur

 Creating sonic ambience

 See also

 Preventing your game from running on unknown servers

 Getting ready

 How to do it...

 How it works...

 There's more...

 Improving security by using full URLs in your domain list

 Allowing redistribution with more domains

 State-driven behavior Do-It-Yourself states

 How to do it...

 How it works...

 See also

 State-driven behavior using the State Design pattern

 Getting ready

 How to do it...

 How it works...

 Reducing the number of objects by destroying objects at death a time

 How to do it...

 How it works...

 See also

 Reducing the number of enabled objects by disabling objects whenever possible

 Getting ready

 How to do it...

 How it works...

 There's more...

 Note – viewable in Scene panel still counts as visible!

 Another common case – only enable after OnTrigger()

 See also

 Reducing the number of active objects by making objects inactive whenever possible

 How to do it...

 How it works...

 See also

 Improving efficiency with delegates and events and avoiding SendMessage!

 How to do it...

 How it works...

 See also

 Executing methods regularly but independent of frame rate with coroutines

 How to do it...

 How it works...

 There's more...

 Have different actions happening at different intervals

 See also

 Spreading long computations over several frames with coroutines

 How to do it...

 How it works...

 There's more...

 Retrieving the complete Unity log text files from your system

 See also

 Evaluating performance by measuring max and min frame rates (FPS)

 Getting ready

 How to do it...

 How it works...

 There's more...

 Turn off runtime display to reduce FPS processing

 See also

 Identifying performance bottlenecks with the Unity performance Profiler

 How to do it...

 How it works...

 See also

 Identifying performance "bottlenecks" with Do-It-Yourself performance profiling

 Getting ready

 How to do it...

 How it works...

 See also

 Cache GameObject and component references to avoid expensive lookups

 Getting ready

 How to do it...

 Method 1 – AverageDistance calculation

 Method 2 – Cache array of Respawn object transforms

 Method 3 – Cache reference to Player transform

 Method 4 – Cache Player's Vector3 position

 Method 5 – Cache reference to SimpleMath component

 Method 6 – Cache array of sphere Vector3 positions

 How it works...

 See also

 Improving performance with LOD groups

 Getting ready

 How to do it...

 How it works...

 There's more...

 Adding more LOD renderers

 Fading LOD transitions

 See also

 Improving performance through reduced draw calls by designing for draw call batching

 How to do it...

 Static batching

 Dynamic batching

 There's more...

 Reduce the need for textures by vertex painting

 Information sources about reducing textures and materials

 See also

 Conclusion

 There's more...

 Game audio optimization

 Physics engine optimization

 More tips for improving script efficiency

 Sources of more wisdom about optimization

 Published articles that discuss premature optimization

 Sources of more about Game Managers and the State Pattern

 12. Editor Extensions

 Introduction

 An editor extension to allow pickup type (and parameters) to be changed at design time via a custom Inspector UI

 Getting ready

 How to do it...

 How it works...

 There's more...

 Offer the custom editing of pickup parameters via Inspector

 Offer a drop-down list of tags for key-pickup to fit via Inspector

 Logic to open doors with keys based on fitsLockTag

 The need to add [SerializeField] for private properties

 Learn more from the Unity documentation

 An editor extension to add 100 randomly located copies of a prefab with one menu click

 Getting ready

 How to do it...

 How it works...

 There's more...

 Child each new GameObject to a single parent, to avoid filling up the Hierarchy with 100s of new objects

 A progress bar to display proportion completed of Editor extension processing

 Getting ready

 How to do it...

 How it works...

 An editor extension to have an object-creator GameObject, with buttons to instantiate different pickups at cross-hair object location in scene

 Getting ready

 How to do it...

 How it works...

 Conclusion

 Index

Unity 5.x Cookbook

Unity 5.x Cookbook

Copyright © 2015 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: September 2015
Production reference: 1280915
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78439-136-2

www.packtpub.com

Credits

Authors

Matt Smith
Chico Queiroz

Reviewer

Brian Gatt
Tommaso Lintrami
Robert Ollington

Commissioning Editor

Edward Bowkett

Acquisition Editor

Vinay Argekar

Content Development Editor

Ajinkya Paranjpe

Technical Editor

Rohith Rajan

Copy Editor

Yesha Gangani

Project Coordinator

Harshal Ved

Proofreader

Safis Editing

Indexer

Rekha Nair

Graphics

Jason Monteiro

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

Contributor

Bryan Griffiths

Foreword

Not so long ago developing professional quality games meant licensing an expensive game engine (or writing one yourself) and hiring a small army of developers to use it. Today, game engines like Unity have democratized game development to the point where you can simply download the tools and start making the game of your dreams right away.
Well... kinda.
Having a powerful game creation tool is not the same thing as having the technical knowledge and skills to use it effectively. I've been developing games and game tools professionally for over 13 years. When I took the plunge into learning Unity development, I quickly found that there was a huge amount of online documentation, tutorials and forum answers available for Unity developers. This makes getting started with Unity development very easy. It's fantastic that this information is out there, but it can also be quite fragmented. A lot of the time the piece of the puzzle you are missing is buried 40 minutes into an hour-long tutorial video or on the 15th page of a long forum thread. The hours you spend looking for these nuggets of wisdom are time that would be better spent working on your game.
The beauty of the Unity 5.x Cookbook is that Matt and Chico have done the tedious legwork of finding this information for you and distilled it into a neat collection of easy to follow step-by-step recipes (and provided the scripts and complete working projects for you to download). Unity development covers a vast range of topics, so the authors have sensibly focused on those areas that almost all developers will encounter. If you're serious about developing great games and tools with Unity, then you'll need to master just the kinds of topics you'll find in this book.
Getting started with Unity development is free and easy. When you're ready to take your skills to the next level, this book is an easy and effective way to do it. It covers a great deal in its hundreds of pages, and if you can master even half of what's here you'll be well on the way to becoming a great Unity developer.

Chris Gregan

Founder & Developer
Fungus Ltd

http://www.fungusgames.com

About the Authors

Matt Smith is a computing academic from Dublin, Ireland. In 1983 Matt started computer programming (on a ZX80) and for his 'O-level' computing certificate (aged 16) he submitted 2 games for his programming project work. In 1985 Matt wrote the lyrics, and was a member of the band that played (and sang, sorry about that by the way) the music on the B-side of the audio cassette carrying the computer game Confuzion (https://en.wikipedia.org/wiki/Confuzion).
On a succession of scholarships he managed to spend almost 10 years as a full time student, gaining BA (Hons), then MSc then PhD degrees in computing and artificial intelligence. He then became a full-time lecturer. Having previously lectured full-time at Winchester University and London's Middlesex University, since 2002 he has been at the Institute of Technology Blanchardstown in Dublin (http://www.itb.ie/) where he is he is now senior lecturer in computing.
Some of his previous Irish–French student team games can be found and played at http://www.saintgermes.com (thanks for continuing to host these Guillem!). Matt was one of the two technical experts for a recent multimedia European project for language and cultural student work mobility (http://www.vocalproject.eu).
He studies and teaches Taekwon-Do with his two children, having been awarded his first degree black belt in 2015 (he also runs his club's website at http://www.maynoothtkd.com/). He is trying to learn Irish, so he will understand the report cards from his children's Irish-speaking school. In occasional moments of free time he also tries to get better at playing the piano and classical guitar.
Matt is a documentation author for the Fungus open source interactive storytelling plugin for Unity (http://www.fungusgames.com). Matt also maintains a step-by-step open source introduction to Unity 2D and 3D game programming on his public Github pages (see https://www.github.com/dr-matt-smith/gravity-guy2D).
Matt's previous publications include a chapter in Serious Games and Edutainment Applications (Springer 2011, ISBN: 1447121600), and contributions and editing of several music education and artificial intelligence books.

Thanks to my family for all their support. Thanks also to my students, who continue to challenge and surprise me with their enthusiasm for multimedia and game development. Thanks also to the editors, reviewers, readers and students who provided feedback and suggestions on how to improve the first edition and drafts of this new edition.
A special mention to my parents in England, and my wife's Aunty Maureen in County Mayo – here's another book for the family-authored bookshelves.
Finally, I would like to dedicate this book to my wife Sinéad and my children Charlotte and Luke.

Chico Queiroz is a digital media designer from Rio de Janeiro, Brazil. Chico started his career back in 2000, soon after graduating in Communications/Advertising (PUC-Rio), working with advergames and webgames using Flash and Director at LocZ Multimedia, where he contributed to the design and development of games for clients, such as Volkswagen and Parmalat, along with some independent titles.
Chico has a master's degree in Digital Game Design (University for the Creative Arts, UK). His final project was exhibited at events and festivals such as London Serious Games Showcase and FILE. Chico has also published articles for academic conferences and websites such as http://www.gameology.org, http://www.gamasutra.com, and http://www.gamecareerguide.com.
He curated and organized an exhibition held at SBGames 2009, which explored the connections between video games and art. SBGames is the annual symposium of the Special Commission of Games and Digital Entertainment of the Computing Brazilian Society.
Chico currently works as a digital designer at the Tecgraf/PUC-Rio Institute for Technical-Scientific Software Development, where he, among other responsibilities, uses Unity to develop interactive presentations and concept prototypes for interactive visualization software. He also works as a lecturer at PUC-Rio, teaching undergraduate design students 3D modeling and technology/CG for games, in which Unity is used as the engine for the students' projects. Additionally, Chico is a PhD student in design at the same institution.

I would like to thank my friends, family, and all who have made this book possible and helped me along the way. Special thanks to:
Carl Callewaert and Jay Santos, from Unity, for their help with the Unity beta access and explanations of Unity 5 capabilities; Morten, Anthony, and Robertas, at Unity QA, for their help and support during beta testing; and Aras Pranckevicius, for his illuminating work on Unity's new shader system.
The editors and technical reviewers from Packt, who have made this book much better through their observations and advice.
All my coworkers from Tecgraf/PUC-Rio. Marcelo Gattass, the director, for his continuing support and Eduardo Thadeu Corseuil, my manager, for giving me the opportunity to use Unity in our interactive projects.
All my students and colleagues from the PUC-Rio Art & Design Department. Special mentions to Rejane Spitz, my PhD tutor and the coordinator of the Electronic Art Lab (LAE); Maria das Graças Chagas and my supervisor, João de Sá Bonelli, for his encouragement; and everyone at LAE (especially Axel, Clorisval, Leo, Levy, Pedro, Renan, and Wesley), for the constant exchange of ideas.
Jon Weinbren, from the UK's National Film and Television School, for constantly encouraging his former MA student.
Stefano Corazza and Chantel Benson, from Mixamo, for their extended support.
Wes McDermott, from Allegorithmic, for his excellent material on physically-based rendering.
Gabriel Williams, from ProCore3D, for his help with ProBuilder.
Aaron Brown, from PlaydotSound.com, for his decibel to float calculator.
Fachhochschule Würzburg-Schweinfurt MSc student Christian Petry, for his NormalMap-Online service.
Every reader who gave us feedback on Unity 4.x Cookbook, Packt Publishing.
Finally, I would like to dedicate this book to my wife, Ana, and my daughters, Alice and Olivia. Thank you for all your love and support.

About the Reviewers

Brian Gatt is a software developer who holds a bachelor's degree in computer science and Artificial Intelligence from the University of Malta, and a master's degree in computer games and entertainment from Goldsmiths, University of London. Having initially dabbled with OpenGL at university, he has since developed an interest in graphics programming. In his spare time, he likes to keep up with what the latest graphics APIs have to offer, native C++ programming, and game development techniques.

Tommaso Lintrami started with programming on a Commodore VIC-20 back in 1982 when he was nine.
He is a multimedia and a game director, game designer, web and game developer. He has 17 years of work experience in many IT companies, starting initially as a web developer.
Tomasso later shifted to the video game industry, multimedia interactive installations and dedicated software development, home and industrial automation.

Robert Ollington is a lecturer in the Discipline of Information and Communication Technology, School of Engineering and ICT, University of Tasmania, Australia. His research is in the fields of Reinforcement Learning, ANNs, Robotics and Sensing, and Games (Graphics and Physics). His teaching includes units in programming, game design and game production.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www.PacktPub.com.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: Support files, eBooks, discount offers, and more]

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books.
Why subscribe?

	Fully searchable across every book published by Packt
	Copy and paste, print, and bookmark content
	On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view 9 entirely free books. Simply use your login credentials for immediate access.

Preface

Game development is a broad and complex task. It is an interdisciplinary field, covering subjects as diverse as artificial intelligence, character animation, digital painting, and sound editing. All these areas of knowledge can materialize as the production of hundreds (or thousands!) of multimedia and data assets. A special software application—the game engine—is required to consolidate all of these assets into a single product.
Game engines are specialized pieces of software, which used to belong to an esoteric domain. They were expensive, inflexible, and extremely complicated to use. They were for big studios or hardcore programmers only. Then along came Unity.
Unity represents the true democratization of game development. It is an engine and multimedia editing environment that is user-friendly and versatile. It has free and Pro versions; the latter includes even more features. As we write this preface, Unity offers deployment to:
	Mobile: Android, iOS, Windows Phone, and BlackBerry
	Web: WebGL
	Desktop: PC, Mac, and Linux platforms
	Console: PS4, PS3, Xbox One, XBox 360, PlayStation Mobile, PlayStation Vita, and Wii U
	Virtual Reality (VR)/Augmented Reality (AR): Oculus Rift and Gear VR

Today, Unity is used by a diverse community of developers all around the world. Some are students and hobbyists, but many are commercial organizations, ranging from garage developers to international studios, who use Unity to make a huge number of games — some you might have already played on one platform or another.
This book provides over 100 Unity game development recipes. Some recipes demonstrate Unity application techniques for multimedia features, including working with animations and using preinstalled package systems. Other recipes develop game components with C# scripts, ranging from working with data structures and data file manipulation, to artificial intelligence algorithms for computer-controlled characters.
If you want to develop quality games in an organized and straightforward way, and want to learn how to create useful game components and solve common problems, then both Unity and this book are for you.
What this book covers

Chapter 1, Core UI – Messages, Menus, Scores, and Timers, is filled with UI (User Interface) recipes to help you increase the entertainment and enjoyment value of your games through the quality of the interactive visual elements. You'll learn a wide range of UI techniques, including updatable text and images, directional radars, countdown timers, and custom mouse cursors.

Chapter 2, Inventory GUIs, shows you how many games involve the player-collecting items, such as keys to open doors, ammo for weapons, or choosing from a selection of items, such as from a collection of spells to cast. The recipes in this chapter offer a range of text and graphical solutions for displaying inventory status to the player, including whether they are carrying an item or not, or the maximum number of items they are able to collect.

Chapter 3, 2D Animation, includes powerful 2D animation and physics features. In this chapter, we present recipes to help you understand the relationships between the different animation elements in Unity, exploring both the movement of different parts of the body and the use of sprite-sheet image files that contain sequences of sprite frames pictures.

Chapter 4, Creating Maps and Materials, contains recipes that will give you a better understanding of how to use maps and materials with Unity 5's new Physically Based Shaders, whether you are a game artist or not. It is a great resource for exercising your image editing skills.

Chapter 5, Using Cameras, explains recipes covering techniques for controlling and enhancing your game's camera. This chapter will present interesting solutions to work with both single and multiple cameras.

Chapter 6, Lights and Effects, offers a hands-on approach to a number Unity's lighting system features, such as cookie textures, Reflection maps, Lightmaps, Light and Reflection probes, and Procedural Skyboxes. Also, it demonstrates the use of Projectors.

Chapter 7, Controlling 3D Animations, focuses on character animation, and demonstrates how to take advantage of Unity's animation system — Mecanim. It covers a range of subjects from basic character setup to procedural animation and ragdoll physics.

Chapter 8, Positions, Movement and Navigation for Character GameObjects, presents a range of directional recipes for computer-controlled objects and characters, which can lead to games with a richer and more exciting user experience. Examples of these recipes include spawn points, checkpoints, and waypoints. It also includes examples that make groups of objects flock together, and the use of Unity NavMeshes for automated path-finding over terrains and around obstacles.

Chapter 9, Playing and Manipulating Sounds, is dedicated to making sound effects and soundtrack music in your game more interesting. The chapter demonstrates how to manipulate sound during runtime through the use of scripts, Reverb Zones, and Unity's new Audio Mixer.

Chapter 10, Working with External Resource Files and Devices, throws light on how external data can enhance your game in ways such as adding renewable content and communicating with websites. The chapter also includes recipes on automating your builds with Unity Cloud, and how to structure your projects, so they can be easily backed up using online version control systems such as GitHub.

Chapter 11, Improving Games with Extra Features and Optimization, provides several recipes with ideas for adding extra features to your game (such as adding slow motion and securing online games). Many other recipes in this chapter provide examples of how to investigate and potentially improve the efficiency and performance of your game's code.

Chapter 12, Editor Extensions, provides several recipes for enhancing design-time work in the Unity Editor. Editor Extensions are scripting and multimedia components, that allows working with custom text, UI presentation of the game parameters, data in the Inspector and Scene panels, and custom menus and menu items. These can facilitate workflow improvements, thus allowing game developers to achieve their goals quicker and easier.

What you need for this book

All you need is a copy of Unity 5.x, which can be downloaded for free from http://www.unity3d.com.
If you wish to create your own image files for the recipes in Chapter 4, Creating Maps and Materials, you will also need an image editor, such as Adobe Photoshop, which can be found at http://www.photoshop.com, or GIMP, which is free and can be found at http://www.gimp.org.

Who this book is for

This book is for anyone who wants to explore a wide range of Unity scripting and multimedia features, and find ready-to-use solutions for many game features. Programmers can explore multimedia features, and multimedia developers can try their hand at scripting.
From intermediate to advanced users, from artists to coders, this book is for you, and everyone on your team!
It is intended for everyone who has the basics of using Unity, and a little programming knowledge in C#.

Sections

In this book, you will find several headings that appear frequently.
To give clear instructions on how to complete a recipe, we use these sections as follows:
Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software, or any preliminary settings required for the recipe.

How to do it…

This section contains the steps required to follow the recipe.

How it works…

This section usually consists of a detailed explanation of what happened in the previous section.

There's more…

This section consists of additional information about the recipe in order to make the reader more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, folder names, filenames, file extensions, pathnames, and user input are shown as follows: " For this recipe, we have prepared the font that you need in a folder named Fonts in the 1362_01_01 folder."
URLs are shown as follows: Learn more about the Unity UI on their manual pages at http://docs.unity3d.com/Manual/UISystem.html.
A block of code is set as follows:
 void Start (){
 textClock = GetComponent<Text>();
 }

 void Update (){
 DateTime time = DateTime.Now;
 string hour = LeadingZero(time.Hour);
 string minute = LeadingZero(time.Minute);
 string second = LeadingZero(time.Second);

 textClock.text = hour + ":" + minute + ":" + second;
 }

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "In the Hierarchy panel, add a UI | Text GameObject to the scene – choose menu: GameObject | UI | Text."
Note
Warnings or important notes appear in a box like this.

Tip
Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example codes and color images

All the files you need to complete the recipes in the book can be downloaded from: https://github.com/dr-matt-smith/unity-5-cookbook-codes.
The downloadable codes are fully commented, and completed Unity projects for each recipe are also provided. In addition you'll also find a folder containing the color images for each chapter in this repository.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.
To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at <questions@packtpub.com>, and we will do our best to address the problem.

Chapter 1. Core UI – Messages, Menus, Scores, and Timers

In this chapter, we will cover:
	Displaying a "Hello World" UI text message
	Displaying a digital clock
	Displaying a digital countdown timer
	Creating a message that fades away
	Displaying a perspective 3D text message
	Displaying an image
	Creating UI Buttons to move between scenes
	Organizing images inside panels and changing panel depths via buttons
	Displaying the value of an interactive UI Slider
	Displaying a countdown timer graphically with a UI Slider
	Displaying a radar to indicate the relative locations of objects
	Creating UIs with the Fungus open-source dialog system
	Setting custom mouse cursor images
	Input Fields component for text entry
	Toggles and radio buttons via Toggle Groups

Introduction

A key element contributing to the entertainment and enjoyment of most games is the quality of the visual experience, and an important part of this is the User Interface (UI). UI elements involve ways for the user to interact with the game (such as buttons, cursors, text boxes, and so on), as well as ways for the game to present up-to-date information to the user (such as the time remaining, current health, score, lives left, or location of enemies). This chapter is filled with UI recipes to give you a range of examples and ideas for creating game UIs.
The big picture

Every game is different, and so this chapter attempts to fulfill two key roles. The first aim is to provide step-by-step instructions on how to create a wide range of the Unity 5 UI elements and, where appropriate, associate them with game variables in code. The second aim is to provide a rich illustration of how UI elements can be used for a variety of purposes, so that you can get good ideas about how to make the Unity 5 UI set of controls deliver the particular visual experience and interactions for the games that you are developing.
The basic UI elements can provide static images and text to just make the screen look more interesting. By using scripts, we can change the content of these images and text objects, so that the players' numeric scores can be updated, or we can show stickmen images to indicate how many lives the player has left, and so on. Other UI elements are interactive, allowing users to click on buttons, choose options, enter text, and so on. More sophisticated kinds of UI can involve collecting and calculating data about the game (such as percentage time remaining or enemy hit damage; or the positions and types of key GameObjects in the scene, and their relationship to the location and orientation of the player), and then displaying these values in a natural, graphical way (such as progress bars or radar screens).
Core GameObjects, components, and concepts relating to Unity UI development include:
	Canvas: Every UI element is a child to a Canvas. There can be multiple Canvas GameObjects in a single scene. If a Canvas is not already present, then one will automatically be created when a new UI GameObject is created, with that UI object childed to the new Canvas GameObject.
	EventSystem: An EventSystem GameObject is required to manage the interaction events for UI controls. One will automatically be created with the first UI element.
	Panel: UI objects can be grouped together (logically and physically) with UI Panels. Panels can play several roles, including providing a GameObject parent in the Hierarchy for a related group of controls. They can provide a visual background image to graphically relate controls on the screen, and they can also have scripted resize and drag interactions added, if desired.
	Visual UI controls: The visible UI controls themselves include Button, Image, Text, Toggle, and so on.
	Interaction UI controls: These are non-visible components that are added to GameObjects; examples include Input Field and Toggle Group.
	The Rect Transform component: UI GameObjects can exist in a different space from that of the 2D and 3D scenes, which cameras render. Therefore, UI GameObjects all have the special Rect Transform component, which has some different properties to the scene's GameObject Transform component (with its straightforward X/Y/Z position, rotation, and scale properties). Associated with Rect Transforms are pivot points (reference points for scaling, resizing, and rotations) and anchor points. Read more about these core features below.
	Sibling Depth: The bottom-to-top display order (what appears on the top of what) for a UI element is determined initially by their sequence in the Hierarchy. At designtime, this can be manually set by dragging GameObjects into the desired sequence in the Hierarchy. At runtime, we can send messages to the Rect Transforms of GameObjects to dynamically change their Hierarchy position (and therefore, the display order), as the game or user interaction demands. This is illustrated in the Organizing images inside panels and changing panel depths via buttons recipe in this chapter.

The following diagram shows how there are four main categories of UI controls, each in a Canvas GameObject and interacting via an EventSystem GameObject. UI Controls can have their own Canvas, or several UI controls can be in the same Canvas. The four categories are: static (display-only) and interactive UI controls, non-visible components (such as ones to group a set of mutually exclusive radio buttons), and C# script classes to manage UI control behavior through logic written in the program code. Note that UI controls that are not a child or descendent of a Canvas will not work properly, and interactive UI controls will not work properly if the EventSystem is missing. Both the Canvas and EventSystem GameObjects are automatically added to the Hierarchy as soon as the first UI GameObject is added to a scene.
[image: The big picture]
UI Rect Transforms represents a rectangular area rather than a single point, which is the case for scene GameObject Transforms. Rect Transforms describe how a UI element should be positioned and sized relatively to its parent. Rect Transforms have a width and height that can be changed without affecting the local scale of the component. When the scale is changed for the Rect Transform of a UI element, then this will also scale font sizes and borders on sliced images, and so on. If all four anchors are at the same point, then resizing the Canvas will not stretch the Rect Transform. It will only affect its position. In this case, we'll see the Pos X and Pos Y properties, and the Width and Height of the rectangle. However, if the anchors are not all at the same point, then Canvas resizing will result in a stretching of the element's rectangle. So instead of the Width, we'll see the values for Left and Right—the position of the horizontal sides of the rectangle to the sides of the Canvas, where the Width will depend on the actual Canvas width (and the same for Top/Bottom/Height).
Unity provides a set of preset values for pivots and anchors, making the most common values very quick and easy to assign to an element's Rect Transform. The following screenshot shows the 3 x 3 grid that allows you quick choices about left, right, top, bottom, middle, horizontal, and vertical values. Also, the extra column on the right offers horizontal stretch presets, and the extra row at the bottom offers vertical stretch presets. Using the SHIFT and ALT keys sets the pivot and anchors when a preset is clicked.
[image: The big picture]
The Unity manual provides a very good introduction to the Rect Transform. In addition, Ray Wenderlich's two-part Unity UI web tutorial also presents a great overview of the Rect Transform, pivots, and anchors. Both parts of Wenderlich's tutorial make great use of animated GIFs to illustrate the effect of different values for pivots and anchors:
	http://docs.unity3d.com/Manual/UIBasicLayout.html
	http://www.raywenderlich.com/78675/unity-new-gui-part-1

There are three Canvas render modes:
	Screen Space – Overlay: In this mode, the UI elements are displayed without any reference to any camera (there is no need for any Camera in the scene). The UI elements are presented in front of (overlaying) any sort of camera display of the scene contents.
	Screen Space – Camera: In this mode, the Canvas is treated as a flat plane in the frustum (viewing space) of a Camera scene —where this plane is always facing the camera. So, any scene objects in front of this plane will be rendered in front of the UI elements on the Canvas. The Canvas is automatically resized if the screen size, resolution, or camera settings are changed.
	World Space: In this mode, the Canvas acts as a flat plane in the frustum (viewing space) of a Camera scene—but the plane is not made to always face the Camera. How the Canvas appears is just as with any other objects in the scene, relative to where (if anywhere) in the camera's viewing frustum the Canvas plane is located and oriented.

In this chapter, we have focused on the Screen Space – Overlay mode. But all these recipes can equally be used with the other two modes as well.
Be creative! This chapter aims to act as a launching pad of ideas, techniques, and reusable C# scripts for your own projects. Get to know the range of Unity UI elements, and try to work smart. Often, a UI element exists with most of the components that you may need for something in your game, but you may need to adapt it somehow. An example of this can be seen in the recipe that makes a UI Slider non-interactive, instead using it to display a red-green progress bar for the status of a countdown timer. See this in the Displaying a countdown timer graphically with a UI Slider recipe.

Displaying a "Hello World" UI text message

The first traditional problem to be solved with a new computing technology is often to display the Hello World message. In this recipe, you'll learn to create a simple UI Text object with this message, in large white text with a selected font, and in the center of the screen.
[image: Displaying a "Hello World" UI text message]
Getting ready

For this recipe, we have prepared the font that you need in a folder named Fonts in the 1362_01_01 folder.

How to do it...

To display a Hello World text message, follow these steps:
	Create a new Unity 2D project.
	Import the provided Fonts folder.
	In the Hierarchy panel, add a UI | Text GameObject to the scene – choose menu: GameObject | UI | Text. Name this GameObject Text-hello.Note
Alternatively, use the Create menu immediately below the Hierarchy tab, choosing menu: Create | UI | Text.

	Ensure that your new Text-hello GameObject is selected in the Hierarchy panel. Now, in the Inspector, ensure the following properties are set:	Text set to read Hello World
	Font set to Xolonium-Bold
	Font size as per your requirements (large—this depends on your screen—try 50 or 100)
	Alignment set to horizontal and vertical center
	Horizontal and Vertical Overflow set to Overflow
	Color set to white

The following screenshot shows the Inspector panel with these settings:
[image: How to do it...]

	Now, in the Rect Transform, click on the Anchor Presets square icon, which should result in several rows and columns of preset position squares appearing. Hold down SHIFT and ALT and click on the center one (row middle and column center).[image: How to do it...]

	Your Hello World text will now appear, centered nicely in the Game panel.

How it works...

You have added a new Text-hello GameObject to a scene. A parent Canvas and UI EventSystem will also have been automatically created.
You set the text content and presentation properties, and use the Rect Transform anchor presets to ensure that whatever way the screen is resized, the text will stay horizontally and vertically centered.

There's more...

Here are some more details that you don't want to miss.
Styling substrings with Rich Text

Each separate UI Text component can have its own color, size, boldness styling, and so on. However, if you wish to quickly add some highlighting style to a part of a string to be displayed to the user, the following are examples of some of the HTML-style markups that are available without the need to create separate UI Text objects:
	Embolden text with the "b" markup: I am bold
	Italicize text with the "i" markup: I am <i>italic</i>
	Set the text color with hex values or a color name: I am <color=green>green text</color>, but I am <color=#FF0000>red</color>Note
Learn more from the Unity online manual Rich Text page at: http://docs.unity3d.com/Manual/StyledText.html.

Displaying a digital clock

Whether it is the real-world time, or perhaps an in-game countdown clock, many games are enhanced by some form of clock or timer display. The most straightforward type of clock to display is a string composed of the integers for hours, minutes, and seconds, which is what we'll create in this recipe.
The following screenshot shows the kind of clock we will be creating in this recipe:
[image: Displaying a digital clock]
Getting ready

For this recipe, we have prepared the font that you need in a folder named Fonts in the 1362_01_01 folder.

How to do it...

To create a digital clock, follow these steps:
	Create a new Unity 2D project.
	Import the provided Fonts folder.
	In the Hierarchy panel, add a UI | Text game object to the scene named Text-clock.
	Ensure that GameObject Text-clock is selected in the Hierarchy panel. Now, in Inspector, ensure that the following properties are set:	Text set to read as time goes here (this placeholder text will be replaced by the time when the scene is running.)
	Font type set to Xolonium Bold
	Font Size set to 20
	Alignment set to horizontal and vertical center
	Horizontal and Vertical Overflow settings set to Overflow
	Color set to white

	Now, in the Rect Transform, click on the Anchor Presets square icon, which will result in the appearance of several rows and columns of preset position squares. Hold down SHIFT and ALT and click on the top and column center rows.
	Create a folder named Scripts and create a C# script class called ClockDigital in this new folder:using UnityEngine;
using System.Collections;

using UnityEngine.UI;
using System;

public class ClockDigital : MonoBehaviour {
 private Text textClock;

 void Start (){
 textClock = GetComponent<Text>();
 }

 void Update (){
 DateTime time = DateTime.Now;
 string hour = LeadingZero(time.Hour);
 string minute = LeadingZero(time.Minute);
 string second = LeadingZero(time.Second);

 textClock.text = hour + ":" + minute + ":" + second;
 }

 string LeadingZero (int n){
 return n.ToString().PadLeft(2, '0');
 }
}

	With GameObject Text-clock selected in the Hierarchy panel, drag your ClockDigital script onto it to add an instance of this script class as a component to GameObject Text-clock, as shown in the following screenshot:[image: How to do it...]

	When you run the scene, you will now see a digital clock, showing hours, minutes, and seconds, at the top-center part of the screen.

How it works...

You added a Text GameObject to a scene. You have added an instance of the ClockDigital C# script class to that GameObject.
Notice that as well as the standard two C# packages (UnityEngine and System.Collections) that are written by default for every new script, you have added the using statements for two more C# script packages, UnityEngine.UI and System. The UI package is needed, since our code uses UI Text object; and the System package is needed, since it contains the DateTime class that we need to access the clock on the computer where our game is running.
There is one variable, textClock, which will be a reference to the Text component, whose text content we wish to update in each frame with the current time in hours, minutes, and seconds.
The Start() method (executed when the scene begins) sets the textClock variable to be a reference to the Text component in the GameObject, to which our scripted object has been added.
Note
Note that an alternative approach would be to make textClock a public variable. This will allow us to assign it via drag-and-drop in the Inspector panel.

The Update()method is executed in every frame. The current time is stored in the time variable, and strings are created by adding leading zeros to the number values for the hours, minutes, and seconds properties of variable time.
This method finally updates the text property (that is, the letters and numbers that the user sees) to be a string, concatenating the hours, minutes, and seconds with colon separator characters.
The LeadingZero(…)method takes as input an integer and returns a string of this number with leading zeros added to the left, if the value was less than 10.

There's more...

There are some details that you don't want to miss.
The Unity tutorial for animating an analogue clock

Unity has published a nice tutorial on how to create 3D objects, and animate them through C# script to display an analogue clock at https://unity3d.com/learn/tutorials/modules/beginner/scripting/simple-clock.

Displaying a digital countdown timer

This recipe will show you how to display a digital countdown clock shown here:
[image: Displaying a digital countdown timer]
Getting ready

This recipe adapts the previous one. So, make a copy of the project for the previous recipe, and work on this copy.
For this recipe, we have prepared the script that you need in a folder named Scripts in the 1362_01_03 folder.

How to do it...

To create a digital countdown timer, follow these steps:
	In the Inspector panel, remove the scripted component, ClockDigital, from GameObject Text-clock.
	Create a DigitalCountdown C# script class containing the following code, and add an instance as a scripted component to GameObject Text-clock:using UnityEngine;
using System.Collections;
using UnityEngine.UI;
using System;

public class DigitalCountdown : MonoBehaviour {
 private Text textClock;

 private float countdownTimerDuration;
 private float countdownTimerStartTime;

 void Start (){
 textClock = GetComponent<Text>();
 CountdownTimerReset(30);
 }

 void Update (){
 // default - timer finished
 string timerMessage = "countdown has finished";
 int timeLeft = (int)CountdownTimerSecondsRemaining();

 if(timeLeft > 0)
 timerMessage = "Countdown seconds remaining = " + LeadingZero(timeLeft);

 textClock.text = timerMessage;
 }

 private void CountdownTimerReset (float delayInSeconds){
 countdownTimerDuration = delayInSeconds;
 countdownTimerStartTime = Time.time;
 }

 private float CountdownTimerSecondsRemaining (){
 float elapsedSeconds = Time.time - countdownTimerStartTime;
 float timeLeft = countdownTimerDuration - elapsedSeconds;
 return timeLeft;
 }

 private string LeadingZero (int n){
 return n.ToString().PadLeft(2, '0');
 }
}

	When you run the scene, you will now see a digital clock counting down from 30. When the countdown reaches zero, the message countdown has finished will be displayed.

How it works...

You added a Text GameObject to a scene. You have added an instance of the DigitalCountdown C# script class to that GameObject.
There is one variable, textClock, which will be a reference to the Text component, whose text content we wish to update in each frame with a time remaining message (or a timer complete message). Then, a call is made to the CountdownTimerReset(…) method, passing an initial value of 30 seconds.
The Start() method (executed when the scene begins) sets the textClock variable to find the Text component in the GameObject where our scripted object has been added.
The Update() method is executed in every frame. This method initially sets the timerMessage variable to a message, stating that the timer has finished (the default message to display). Then the seconds remaining are tested to be greater than zero. And if so, then the message variable has its contents changed to display the integer (whole) number of the seconds remaining in the countdown—retrieved from the CountdownTimerSecondsRemaining() method. This method finally updates the text property (that is, the letters and numbers that the user sees) to be a string with a message about the remaining seconds.
The CountdownTimerReset(…) method records the number of seconds provided, and the time the method was called.
The CountdownTimerSecondsRemaining() method returns an integer value of the number of seconds remaining.

Creating a message that fades away

Sometimes, we want a message to display just for a certain time, and then fade away and disappear, which will appear as shown in this screenshot:
[image: Creating a message that fades away]
Getting ready

This recipe adapts the first recipe in this chapter, so make a copy of that project to work on for this recipe.
For this recipe, we have prepared the script that you need in a folder named Scripts in the 1362_01_04 folder.

How to do it...

To display a text message that fades away, follow these steps:
	Import the provided C# script class called CountdownTimer.
	Ensure that GameObject Text-hello is selected in the Hierarchy tab. Then, attach an instance of the CountdownTimer C# script class as a component of this GameObject.
	Create a C# script class, FadeAway, containing the following code, and add an instance as a scripted component to the GameObject Text-hello:using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class FadeAway : MonoBehaviour {
 private CountdownTimer countdownTimer;
 private Text textUI;
 private int fadeDuration = 5;
 private bool fading = false;

 void Start (){
 textUI = GetComponent<Text>();
 countdownTimer = GetComponent<CountdownTimer>();

 StartFading(fadeDuration);
 }

 void Update () {
 if(fading){
 float alphaRemaining = countdownTimer.GetProportionTimeRemaining();
 print (alphaRemaining);
 Color c = textUI.material.color;
 c.a = alphaRemaining;
 textUI.material.color = c;

 // stop fading when very small number
 if(alphaRemaining < 0.01)
 fading = false;
 }
 }

 public void StartFading (int timerTotal){
 countdownTimer.ResetTimer(timerTotal);
 fading = true;
 }
}

	When you run the scene, you will now see that the message on the screen slowly fades away, disappearing after 5 seconds.

How it works...

An instance of the provided CountdownTimer script class was added as a component to the GameObject Text-hello.
You added to the GameObject Text-hello an instance of the scripted class, FadeAway. The Start()method caches references to the Text and CountdownTimer components in the countdownTimer and textUI variables. Then, it calls the StartFading(…)method, passing in the number 5, so that the message will have faded to invisible after 5 seconds.
The StartFading(…) method starts this timer scripted component to countdown to the given number of seconds. It also sets the fading Boolean flag variable to true.
The Update() method, in each frame, tests if the fading variable is true. If it is true, then the alpha (transparency) component of the color of the Text-hello object is set to a value between 0.0 and 1.0, based on the proportion of the time remaining in the CountdownTimer object. Finally, if the proportion of time remaining is less than a very small value (0.01), then the fading variable is set to false (to save the processing work since the text is now invisible).

Displaying a perspective 3D text message

Unity provides an alternative way to display text in 3D via the TextMesh component. While this is really suitable for a text-in-the-scene kind of situation (such as billboards, road signs, and generally wording on the side of 3D objects that might be seen close up), it is quick to create, and is another way of creating interesting menus or instructions scenes, and the like.
In this recipe, you'll learn how to create a scrolling 3D text, simulating the famous opening credits of the movie Star Wars, which looks something like this:
[image: Displaying a perspective 3D text message]
Getting ready

For this recipe, we have prepared the fonts that you need in a folder named Fonts, and the text file that you need in a folder named Text, in the 1362_01_04 folder.

How to do it...

To display perspective 3D text, follow these steps:
	Create a new Unity 3D project (this ensures that we start off with a Perspective camera, suitable for the 3D effect that we want to create).Note
If you need to mix 2D and 3D scenes in your project, you can always manually set any camera's Camera Projection property to Perspective or Orthographic via the Inspector panel.

	In the Hierarchy panel, select the Main Camera item, and, in the Inspector panel, set its properties as follows: Camera Clear Flags to solid color, Field of View to 150. Also set the Background color to black.
	Import the provided Fonts folder.
	In the Hierarchy panel, add a UI | Text game object to the scene – choose menu: GameObject | UI | Text. Name this GameObject as Text-star-wars. Set its Text Content as Star Wars (with each word on a new line). Then, set its Font to Xolonium Bold, and its Font Size to 50. Use the anchor presets in Rect Transform to position this UI Text object at the top center of the screen.
	In the Hierarchy panel, add a 3D Text game object to the scene – choose menu: GameObject | 3D Object | 3D Text. Name this GameObject Text-crawler.
	In the Inspector panel, set the Transform properties for GameObject Text-crawler as follows: Position (0, -300, -20), Rotation (15, 0, 0).
	In the Inspector panel, set the Text Mesh properties for GameObject Text-crawler as follows:	Paste the content of the provided text file, star_wars.txt, into Text.
	Set Offset Z = 20, Line Spacing = 0.8, and Anchor = Middle center
	Set Font Size = 200, Font = SourceSansPro-BoldIt

	When the scene is made to run, the Star Wars story text will now appear nicely squashed in 3D perspective on the screen.

How it works...

You have simulated the opening screen of the movie Star Wars, with a flat UI Text object title at the top of the screen, and 3D Text Mesh with settings that appear to be disappearing into the horizon with 3D perspective 'squashing'.

There's more...

There are some details that you don't want to miss.
We have to make this text crawl like it does in the movie

With a few lines of code, we can make this text scroll in the horizon just as it does in the movie. Add the following C# script class, ScrollZ, as a component to GameObject Text-crawler:
using UnityEngine;
using System.Collections;

public class ScrollZ : MonoBehaviour {
 public float scrollSpeed = 20;

 void Update () {
 Vector3 pos = transform.position;
 Vector3 localVectorUp = transform.TransformDirection(0,1,0);
 pos += localVectorUp * scrollSpeed * Time.deltaTime;
 transform.position = pos;
 }
}

In each frame via the Update() method, the position of the 3D text object is moved in the direction of this GameObject's local up-direction.

Where to learn more

Learn more about 3D Text and Text Meshes in the Unity online manual at http://docs.unity3d.com/Manual/class-TextMesh.html.
Note
NOTE: An alternative way of achieving perspective text like this would be to use a Canvas with render mode World Space.

Displaying an image

There are many cases where we wish to display an image onscreen, including logos, maps, icons, splash graphics, and so on. In this recipe, we will display an image at the top of the screen, and make it stretch to fit whatever width that the screen is resized to.
The following screenshot shows Unity displaying an image:
[image: Displaying an image]
Getting ready

For this recipe, we have prepared the image that you need in a folder named Images in the 1362_01_06 folder.

How to do it...

To display a stretched image, follow these steps:
	Create a new Unity 3D project.Note
3D projects will, by default, import images as a Texture, and 2D projects will import images as Sprite (2D and UI). Since we're going to use a RawImage UI component, we need our images to be imported as textures.

	Set the Game panel to a 400 x 300 size. Do this via menu: Edit | Project Settings | Player. Ensure that the Resolution | Default is Full Screen setting check is unchecked, and the width/height is set to 400 x 300. Then, in the Game panel, select Stand Alone (400 x 300). This will allow us to test the stretching of our image to a width of 400 pixels.
	Import the provided folder, which is called Images. In the Inspector tab, ensure that the unity5_learn image has Texture Type set to Texture. If it does not, then choose Texture from the drop-down list, and click on the Apply button. The following screenshot shows the Inspector tab with the Texture settings:[image: How to do it...]

	In the Hierarchy panel, add a UI | RawImage GameObject to the scene named RawImage-unity5.Note
If you wish to prevent the distortion and stretching of an image, then use the UI Sprite GameObject instead, and ensure that you check the Preserve Aspect option, in its Image (Script) component, in the Inspector panel.

	Ensure that the GameObject RawImage-unity5 is selected in the Hierarchy panel. From your Project folder (Images), drag the unity5_learn image into the Raw Image (Script) public property Texture. Click on the Set Native Size button to preview the image before it gets stretched, as shown:[image: How to do it...]

	Now, in Rect Transform, click on the Anchor Presets square icon, which will result in several rows and columns of preset position squares appearing. Hold down SHIFT and ALT and click on the top row and the stretch column.
	The image will now be positioned neatly at the top of the Game panel, and will be stretched to the full width of 400 pixels.

How it works...

You have ensured that an image has Texture Type set to Texture. You added a UI RawImage control to the scene. The RawImage control has been made to display the unity5_learn image file.
The image has been positioned at the top of the Game panel, and using the anchor and pivot presets, it has made the image stretch to fill the whole width, which we set to 400 pixels via the Player settings.

There's more...

There are some details that you don't want to miss:
Working with Sprites and UI Image components

If you simply wish to display non-animated images, then Texture images and UI RawImage controls are the way to go. However, if you want more options on how an image should be displayed (such as tiling, and animation), then the UI Sprite control should be used instead. This control needs image files to be imported as the Sprite (2D and UI) type.
Once an image file has been dragged into the UI Image control's Sprite property, additional properties will be available, such as Image Type, options to preserve aspect ratio, and so on.
[image: Working with Sprites and UI Image components]

See also

An example of tiling a Sprite image can be found in the Revealing icons for multiple object pickups by changing the size of a tiled image recipe in Chapter 2, Inventory GUIs.

Creating UI Buttons to move between scenes

As well as scenes where the player plays the game, most games will have menu screens, which display to the user messages about instructions, high scores, the level they have reached so far, and so on. Unity provides the UI Buttons to make it easy to offer users a simple way to indicate their choice of action on such screens.
In this recipe, we'll create a very simple game consisting of two screens, each with a button to load the other one, similar to the following screenshot:
[image: Creating UI Buttons to move between scenes]

OEBPS/graphics/1362OT_01_29.jpg
Main menu
(page 1)

OEBPS/graphics/1362OT_01_45.jpg
) Toggle

Canvas
&
EventSystem

Hello

static controls

+Panel, Text
«Image, Raw Image

Interactive
controls

+Button, Toggle
«slider, Scrollbar

non-visble interaction
components

~Toggle Group
~Input Field

&) e
behaviors

OEBPS/graphics/1362OT_01_13.jpg
© Inspector

4 unityS_learn Import Settings
Assets » Images. e

Texture Type FZRIITY

Alpha from Gf Normal map
Editor GUI and Legacy GUI
Wrap Mode | it (20 and Ul

OEBPS/graphics/1362OT_01_01.jpg
Hello World

OEBPS/graphics/1362OT_01_27.jpg
Star
Wars

3 g ssme 70, in @ gutaxy e
Srraway...

2475 zperiod of civil wax.
At/ spaceships, striking

Sy 7 frdden base, hone wan
A/ 75t victory against

22207 Galactic Empue.,

OEBPS/graphics/1362OT_01_04.jpg
15:09:06

OEBPS/graphics/1362OT_01_03.jpg

OEBPS/graphics/1362OT_01_31.jpg
= Hierarchy.

© inspector

Create +| (@A

Main Camera,

Button

2 project
Creme -] (&

17 Favorites

G MenuAchigns

™ [Button

Tag [Unagoed

& tayer[u

Rect Transform

7© Canvas Renderer

» [5M 1mage (script

v (& M Button (scripy)

Highlighted Coa
Pressed Color
Disabled Color
Color Multiple!
Fade Duration

Navigation

On Click)

(Runime Oniy

e CamereT o] pagez

OEBPS/graphics/1362OT_01_15.jpg
v (2] M Image (script)
Source Image
Color
Material

Image Type
Preserve Aspect

OEBPS/graphics/1362OT_01_14.jpg
@ project))
Croa -] Huriys_ea

> Favorites | — /

None (Materia)

75 Assets

&

OEBPS/graphics/PacktLibLogo.jpg

OEBPS/cover/cover.jpg
Matt Smith Chico Queiroz [

OEBPS/graphics/1362OT_01_05.jpg
ferarchy.

© inspector |

Create -| (&

Text-clock

2 project

a

M [Text=clock
Tag[Unagged ¢

Creae - (&
> Favorites

an
Assets » cripts
@ Clockoigial

OEBPS/graphics/1362OT_01_02.jpg
= Hierarchy.

© inspector

Create -| (&

Main Camera
¥ Canvas

Eventsystem

W ™ [Text

Tag[Unagees] Layer[ui__

Rect Transform

| Text scri

Vil wortd

Normal
4

BT —C— —

e Spacing
Rich Text

Vertical Overflow [Overfow

OEBPS/graphics/1362OT_01_07.jpg
Countdown seconds remaining = 25

OEBPS/graphics/1362OT_01_20.jpg
0.3268826

OEBPS/graphics/1362OT_01_06.jpg
UNITY 5 IS HERE.
LEARN IT.

OEBPS/graphics/1362OT_01_30.jpg
jerarchy
Create -| (&
Main Camera
¥ Canvas
¥ Button

Text
Eventsystem

© Inspector

W ™ [Text

Tag[Unagged 3] Layer [0
Rect Transform
Canvas Renderer

Text
goto page 2

A
[Cstatic +

Te.

@
@

