
		
			[image: 9781803234502cov_Low_Res.png]
		

	
		
			React Key Concepts

		

		
			Consolidate your knowledge of React's core features

		

		
			Maximilian Schwarzmüller

		

		
			React Key Concepts

			Copyright © 2022 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Packt Publishing and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Author: Maximilian Schwarzmüller

			Reviewer: Cihan Yakar

			Senior Editor: Megan Carlisle

			Acquisitions Manager: Bridget Kenningham

			Acquisitions Editor: Sneha Shinde

			Production Editor: Shantanu Zagade

			Editorial Board: Vijin Boricha, Megan Carlisle, Ketan Giri, Heather Gopsill, Akin Babu Joseph, Bridget Kenningham, Manasa Kumar, Alex Mazonowicz, Monesh Mirpuri, Aaron Nash, Abhishek Rane, Brendan Rodrigues, Ankita Thakur, Nitesh Thakur, and Jonathan Wray

			First published: December 2022

			Production reference: 3130723

			ISBN: 978-1-80323-450-2

			Published by Packt Publishing Ltd.

			Livery Place, 35 Livery Street

			Birmingham B3 2PB, UK

		

		
			
			

		

		
			Table of Contents

			Preface

			1. React – What and Why

			Introduction

			What Is React?

			The Problem with "Vanilla JavaScript"

			React and Declarative Code

			How React Manipulates the DOM

			Introducing Single Page Applications

			Creating a React Project

			Summary and Key Takeaways

			What's Next?

			Test Your Knowledge!

			2. Understanding React Components and JSX

			Introduction

			What Are Components?

			Why Components?

			The Anatomy of a Component

			What Exactly Are Component Functions?

			What Does React Do with All These Components?

			Built-in Components

			Naming Conventions

			JSX vs HTML vs Vanilla JavaScript

			Using React without JSX

			JSX Elements Are Treated like Regular JavaScript Values

			JSX Elements Must Be Self-Closing

			Outputting Dynamic Content

			When Should You Split Components?

			Summary and Key Takeaways

			What's Next?

			Test Your Knowledge!

			Apply What You Learned

			Activity 2.1: Creating a React App to Present Yourself

			Activity 2.2: Creating a React App to Log Your Goals for This Book

			3. Components and Props

			Introduction

			Not There Yet

			Using Props in Components

			Passing Props to Components

			Consuming Props in a Component

			Components, Props, and Reusability

			The Special "children" Prop

			Which Components Need Props?

			How to Deal with Multiple Props

			Spreading Props

			Prop Chains/Prop Drilling

			Summary and Key Takeaways

			What's Next?

			Test Your Knowledge!

			Apply What You Learned

			Activity 3.1: Creating an App to Output Your Goals for This Book

			4. Working with Events and State

			Introduction

			What's the Problem?

			How Not to Solve the Problem

			A Better Incorrect Solution

			Properly Reacting to Events

			Updating State Correctly

			A Closer Look at useState()

			A Look under the Hood of React

			Naming Conventions

			Allowed State Value Types

			Working with Multiple State Values

			Using Multiple State Slices

			Managing Combined State Objects

			Updating State Based on Previous State Correctly

			Two-Way Binding

			Deriving Values from State

			Working with Forms and Form Submission

			Lifting State Up

			Summary and Key Takeaways

			What's Next?

			Test Your Knowledge!

			Apply What You Learned

			Activity 4.1: Building a Simple Calculator

			Activity 4.2: Enhancing the Calculator

			5. Rendering Lists and Conditional Content

			Introduction

			What Are Conditional Content and List Data?

			Rendering Content Conditionally

			Different Ways of Rendering Content Conditionally

			Utilizing Ternary Expressions

			Abusing JavaScript Logical Operators

			Get Creative!

			Which Approach Is Best?

			Setting Element Tags Conditionally

			Outputting List Data

			Mapping List Data

			Updating Lists

			A Problem with List Items

			Keys to the Rescue!

			Summary and Key Takeaways

			What's Next?

			Test Your Knowledge!

			Apply What You Learned

			Activity 5.1: Showing a Conditional Error Message

			Activity 5.2: Outputting a List of Products

			6. Styling React Apps

			Introduction

			How Does Styling Work in React Apps?

			Using Inline Styles

			Setting Styles via CSS Classes

			Setting Styles Dynamically

			Conditional Styles

			Combining Multiple Dynamic CSS Classes

			Merging Multiple Inline Style Objects

			Building Components with Customizable Styles

			Customization with Fixed Configuration Options

			The Problem with Unscoped Styles

			Scoped Styles with CSS Modules

			The styled-components Library

			Using Other CSS or JavaScript Styling Libraries and Frameworks

			Summary and Key Takeaways

			What's Next?

			Test Your Knowledge!

			Apply What You Learned

			Activity 6.1: Providing Input Validity Feedback upon Form Submission

			Activity 6.2: Using CSS Modules for Style Scoping

			7. Portals and Refs

			Introduction

			A World without Refs

			Refs versus State

			Using Refs for More than DOM Access

			Forwarding Refs

			Controlled versus Uncontrolled Components

			React and Where Things End up in the DOM

			Portals to the Rescue

			Summary and Key Takeaways

			What's Next?

			Test Your Knowledge!

			Apply What You Have Learned

			Activity 7.1: Extract User Input Values

			Activity 7.2: Add a Side-Drawer

			8. Handling Side Effects

			Introduction

			What's the Problem?

			Understanding Side Effects

			Side Effects Are Not Just about HTTP Requests

			Dealing with Side Effects with the useEffect() Hook

			How to Use useEffect()

			Effects and Their Dependencies

			Unnecessary Dependencies

			Cleaning Up after Effects

			Dealing with Multiple Effects

			Functions as Dependencies

			Avoiding Unnecessary Effect Executions

			Effects and Asynchronous Code

			Rules of Hooks

			Summary and Key Takeaways

			What's Next?

			Test Your Knowledge!

			Apply What You Learned

			Activity 8.1: Building a Basic Blog

			9. Behind the Scenes of React and Optimization Opportunities

			Introduction

			Revisiting Component Evaluations and Updates

			What Happens When a Component Function Is Called

			The Virtual DOM vs the Real DOM

			State Batching

			Avoiding Unnecessary Child Component Evaluations

			Avoiding Costly Computations

			Utilizing useCallback()

			Avoiding Unnecessary Code Download

			Reducing Bundle Sizes via Code Splitting (Lazy Loading)

			Strict Mode

			Debugging Code and the React Developer Tools

			Summary and Key Takeaways

			What's Next?

			Test Your Knowledge!

			Apply What You Learned

			Activity 9.1: Optimize an Existing App

			10. Working with Complex State

			Introduction

			A Problem with Cross-Component State

			Using Context to Handle Multi-Component State

			Providing and Managing Context Values

			Using Context in Nested Components

			Changing Context from Nested Components

			Getting Better Code Completion

			Context or "Lifting State Up"?

			Outsourcing Context Logic into Separate Components

			Combining Multiple Contexts

			Limitations of useState()

			Managing State with useReducer()

			Understanding Reducer Functions

			Dispatching Actions

			Summary and Key Takeaways

			What's Next?

			Test Your Knowledge!

			Apply What You Learned

			Activity 10.1: Migrating an App to the Context API

			Activity 10.2: Replacing useState() with useReducer()

			11. Building Custom React Hooks

			Introduction

			Why Would You Build Custom Hooks?

			What Are Custom Hooks?

			A First Custom Hook

			Custom Hooks: A Flexible Feature

			Custom Hooks and Parameters

			Custom Hooks and Return Values

			A More Complex Example

			Summary and Key Takeaways

			What's Next?

			Test Your Knowledge!

			Apply What You Learned

			Activity 11.1: Build a Custom Keyboard Input Hook

			12. Multipage Apps with React Router

			Introduction

			One Page Is Not Enough

			Getting Started with React Router and Defining Routes

			Adding Page Navigation

			From Link to NavLink

			Route Components versus "Normal" Components

			From Static to Dynamic Routes

			Extracting Route Parameters

			Creating Dynamic Links

			Navigating Programmatically

			Redirecting

			Nested Routes

			Handling Undefined Routes

			Lazy Loading

			Summary and Key Takeaways

			What's Next?

			Test Your Knowledge!

			Apply What You Learned

			Activity 12.1: Creating a Basic Three-Page Website

			Activity 12.2: Enhancing the Basic Website

			13. Managing Data with React Router

			Introduction

			Data Fetching and Routing Are Tightly Coupled

			Sending HTTP Requests without React Router

			Loading Data with React Router

			Enabling These Extra Router Features

			Loading Data for Dynamic Routes

			Loaders, Requests, and Client-Side Code

			Layouts Revisited

			Reusing Data across Routes

			Handling Errors

			Onward to Data Submission

			Working with action() and Form Data

			Returning Data Instead of Redirecting

			Controlling Which <Form> Triggers Which Action

			Reflecting the Current Navigation Status

			Submitting Forms Programmatically

			Behind-the-Scenes Data Fetching and Submission

			Deferring Data Loading

			Summary and Key Takeaways

			What's Next?

			Test Your Knowledge!

			Apply What You Learned

			Activity 13.1: A To-Dos App

			14. Next Steps and Further Resources

			Introduction

			How Should You Proceed?

			Interesting Problems to Explore

			Build a Shopping Cart

			Build an Application's Authentication System (User Signup and Login)

			Build an Event Management Website

			Common and Popular React Libraries

			Other Resources

			Beyond React for Web Applications

			Final Words

			Appendix

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

	

		
			Preface

		

		
			About the Book

			As the most popular JavaScript library for building modern, interactive user interfaces, React is an in-demand framework that'll bring real value to your career or next project. But like any technology, learning React can be tricky, and finding the right teacher can make things a whole lot easier.

			Maximilian Schwarzmüller is a bestselling instructor who has helped over two million students worldwide learn how to code, and his latest React video course (React—The Complete Guide) has over six hundred thousand students on Udemy.

			Max has written this quick-start reference to help you get to grips with the world of React programming. Simple explanations, relevant examples, and a clear, concise approach make this fast-paced guide the ideal resource for busy developers.

			This book distills the core concepts of React and draws together its key features with neat summaries, thus perfectly complementing other in-depth teaching resources. So, whether you've just finished Max's React video course and are looking for a handy reference tool, or you've been using a variety of other learning material and now need a single study guide to bring everything together, this is the ideal companion to support you through your next React projects. Plus, it's fully up to date for React 18, so you can be sure you're ready to go with the latest version.

			About the Author

			Maximilian Schwarzmüller is a professional web developer and bestselling online course instructor. Having learned to build websites and web user interfaces the hard way with just HTML, CSS, and (old-school) JavaScript, he embraced modern frontend frameworks and libraries like Angular and React right from the start.

			Having the perspective of a self-taught freelancer, Maximilian started teaching web development professionally in 2015. On Udemy, he is now one of the most popular and biggest online instructors, teaching more than 2mn students worldwide. Students can become developers by exploring more than 40 courses, most of those courses being bestsellers in their respective categories. In 2017, together with a friend, Maximilian also founded Academind to deliver even more and better courses to even more students. For example, Academind's "React – The Complete Guide" course is the bestselling React course on the Udemy platform, reaching more than 500,000 students.

			Besides helping students from all over the world as an online instructor, Maximilian never stopped working as a web developer. He still loves exploring and mastering new technologies, building exciting digital products, and sharing his knowledge with fellow developers. He's driven by his passion for good code and engaging websites and apps. Beyond web development, Maximilian also works as a mobile app developer and cloud expert. He holds multiple AWS certifications, including the "AWS Certified Solutions Architect – Professional" certification.

			Apart from his courses on Udemy, Maximilian also publishes free tutorial videos on Academind's YouTube channel (https://youtube.com/c/academind) and articles on academind.com. You can also follow him on Twitter (@maxedapps).

			Audience

			This book is designed for developers who already have some familiarity with React basics. It can be used as a standalone resource to consolidate understanding or as a companion guide to a more in-depth course. To get the most value from this book, it is advised that readers have some understanding of the fundamentals of JavaScript, HTML, and CSS.

			Prospective Table of Contents

			Chapter 1, React – What and Why, will re-introduce the reader to React.js. Assuming that React.js is not brand-new to the reader, this chapter will clarify which problems React solves, which alternatives exist, how React generally works, and how React projects may be created.

			Chapter 2, Understanding React Components and JSX, will explain the general structure of a React app (a tree of components) and how components are created and used in React apps.

			Chapter 3, Components and Props, will ensure that readers are able to build reusable components by using a key concept called "props".

			Chapter 4, Working with Events and State, will cover how to work with state in React components, which different options exist (single state vs multiple state slices) and how state changes can be performed and used for UI updates.

			Chapter 5, Rendering Lists and Conditional Content, will explain how React apps can render lists of content (e.g. list of user posts) and conditional content (e.g. alert if incorrect values were entered into an input field).

			Chapter 6, Styling React Apps, will clarify how React components can be styled and how styles can be applied dynamically or conditionally, touching on popular styling solutions like vanilla CSS, styled components, and CSS modules for scoped styles.

			Chapter 7, Portals and Refs, will explain how direct DOM access and manipulation is facilitated via the "refs" feature which is built-into React. In addition, readers will learn how Portals may be used to optimize the rendered DOM element structure.

			Chapter 8, Handling Side Effects, will discuss the useEffect hook, explaining how it works, how it can be configured for different use-cases and scenarios, and how side effects can be handled optimally with this React hook.

			Chapter 9, Behind the Scenes of React and Optimization Opportunities, will take a look behind the scenes of React and dive into core topics like the virtual DOM, state update batching and key optimization techniques that help developers avoid unnecessary re-render cycles (and thus improve performance).

			Chapter 10, Working with Complex State, will explain how the advanced React hook useReducer works, when and why you might want to use it and how it can be used in React components to manage more complex component state with it. In addition, React's Context API will be explored and discussed in-depth, allowing developers to manage app-wide state with ease.

			Chapter 11, Building Custom React Hooks, will explain how developers can build their own, custom React hooks and what the advantage of doing so is.

			Chapter 12, Multipage Apps with React Router, will explain what React Router is and how this extra library can be used to build multipage experiences in a React single-page-application.

			Chapter 13, Managing Data with React Router, will dive deeper into React Router and explore how this package can also help with fetching and managing data.

			Chapter 14, Next Steps and Further Resources, will further cover the core and "extended" React ecosystem and which resources may be helpful for next steps.

			Conventions

			Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Store the paragraph element reference in a constant named paragraphElement."

			Words that you see on the screen, for example, in menus or dialog boxes, also appear in the text like this: "In the header with the navigation bar you will find the following components: the navigation items (Login and Profile) and the Logout button."

			A block of code is set as follows:

			const buttonElement = document.querySelector('button');

			const paragraphElement = document.querySelector('p');

			function updateTextHandler() {

			 paragraphElement.textContent = 'Text was changed!';

			}

			buttonElement.addEventListener('click', updateTextHandler);

			New terms and important words are shown like this: "It is currently used by over 5% of the top 1,000 websites and compared to other popular frontend JavaScript frameworks like Angular, React is leading by a huge margin, when looking at key metrics like weekly package downloads via npm (Node Package Manager), which is a tool commonly used for downloading and managing JavaScript packages."

			Setting Up Your Environment

			Before you can successfully install React.js on your system, you will need to ensure you have the following software installed:

			Node.js and npm (included with your installation by default)

			These are available for download at https://nodejs.org/en/.

			The home page of this site should automatically provide you with the most recent installation options for your platform and system. For more options, select Other Downloads (the first of three links visible beneath each of your default options). This will open a new page through which you can explore all installation choices for all main platforms, as shown in the screenshot below:

			
				
					[image: Figure 0.1: Download Node.js source code or pre-built installer

]
				

			

			Figure 0.1: Download Node.js source code or pre-built installer

			At the bottom of this page, you will find a bullet list of available resources should your system require specialised instructions, including guidance on Node.js installation via source code and node package manager.

			Once you have downloaded Node.js through this website, find the .pkg file in your downloads folder. Double-click this file to open the Install Node.js pop-up window, then simply follow given instructions to complete your installation.

			Installing React.js

			React.js projects can be created in various ways, including custom-built project setups that incorporate webpack, babel and other tools. The easiest and recommended way is the usage of the create-react-app command though. This book uses this method. The creation of a react app will be covered in Chapter 1, React.js – What and Why, but you may refer to this section for step-by-step instructions on this task.

			Note

			For further guidance regarding the installation and setup of your React.js environment, resources are available at the following: https://reactjs.org/docs/getting-started.html

			Perform the following steps to install React.js on your system:

			
					Open your terminal (Powershell/command prompt for Windows; bash for Linux).

					Use the make directory command to create a new project folder with a name of your choosing (e.g. mkdir react-projects) and navigate to that directory using the change directory command (e.g. cd react-projects).

					Enter the following command prompt to create a new project directory within this folder:npx create-react-app my-app

					Grant permission when prompted to install all required files and folders needed for basic React setup. This may take several minutes.

					Once completed, navigate to your new directory using the cd command:cd my-app

					Open a terminal window in this new project directory and run the following command to start a Node.js development server and lauch a new browser to preview your app locally:npm start

					This should open a new browser window automatically, but if it does not, open your browser manually type http://localhost:3000 in the address/location bar to navigate to localhost:3000, as shown in the screenshot below:

			

			
				
					[image: Figure 0.2: Access React App in Your Browser

]
				

			

			Figure 0.2: Access React App in Your Browser

			
					When you are ready to stop development for the time being, use Ctrl + C in the same terminal as in step 6 to quit running your server. To relaunch it, simply run the npm start command in that terminal once again. Keep the process started by npm start up and running while developing, as it will automatically update the website loaded on localhost:3000 with any changes you make.

			

			Downloading the Code Bundle

			Download the code files from GitHub at https://packt.link/IeoCT. Refer to these code files for the complete code bundle.

			Get in Touch

			Feedback from our readers is always welcome.

			General feedback: If you have any questions about this book, please mention the book title in the subject of your message and email us at customercare@packtpub.com.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you could report this to us. Please visit www.packtpub.com/support/errata and complete the form.

			Piracy: If you come across any illegal copies of our works in any form on the Internet, we would be grateful if you could provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Please Leave a Review

			Let us know what you think by leaving a detailed, impartial review on O'Reilly or Amazon. We appreciate all feedback. It helps us continue to make great products and help aspiring developers build their skills. Please spare a few minutes to give your thoughts. It makes a big difference to us.

			Download A Free PDF Copy Of This Book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook purchase not compatible with the device of your choice?

			Don't worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, and on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don't stop there; you can get exclusive access to discounts, newsletters, and great free content in your inbox daily.

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below:

			

			
				
					[image: QR Code]
				

			

			https://packt.link/free-ebook/9781803234502

			
					Submit your proof of purchase.

					That's it! We'll send your free PDF and other benefits to your email directly.

			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

		
			
			

		

	
		
			
			

		

		
			1. React – What and Why

		

		
			Learning Objectives

			By the end of this chapter, you will be able to do the following:

			� Describe what React is and why you would use it

			� Compare React to web projects built with just JavaScript

			� Create new React projects

			Introduction

			React.js (or just React, as it's also called and as it'll be referred to for the majority of this book) is one of the most popular frontend JavaScript libraries—maybe even the most popular one, according to a 2021 Stack Overflow developer survey. It is currently used by over 5% of the top 1,000 websites and compared to other popular frontend JavaScript frameworks like Angular, React is leading by a huge margin, when looking at key metrics like weekly package downloads via npm (Node Package Manager), which is a tool commonly used for downloading and managing JavaScript packages.

			Though it is certainly possible to write good React code without fully understanding how React works and why you're using it, you should always aim to understand the tools you're working with as well as the reasons for picking a certain tool in the first place.

			Therefore, before considering anything about its core concepts and ideas or reviewing example code, you first need to understand what React actually is and why it exists. This will help you understand how React works internally and why it offers the features it does.

			If you already know why you're using React, why solutions like React in general are being used instead of vanilla JavaScript (i.e. JavaScript without any frameworks or libraries, more on this in the next section), and what the idea behind React and its syntax is, you may of course skip this section and jump ahead to the more practice-oriented chapters later in this book.

			But if you only think that you know it and are not 100% certain, you should definitely follow along with this chapter first.

			What Is React?

			React is a JavaScript library, and if you take a look at the official webpage (Official React website and documentation: https://reactjs.org), you learn that it's actually a "JavaScript library for building user interfaces".

			But what does this mean?

			It should be clear what JavaScript is and why you use JavaScript in the browser (React is mostly a browser-side JavaScript library). JavaScript allows you to add interactivity to your website since, with JavaScript, you can react to user events and manipulate the page after it was loaded. This is extremely valuable as it allows you to build highly interactive web user interfaces.

			But what is a "library" and how does React help with "building user interfaces"?

			While you can have philosophical discussions about what a library is (and how it differs from a framework), the pragmatic definition of a library is that it's a collection of functionalities that you can use in your code to achieve results that would normally require more code and work from your side. Libraries help you write better and shorter code and enable you to implement certain features more quickly. In addition, since you can focus on your "core business logic", you not only move faster but are also likely to produce better code since you don't have to reinvent the wheel for problems that have been solved before by others.

			React is such a library—one that focuses on providing functionalities that help you create interactive and reactive user interfaces. Indeed, React deals with more than web interfaces (i.e. websites loaded in browsers). You can also build native mobile devices with React and React Native, which is another library that utilizes React under the hood. No matter which platform you're targeting though, creating interactive user interfaces with just JavaScript can quickly become very complex and overwhelming.

			Note

			The focus of this book is on React in general, and for simplicity, the focus lies on React for websites. With projects like React Native, you can also use React to build user interfaces for native mobile apps. The React concepts covered in this book still apply, no matter which target platform is chosen. But examples will focus on React for web browsers.

			The Problem with "Vanilla JavaScript"

			Vanilla JavaScript is a term commonly used in web development for referring to "JavaScript without any frameworks or libraries". That means, you write all the JavaScript on your own, without falling back to any libraries or frameworks that would provide extra utility functionalities. When working with vanilla JavaScript, you especially don't use major frontend frameworks or libraries like React or Angular.

			Using vanilla JavaScript generally has the advantage, that visitors of a website have to download less JavaScript code (as major frameworks and libraries typically are quite sizeable and can quickly add 50+ kb of extra JavaScript code that has to be downloaded).

			The downside of relying on vanilla JavaScript is, that you, as the developer, must implement all functionalities from the ground up on your own. This can be error-prone and highly time consuming. Therefore, especially more complex user interfaces and websites can quickly become very hard to manage with vanilla JavaScript.

			React simplifies the creation and management of such user interfaces by moving from an imperative to a declarative approach. Though this is a nice sentence, it can be hard to grasp if you haven't worked with React or similar frameworks before. To understand it and the idea behind "imperative vs declarative approaches" and why you might want to use React instead of just vanilla JavaScript, it's helpful to take a step back and evaluate how vanilla JavaScript works.

			Here's a short code snippet that shows how you could handle the following user interface actions with vanilla JavaScript:

			
					Add an event listener to a button to listen for click events.

					Replace the text of a paragraph with new text once a click on the button occurs.const buttonElement = document.querySelector('button');
const paragraphElement = document.querySelector('p');
function updateTextHandler() {
 paragraphElement.textContent = 'Text was changed!';
}
buttonElement.addEventListener('click', updateTextHandler);

			

			This example is deliberately kept simple, so it's probably not looking too bad or overwhelming. It's just a basic example to show how code is generally written with vanilla JavaScript (a more complex example will be discussed below). But even though this example is very straightforward and easy to digest, working with vanilla JavaScript will quickly reach its limits for feature-rich user interfaces and the code to handle various user interactions therefore also becomes more complex. Code can quickly grow significantly, and therefore maintaining it can become a challenge.

			In the preceding example, code is written with vanilla JavaScript and, therefore, imperatively. This means that you write instruction after instruction, and you describe every step that needs to be taken in detail.

			The code shown above could be translated to these more human-readable instructions:

			
					Look for an HTML element of type button to obtain a reference to the first button on the page.

					Create a constant (i.e., a data container) named buttonElement that holds that button reference.

					Repeat step 1 but get a reference to the first element that is of type of p.

					Store the paragraph element reference in a constant named paragraphElement.

					Add an event listener to the buttonElement that listens for click events and triggers the updateTextHandler function whenever such a click event occurs.

					Inside the updateTextHandler function, use the paragraphElement to set its textContent to "Text was changed!".

			

			Do you see how every step that needs to be taken is clearly defined and written out in the code?

			This shouldn't be too surprising because that is how most programming languages work: you define a series of steps that must be executed in order. It's an approach that makes a lot of sense because the order of code execution shouldn't be random or unpredictable.

			But when working with user interfaces, this imperative approach is not ideal. Indeed, it can quickly become cumbersome because, as a developer, you have to add a lot of instructions that despite adding little value, cannot simply be omitted. You need to write all the DOM (Document Object Model) instructions that allow your code to interact with elements, add elements, manipulate elements. etc.

			Your core business logic (e.g., deriving and defining the actual text that should be set after a click) therefore often makes up only a small chunk of the overall code. When controlling and manipulating web user interfaces with JavaScript, a huge chunk (often the majority) of your code is frequently made up of DOM instructions, event listeners, HTML element operations, and UI state management.

			Therefore, you end up describing all the steps that are required to interact with the UI technically and all the steps that are required to derive the output data (i.e., the desired final state of the UI).

			Note

			This book assumes that you are familiar with the DOM (Document Object Model). In a nutshell, the DOM is the "bridge" between your JavaScript code and the HTML code of the website with which you want to interact. Via the built-in DOM API, JavaScript is able to create, insert, manipulate, delete, and read HTML elements and their content.

			You can learn more about the DOM in this article: https://academind.com/tutorials/what-is-the-dom.

			Modern web user interfaces are often quite complex, with lots of interactivity going on behind the scenes. Your website might need to listen for user input in an input field, send that entered data to a server to validate it, output a validation feedback message on the screen, and show an error overlay modal if incorrect data is submitted.

			This is not a complex example in general, but the vanilla JavaScript code for implementing such a scenario can be overwhelming. You end up with lots of DOM selection, insertion, and manipulation operations, as well as multiple lines of code that do nothing but manage event listeners. And keeping the DOM updated, without introducing bugs or errors, can be a nightmare since you must ensure that you update the right DOM element with the right value at the right time. Below, you will find a screenshot of some example code for the described use-case.

			Note

			The full, working, code can be found on GitHub at https://packt.link/tLSLU.

			If you take a look at the JavaScript code in the screenshot (or in the linked repository), you will probably be able to imagine how a more complex user interface is likely to look.

			
				
					[image: Figure 1.1. An example JavaScript code file that contains over 100 lines

of code for a fairly trivial user interface

]
				

			

			Figure 1.1. An example JavaScript code file that contains over 100 lines of code for a fairly trivial user interface

			This example JavaScript file already contains roughly 110 lines of code. Even after minifying ("minifying" means that code is shortened automatically, e.g. by replacing long variable names with shorter ones and removing redundant whitespace; in this case via https://javascript-minifier.com/) it and splitting the code across multiple lines thereafter (to count the raw lines of code), it still has around 80 lines of code. That's a full 80 lines of code for a simple user interface with only basic functionality. The actual business logic (i.e., input validation, determining if and when overlays should be shown, and defining the output text) only makes up a small fraction of the overall codebase—around 20 to 30 lines of code, in this case (around 20 after minifying).

			That's roughly 75% of code spent on pure DOM interaction, DOM state management, and similar boilerplate tasks.

			As you can see by these examples and numbers, controlling all the UI elements and their different states (e.g., whether an info box is visible or not) is a challenging task and trying to create such interfaces with just JavaScript often leads to complex code that might even contain errors.

			That's why the imperative approach, wherein you must define and write down every single step, has its limits in situations like this. This is the reason why React provides utility functionalities that allow you to write code differently: with a declarative approach.

			Note

			This is not a scientific paper, and the preceding example is not meant to act as an exact scientific study. Depending on how you count lines and which kind of code you consider to be "core business logic", you will end up with higher or lower percentage values. The key message doesn't change though: Lots of code (in this case most of it) deals with the DOM and DOM manipulation—not with the actual logic that defines your website and its key features.

			React and Declarative Code

			Coming back to the first, simple, code snippet from above, here's that same code snippet, this time using React:

			import { useState } from 'react';

			function App() {

			 const [outputText, setOutputText] = useState('Initial text');

			 function updateTextHandler() {

			 setOutputText('Text was changed!');

			 }

			 return (

			 <>

			 <button onClick={updateTextHandler}>Click to change text</button>

			 <p>{outputText}</p>

			 </>

);

			}

			This snippet performs the same operations as the first did with just vanilla JavaScript:

			
					Add an event listener to a button to listen for click events (now with some React-specific syntax: onClick={…}).

					Replace the text of a paragraph with new text once the click on the button occurred.

			

			Nonetheless, this code looks totally different—like a mixture of JavaScript and HTML. And indeed, React uses a syntax extension called JSX (i.e., JavaScript with embedded XML). For the moment, it's enough to understand that this JSX code will work because of a pre-processing step that's part of the build workflow of every React project.

			Pre-processing means that certain tools, which are part of React projects, analyze and transform the code before its deployed. This allows for development-only syntax like JSX which would not work in the browser and is therefore transformed to regular JavaScript before deployment. (You'll get a thorough introduction into JSX in Chapter 2, Understanding React Components and JSX.)

			In addition, the snippet shown above contains a React specific feature: State. State will be discussed in greater detail later in the book (Chapter 4, Working with Events and State will focus on handling events and state with React). For the moment, you can think of this state as a variable that, when changed, will trigger React to update the user interface in the browser.

			What you see in the preceding example is the "declarative approach" used by React: You write your JavaScript logic (e.g., functions that should eventually be executed), and you combine that logic with the HTML code that should trigger it or that is affected by it. You don't write the instructions for selecting certain DOM elements or changing the text content of some DOM elements. Instead, with React and JSX, you focus on your JavaScript business logic and define the desired HTML output that should eventually be reached. This output can and typically will contain dynamic values that are derived inside of your main JavaScript code.

			In the preceding example, outputText is some state managed by React. In the code, the updateTextHandler function is triggered upon a click, and the outputText state value is set to a new string value ('Text was changed!') with help of the setOutputText function. The exact details of what's going on here will be explored in Chapter 4.

			The general idea, though, is that the state value is changed and, since it's being referenced in the last paragraph (<p>{outputText}</p>), React outputs the current state value in that place in the actual DOM (and therefore on the actual web page). React will keep the paragraph updated, and therefore, whenever outputText changes, React will select this paragraph element again and update its textContent automatically.

			This is the declarative approach in action. As a developer, you don't need to worry about the technical details (for example, selecting the paragraph, updating its textContent). Instead, you will hand this work off to React. You will only need to focus on the desired end state(s) where the goal simply is to output the current value of outputText in a specific place (i.e., in the second paragraph in this case) on the page. It's React's job of doing the "behind the scenes" work of getting to that result.

			It turns out that this code snippet isn't shorter than the vanilla JavaScript one; indeed, it's actually even a bit longer. But that's only the case because this first snippet was deliberately kept simple and concise. In such cases, React actually adds a bit of overhead code. If that were your entire user interface, using React indeed wouldn't make too much sense. Again, this snippet was chosen because it allows us to see the differences at a glance. Things change if you take a look at the more complex vanilla JavaScript example from before) and compare that to its React alternative.

			Note

			Referenced code can be found on GitHub at http://packt.link/tLSLU and https://packt.link/YkpRa, respectively.

			
				
					[image: Figure 1.2. The code snippet from before, now implemented via React.

]
				

			

			Figure 1.2. The code snippet from before, now implemented via React.

			It's still not short because all the JSX code (i.e., the HTML output) is included in the JavaScript file. If you ignore pretty much the entire right side of that screenshot (since HTML was not part of the vanilla JavaScript files either), the React code gets much more concise. But, most importantly, if you take a closer look at all the React code (also in the first, shorter snippet), you will notice that there are absolutely no operations that would select DOM elements, create or insert DOM elements, or edit DOM elements.

			And this is the core idea of React. You don't write down all the individual steps and instructions; instead, you focus on the "big picture" and the desired end state(s) of your page content. With React, you can merge your JavaScript and markup code without having to deal with the low-level instructions of interacting with the DOM like selecting elements via document.getElementById() or similar operations.

			Using this declarative approach, instead of the imperative approach with vanilla JavaScript, allows you, the developer, to focus on your core business logic and the different states of your HTML code. You don't need to define all the individual steps that have to be taken (like "adding an event listener", "selecting a paragraph", etc.), and this simplifies the development of complex user interfaces tremendously.

			Note

			It is worth emphasizing that React is not a great solution if you're working on a very simple user interface. If you can solve a problem with a few lines of vanilla JavaScript code, there is probably no strong reason to integrate React into the project.

			Looking at React code for the first time, it can look very unfamiliar and strange. It's not what you're used to from JavaScript. Still, it is JavaScript—just enhanced with this JSX feature and various React-specific functionalities (like State). It may be less confusing if you remember that you typically define your user interface (i.e., your content and its structure) with HTML. You don't write step-by-step instructions there either, but rather create a nested tree structure with HTML tags. You express your content, the meaning of different elements, and the hierarchy of your user interface by using different HTML elements and by nesting HTML tags.

			If you keep this in mind, the "traditional" (vanilla JavaScript) approach of manipulating the UI should seem rather odd. Why would you start defining low-level instructions like "insert a paragraph element below this button and set its text to <some text>" if you don't do that in HTML at all? React in the end brings back that HTML syntax, which is far more convenient when it comes to defining content and structure. With React, you can write dynamic JavaScript code side-by-side with the UI code (i.e., the HTML code) that is affected by it or related to it.

			How React Manipulates the DOM

			As mentioned earlier, when writing React code, you typically write it as shown above: You blend HTML with JavaScript code by using the JSX syntax extension.

			It is worth pointing out that JSX code does not run like this in browsers. It instead needs to be pre-processed before deployment. The JSX code must be transformed to regular JavaScript code before being served to browsers. The next chapter will take a closer look at JSX and what it's transformed to. For the moment, though, simply keep in mind that JSX code must be transformed.

			Nonetheless, it is worth knowing that the code to which JSX will be transformed will also not contain any DOM instructions. Instead, the transformed code will execute various utility methods and functions that are built-into React (in other words, those that are provided by the React package that needs to be added to every React project). Internally, React creates a virtual DOM-like tree structure that reflects the current state of the user interface. This book takes a closer look at this abstract, virtual DOM and how React works in Chapter 9, Behind the Scenes of React and Optimization Opportunities. Therefore, React (the library) splits its core logic across two main packages:

			
					The main react package

					And the react-dom package

			

			The main react package is a third-party JavaScript library that needs to be imported into a project to use React's features (like JSX or state) there. It's this package that creates this virtual DOM and derives the current UI state. But you also need the react-dom package in your project if you want to manipulate the DOM with React.

			The react-dom package, specifically the react-dom/client part of that package, acts as a "translation bridge" between your React code, the internally generated virtual DOM, and the browser with its actual DOM that needs to be updated. It's the react-dom package that will produce the actual DOM instructions that will select, update, delete, and create DOM elements.

			This split exists because you can also use React with other target environments. A very popular and well-known alternative to the DOM (i.e., to the browser) would be React Native, which allows developers to build native mobile apps with help of React. With React Native, you also include the react package into your project, but in place of react-dom, you would use the react-native package. In this book, "React" refers to both the react package and the "bridge" packages (like react-dom).

			Note

			As mentioned earlier, this book focuses on React itself. The concepts explained in this book, therefore, will apply to both web browsers and websites as well as mobile devices. Nonetheless, all examples will focus on the web and react-DOM since that avoids introducing extra complexity.

			Introducing Single Page Applications

			React can be used to simplify the creation of complex user interfaces, and there are two main ways of doing that:

			
					Manage parts of a website (e.g., a chat box in the bottom left corner).

					Manage the entire page and all user interaction that occurs on it.

			

			Both approaches are viable, but the more popular and common scenario is the second one: Using React to manage the entire web page, instead of just parts of it. This approach is more popular because most websites that have complex user interfaces, have not just one complex element but multiple elements on their pages. Complexity would actually increase if you were to start using React for some website parts without using it for other areas of the site. For this reason, it's very common to manage the entire website with React.

			This doesn't even stop after using React on one specific page of the site. Indeed, React can be used to handle URL path changes and update the parts of the page that need to be updated in order to reflect the new page that should be loaded. This functionality is called routing and third-party packages like react-router-dom (see Chapter 12, Multipage Apps with React Router), which integrate with React, allow you to create a website wherein the entire user interfaces is controlled via React.

			A website that does not just use React for parts of its pages but instead for all subpages and for routing is called a Single Page Application (SPA) because it consists of only one HTML file (typically named index.html) which is used to initially load the React JavaScript code. Thereafter, the React library and your React code take over and control the actual user interface. This means that the entire user interface is created and managed by JavaScript via React and your React code.

			Creating a React Project

			To work with React, the first step is the creation of a React project. This can be done in multiple ways, but the most straightforward and easiest way is to use the create-react-app utility command line tool. This is a tool maintained by (parts of) the React team, and you can install it as a Node.js package via the Node Package Manager (npm). Once installed, this tool can be used to create a project folder that comes with React pre-installed, as well as some other tools, such as the Jest package for automated testing.

			You need a project setup like this because you typically use features like JSX which wouldn't work in the browser without prior code transformation. Therefore, as mentioned earlier, a pre-processing step is required, and the React project created via create-react-app includes such a step as part of the code build workflow.

			To create a project with create-react-app, you must have Node.js installed—preferably the latest (or latest LTS) version. You can get the official Node.js installer for all operating systems from https://nodejs.org/. Once you have installed Node.js, you will also gain access to the built-in npm and npx commands, which you can use to utilize the create-react-app package to create a new project.

			You can run the following command inside of your command prompt (Windows), bash (Linux), or terminal (macOS) program. Just make sure that you navigated (via cd) into the folder in which you want to create your new project.

			npx create-react-app my-react-project

			This command will create a new subfolder with a basic React project setup (i.e., with various files and folders) in the place where you ran it. You should run it in some path on your system where you have full read and write access and where you're not conflicting with any system or other project files.

			The exact project structure (that is, the file names and folder names) may vary over time, but generally, every new React project contains a couple of key files and folders:

			
					A src/ folder that contains the main source code files for the project:	An index.js file which is the main entry script file that will be executed first
	An App.js file which contains the root component of the application (you'll learn more about components in the next chapter)
	Various styling (*.css) files that are imported by the JavaScript files
	Other files, like code files for automated tests

					A public/ folder which contains static files that will be part of the final website:	This folder may contain static images like favicons
	The folder also contains an index.html file which is the single HTML page of this website

					package.json and package-lock.json are files that manage third-party dependencies of your project:	Production dependencies like react or react-dom
	Development dependencies like jest for automated tests

Note
package.json is the file in which you actually manage packages and their versions. package-lock.json is created automatically (by Node.js). It locks in exact dependency and sub-dependency versions, whereas package.json only specifies version ranges. You can learn more about these files and package versions on https://docs.npmjs.com/.

					The node_modules folder holds the actual third-party package code of the packages that are listed in the package.json file. This node_modules folder can be deleted since you can recreate it by running npm install inside of the project folder

			

			Most of the React code will be written in the App.js file or custom components that will be added to the project. This book will explore components in the next chapter.

			Note

			The node_modules folder can become very big since it contains all projects dependencies and dependencies of dependencies. Therefore, it's typically not included if projects are shared with other developers or pushed to GitHub. The package.json file is all you need. By running npm install, the node_modules folder will be recreated locally.

			Once the project is created, you can start writing your code. To preview your code on a live website locally on your system, you can run npm start inside of the project folder. This will start a built-in development server that pre-processes, builds, and hosts your React-powered SPA. This process should normally open the preview page in a new browser tab automatically. If that doesn't happen, you can manually open a new tab and navigate to localhost:3000 there (unless you see a different address as output in the window where you executed npm start, in which case, use the address that's shown after you ran npm start).

			The preview website that opens up will automatically reload and reflect code changes whenever you save changes to your code.

			When you're done with development for the day, you can quit the running development server process via CTRL + C (in the command prompt or terminal window where you started it via npm start). To continue development and get back that live preview website, you can always restart it by running npm start (inside of the project folder) again.

			Summary and Key Takeaways

			
					React is a library, though it's actually a combination of two main packages: react and react-dom.

					Though it is possible to build non-trivial user interfaces without React, simply using vanilla JavaScript to do so can be cumbersome, error-prone, and hard to maintain.

					React simplifies the creation of complex user interfaces by providing a declarative way to define the desired end state(s) of the UI.

					Declarative means that you define the target user interface content and structure, combined with different states (e.g., "is a modal open or closed?"), and you leave it up to React to figure out the appropriate DOM instructions.

					The react package itself derives UI states and manages a virtual DOM. It's "bridges" like react-dom or react-native that translate this virtual DOM into actual UI (DOM) instructions.

					With React, you can build Single Page Applications (SPAs), meaning that React is used to control the entire user interface on all pages as well as the routing between pages.

					React projects can be created with help of the create-react-app package, which provides a readily configured project folder and a live preview development server.

			

			What's Next?

			At this point, you should have a basic understanding of what React is and why you might consider using it, especially for building non-trivial user interfaces. You learned how to create new React projects with create-react-app, and you are now ready to dive deeper into React and the actual key features it offers.

			In the next chapter, you will learn about a concept called components which are the fundamental building blocks of React apps. You will learn how components are used to compose user interfaces and why those components are needed in the first place. The next chapter will also dive deeper into JSX and explore how it is transformed to regular JavaScript code and which kind of code you could write alternatively to JSX.

			Test Your Knowledge!

			Test your knowledge about the concepts covered in this chapter by answering the below questions. You can then compare your answers to example answers that can be found here: https://packt.link/ENPda.

			
					What is React?

					Which advantage does React offer over vanilla JavaScript projects?

					What's the difference between imperative and declarative code?

					What is a Single-Page-Application (SPA)?

					How can you create new React projects and why do you need such a more complex project setup?

			

		

	
		
			
			

		

		
			2. Understanding React Components and JSX

		

		
			Learning Objectives

			By the end of this chapter, you will be able to do the following:

			� Define what exactly components are

			� Build and use components effectively

			� Utilize common naming conventions and code patterns

			� Describe the relation between components and JSX

			� Write JSX code and understand why it's used

			� Write React components without using JSX code

			� Write your first React apps

			Introduction

			In the previous section, you learned about React in general, what it is and why you could consider using it for building user interfaces. You also learned how to create React projects with the help of npx create-react-app.

			In this chapter, you will learn about one of the most important React concepts and building blocks: React as above, components. You will learn that components are reusable building blocks which are used to build user interfaces. In addition, JSX code will be discussed in greater detail so that you will be able to use the concept of components and JSX to build your own, first, basic React apps.

			What Are Components?

			A key concept of React is the usage of so-called components. Components are reusable building blocks which are combined to compose the final user interface. For example, a basic website could be made up of a header that includes a navigation bar and a main section that includes an authentication form.

			
				
					[image: Figure 2.1 An example authentication screen with navigation bar.]
				

			

			Figure 2.1 An example authentication screen with navigation bar.

			If you look at this example page, you might be able to identify various building blocks (i.e., components). Some of these components are even reused.

			In the header with the navigation bar you will find the following components:

			
					The navigation items (Login and Profile)

					The Logout button

			

			Below this, the main section displays the following:

			
					The container that contains the authentication form

					The input elements

					The confirmation button

					A link to switch to the New Account page

			

			Please note that some components are nested inside other components—i.e., components are also made up of other components. That's a key feature of React and similar libraries.

			Why Components?

			No matter which web page you look at, they are all made up of building blocks like this. It's not a React-specific concept or idea. Indeed, HTML itself "thinks" in components if you take a closer look. You have elements like , <header>, <nav>, etc. And you combine these elements to describe and structure your website content.

			But React embraces this idea of breaking a web page into reusable building blocks because this is an approach that allows developers to work on small, manageable chunks of code. It's easier and more maintainable than working on a single, huge HTML (or React code) file.

			That's why other libraries—both frontend libraries like React or Angular as well as backend libraries and templating engines like EJS (Embedded JavaScript templates)—also embrace components (though the names might differ, you also find "partials" or "includes" as common names).

			Note

			EJS is a popular templating engine for JavaScript. It's especially popular for backend web development with NodeJS.

			When working with React, it's especially important to keep your code manageable and work with small, reusable components because React components are not just collections of HTML code. Instead, a React component also encapsulates JavaScript logic and often also CSS styling. For complex user interfaces, the combination of markup (JSX), logic (JavaScript) and styling (CSS) could quickly lead to large chunks of code, thus making it difficult to maintain that code. Think of a large HTML file that also includes JavaScript and CSS code. Working in such a code file wouldn't be a lot of fun.

			To make a long story short, when working in a React project, you will work with lots of components. You will split your code into small, manageable building blocks and then combine these components to form the overall user interface. It's a key feature of React.

			Note

			When working with React, you should embrace this idea of working with components. But technically, they're optional. You could, theoretically, build very complex web pages with one single component alone. It would not be much fun, and it would not be practical, but it would technically be possible without any issues.

			The Anatomy of a Component

			Components are important. But what exactly does a React component look like? How do you write React components on your own?

			Here's an example component:

			import { useState } from 'react';

			function SubmitButton() {

			 const [isSubmitted, setIsSubmitted] = useState(false);

			

			 function submitHandler() {

			 setIsSubmitted(true);

			 };

			 return (

			 <button onClick={submitHandler}>

			 { isSubmitted ? 'Loading…' : 'Submit' }

			 </button>

);

			};

			export default SubmitButton;

			Typically, you would store a code snippet like this in a separate file (e.g., a file named SubmitButton.js, stored inside a /components folder which in turn resides in the /src folder of your React project) and import it into other component files that need this component. For example, the following component imports the component defined above and uses it in its return statement to output the SubmitButton component:

			import SubmitButton from './submit-button';

			function AuthForm() {

			 return (

			 <form>

			 <input type="text" />

			 <SubmitButton />

			 </form>

);

			};

			export default AuthForm;

			The import statements you see in these examples are standard JavaScript import statements with one extra twist: the file extension (.js in this case) can be omitted in most React projects (like the one created via npx create-react-app). import and export are standard JavaScript keywords that help with splitting related code across multiple files. Things like variables, constants, classes, or functions can be exported via export or export default so that they can then be used in other files after importing them there.

			Note

			If the concept of splitting code into multiple files and using import and export is brand-new to you, you might want to dive into more basic JavaScript resources on this topic first. For example, MDN has an excellent article that explains the fundamentals, which you can find at https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules.

			Of course, the components shown in these examples are highly simplified and also contain features that you haven't learned about yet (e.g. useState()). But the general idea of having standalone building blocks that can be combined should be clear.

			When working with React, there are two alternative ways to define components:

			Class-based components (or "class components"): components defined via the class keyword

			Functional components (or "function components"): components that are defined via regular JavaScript functions

			In all the examples covered in this book thus far, components were built as JavaScript functions. As a React developer, you have to use one of these two approaches as React expects components to be functions or classes.

			Note

			Until late 2018, you had to use class-based components for certain kinds of tasks—specifically for components that use state internally. (State will be covered later in the book). However, in late 2018, a new concept was introduced: React Hooks. This allows you to perform all operations and tasks with functional components. Consequently, class-based components are on their way out and not covered in this book.

			In the examples above, there are a couple of other noteworthy things:

			
					The component functions carry capitalized names (e.g., SubmitButton)

					Inside the component functions, other "inner" functions can be defined (e.g., submitHandler)

					The component functions return HTML-like code (JSX code)

					Features like useState() can be used inside the component functions

					The component functions are exported (via export default)

					Certain features (like useState or the custom component, SubmitButton) are imported via the import keyword

			

			The following sections will take a closer look at these different concepts that make up components and their code.

			What Exactly Are Component Functions?

			In React, components are functions (or classes, but as mentioned above, those aren't relevant anymore).

			A function is a regular JavaScript construct, not a React-specific concept. This is important to note. React is a JavaScript library and therefore uses JavaScript features (like functions); React is not a brand-new programming language.

			When working with React, regular JavaScript functions can be used to encapsulate HTML (or, to be more precise, JSX) code and JavaScript logic that belongs to that markup code. However, it depends on the code you write in a function, whether it qualifies to be treated as a React component or not. For example, in the code snippets above, the submitHandler function is also a regular JavaScript function, but it's not a React component. The following example shows another regular JavaScript function that doesn't qualify as a React component:

			function calculate(a, b) {

			 return {sum: a + b};

			};

			Indeed, a function will be treated as a component and can therefore be used like a HTML element in JSX code if it returns a renderable value (typically JSX code). This is very important. You can only use a function as a React component in JSX code if it is a function that returns something that can be rendered by React. The returned value technically doesn't have to be JSX code, but in most cases, it will be. You will see an example for non-JSX code being returned later in the book, in Chapter 7, Portals and Refs.

			In the code snippet where functions named SubmitButton and AuthForm were defined, those two functions qualified as React components because they both returned JSX code (which is code that can be rendered by React, making it renderable). Once a function qualifies as a React component, it can be used like a HTML element inside of JSX code, just as <SubmitButton /> was used like a (self-closing) HTML element.

			When working with vanilla JavaScript, you of course typically call functions to execute them. With functional components, that's different. React calls these functions on your behalf, and therefore, as a developer, you use them like HTML elements inside of this JSX code.

			Note

			When referring to renderable values, it is worth noting that by far the most common value type being returned or used is indeed JSX code—i.e., markup defined via JSX. This should make sense because, with JSX, you can define the HTML-like structure of your content and user interface.

			But besides JSX markup, there are a couple of other key values that also qualify as renderable and therefore could be returned by custom components (instead of JSX code). Most notably, you can also return strings or numbers as well as arrays that hold JSX elements or strings or numbers.

			What Does React Do with All These Components?

			If you follow the trail of all components and their import + export statements to the top, you will find a root.render(...) instruction in the main entry script of the React project. Typically, this main entry script can be found in the index.js file, located in the project's src/ folder. This render() method, which is provided by the React library (to be precise, by the react-dom package), takes a snippet of JSX code and interprets and executes it for you.

			The complete snippet you find in the root entry file (index.js) typically looks like this:

			import React from 'react';

			import ReactDOM from 'react-dom/client';

			

			import './index.css';

			import App from './App';

			

			const root = ReactDOM.createRoot(document.getElementById('root'));

			root.render(<App />);

			The exact code you find in your new React project might look slightly different.

			It may, for instance, include an extra <StrictMode> element that's wrapped around <App>. <StrictMode> turns on extra checks that can help catch subtle bugs in your React code. But it can also lead to confusing behavior and unexpected error messages, especially when experimenting with React or learning React. As this book is primarily interested in the coverage of React core features and key concepts, <StrictMode> will not be covered.

			To follow along smoothly then, cleaning up a newly created index.js file to look like the code snippet above is a good idea.

			The createRoot() method instructs React to create a new entry point which will be used to inject the generated user interface into the actual HTML document that will be served to website visitors. The argument passed to createRoot() therefore is a pointer to a DOM element that can be found in index.html—the single page that will be served to website visitors.

			In many cases, document.getElementById('root') is used as an argument. This built-in vanilla JavaScript method yields a reference to a DOM element that is already part of the index.html document. Therefore, as a developer, you must ensure that such an element with the provided id attribute value (root, in this example) exists in the HTML file into which the React app script is loaded. In a default React project created via npx create-react-app, this will be the case. You can find a <div id="root"> element in the index.html file in the public/ folder.

			This index.html file is a relatively empty file which only acts as a shell for the React app. React just needs an entry point (defined via createRoot()) which will be used to attach the generated user interface to the displayed website. The HTML file and its content therefore do not directly define the website content. Instead, the file just serves as a starting point for the React application, allowing React to then take over and control the actual user interface.

			Once the root entry point has been defined, a method called render() can be called on the root object created via createRoot():

			root.render(<App />);

			This render() method tells React which content (i.e., which React component) should be injected into that root entry point. In most React apps, this is a component called App. React will then generate appropriate DOM-manipulating instructions to reflect the markup defined via JSX in the App component on the actual webpage.

			This App component is a component function that is imported from some other file. In a default React project, the App component function is defined and exported in an App.js file which is also located in the src/ folder.

			This component, which is handed to render() (<App />, typically), is also called the root component of the React app. It's the main component that is rendered to the DOM. All other components are nested in the JSX code of that App component or the JSX code of even more nested descendent components. You can think of all these components building up a tree of components which is evaluated by React and translated into actual DOM-manipulating instructions.

			Note

			As mentioned in the previous chapter, React can be used on various platforms. With the react-native package, it could be used to build native mobile apps for iOS and Android. The react-dom package which provides the createRoot() method (and therefore implicitly the render() method) is focused on the browser. It provides the "bridge" between React's capabilities and the browser instructions that are required to bring the UI (described via JSX and React components) to life in the browser. If you would build for different platforms, replacements for ReactDOM.createRoot() and render() are required (and of course such alternatives do exist).

			Either way, no matter whether you use a component function like an HTML element inside of JSX code of other components or use it like an HTML element that's passed as an argument to the render() method, React takes care of interpreting and executing the component function on your behalf.

			Of course, this is not a new concept. In JavaScript, functions are first-class objects, which means that you can pass functions as arguments to other functions. This is basically what happens here, just with the extra twist of using this JSX syntax which is not a default JavaScript feature.

			React executes these component functions for you and translates the returned JSX code into DOM instructions. To be precise, React traverses the returned JSX code and dives into any other custom components that might be used in that JSX code until it ends up with JSX code that is only made up of native, built-in HTML elements (technically, it's not really HTML, but that will be discussed later in this chapter).

			Take these two components as an example:

			function Greeting() {

			 return <p>Welcome to this book!</p>;

			};

			function App() {

			 return (

			 <div>

			 <h2>Hello World!</h2>

			 <Greeting />

			 </div>

);

			};

			const root = ReactDOM.createRoot(document.getElementById('app'));

			root.render(<App />);

			The App component uses the Greeting component inside its JSX code. React will traverse the entire JSX markup structure and derive this final JSX code:

			root.render((

			 <div>

			 <h2>Hello World!</h2>

			 <p>Welcome to this book!</p>

			 </div>

), document.getElementById('app'));

			And this code would instruct React and ReactDOM to perform the following DOM operations:

			
					Create a <div> element

					Inside that <div>, create two child elements: <h2> and <p>

					Set the text content of the <h2> element to 'Hello World!'

					Set the text content of the <p> element to 'Welcome to this book!'

					Insert the <div> with its children into the already-existing DOM element which has the id 'app'

			

			This is a bit simplified, but you can think of React handling components and JSX code as described above.

			Note

			React doesn't actually work with JSX code internally. It's just easier to use as a developer. Later, in this chapter, you will learn what JSX code gets transformed to and how the actual code, with which React works, looks like.

			Built-in Components

			As shown in the earlier examples, you can create your own, custom components by creating functions that return JSX code. And indeed, that's one of the main things you will do all the time as a React developer: you create component functions. Lots of component functions.

			But ultimately, if you would merge all JSX code into just one big snippet of JSX code, as shown in the last example above, you would end up with a chunk of JSX code that includes only standard HTML elements like <div>, <h2>, <p>, and so on.

			When using React, you don't create brand-new HTML elements that the browser would be able to display and handle. Instead, you create components that only work inside the React environment. Before they reach the browser, they have been evaluated by React and "translated" into DOM-manipulating JavaScript instructions (like document.append(…)).

			But keep in mind that all this JSX code is a feature that's not part of the JavaScript language itself. It's basically syntactical sugar (i.e., a simplification regarding the code syntax) provided by the React library and the project setup you're using to write React code. Therefore, elements like <div>, when used in JSX code, also aren't normal HTML elements because you don't write HTML code. It might look like that, but it's inside a .js file and it's not HTML markup. Instead, it's this special JSX code. It is important to keep this in mind.

			Therefore, these <div> and <h2> elements you see in all these examples are also just React components in the end. But they are not components built by you, but instead provided by React (or to be precise, by ReactDOM).

			When working with React, you therefore always end up with these primitives—these built-in component functions that are later translated to browser instructions that generate and append or remove normal DOM elements. The idea behind building custom components is to group these elements together such that you end up with reusable building blocks that can be used to build the overall UI. But, in the end, this UI is made up of regular HTML elements.

			Note

			Depending on your level of frontend web development knowledge, you might have heard about a web feature called Web Components. The idea behind this feature is that you can indeed build brand-new HTML elements with vanilla JavaScript.

			As mentioned, React does not pick up this feature; you don't build new custom HTML elements with React.

			Naming Conventions

			All component functions that you can find in this book carry names like SubmitButton, AuthForm, or Greeting.

			You can generally name your React functions however you want—at least in the file where you are defining them. But it is a common convention to use the PascalCase naming convention, wherein the first character is uppercase and multiple words are grouped into one single word (SubmitButton instead of Submit Button), where every "subword" then starts with another uppercase character.

			In the place where you define your component function, it is only a naming convention, not a hard rule. However, it is a requirement in the place where you use the component functions—i.e., in the JSX code where you embed your own custom components.

			You can't use your own custom component like this:

			<greeting />

			React forces you to use an uppercase starting character for your own custom component names, when using them in JSX code. This rule exists to give React a clear and easy way of telling custom components apart from built-in components like <div> etc. React only needs to look at the starting character to determine whether it's a built-in element or a custom component.

			Besides the names of the actual component functions, it is also important to understand file naming conventions. Custom components are typically stored in separate files that live inside a src/components/ folder. However, this is not a hard rule. The exact placement as well as folder name is up to you, but it should be somewhere inside the src/ folder. Using a folder named components/ is the standard though.

			Where it is the standard to use PascalCase for the component functions, there is no general default regarding the file names. Some developers prefer PascalCase for file names as well; and, indeed, in brand-new React projects, created as described in this book, the App component can be found inside a file named App.js. Nonetheless, you will also encounter many React projects where components are stored in files that follow the kebap-case naming convention. (All-lowercase, multiple words are combined into a single word via a dash.) With this convention, component functions could be stored in files named submit-button.js, for example.

			Ultimately, it is up to you (and your team) which file naming convention you want to follow. In this book, PascalCase will be used for file names.

			JSX vs HTML vs Vanilla JavaScript

			As mentioned above, React projects typically contain lots of JSX code. Most custom components will return JSX code snippets. You can see this in all the examples shared thus far, and you will see in basically every React project you will explore, no matter whether you are using React for the browser or for other platforms like react-native.

			But what exactly is this JSX code? How is it different from HTML? And how is it related to vanilla JavaScript?

			JSX is a feature that's not part of vanilla JavaScript. What can be confusing, though, is that it's also not directly part of the React library.

			Instead, JSX is syntactical sugar that is provided by the build workflow that's part of the overall React project. When you start the development web server via npm start or build the React app for production (i.e., for deployment) via npm run build, you kick off a process that transforms this JSX code back to regular JavaScript instructions. As a developer, you don't see those final instructions but React, the library, actually receives and evaluates them.

			So, what does the JSX code get transformed to?

			In the end, all JSX snippets get transformed into calls to the React.createElement(…) method.

			Here's a concrete example:

			function Greeting() {

			 return <p>Hello World!</p>;

			};

			The JSX code returned by this component would be translated into the following vanilla JavaScript code:

			function Greeting() {

			 return React.createElement('p', {}, 'Hello World!');

			};

			createElement() is a method built into the React library. It instructs React to create a paragraph element with 'Hello World!' as child content (i.e., as inner, nested content). This paragraph element is then created internally first (via a concept called virtual DOM, which will be discussed later in the book, in Chapter 9, Behind The Scenes Of React and Optimization Opportunities). Thereafter, once all elements for all JSX elements have been created, the virtual DOM is translated into real DOM-manipulating instructions that are executed by the browser.

			Note

			It has been mentioned before that React (in the browser) is actually a combination of two packages: react and react-dom.

			With the introduction of React.createElement(…), it's now easier to explain how these two packages work together: React creates this virtual DOM internally and then passes it to the react-dom package. This package then generates the actual DOM-manipulating instructions that must be executed in order to update the web page such that the desired user interface is displayed there.

			As mentioned, this will be covered in greater detail in Chapter 9.

			The middle parameter value ({}, in the example) is a JavaScript object that may contain extra configuration for the element that is to be created.

			Here's an example where this middle argument becomes important:

			function Advertisement() {

			 return Visit my website;

			};

			This would be transformed to the following:

			function Advertisement() {

			 return React.createElement(

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/image/B18084_01_01.jpg
const emaillnputElement = document.getflenentByld('enail');
const passuoralnputELenent = docusent. getE lenenteyla(passuord’
const signupFormELenent = dacument. querySelector(*fara');

et enatlIsvalis = false;
Tet passwordIsvalid = false;

function validateEsail (enteredEnail) {

7/ Tn reality, we aight be sending the entered enail address to a backend API to check if a user with that esail exists already
71 Were, this s faked with help of a pronise wrapper around sone dumy validation Logic

const pronise = new Pronise(function (resolve, reject) {
it (enteredEail === ‘testotest.con’) {
reject (new Error(Enail exists already’));
¥ etse ¢
resolve();

i

return pronise;

function validaterassuord(enteredpassword) {
i (enteredPassuord. trin(). length < 6) {
hrow new Error(*Invalid password - sust be at least 6 characters long. ')
3
3

async function validateTnputhandler (inputType, event) {
const targetElenent = event. target;
const enteredvalue = targetElenent. value;

Let validationfn = validateEnail;
A1 UinputType === “password’) {

ValidationFn = validatePassword;
3

const errorElesent = docusent. getElenentByTd(inputType + '-error’);
A1 (errorElenent) {

errorElenent. renove();
3

et isvalid = true;

1
it validationFn(enteredvalue)

3 caten ferror)
const errorElesent = docusent. cresteElenent (‘a')
errorELenent. 1d = inputType + *-error’;
errorElencnt. textContent = error.nessage:
target€lenent. parentElenent. append (errorE Lenent);
isValia = fatee;

3
A UnputType === ‘email’) {
enailistalio = isvalid;

¥etse ¢

passwordlsValid = isvalid

10

m

120

el

function submitForatendler (event) {
event.preventbefante();

tet title = 'an error occurred:;

Tet message = 'Invalid input values - please check your entered values. !

i (enaillsValid £ passwordIsValid) {
title = 'Success
message = 'User created successfully!’;
>

opertodal(title, message);

function opentodal(title, nessage) {

const. backdropElenent = document. createElenent('div’);

backropELesent. classhane = ‘backdrop';

const_modaELenent
sodalElenent. classose = 'modal’;
sodalELenent, innerHTHL
<header>
<2 (titlere/hzs
</header>
<sections

<section class="sodal_sctions">
<buttomakay/buttons
</sections

const confirmBut tonE Lesent

focunent.createE Lenent (‘aside’)

modatELenent. querySetector(‘button’);

BackaropELesent.addEventL istener(*click', closehodal);
confirmButtonELenent .addEventL stener (" click', closeModal);

document. body. append(backsropELenent)
docusent. body. append(noda Elenent);
>

function closeModal() {
const mocatELenent

sodalElenent. renovel);
backdropElesent. renove();
)

enai TnputE Lesent addEventL istener(
“bur,
velidatelnputhandler.bind(null, “enail’)

”

passwordTnputELenent . addEventL istener(
“blur,

validateTnputhandler.bind(null, *password)

SignupFormElesent.addEventListener("subait

tocument.querySelector (*modal");
const backdropElenent = docunent. querySelector(. backdrap'

submitFormhandier)

OEBPS/image/B18084_02_01.jpg
Login Profile Logout |

Login

Your Email

Your Password

Create new account

OEBPS/image/B18084_01_02.jpg
inport { useState } from ‘react’;

function closedodall) {

IR RS RIS FEF SRR EE ¥ 2 X 3

Settiodaloata(nutl);
function validateEnail(enteredEmail) { ¥
7710 reality, we might be sending the entered enail address to backend APL to check if a user with that email exists already
71 Here, this'is faked with help of 3 pronise wrapper around some dumy validation lagic return
const pronise = new Promise(function (resolve, reject) {modaiData 68 <div classNanes"backdrop’ onClicks{closeHodall></divo}
if (enteredenail = testatest.con’) { {odeData & (
reject(nw Error{'Enail exists already’) <aside classhanessodal’>
}etse ¢ <headers
resolvel); <n2>(rodatData. it leh /2>
3 <headers
ni <sections
<p>{n0da0ata. message)</p>
return proaise; </section
<section classtane="nodal_actions >
<button onClicks{(closchada1>Okay</button>
function validaterassword enteredPassword) { </section
i1 (enteredpassword. trint) . length < 6) { </asides
hrow new Error(‘Tnvalid password - must be at least § characters long. i
¥ <headers
¥ <hl>Create a New Accounte/hi
<tmeacer>
function Apo() { i
const [enailIsVali, setEnailisvalia] = usestate(truel; <fors onsubait={submitForsandler)s
const (passuorclaVatid, setpassworalsValia) = useState(true); <iv classNanes forn-control >
const [nodalbata, sethoda Datal = useState(null); <label htalFor="enail >Enatl</label>
<input
asyne function validateTnputhandler (inputType, event) { typesrenatl!
const.enteredvalue = event.target. value; prapy
onBlur=(validateInputhandLer.bind(null, ‘esatl')}
tet veidationtn = validateEnail; A
51 (inputType === "password’) { CienailIsValia 6 <p>This enal is already takent</ps)
vaidationfn = validatepassword; <sdiv
<tiv classtanes'form-control'>
<label healFor=!passuord’>Passworde/ Label>
et isvalid = true; <input
type="passwora”
try 4
it validationFlenteredvalue)
} caten (error) {
15Valld = false; passwordisvalia &6 (
) <popassuord sust be at lesst 6 characters long!</p>
»
51 (inputType === ‘erail') { </ive
setEmailIsvalia(isVatia) <buttonsCreate Users/buttons
betse ¢ </torm
setpasswordTsvatia(isvalia); 16 <nains
» 1 <footers
2 ns <p>(€) Moxiailian Schwarzaitiers/p>
19 >
function subaitFormandler(event) { 120 This i just a dumy example - not a fully functional website o
event.preventbefault(); 1 anything Like that.
sy <
let title = *An error accurred! 123 <rtooters
Tet message = *Invalid input values - please check yaur entered values.'; 24 <t
)
5 (emailIsValid & passvordlsvalid) { s)
title = “success ! 127
message = ‘User created successfully!” 128 export defauts Aopi
¥

setogatnatal{
ttle: title,
nessage:

»i

message,

OEBPS/toc.xhtml

		
		Contents

			
						React Key Concepts

						Preface
					
								About the Book
							
										About the Author

										Audience

										Prospective Table of Contents

										Conventions

										Setting Up Your Environment

										Installing React.js

										Downloading the Code Bundle

										Get in Touch

										Please Leave a Review

							

						

								Download A Free PDF Copy Of This Book

					

				

						1. React – What and Why
					
								Introduction

								What Is React?

								The Problem with "Vanilla JavaScript"

								React and Declarative Code
							
										How React Manipulates the DOM

							

						

								Introducing Single Page Applications
							
										Creating a React Project

							

						

								Summary and Key Takeaways
							
										What's Next?

										Test Your Knowledge!

							

						

					

				

						2. Understanding React Components and JSX
					
								Introduction

								What Are Components?
							
										Why Components?

										The Anatomy of a Component

										What Exactly Are Component Functions?

							

						

								What Does React Do with All These Components?
							
										Built-in Components

										Naming Conventions

							

						

								JSX vs HTML vs Vanilla JavaScript
							
										Using React without JSX

										JSX Elements Are Treated like Regular JavaScript Values

										JSX Elements Must Be Self-Closing

							

						

								Outputting Dynamic Content
							
										When Should You Split Components?

							

						

								Summary and Key Takeaways
							
										What's Next?

										Test Your Knowledge!

							

						

								Apply What You Learned
							
										Activity 2.1: Creating a React App to Present Yourself

										Activity 2.2: Creating a React App to Log Your Goals for This Book

							

						

					

				

						3. Components and Props
					
								Introduction

								Not There Yet

								Using Props in Components
							
										Passing Props to Components

										Consuming Props in a Component

							

						

								Components, Props, and Reusability
							
										The Special "children" Prop

										Which Components Need Props?

							

						

								How to Deal with Multiple Props
							
										Spreading Props

										Prop Chains/Prop Drilling

							

						

								Summary and Key Takeaways
							
										What's Next?

										Test Your Knowledge!

							

						

								Apply What You Learned
							
										Activity 3.1: Creating an App to Output Your Goals for This Book

							

						

					

				

						4. Working with Events and State
					
								Introduction

								What's the Problem?
							
										How Not to Solve the Problem

										A Better Incorrect Solution

										Properly Reacting to Events

							

						

								Updating State Correctly
							
										A Closer Look at useState()

							

						

								A Look under the Hood of React
							
										Naming Conventions

										Allowed State Value Types

							

						

								Working with Multiple State Values
							
										Using Multiple State Slices

										Managing Combined State Objects

										Updating State Based on Previous State Correctly

										Two-Way Binding

							

						

								Deriving Values from State
							
										Working with Forms and Form Submission

										Lifting State Up

							

						

								Summary and Key Takeaways
							
										What's Next?

										Test Your Knowledge!

							

						

								Apply What You Learned
							
										Activity 4.1: Building a Simple Calculator

										Activity 4.2: Enhancing the Calculator

							

						

					

				

						5. Rendering Lists and Conditional Content
					
								Introduction

								What Are Conditional Content and List Data?

								Rendering Content Conditionally
							
										Different Ways of Rendering Content Conditionally
									
												Utilizing Ternary Expressions

												Abusing JavaScript Logical Operators

												Get Creative!

												Which Approach Is Best?

									

								

										Setting Element Tags Conditionally

							

						

								Outputting List Data
							
										Mapping List Data

										Updating Lists

							

						

								A Problem with List Items
							
										Keys to the Rescue!

							

						

								Summary and Key Takeaways
							
										What's Next?

										Test Your Knowledge!

							

						

								Apply What You Learned
							
										Activity 5.1: Showing a Conditional Error Message

										Activity 5.2: Outputting a List of Products

							

						

					

				

						6. Styling React Apps
					
								Introduction

								How Does Styling Work in React Apps?
							
										Using Inline Styles

										Setting Styles via CSS Classes

										Setting Styles Dynamically

										Conditional Styles

										Combining Multiple Dynamic CSS Classes

										Merging Multiple Inline Style Objects

										Building Components with Customizable Styles
									
												Customization with Fixed Configuration Options

									

								

										The Problem with Unscoped Styles

							

						

								Scoped Styles with CSS Modules
							
										The styled-components Library

										Using Other CSS or JavaScript Styling Libraries and Frameworks

							

						

								Summary and Key Takeaways
							
										What's Next?

										Test Your Knowledge!

							

						

								Apply What You Learned
							
										Activity 6.1: Providing Input Validity Feedback upon Form Submission

										Activity 6.2: Using CSS Modules for Style Scoping

							

						

					

				

						7. Portals and Refs
					
								Introduction

								A World without Refs

								Refs versus State

								Using Refs for More than DOM Access
							
										Forwarding Refs

										Controlled versus Uncontrolled Components

							

						

								React and Where Things End up in the DOM
							
										Portals to the Rescue

							

						

								Summary and Key Takeaways
							
										What's Next?

										Test Your Knowledge!

							

						

								Apply What You Have Learned
							
										Activity 7.1: Extract User Input Values

										Activity 7.2: Add a Side-Drawer

							

						

					

				

						8. Handling Side Effects
					
								Introduction

								What's the Problem?

								Understanding Side Effects
							
										Side Effects Are Not Just about HTTP Requests

							

						

								Dealing with Side Effects with the useEffect() Hook
							
										How to Use useEffect()

							

						

								Effects and Their Dependencies
							
										Unnecessary Dependencies

										Cleaning Up after Effects

										Dealing with Multiple Effects

										Functions as Dependencies

										Avoiding Unnecessary Effect Executions

										Effects and Asynchronous Code

										Rules of Hooks

							

						

								Summary and Key Takeaways
							
										What's Next?

										Test Your Knowledge!

							

						

								Apply What You Learned
							
										Activity 8.1: Building a Basic Blog

							

						

					

				

						9. Behind the Scenes of React and Optimization Opportunities
					
								Introduction

								Revisiting Component Evaluations and Updates
							
										What Happens When a Component Function Is Called

							

						

								The Virtual DOM vs the Real DOM
							
										State Batching

										Avoiding Unnecessary Child Component Evaluations

										Avoiding Costly Computations

										Utilizing useCallback()

							

						

								Avoiding Unnecessary Code Download
							
										Reducing Bundle Sizes via Code Splitting (Lazy Loading)

							

						

								Strict Mode

								Debugging Code and the React Developer Tools

								Summary and Key Takeaways
							
										What's Next?

										Test Your Knowledge!

							

						

								Apply What You Learned
							
										Activity 9.1: Optimize an Existing App

							

						

					

				

						10. Working with Complex State
					
								Introduction

								A Problem with Cross-Component State

								Using Context to Handle Multi-Component State
							
										Providing and Managing Context Values

										Using Context in Nested Components

										Changing Context from Nested Components

										Getting Better Code Completion

										Context or "Lifting State Up"?

										Outsourcing Context Logic into Separate Components

										Combining Multiple Contexts

							

						

								Limitations of useState()

								Managing State with useReducer()
							
										Understanding Reducer Functions

										Dispatching Actions

							

						

								Summary and Key Takeaways
							
										What's Next?

										Test Your Knowledge!

							

						

								Apply What You Learned
							
										Activity 10.1: Migrating an App to the Context API

										Activity 10.2: Replacing useState() with useReducer()

							

						

					

				

						11. Building Custom React Hooks
					
								Introduction

								Why Would You Build Custom Hooks?
							
										What Are Custom Hooks?

										A First Custom Hook

							

						

								Custom Hooks: A Flexible Feature
							
										Custom Hooks and Parameters

										Custom Hooks and Return Values

							

						

								A More Complex Example

								Summary and Key Takeaways
							
										What's Next?

										Test Your Knowledge!

							

						

								Apply What You Learned
							
										Activity 11.1: Build a Custom Keyboard Input Hook

							

						

					

				

						12. Multipage Apps with React Router
					
								Introduction

								One Page Is Not Enough

								Getting Started with React Router and Defining Routes
							
										Adding Page Navigation

										From Link to NavLink

										Route Components versus "Normal" Components

							

						

								From Static to Dynamic Routes
							
										Extracting Route Parameters

										Creating Dynamic Links

										Navigating Programmatically

							

						

								Redirecting
							
										Nested Routes

										Handling Undefined Routes

										Lazy Loading

							

						

								Summary and Key Takeaways
							
										What's Next?

										Test Your Knowledge!

							

						

								Apply What You Learned
							
										Activity 12.1: Creating a Basic Three-Page Website

										Activity 12.2: Enhancing the Basic Website

							

						

					

				

						13. Managing Data with React Router
					
								Introduction

								Data Fetching and Routing Are Tightly Coupled
							
										Sending HTTP Requests without React Router

							

						

								Loading Data with React Router
							
										Enabling These Extra Router Features

										Loading Data for Dynamic Routes

										Loaders, Requests, and Client-Side Code

							

						

								Layouts Revisited
							
										Reusing Data across Routes

							

						

								Handling Errors

								Onward to Data Submission
							
										Working with action() and Form Data

										Returning Data Instead of Redirecting

										Controlling Which <Form> Triggers Which Action

										Reflecting the Current Navigation Status

										Submitting Forms Programmatically

										Behind-the-Scenes Data Fetching and Submission

										Deferring Data Loading

							

						

								Summary and Key Takeaways
							
										What's Next?

										Test Your Knowledge!

							

						

								Apply What You Learned
							
										Activity 13.1: A To-Dos App

							

						

					

				

						14. Next Steps and Further Resources
					
								Introduction

								How Should You Proceed?
							
										Interesting Problems to Explore
									
												Build a Shopping Cart

												Build an Application's Authentication System (User Signup and Login)

												Build an Event Management Website

									

								

										Common and Popular React Libraries

										Other Resources

										Beyond React for Web Applications

							

						

								Final Words

					

				

						Appendix
					
								2. Understanding React Components & JSX
							
										Activity 2.1: Creating a React App to Present Yourself

										Activity 2.2: Creating a React App to Log Your Goals for This Book

							

						

								3. Components & Props
							
										Activity 3.1: Creating an App to Output Your Goals for This Book

							

						

								4. Working with Events & State
							
										Activity 4.1: Building a Simple Calculator

										Activity 4.2: Enhancing the Calculator

							

						

								5. Rendering Lists & Conditional Content
							
										Activity 5.1: Showing a Conditional Error Message

										Activity 5.2: Outputting a List of Products

							

						

								6. Styling React Apps
							
										Activity 6.1: Providing Input Validity Feedback upon Form Submission

										Activity 6.2: Using CSS Modules for Style Scoping

							

						

								7. Portals & Refs
							
										Activity 7.1: Extract User Input Values

										Activity 7.2: Add a Side-Drawer

							

						

								8. Handling Side Effects
							
										Activity 8.1: Building a Basic Blog

							

						

								9. Behind the Scenes of React & Optimization Opportunities
							
										Activity 9.1: Optimize An Existing App

							

						

								10. Working with Complex State
							
										Activity 10.1: Migrating an App to the Context API

										Activity 10.2: Replacing useState() with useReducer()

							

						

								11. Building Custom React Hooks
							
										Activity 11.1: Build a Custom Keyboard Input Hook

							

						

								12. Multipage Apps with React Router
							
										Activity 12.1: Creating a Basic Three-Page Website

										Activity 12.2: Enhancing the Basic Website

							

						

								13. Managing Data with React Router
							
										Activity 13.1: A To-Dos App

										Hey!

							

						

					

				

			

		
		
		Landmarks

			
						Cover

						Table of Contents

			

		
	

OEBPS/image/QR_Code.jpg

OEBPS/image/B18084_Preface_01.jpg
LTS

Recommended For Most Users

[[|
Ll |
Windows Installer

node-v17.9.0-x86.msi

Windows Installer (.msi)
Windows Binary (.zip)
macOS Installer (.pkg)
macOS Binary (.tar.gz)
Linux Binaries (x64)
Linux Binaries (ARM)
Source Code

/g

macOS Installer

node-v17.9.0.pkg

32-bit

32-bit
64-bit

ARMv7

Current

Latest Features

N
Source Code

node-v17.9.0tar.gz

64-bit
64-bit
64-bit / ARM64
ARM64
64-bit
ARMv8

node-v17.9.0.tar.gz

OEBPS/image/9781803234502cov_Low_Res.png
<packt>

fanction FirstGoal() (
return (
<1i>
<articles

<h2>Teach React in a highly-understandable way</h2>
® <p> .
I want to ensurs, that you get the most out of this book and yon learn
311 about React!

React
Key Concepts

Consolidate your knowledge of React's core features

MAXIMILIAN SCHWARZMULLER

OEBPS/image/B18084_Preface_02.jpg
- O 9

Edit src/App. js and save to reload.

Learn React

