

 [image: Cover of LLM Engineer’s Handbook by Paul Iusztin | Maxime Labonne]

 LLM Engineer’s Handbook

 Master the art of engineering large language models from concept to production

 Paul Iusztin

 Maxime Labonne

 [image:]

 LLM Engineer’s Handbook

 Copyright © 2024 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Senior Publishing Product Manager: Gebin George

 Acquisition Editor – Peer Reviews: Swaroop Singh

 Project Editor: Amisha Vathare

 Content Development Editor: Tanya D’cruz

 Copy Editor: Safis Editing

 Technical Editor: Karan Sonawane

 Proofreader: Safis Editing

 Indexer: Manju Arasan

 Presentation Designer: Rajesh Shirsath

 Developer Relations Marketing Executive: Anamika Singh

 First published: October 2024

 Production reference: 3281024

 Published by Packt Publishing Ltd.

 Grosvenor House

 11 St Paul’s Square

 Birmingham

 B3 1RB, UK.

 ISBN 978-1-83620-007-9

 www.packt.com

 Forewords

 As my co-founder at Hugging Face, Clement Delangue, and I often say, AI is becoming the default way of building technology.

 Over the past 3 years, LLMs have already had a profound impact on technology, and they are bound to have an even greater impact in the coming 5 years. They will be embedded in more and more products and, I believe, at the center of any human activity based on knowledge or creativity.

 For instance, coders are already leveraging LLMs and changing the way they work, focusing on higher-order thinking and tasks while collaborating with machines. Studio musicians rely on AI-powered tools to explore the musical creativity space faster. Lawyers are increasing their impact through retrieval-augmented generation (RAG) and large databases of case law.

 At Hugging Face, we’ve always advocated for a future where not just one company or a small number of scientists control the AI models used by the rest of the population, but instead for a future where as many people as possible—from as many different backgrounds as possible—are capable of diving into how cutting-edge machine learning models actually work.

 Maxime Labonne and Paul Iusztin have been instrumental in this movement to democratize LLMs by writing this book and making sure that as many people as possible can not only use them but also adapt them, fine-tune them, quantize them, and make them efficient enough to actually deploy in the real world.

 Their work is essential, and I’m glad they are making this resource available to the community. This expands the convex hull of human knowledge.

 Julien Chaumond

 Co-founder and CTO, Hugging Face

 As someone deeply immersed in the world of machine learning operations, I’m thrilled to endorse The LLM Engineer’s Handbook. This comprehensive guide arrives at a crucial time when the demand for LLM expertise is skyrocketing across industries.

 What sets this book apart is its practical, end-to-end approach. By walking readers through the creation of an LLM Twin, it bridges the often daunting gap between theory and real-world application. From data engineering and model fine-tuning to advanced topics like RAG pipelines and inference optimization, the authors leave no stone unturned.

 I’m particularly impressed by the emphasis on MLOps and LLMOps principles. As organizations increasingly rely on LLMs, understanding how to build scalable, reproducible, and robust systems is paramount. The inclusion of orchestration strategies and cloud integration showcases the authors’ commitment to equipping readers with truly production-ready skills.

 Whether you’re a seasoned ML practitioner looking to specialize in LLMs or a software engineer aiming to break into this exciting field, this handbook provides the perfect blend of foundational knowledge and cutting-edge techniques. The clear explanations, practical examples, and focus on best practices make it an invaluable resource for anyone serious about mastering LLM engineering.

 In an era where AI is reshaping industries at breakneck speed, The LLM Engineer’s Handbook stands out as an essential guide for navigating the complexities of large language models. It’s not just a book; it’s a roadmap to becoming a proficient LLM engineer in today’s AI-driven landscape.

 Hamza Tahir

 Co-founder and CTO, ZenML

The LLM Engineer’s Handbook serves as an invaluable resource for anyone seeking a hands-on understanding of LLMs. Through practical examples and a comprehensive exploration of the LLM Twin project, the author effectively demystifies the complexities of building and deploying production-level LLM applications.

One of the book’s standout features is its use of the LLM Twin project as a running example. This AI character, designed to emulate the writing style of a specific individual, provides a tangible illustration of how LLMs can be applied in real-world scenarios.
The author skillfully guides readers through the essential tools and technologies required for LLM development, including Hugging Face, ZenML, Comet, Opik, MongoDB, and Qdrant. Each tool is explained in detail, making it easy for readers to understand their functions and how they can be integrated into an LLM pipeline.

LLM Engineer’s Handbook also covers a wide range of topics related to LLM development, such as data collection, fine-tuning, evaluation, inference optimization, and MLOps. Notably, the chapters on supervised fine-tuning, preference alignment, and Retrieval Augmented Generation (RAG) provide in-depth insights into these critical aspects of LLM development.

A particular strength of this book lies in its focus on practical implementation. The author excels at providing concrete examples and guidance on how to optimize inference pipelines and deploy LLMs effectively. This makes the book a valuable resource for both researchers and practitioners.

This book is highly recommended for anyone interested in learning about LLMs and their practical applications. By providing a comprehensive overview of the tools, techniques, and best practices involved in LLM development, the authors have created a valuable resource that will undoubtedly be a reference for many LLM Engineers

Antonio Gulli

Senior Director, Google

 Contributors

 About the authors

 Paul Iusztin is a senior ML and MLOps engineer with over seven years of experience building GenAI, Computer Vision and MLOps solutions. His latest contribution was at Metaphysic, where he served as one of their core engineers in taking large neural networks to production. He previously worked at CoreAI, Everseen, and Continental. He is the Founder of Decoding ML, an educational channel on production-grade ML that provides posts, articles, and open-source courses to help others build real-world ML systems.

 Maxime Labonne is the Head of Post-Training at Liquid AI. He holds a PhD. in ML from the Polytechnic Institute of Paris and is recognized as a Google Developer Expert in AI/ML. As an active blogger, he has made significant contributions to the open-source community, including the LLM Course on GitHub, tools such as LLM AutoEval, and several state-of-the-art models like NeuralDaredevil. He is the author of the best-selling book Hands-On Graph Neural Networks Using Python, published by Packt.

 I want to thank my family and partner. Your unwavering support and patience made this book possible.

 About the reviewer

 Rany ElHousieny is an AI solutions architect and AI engineering manager with over two decades of experience in AI, NLP, and ML. Throughout his career, he has focused on the development and deployment of AI models, authoring multiple articles on AI systems architecture and ethical AI deployment. He has led groundbreaking projects at companies like Microsoft, where he spearheaded advancements in NLP and the Language Understanding Intelligent Service (LUIS). Currently, he plays a pivotal role at Clearwater Analytics, driving innovation in GenAI and AI-driven financial and investment management solutions.

 I would like to thank Clearwater Analytics for providing a supportive and learning environment that fosters growth and innovation. The vision of our leaders, always staying ahead with the latest technologies, has been a constant source of inspiration. Their commitment to AI advancements made my experience of reviewing this book insightful and enriching. Special thanks to my family for their ongoing encouragement throughout this journey.

 Join our book’s Discord space

 Join our community’s Discord space for discussions with the authors and other readers:

 https://packt.link/llmeng

 [image:]

 Preface

 The field of LLM engineering has rapidly emerged as a critical area in artificial intelligence and machine learning. As LLMs continue to revolutionize natural language processing and generation, the demand for professionals who can effectively implement, optimize, and deploy these models in real-world scenarios has grown exponentially. LLM engineering encompasses a wide range of disciplines, from data preparation and model fine-tuning to inference optimization and production deployment, requiring a unique blend of software engineering, machine learning expertise, and domain knowledge.

 Machine Learning Operations (MLOps) plays a crucial role in the successful implementation of LLMs in production environments. MLOps extends the principles of DevOps to machine learning projects, focusing on automating and streamlining the entire ML lifecycle. For LLMs, MLOps is particularly important due to the complexity and scale of these models. It addresses challenges such as managing large datasets, handling model versioning, ensuring reproducibility, and maintaining model performance over time. By incorporating MLOps practices, LLM projects can achieve greater efficiency, reliability, and scalability, ultimately leading to more successful and impactful deployments.

 The LLM Engineer’s Handbook is a comprehensive guide to applying best practices to the new field of LLM engineering. Throughout the chapters, readers will find simplified key concepts, practical techniques, and experts tips for every stage of the LLM lifecycle. The book covers topics such as data engineering, supervised fine-tuning, model evaluation, inference optimization, and Retrieval-Augmented Generation (RAG) pipeline development.

 To illustrate these concepts in action, an end-to-end project called the LLM Twin will be developed throughout the book., with the goal of imitating someone’s writing style and personality. This use case will demonstrate how to build a minimum viable product to solve a specific problem, using various aspects of LLM engineering and MLOps.

 Readers can expect to gain a deeper understanding of how to collect and prepare data for LLMs, fine-tune models for specific tasks, optimize inference performance, and implement RAG pipelines. They will learn how to evaluate LLM performance, align models with human preferences, and deploy LLM-based applications. The book also covers essential MLOps principles and practices, enabling readers to build scalable, reproducible, and robust LLM applications.

 Who this book is for

 This book is intended for a wide range of technology professionals and enthusiasts interested in the practical applications of LLMs. It’s ideal for software engineers aiming to transition into AI projects. While some familiarity with software development is beneficial, the book explains many concepts from the ground up, making it accessible even to those who are new to AI and machine learning.

 For those already working with machine learning , this book will enhance your skills in implementing and deploying LLM-based systems. We provide a deep dive into the fundamentals of MLOps, guiding you through the process of creating a minimum viable product using an open-source LLM to solve real-world problems.

 What this book covers

 Chapter 1, Understanding the LLM Twin Concept and Architecture, introduces the LLM Twin project, which is used throughout the book as an end-to-end example of a production-level LLM application, and defines the FTI architecture for building scalable ML systems and applies it to the LLM Twin use case.

 Chapter 2, Tooling and Installation, presents Python, MLOps, and cloud tools used to build real-world LLM applications, such as an orchestrator, experiment tracker, prompt monitoring and LLM evaluation tool. It shows how to use and install them locally for testing and development.

 Chapter 3, Data Engineering, shows the implementation of a data collection pipeline that scrapes multiple sites, such as Medium, GitHub and Substack and stores the raw data in a data warehouse. It emphasizes collecting raw data from dynamic sources over static datasets for real-world ML applications.

 Chapter 4, RAG Feature Pipeline, introduces RAG fundamental concepts, such as embeddings, the vanilla RAG framework, vector databases, and how to optimize RAG applications. It applies the RAG theory by architecting and implementing LLM Twin’s RAG feature pipeline using software best practices.

 Chapter 5, Supervised Fine-Tuning, explores the process of refining pre-trained language models for specific tasks using instruction-answer pairs. It covers creating high-quality datasets, implementing fine-tuning techniques like full fine-tuning, LoRA, and QLoRA, and provides a practical demonstration of fine-tuning a Llama 3.1 8B model on a custom dataset.

 Chapter 6, Fine-Tuning with Preference Alignment, introduces techniques for aligning language models with human preferences, focusing on Direct Preference Optimization (DPO). It covers creating custom preference datasets, implementing DPO, and provides a practical demonstration of aligning the TwinLlama-3.1-8B model using the Unsloth library.

 Chapter 7, Evaluating LLMs, details various methods for assessing the performance of language models and LLM systems. It introduces general-purpose and domain-specific evaluations and discusses popular benchmarks. The chapter includes a practical evaluation of the TwinLlama-3.1-8B model using multiple criteria.

 Chapter 8, Inference Optimization, covers key optimization strategies such as speculative decoding, model parallelism, and weight quantization. It discusses how to improve inference speed, reduce latency, and minimize memory usage, introducing popular inference engines and comparing their features.

 Chapter 9, RAG Inference Pipeline, explores advanced RAG techniques by implementing methods such as self-query, reranking, and filtered vector search from scratch. It covers designing and implementing the LLM Twin’s RAG inference pipeline and a custom retrieval module similar to what you see in popular frameworks such as LangChain.

 Chapter 10, Inference Pipeline Deployment, introduces ML deployment strategies, such as online, asynchronous and batch inference, which will help in architecting and deploying the LLM Twin fine-tuned model to AWS SageMaker and building a FastAPI microservice to expose the RAG inference pipeline as a RESTful API.

 Chapter 11, MLOps and LLMOps, presents what LLMOps is, starting with its roots in DevOps and MLOps. This chapter explains how to deploy the LLM Twin project to the cloud, such as the ML pipelines to AWS and shows how to containerize the code using Docker and build a CI/CD/CT pipeline. It also adds a prompt monitoring layer on top of LLM Twin’s inference pipeline.

 Appendix, MLOps Principles, covers the six MLOps principles used to build scalable, reproducible, and robust ML applications.

 To get the most out of this book

 To maximize your learning experience, you are expected to have, at the very least, a foundational understanding of software development principles and practices. Familiarity with Python programming is particularly beneficial, as the book’s examples and code snippets are predominantly in Python. While prior experience with machine learning concepts is advantageous, it is not strictly necessary, as the book provides explanations for many fundamental AI and ML concepts. However, you should be comfortable with basic data structures, algorithms, and have some experience working with APIs and cloud services.

 Familiarity with version control systems like Git is assumed, as this book has a GitHub repository for code examples. While this book is designed to be accessible to those who are new to AI and LLMs, if you have some background in these areas, you will find it easier to grasp the more advanced concepts and techniques we present.

 Download the example code files

 The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/LLM-Engineers-Handbook. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Download the color images

 We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/gbp/9781836200079.

 Conventions used

 There are a number of text conventions used throughout this book.

 CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “In the format_samples function, we apply the Alpaca chat template to each individual message.”

 A block of code is set as follows:

 def format_samples(example):
 example["prompt"] = alpaca_template.format(example["prompt"])
 example["chosen"] = example['chosen'] + EOS_TOKEN
 example["rejected"] = example['rejected'] + EOS_TOKEN
 return {"prompt": example["prompt"], "chosen": example["chosen"], "rejected": example["rejected"]}

 When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

 def format_samples(example):
 example["prompt"] = alpaca_template.format(example["prompt"])
 example["chosen"] = example['chosen'] + EOS_TOKEN
 example["rejected"] = example['rejected'] + EOS_TOKEN
 return {"prompt": example["prompt"], "chosen": example["chosen"], "rejected": example["rejected"]}

 Any command-line input or output is written as follows:

 poetry install --without aws

 Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, words in menus or dialog boxes appear in the text like this. For example: “To do so, go to the Settings tab at the top of the forked repository in GitHub. In the left panel, in the Security section, click on the Secrets and Variables toggle and, finally, click on Actions.”

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

 Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

 Share your thoughts

 Once you’ve read LLM Engineer’s Handbook, First Edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

 Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

 Download a free PDF copy of this book

 Thanks for purchasing this book!

 Do you like to read on the go but are unable to carry your print books everywhere?

 Is your eBook purchase not compatible with the device of your choice?

 Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

 Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

 The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily.

 Follow these simple steps to get the benefits:

 	Scan the QR code or visit the link below:

 [image:]
 https://packt.link/free-ebook/9781836200079

 	Submit your proof of purchase.

 	That’s it! We’ll send your free PDF and other benefits to your email directly.

 1

 Understanding the LLM Twin Concept and Architecture

 By the end of this book, we will have walked you through the journey of building an end-to-end large language model (LLM) product. We firmly believe that the best way to learn about LLMs and production machine learning (ML) is to get your hands dirty and build systems. This book will show you how to build an LLM Twin, an AI character that learns to write like a particular person by incorporating its style, voice, and personality into an LLM. Using this example, we will walk you through the complete ML life cycle, from data gathering to deployment and monitoring. Most of the concepts learned while implementing your LLM Twin can be applied in other LLM-based or ML applications.

 When starting to implement a new product, from an engineering point of view, there are three planning steps we must go through before we start building. First, it is critical to understand the problem we are trying to solve and what we want to build. In our case, what exactly is an LLM Twin, and why build it? This step is where we must dream and focus on the “Why.” Secondly, to reflect a real-world scenario, we will design the first iteration of a product with minimum functionality. Here, we must clearly define the core features required to create a working and valuable product. The choices are made based on the timeline, resources, and team’s knowledge. This is where we bridge the gap between dreaming and focusing on what is realistic and eventually answer the following question: “What are we going to build?”.

 Finally, we will go through a system design step, laying out the core architecture and design choices used to build the LLM system. Note that the first two components are primarily product-related, while the last one is technical and focuses on the “How.”

 These three steps are natural in building a real-world product. Even if the first two do not require much ML knowledge, it is critical to go through them to understand “how” to build the product with a clear vision. In a nutshell, this chapter covers the following topics:

 	Understanding the LLM Twin concept

 	Planning the MVP of the LLM Twin product

 	Building ML systems with feature/training/inference pipelines

 	Designing the system architecture of the LLM Twin

 By the end of this chapter, you will have a clear picture of what you will learn to build throughout the book.

 Understanding the LLM Twin concept

 The first step is to have a clear vision of what we want to create and why it’s valuable to build it. The concept of an LLM Twin is new. Thus, before diving into the technical details, it is essential to understand what it is, what we should expect from it, and how it should work. Having a solid intuition of your end goal makes it much easier to digest the theory, code, and infrastructure presented in this book.

 What is an LLM Twin?

 In a few words, an LLM Twin is an AI character that incorporates your writing style, voice, and personality into an LLM, which is a complex AI model. It is a digital version of yourself projected into an LLM. Instead of a generic LLM trained on the whole internet, an LLM Twin is fine-tuned on yourself. Naturally, as an ML model reflects the data it is trained on, this LLM will incorporate your writing style, voice, and personality. We intentionally used the word “projected.” As with any other projection, you lose a lot of information along the way. Thus, this LLM will not be you; it will copy the side of you reflected in the data it was trained on.

 It is essential to understand that an LLM reflects the data it was trained on. If you feed it Shakespeare, it will start writing like him. If you train it on Billie Eilish, it will start writing songs in her style. This is also known as style transfer. This concept is prevalent in generating images, too. For example, let’s say you want to create a cat image using Van Gogh’s style. We will leverage the style transfer strategy, but instead of choosing a personality, we will do it on our own persona.

 To adjust the LLM to a given style and voice along with fine-tuning, we will also leverage various advanced retrieval-augmented generation (RAG) techniques to condition the autoregressive process with previous embeddings of ourselves.

 We will explore the details in Chapter 5 on fine-tuning and Chapters 4 and 9 on RAG, but for now, let’s look at a few examples to intuitively understand what we stated previously.

 Here are some scenarios of what you can fine-tune an LLM on to become your twin:

 	LinkedIn posts and X threads: Specialize the LLM in writing social media content.

 	Messages with your friends and family: Adapt the LLM to an unfiltered version of yourself.

 	Academic papers and articles: Calibrate the LLM in writing formal and educative content.

 	Code: Specialize the LLM in implementing code as you would.

 All the preceding scenarios can be reduced to one core strategy: collecting your digital data (or some parts of it) and feeding it to an LLM using different algorithms. Ultimately, the LLM reflects the voice and style of the collected data. Easy, right?

 Unfortunately, this raises many technical and moral issues. First, on the technical side, how can we access this data? Do we have enough digital data to project ourselves into an LLM? What kind of data would be valuable? Secondly, on the moral side, is it OK to do this in the first place? Do we want to create a copycat of ourselves? Will it write using our voice and personality, or just try to replicate it?

 Remember that the role of this section is not to bother with the “What” and “How” but with the “Why.” Let’s understand why it makes sense to have your LLM Twin, why it can be valuable, and why it is morally correct if we frame the problem correctly.

 Why building an LLM Twin matters

 As an engineer (or any other professional career), building a personal brand is more valuable than a standard CV. The biggest issue with creating a personal brand is that writing content on platforms such as LinkedIn, X, or Medium takes a lot of time. Even if you enjoy writing and creating content, you will eventually run out of inspiration or time and feel like you need assistance. We don’t want to transform this section into a pitch, but we have to understand the scope of this product/project clearly.

 We want to build an LLM Twin to write personalized content on LinkedIn, X, Instagram, Substack, and Medium (or other blogs) using our style and voice. It will not be used in any immoral scenarios, but it will act as your writing co-pilot. Based on what we will teach you in this book, you can get creative and adapt it to various use cases, but we will focus on the niche of generating social media content and articles. Thus, instead of writing the content from scratch, we can feed the skeleton of our main idea to the LLM Twin and let it do the grunt work.

 Ultimately, we will have to check whether everything is correct and format it to our liking (more on the concrete features in the Planning the MVP of the LLM Twin product section). Hence, we project ourselves into a content-writing LLM Twin that will help us automate our writing process. It will likely fail if we try to use this particular LLM in a different scenario, as this is where we will specialize the LLM through fine-tuning, prompt engineering, and RAG.

 So, why does building an LLM Twin matter? It helps you do the following:

 	Create your brand

 	Automate the writing process

 	Brainstorm new creative ideas

 What’s the difference between a co-pilot and an LLM Twin?

 A co-pilot and digital twin are two different concepts that work together and can be combined into a powerful solution:

 	The co-pilot is an AI assistant or tool that augments human users in various programming, writing, or content creation tasks.

 	The twin serves as a 1:1 digital representation of a real-world entity, often using AI to bridge the gap between the physical and digital worlds. For instance, an LLM Twin is an LLM that learns to mimic your voice, personality, and writing style.

 With these definitions in mind, a writing and content creation AI assistant who writes like you is your LLM Twin co-pilot.

 Also, it is critical to understand that building an LLM Twin is entirely moral. The LLM will be fine-tuned only on our personal digital data. We won’t collect and use other people’s data to try to impersonate anyone’s identity. We have a clear goal in mind: creating our personalized writing copycat. Everyone will have their own LLM Twin with restricted access.

 Of course, many security concerns are involved, but we won’t go into that here as it could be a book in itself.

 Why not use ChatGPT (or another similar chatbot)?

 This subsection will refer to using ChatGPT (or another similar chatbot) just in the context of generating personalized content.

 We have already provided the answer. ChatGPT is not personalized to your writing style and voice. Instead, it is very generic, unarticulated, and wordy. Maintaining an original voice is critical for long-term success when building your brand. Thus, directly using ChatGPT or Gemini will not yield the most optimal results. Even if you are OK with sharing impersonalized content, mindlessly using ChatGPT can result in the following:

 	Misinformation due to hallucination: Manually checking the results for hallucinations or using third-party tools to evaluate your results is a tedious and unproductive experience.

 	Tedious manual prompting: You must manually craft your prompts and inject external information, which is a tiresome experience. Also, the generated answers will be hard to replicate between multiple sessions as you don’t have complete control over your prompts and injected data. You can solve part of this problem using an API and a tool such as LangChain, but you need programming experience to do so.

 From our experience, if you want high-quality content that provides real value, you will spend more time debugging the generated text than writing it yourself.

 The key of the LLM Twin stands in the following:

 	What data we collect

 	How we preprocess the data

 	How we feed the data into the LLM

 	How we chain multiple prompts for the desired results

 	How we evaluate the generated content

 The LLM itself is important, but we want to highlight that using ChatGPT’s web interface is exceptionally tedious in managing and injecting various data sources or evaluating the outputs. The solution is to build an LLM system that encapsulates and automates all the following steps (manually replicating them each time is not a long-term and feasible solution):

 	Data collection

 	Data preprocessing

 	Data storage, versioning, and retrieval

 	LLM fine-tuning

 	RAG

 	Content generation evaluation

 Note that we never said not to use OpenAI’s GPT API, just that the LLM framework we will present is LLM-agnostic. Thus, if it can be manipulated programmatically and exposes a fine-tuning interface, it can be integrated into the LLM Twin system we will learn to build. The key to most successful ML products is to be data-centric and make your architecture model-agnostic. Thus, you can quickly experiment with multiple models on your specific data.

 Planning the MVP of the LLM Twin product

 Now that we understand what an LLM Twin is and why we want to build it, we must clearly define the product’s features. In this book, we will focus on the first iteration, often labeled the minimum viable product (MVP), to follow the natural cycle of most products. Here, the main objective is to align our ideas with realistic and doable business objectives using the available resources to produce the product. Even as an engineer, as you grow up in responsibilities, you must go through these steps to bridge the gap between the business needs and what can be implemented.

 What is an MVP?

 An MVP is a version of a product that includes just enough features to draw in early users and test the viability of the product concept in the initial stages of development. Usually, the purpose of the MVP is to gather insights from the market with minimal effort.

 An MVP is a powerful strategy because of the following reasons:

 	Accelerated time-to-market: Launch a product quickly to gain early traction

 	Idea validation: Test it with real users before investing in the full development of the product

 	Market research: Gain insights into what resonates with the target audience

 	Risk minimization: Reduces the time and resources needed for a product that might not achieve market success

 Sticking to the V in MVP is essential, meaning the product must be viable. The product must provide an end-to-end user journey without half-implemented features, even if the product is minimal. It must be a working product with a good user experience that people will love and want to keep using to see how it evolves to its full potential.

 Defining the LLM Twin MVP

 As a thought experiment, let’s assume that instead of building this project for this book, we want to make a real product. In that case, what are our resources? Well, unfortunately, not many:

 	We are a team of three people with two ML engineers and one ML researcher

 	Our laptops

 	Personal funding for computing, such as training LLMs

 	Our enthusiasm

 As you can see, we don’t have many resources. Even if this is just a thought experiment, it reflects the reality for most start-ups at the beginning of their journey. Thus, we must be very strategic in defining our LLM Twin MVP and what features we want to pick. Our goal is simple: we want to maximize the product’s value relative to the effort and resources poured into it.

 To keep it simple, we will build the features that can do the following for the LLM Twin:

 	Collect data from your LinkedIn, Medium, Substack, and GitHub profiles

 	Fine-tune an open-source LLM using the collected data

 	Populate a vector database (DB) using our digital data for RAG

 	Create LinkedIn posts leveraging the following:
 	User prompts

 	RAG to reuse and reference old content

 	New posts, articles, or papers as additional knowledge to the LLM

 	Have a simple web interface to interact with the LLM Twin and be able to do the following:
 	Configure your social media links and trigger the collection step

 	Send prompts or links to external resources

 That will be the LLM Twin MVP. Even if it doesn’t sound like much, remember that we must make this system cost effective, scalable, and modular.

 Even if we focus only on the core features of the LLM Twin defined in this section, we will build the product with the latest LLM research and best software engineering and MLOps practices in mind. We aim to show you how to engineer a cost-effective and scalable LLM application.

 Until now, we have examined the LLM Twin from the users’ and businesses’ perspectives. The last step is to examine it from an engineering perspective and define a development plan to understand how to solve it technically. From now on, the book’s focus will be on the implementation of the LLM Twin.

 Building ML systems with feature/training/inference pipelines

 Before diving into the specifics of the LLM Twin architecture, we must understand an ML system pattern at the core of the architecture, known as the feature/training/inference (FTI) architecture. This section will present a general overview of the FTI pipeline design and how it can structure an ML application.

 Let’s see how we can apply the FTI pipelines to the LLM Twin architecture.

 The problem with building ML systems

 Building production-ready ML systems is much more than just training a model. From an engineering point of view, training the model is the most straightforward step in most use cases. However, training a model becomes complex when deciding on the correct architecture and hyperparameters. That’s not an engineering problem but a research problem.

 At this point, we want to focus on how to design a production-ready architecture. Training a model with high accuracy is extremely valuable, but just by training it on a static dataset, you are far from deploying it robustly. We have to consider how to do the following:

 	Ingest, clean, and validate fresh data

 	Training versus inference setups

 	Compute and serve features in the right environment

 	Serve the model in a cost-effective way

 	Version, track, and share the datasets and models

 	Monitor your infrastructure and models

 	Deploy the model on a scalable infrastructure

 	Automate the deployments and training

 These are the types of problems an ML or MLOps engineer must consider, while the research or data science team is often responsible for training the model.

 [image:]
 Figure 1.1: Common elements from an ML system

 The preceding figure shows all the components the Google Cloud team suggests that a mature ML and MLOps system requires. Along with the ML code, there are many moving pieces. The rest of the system comprises configuration, automation, data collection, data verification, testing and debugging, resource management, model analysis, process and metadata management, serving infrastructure, and monitoring. The point is that there are many components we must consider when productionizing an ML model.

 Thus, the critical question is this: How do we connect all these components into a single homogenous system? We must create a boilerplate for clearly designing ML systems to answer that question.

 Similar solutions exist for classic software. For example, if you zoom out, most software applications can be split between a DB, business logic, and UI layer. Every layer can be as complex as needed, but at a high-level overview, the architecture of standard software can be boiled down to the previous three components.

 Do we have something similar for ML applications? The first step is to examine previous solutions and why they are unsuitable for building scalable ML systems.

 The issue with previous solutions

 In Figure 1.2, you can observe the typical architecture present in most ML applications. It is based on a monolithic batch architecture that couples the feature creation, model training, and inference into the same component. By taking this approach, you quickly solve one critical problem in the ML world: the training-serving skew. The training-serving skew happens when the features passed to the model are computed differently at training and inference time.

 In this architecture, the features are created using the same code. Hence, the training-serving skew issue is solved by default. This pattern works fine when working with small data. The pipeline runs on a schedule in batch mode, and the predictions are consumed by a third-party application such as a dashboard.

 [image:]
 Figure 1.2: Monolithic batch pipeline architecture
 Unfortunately, building a monolithic batch system raises many other issues, such as the following:

 	Features are not reusable (by your system or others)

 	If the data increases, you have to refactor the whole code to support PySpark or Ray

 	It’s hard to rewrite the prediction module in a more efficient language such as C++, Java, or Rust

 	It’s hard to share the work between multiple teams between the features, training, and prediction modules

 	It’s impossible to switch to streaming technology for real-time training

 In Figure 1.3, we can see a similar scenario for a real-time system. This use case introduces another issue in addition to what we listed before. To make the predictions, we have to transfer the whole state through the client request so the features can be computed and passed to the model.

 Consider the scenario of computing movie recommendations for a user. Instead of simply passing the user ID, we must transmit the entire user state, including their name, age, gender, movie history, and more. This approach is fraught with potential errors, as the client must understand how to access this state, and it’s tightly coupled with the model service.

 Another example would be when implementing an LLM with RAG support. The documents we add as context along the query represent our external state. If we didn’t store the records in a vector DB, we would have to pass them with the user query. To do so, the client must know how to query and retrieve the documents, which is not feasible. It is an antipattern for the client application to know how to access or compute the features. If you don’t understand how RAG works, we will explain it in detail in Chapters 8 and 9.

 [image:]
 Figure 1.3: Stateless real-time architecture

 In conclusion, our problem is accessing the features to make predictions without passing them at the client’s request. For example, based on our first user movie recommendation example, how can we predict the recommendations solely based on the user’s ID? Remember these questions, as we will answer them shortly.

 Ultimately, on the other spectrum, Google Cloud provides a production-ready architecture, as shown in Figure 1.4. Unfortunately, even if it’s a feasible solution, it’s very complex and not intuitive. You will have difficulty understanding this if you are not highly experienced in deploying and keeping ML models in production. Also, it is not straightforward to understand how to start small and grow the system in time.

 The following image is reproduced from work created and shared by Google and used according to terms described in the Creative Commons 4.0 Attribution License:

 [image:]
 Figure 1.4: ML pipeline automation for CT (source: https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning)

 But here is where the FTI pipeline architectures kick in. The following section will show you how to solve these fundamental issues using an intuitive ML design.

 The solution – ML pipelines for ML systems

 The solution is based on creating a clear and straightforward mind map that any team or person can follow to compute the features, train the model, and make predictions. Based on these three critical steps that any ML system requires, the pattern is known as the FTI pipeline. So, how does this differ from what we presented before?

 The pattern suggests that any ML system can be boiled down to these three pipelines: feature, training, and inference (similar to the DB, business logic, and UI layers from classic software). This is powerful, as we can clearly define the scope and interface of each pipeline. Also, it’s easier to understand how the three components interact. Ultimately, we have just three instead of 20 moving pieces, as suggested in Figure 1.4, which is much easier to work with and define.

 As shown in Figure 1.5, we have the feature, training, and inference pipelines. We will zoom in on each of them and understand their scope and interface.

 [image:]
 Figure 1.5: FTI pipelines architecture

 Before going into the details, it is essential to understand that each pipeline is a different component that can run on a different process or hardware. Thus, each pipeline can be written using a different technology, by a different team, or scaled differently. The key idea is that the design is very flexible to the needs of your team. It acts as a mind map for structuring your architecture.

 The feature pipeline

 The feature pipeline takes raw data as input, processes it, and outputs the features and labels required by the model for training or inference. Instead of directly passing them to the model, the features and labels are stored inside a feature store. Its responsibility is to store, version, track, and share the features. By saving the features in a feature store, we always have a state of our features. Thus, we can easily send the features to the training and inference pipelines.

 As the data is versioned, we can always ensure that the training and inference time features match. Thus, we avoid the training-serving skew problem.

 The training pipeline

 The training pipeline takes the features and labels from the features stored as input and outputs a train model or models. The models are stored in a model registry. Its role is similar to that of feature stores, but this time, the model is the first-class citizen. Thus, the model registry will store, version, track, and share the model with the inference pipeline.

 Also, most modern model registries support a metadata store that allows you to specify essential aspects of how the model was trained. The most important are the features, labels, and their version used to train the model. Thus, we will always know what data the model was trained on.

 The inference pipeline

 The inference pipeline takes as input the features and labels from the feature store and the trained model from the model registry. With these two, predictions can be easily made in either batch or real-time mode.

 As this is a versatile pattern, it is up to you to decide what you do with your predictions. If it’s a batch system, they will probably be stored in a DB. If it’s a real-time system, the predictions will be served to the client who requested them. Additionally, the features, labels, and models are versioned. We can easily upgrade or roll back the deployment of the model. For example, we will always know that model v1 uses features F1, F2, and F3, and model v2 uses F2, F3, and F4. Thus, we can quickly change the connections between the model and features.

 Benefits of the FTI architecture

 To conclude, the most important thing you must remember about the FTI pipelines is their interface:

 	The feature pipeline takes in data and outputs the features and labels saved to the feature store.

 	The training pipeline queries the features store for features and labels and outputs a model to the model registry.

 	The inference pipeline uses the features from the feature store and the model from the model registry to make predictions.

 It doesn’t matter how complex your ML system gets, these interfaces will remain the same.

 Now that we understand better how the pattern works, we want to highlight the main benefits of using this pattern:

 	As you have just three components, it is intuitive to use and easy to understand.

 	Each component can be written into its tech stack, so we can quickly adapt them to specific needs, such as big or streaming data. Also, it allows us to pick the best tools for the job.

 	As there is a transparent interface between the three components, each one can be developed by a different team (if necessary), making the development more manageable and scalable.

 	Every component can be deployed, scaled, and monitored independently.

 The final thing you must understand about the FTI pattern is that the system doesn’t have to contain only three pipelines. In most cases, it will include more. For example, the feature pipeline can be composed of a service that computes the features and one that validates the data. Also, the training pipeline can be composed of the training and evaluation components.

 The FTI pipelines act as logical layers. Thus, it is perfectly fine for each to be complex and contain multiple services. However, what is essential is to stick to the same interface on how the FTI pipelines interact with each other through the feature store and model registries. By doing so, each FTI component can evolve differently, without knowing the details of each other and without breaking the system on new changes.

 To learn more about the FTI pipeline pattern, consider reading From MLOps to ML Systems with Feature/Training/Inference Pipelines by Jim Dowling, CEO and co-founder of Hopsworks: https://www.hopsworks.ai/post/mlops-to-ml-systems-with-fti-pipelines. His article inspired this section.

 Now that we understand the FTI pipeline architecture, the final step of this chapter is to see how it can be applied to the LLM Twin use case.

 Designing the system architecture of the LLM Twin

 In this section, we will list the concrete technical details of the LLM Twin application and understand how we can solve them by designing our LLM system using the FTI architecture. However, before diving into the pipelines, we want to highlight that we won’t focus on the tooling or the tech stack at this step. We only want to define a high-level architecture of the system, which is language-, framework-, platform-, and infrastructure-agnostic at this point. We will focus on each component’s scope, interface, and interconnectivity. In future chapters, we will cover the implementation details and tech stack.

 Listing the technical details of the LLM Twin architecture

 Until now, we defined what the LLM Twin should support from the user’s point of view. Now, let’s clarify the requirements of the ML system from a purely technical perspective:

 	On the data side, we have to do the following:
 	Collect data from LinkedIn, Medium, Substack, and GitHub completely autonomously and on a schedule

 	Standardize the crawled data and store it in a data warehouse

 	Clean the raw data

 	Create instruct datasets for fine-tuning an LLM

 	Chunk and embed the cleaned data. Store the vectorized data into a vector DB for RAG.

 	For training, we have to do the following:
 	Fine-tune LLMs of various sizes (7B, 14B, 30B, or 70B parameters)

 	Fine-tune on instruction datasets of multiple sizes

 	Switch between LLM types (for example, between Mistral, Llama, and GPT)

 	Track and compare experiments

 	Test potential production LLM candidates before deploying them

 	Automatically start the training when new instruction datasets are available.

 	The inference code will have the following properties:
 	A REST API interface for clients to interact with the LLM Twin

 	Access to the vector DB in real time for RAG

 	Inference with LLMs of various sizes

 	Autoscaling based on user requests

 	Automatically deploy the LLMs that pass the evaluation step.

 	The system will support the following LLMOps features:
 	Instruction dataset versioning, lineage, and reusability

 	Model versioning, lineage, and reusability

 	Experiment tracking

 	Continuous training, continuous integration, and continuous delivery (CT/CI/CD)

 	Prompt and system monitoring

 If any technical requirement doesn’t make sense now, bear with us. To avoid repetition, we will examine the details in their specific chapter.

 The preceding list is quite comprehensive. We could have detailed it even more, but at this point, we want to focus on the core functionality. When implementing each component, we will look into all the little details. But for now, the fundamental question we must ask ourselves is this: How can we apply the FTI pipeline design to implement the preceding list of requirements?

 How to design the LLM Twin architecture using the FTI pipeline design

 We will split the system into four core components. You will ask yourself this: “Four? Why not three, as the FTI pipeline design clearly states?” That is a great question. Fortunately, the answer is simple. We must also implement the data pipeline along the three feature/training/inference pipelines. According to best practices:

 	The data engineering team owns the data pipeline

 	The ML engineering team owns the FTI pipelines.

 Given our goal of building an MVP with a small team, we must implement the entire application. This includes defining the data collection and FTI pipelines. Tackling a problem end to end is often encountered in start-ups that can’t afford dedicated teams. Thus, engineers have to wear many hats, depending on the state of the product. Nevertheless, in any scenario, knowing how an end-to-end ML system works is valuable for better understanding other people’s work.

 Figure 1.6 shows the LLM system architecture. The best way to understand it is to review the four components individually and explain how they work.

 [image:]
 Figure 1.6: LLM Twin high-level architecture

 Data collection pipeline

 The data collection pipeline involves crawling your personal data from Medium, Substack, LinkedIn, and GitHub. As a data pipeline, we will use the extract, load, transform (ETL) pattern to extract data from social media platforms, standardize it, and load it into a data warehouse.

 It is critical to highlight that the data collection pipeline is designed to crawl data only from your social media platform. It will not have access to other people. As an example for this book, we agreed to make our collected data available for learning purposes. Otherwise, using other people’s data without their consent is not moral.

 The output of this component will be a NoSQL DB, which will act as our data warehouse. As we work with text data, which is naturally unstructured, a NoSQL DB fits like a glove.

 Even though a NoSQL DB, such as MongoDB, is not labeled as a data warehouse, from our point of view, it will act as one. Why? Because it stores standardized raw data gathered by various ETL pipelines that are ready to be ingested into an ML system.

 The collected digital data is binned into three categories:

 	Articles (Medium, Substack)

 	Posts (LinkedIn)

 	Code (GitHub)

 We want to abstract away the platform where the data was crawled. For example, when feeding an article to the LLM, knowing it came from Medium or Substack is not essential. We can keep the source URL as metadata to give references. However, from the processing, fine-tuning, and RAG points of view, it is vital to know what type of data we ingested, as each category must be processed differently. For example, the chunking strategy between a post, article, and piece of code will look different.

 Also, by grouping the data by category, not the source, we can quickly plug data from other platforms, such as X into the posts or GitLab into the code collection. As a modular system, we must attach an additional ETL in the data collection pipeline, and everything else will work without further code modifications.

 Feature pipeline

 The feature pipeline’s role is to take raw articles, posts, and code data points from the data warehouse, process them, and load them into the feature store.

 The characteristics of the FTI pattern are already present.

 Here are some custom properties of the LLM Twin’s feature pipeline:

 	It processes three types of data differently: articles, posts, and code

 	It contains three main processing steps necessary for fine-tuning and RAG: cleaning, chunking, and embedding

 	It creates two snapshots of the digital data, one after cleaning (used for fine-tuning) and one after embedding (used for RAG)

 	It uses a logical feature store instead of a specialized feature store

 Let’s zoom in on the logical feature store part a bit. As with any RAG-based system, one of the central pieces of the infrastructure is a vector DB. Instead of integrating another DB, more concretely, a specialized feature store, we used the vector DB, plus some additional logic to check all the properties of a feature store our system needs.

 The vector DB doesn’t offer the concept of a training dataset, but it can be used as a NoSQL DB. This means we can access data points using their ID and collection name. Thus, we can easily query the vector DB for new data points without any vector search logic. Ultimately, we will wrap the retrieved data into a versioned, tracked, and shareable artifact—more on artifacts in Chapter 2. For now, you must know it is an MLOps concept used to wrap data and enrich it with the properties listed before.

 How will the rest of the system access the logical feature store? The training pipeline will use the instruct datasets as artifacts, and the inference pipeline will query the vector DB for additional context using vector search techniques.

 For our use case, this is more than enough because of the following reasons:

 	The artifacts work great for offline use cases such as training

 	The vector DB is built for online access, which we require for inference.

 In future chapters, however, we will explain how the three data categories (articles, posts, and code) are cleaned, chunked, and embedded.

 To conclude, we take in raw article, post, or code data points, process them, and store them in a feature store to make them accessible to the training and inference pipelines. Note that trimming all the complexity away and focusing only on the interface is a perfect match with the FTI pattern. Beautiful, right?

 Training pipeline

 The training pipeline consumes instruct datasets from the feature store, fine-tunes an LLM with it, and stores the tuned LLM weights in a model registry. More concretely, when a new instruct dataset is available in the logical feature store, we will trigger the training pipeline, consume the artifact, and fine-tune the LLM.

 In the initial stages, the data science team owns this step. They run multiple experiments to find the best model and hyperparameters for the job, either through automatic hyperparameter tuning or manually. To compare and pick the best set of hyperparameters, we will use an experiment tracker to log everything of value and compare it between experiments. Ultimately, they will pick the best hyperparameters and fine-tuned LLM and propose it as the LLM production candidate. The proposed LLM is then stored in the model registry. After the experimentation phase is over, we store and reuse the best hyperparameters found to eliminate the manual restrictions of the process. Now, we can completely automate the training process, known as continuous training.

 The testing pipeline is triggered for a more detailed analysis than during fine-tuning. Before pushing the new model to production, assessing it against a stricter set of tests is critical to see that the latest candidate is better than what is currently in production. If this step passes, the model is ultimately tagged as accepted and deployed to the production inference pipeline. Even in a fully automated ML system, it is recommended to have a manual step before accepting a new production model. It is like pushing the red button before a significant action with high consequences. Thus, at this stage, an expert looks at a report generated by the testing component. If everything looks good, it approves the model, and the automation can continue.

 The particularities of this component will be on LLM aspects, such as the following:

 	How do you implement an LLM agnostic pipeline?

 	What fine-tuning techniques should you use?

 	How do you scale the fine-tuning algorithm on LLMs and datasets of various sizes?

 	How do you pick an LLM production candidate from multiple experiments?

 	How do you test the LLM to decide whether to push it to production or not?

 By the end of this book, you will know how to answer all these questions.

 One last aspect we want to clarify is CT. Our modular design allows us to quickly leverage an ML orchestrator to schedule and trigger different system parts. For example, we can schedule the data collection pipeline to crawl data every week.

 Then, we can trigger the feature pipeline when new data is available in the data warehouse and the training pipeline when new instruction datasets are available.

 Inference pipeline

 The inference pipeline is the last piece of the puzzle. It is connected to the model registry and logical feature store. It loads a fine-tuned LLM from the model registry, and from the logical feature store, it accesses the vector DB for RAG. It takes in client requests through a REST API as queries. It uses the fine-tuned LLM and access to the vector DB to carry out RAG and answer the queries.

 All the client queries, enriched prompts using RAG, and generated answers are sent to a prompt monitoring system to analyze, debug, and better understand the system. Based on specific requirements, the monitoring system can trigger alarms to take action either manually or automatically.

 At the interface level, this component follows exactly the FTI architecture, but when zooming in, we can observe unique characteristics of an LLM and RAG system, such as the following:

 	A retrieval client used to do vector searches for RAG

 	Prompt templates used to map user queries and external information to LLM inputs

 	Special tools for prompt monitoring

 Final thoughts on the FTI design and the LLM Twin architecture

 We don’t have to be highly rigid about the FTI pattern. It is a tool used to clarify how to design ML systems. For example, instead of using a dedicated features store just because that is how it is done, in our system, it is easier and cheaper to use a logical feature store based on a vector DB and artifacts. What was important to focus on were the required properties a feature store provides, such as a versioned and reusable training dataset.

 Ultimately, we will explain the computing requirements of each component briefly. The data collection and feature pipeline are mostly CPU-based and do not require powerful machines. The training pipeline requires powerful GPU-based machines that could load an LLM and fine-tune it. The inference pipeline is somewhere in the middle. It still needs a powerful machine but is less compute-intensive than the training step. However, it must be tested carefully, as the inference pipeline directly interfaces with the user. Thus, we want the latency to be within the required parameters for a good user experience. However, using the FTI design is not an issue. We can pick the proper computing requirements for each component.

 Also, each pipeline will be scaled differently. The data and feature pipelines will be scaled horizontally based on the CPU and RAM load. The training pipeline will be scaled vertically by adding more GPUs. The inference pipeline will be scaled horizontally based on the number of client requests.

 To conclude, the presented LLM architecture checks all the technical requirements listed at the beginning of the section. It processes the data as requested, and the training is modular and can be quickly adapted to different LLMs, datasets, or fine-tuning techniques. The inference pipeline supports RAG and is exposed as a REST API. On the LLMOps side, the system supports dataset and model versioning, lineage, and reusability. The system has a monitoring service, and the whole ML architecture is designed with CT/CI/CD in mind.

 This concludes the high-level overview of the LLM Twin architecture.

 Summary

 This first chapter was critical to understanding the book’s goal. As a product-oriented book that will walk you through building an end-to-end ML system, it was essential to understand the concept of an LLM Twin initially. Afterward, we walked you through what an MVP is and how to plan our LLM Twin MVP based on our available resources. Following this, we translated our concept into a practical technical solution with specific requirements. In this context, we introduced the FTI design pattern and showcased its real-world application in designing systems that are both modular and scalable. Ultimately, we successfully applied the FTI pattern to design the architecture of the LLM Twin to fit all our technical requirements.

 Having a clear vision of the big picture is essential when building systems. Understanding how a single component will be integrated into the rest of the application can be very valuable when working on it. We started with a more abstract presentation of the LLM Twin architecture, focusing on each component’s scope, interface, and interconnectivity.

 The following chapters will explore how to implement and deploy each component. On the MLOps side, we will walk you through using a computing platform, orchestrator, model registry, artifacts, and other tools and concepts to support all MLOps best practices.

 References

 	Dowling, J. (2024a, July 11). From MLOps to ML Systems with Feature/Training/Inference Pipelines. Hopsworks. https://www.hopsworks.ai/post/mlops-to-ml-systems-with-fti-pipelines

 	Dowling, J. (2024b, August 5). Modularity and Composability for AI Systems with AI Pipelines and Shared Storage. Hopsworks. https://www.hopsworks.ai/post/modularity-and-composability-for-ai-systems-with-ai-pipelines-and-shared-storage

 	Joseph, M. (2024, August 23). The Taxonomy for Data Transformations in AI Systems. Hopsworks. https://www.hopsworks.ai/post/a-taxonomy-for-data-transformations-in-ai-systems

 	MLOps: Continuous delivery and automation pipelines in machine learning. (2024, August 28). Google Cloud. https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

 	Qwak. (2024a, June 2). CI/CD for Machine Learning in 2024: Best Practices to build, test, and Deploy | Infer. Medium. https://medium.com/infer-qwak/ci-cd-for-machine-learning-in-2024-best-practices-to-build-test-and-deploy-c4ad869824d2

 	Qwak. (2024b, July 23). 5 Best Open Source Tools to build End-to-End MLOPs Pipeline in 2024. Medium. https://medium.com/infer-qwak/building-an-end-to-end-mlops-pipeline-with-open-source-tools-d8bacbf4184f

 	Salama, K., Kazmierczak, J., & Schut, D. (2021). Practitioners guide to MLOPs: A framework for continuous delivery and automation of machine learning (1st ed.) [PDF]. Google Cloud. https://services.google.com/fh/files/misc/practitioners_guide_to_mlops_whitepaper.pdf

 Join our book’s Discord space

 Join our community’s Discord space for discussions with the authors and other readers:

 https://packt.link/llmeng

 [image:]

 2

 Tooling and Installation

 This chapter presents all the essential tools that will be used throughout the book, especially in implementing and deploying the LLM Twin project. At this point in the book, we don’t plan to present in-depth LLM, RAG, MLOps, or LLMOps concepts. We will quickly walk you through our tech stack and prerequisites to avoid repeating ourselves throughout the book on how to set up a particular tool and why we chose it. Starting with Chapter 3, we will begin exploring our LLM Twin use case by implementing a data collection ETL that crawls data from the internet.

 In the first part of the chapter, we will present the tools within the Python ecosystem to manage multiple Python versions, create a virtual environment, and install the pinned dependencies required for our project to run. Alongside presenting these tools, we will also show how to install the LLM-Engineers-Handbook repository on your local machine (in case you want to try out the code yourself): https://github.com/PacktPublishing/LLM-Engineers-Handbook.

 Next, we will explore all the MLOps and LLMOps tools we will use, starting with more generic tools, such as a model registry, and moving on to more LLM-oriented tools, such as LLM evaluation and prompt monitoring tools. We will also understand how to manage a project with multiple ML pipelines using ZenML, an orchestrator bridging the gap between ML and MLOps. Also, we will quickly explore what databases we will use for NoSQL and vector storage. We will show you how to run all these components on your local machine using Docker. Lastly, we will quickly review AWS and show you how to create an AWS user and access keys and install and configure the AWS CLI to manipulate your cloud resources programmatically. We will also explore SageMaker and why we use it to train and deploy our open-source LLMs.

 If you are familiar with these tools, you can safely skip this chapter. We also explain how to install the project and set up all the necessary components in the repository’s README. Thus, you also have the option to use that as more concise documentation if you plan to run the code while reading the book.

 To sum all that up, in this chapter, we will explore the following topics:

 	Python ecosystem and project installation

 	MLOps and LLMOps tooling

 	Databases for storing unstructured and vector data

 	Preparing for AWS

 By the end of this chapter, you will be aware of all the tools we will use across the book. Also, you will have learned how to install the LLM-Engineers-Handbook repository, set up the rest of the tools, and use them if you run the code while reading the book.

 Python ecosystem and project installation

 Any Python project needs three fundamental tools: the Python interpreter, dependency management, and a task execution tool. The Python interpreter executes your Python project as expected. All the code within the book is tested with Python 3.11.8. You can download the Python interpreter from here: https://www.python.org/downloads/. We recommend installing the exact Python version (Python 3.11.8) to run the LLM Twin project using pyenv, making the installation process straightforward.

 Instead of installing multiple global Python versions, we recommend managing them using pyenv, a Python version management tool that lets you manage multiple Python versions between projects. You can install it using this link: https://github.com/pyenv/pyenv?tab=readme-ov-file#installation.

 After you have installed pyenv, you can install the latest version of Python 3.11, using pyenv, as follows:

 pyenv install 3.11.8

 Now list all installed Python versions to see that it was installed correctly:

 pyenv versions

 You should see something like this:

 # * system
3.11.8

 To make Python 3.11.8 the default version across your entire system (whenever you open a new terminal), use the following command:

 pyenv global 3.11.8

 However, we aim to use Python 3.11.8 locally only in our repository. To achieve that, first, we have to clone the repository and navigate to it:

 git clone https://github.com/PacktPublishing/LLM-Engineers-Handbook.git
cd LLM-Engineers-Handbook

 Because we defined a .python-version file within the repository, pyenv will know to pick up the version from that file and use it locally whenever you are working within that folder. To double-check that, run the following command while you are in the repository:

 python --version

 It should output:

 # Python 3.11.8

 To create the .python-version file, you must run pyenv local 3.11.8 once. Then, pyenv will always know to use that Python version while working within a specific directory.

 Now that we have installed the correct Python version using pyenv, let’s move on to Poetry, which we will use as our dependency and virtual environment manager.

 Poetry: dependency and virtual environment management

 Poetry is one of the most popular dependency and virtual environment managers within the Python ecosystem. But let’s start by clarifying what a dependency manager is. In Python, a dependency manager allows you to specify, install, update, and manage external libraries or packages (dependencies) that a project relies on. For example, this is a simple Poetry requirements file that uses Python 3.11 and the requests and numpy Python packages.

 [tool.poetry.dependencies]
python = "^3.11"
requests = "^2.25.1"
numpy = "^1.19.5"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

 By using Poetry to pin your dependencies, you always ensure that you install the correct version of the dependencies that your projects work with. Poetry, by default, saves all its requirements in pyproject.toml files, which are stored at the root of your repository, as you can see in the cloned LLM-Engineers-Handbook repository.

 Another massive advantage of using Poetry is that it creates a new Python virtual environment in which it installs the specified Python version and requirements. A virtual environment allows you to isolate your project’s dependencies from your global Python dependencies and other projects. By doing so, you ensure there are no version clashes between projects. For example, let’s assume that Project A needs numpy == 1.19.5, and Project B needs numpy == 1.26.0. If you keep both projects in the global Python environment, that will not work, as Project B will override Project A’s numpy installation, which will corrupt Project A and stop it from working. Using Poetry, you can isolate each project in its own Python environment with its own Python dependencies, avoiding any dependency clashes.

 You can install Poetry from here: https://python-poetry.org/docs/. We use Poetry 1.8.3 throughout the book. Once Poetry is installed, navigate to your cloned LLM-Engineers-Handbook repository and run the following command to install all the necessary Python dependencies:

 poetry install --without aws

 This command knows to pick up all the dependencies from your repository that are listed in the pyproject.toml and poetry.lock files. After the installation, you can activate your Poetry environment by running poetry shell in your terminal or by prefixing all your CLI commands as follows: poetry run <your command>.

 One final note on Poetry is that it locks down the exact versions of the dependency tree in the poetry.lock file based on the definitions added to the project.toml file. While the pyproject.toml file may specify version ranges (e.g., requests = "^2.25.1"), the poetry.lock file records the exact version (e.g., requests = "2.25.1") that was installed. It also locks the versions of sub-dependencies (dependencies of your dependencies), which may not be explicitly listed in your pyproject.toml file. By locking all the dependencies and sub-dependencies to specific versions, the poetry.lock file ensures that all project installations use the same versions of each package. This consistency leads to predictable behavior, reducing the likelihood of encountering “works on my machine” issues.

 Other tools similar to Poetry are Venv and Conda for creating virtual environments. Still, they lack the dependency management option. Thus, you must do it through Python’s default requirements.txt files, which are less powerful than Poetry’s lock files. Another option is Pipenv, which feature-wise is more like Poetry but slower, and uv, which is a replacement for Poetry built in Rust, making it blazing fast. uv has lots of potential to replace Poetry, making it worthwhile to test out: https://github.com/astral-sh/uv.

 The final piece of the puzzle is to look at the task execution tool we used to manage all our CLI commands.

 Poe the Poet: task execution tool

 Poe the Poet is a plugin on top of Poetry that is used to manage and execute all the CLI commands required to interact with the project. It helps you define and run tasks within your Python project, simplifying automation and script execution. Other popular options are Makefile, Invoke, or shell scripts, but Poe the Poet eliminates the need to write separate shell scripts or Makefiles for managing project tasks, making it an elegant way to manage tasks using the same configuration file that Poetry already uses for dependencies.

 When working with Poe the Poet, instead of having all your commands documented in a README file or other document, you can add them directly to your pyproject.toml file and execute them in the command line with an alias. For example, using Poe the Poet, we can define the following tasks in a pyproject.toml file:

 [tool.poe.tasks]
test = "pytest"
format = "black ."
start = "python main.py"

 You can then run these tasks using the poe command:

 poetry poe test
poetry poe format
poetry poe start

 You can install Poe the Poet as a Poetry plugin, as follows:

 poetry self add 'poethepoet[poetry_plugin]'

 To conclude, using a tool as a façade over all your CLI commands is necessary to run your application. It significantly simplifies the application’s complexity and enhances collaboration as it acts as out-of-the-box documentation.

 Assuming you have pyenv and Poetry installed, here are all the commands you need to run to clone the repository and install the dependencies and Poe the Poet as a Poetry plugin:

 git clone https://github.com/PacktPublishing/LLM-Engineers-Handbook.gitcd LLM-Engineers-Handbook
poetry install --without aws
poetry self add 'poethepoet[poetry_plugin]'

 To make the project fully operational, there are still a few steps to follow, such as filling out a .env file with your credentials and getting tokens from OpenAI and Hugging Face. But this book isn’t an installation guide, so we’ve moved all these details into the repository’s README as they are useful only if you plan to run the repository: https://github.com/PacktPublishing/LLM-Engineers-Handbook.

 Now that we have installed our Python project, let’s present the MLOps tools we will use in the book. If you are already familiar with these tools, you can safely skip the following tooling section and move on to the Databases for storing unstructured and vector data section.

 MLOps and LLMOps tooling

 This section will quickly present all the MLOps and LLMOps tools we will use throughout the book and their role in building ML systems using MLOps best practices. At this point in the book, we don’t aim to detail all the MLOps components we will use to implement the LLM Twin use case, such as model registries and orchestrators, but only provide a quick idea of what they are and how to use them. As we develop the LLM Twin project throughout the book, you will see hands-on examples of how we use all these tools. In Chapter 11, we will dive deeply into the theory of MLOps and LLMOps and connect all the dots. As the MLOps and LLMOps fields are highly practical, we will leave the theory of these aspects to the end, as it will be much easier to understand it after you go through the LLM Twin use case implementation.

 Also, this section is not dedicated to showing you how to set up each tool. It focuses primarily on what each tool is used for and highlights the core features used throughout this book.

 Still, using Docker, you can quickly run the whole infrastructure locally. If you want to run the steps within the book yourself, you can host the application locally with these three simple steps:

 	Have Docker 27.1.1 (or higher) installed.

 	Fill your .env file with all the necessary credentials as explained in the repository README.

 	Run poetry poe local-infrastructure-up to locally spin up ZenML (http://127.0.0.1:8237/) and the MongoDB and Qdrant databases.

 You can read more details on how to run everything locally in the LLM-Engineers-Handbook repository README: https://github.com/PacktPublishing/LLM-Engineers-Handbook. Within the book, we will also show you how to deploy each component to the cloud.

 Hugging Face: model registry

 A model registry is a centralized repository that manages ML models throughout their lifecycle. It stores models along with their metadata, version history, and performance metrics, serving as a single source of truth. In MLOps, a model registry is crucial for tracking, sharing, and documenting model versions, facilitating team collaboration. Also, it is a fundamental element in the deployment process as it integrates with continuous integration and continuous deployment (CI/CD) pipelines.

 We used Hugging Face as our model registry, as we can leverage its ecosystem to easily share our fine-tuned LLM Twin models with anyone who reads the book. Also, by following the Hugging Face model registry interface, we can easily integrate the model with all the frameworks around the LLMs ecosystem, such as Unsloth for fine-tuning and SageMaker for inference.

 Our fine-tuned LLMs are available on Hugging Face at:

 	TwinLlama 3.1 8B (after fine-tuning): https://huggingface.co/mlabonne/TwinLlama-3.1-8B

 	TwinLlama 3.1 8B DPO (after preference alignment): https://huggingface.co/mlabonne/TwinLlama-3.1-8B-DPO

 [image:]
 Figure 2.1: Hugging Face model registry example

 For a quick demo, we have them available on Hugging Face Spaces:

 	TwinLlama 3.1 8B: https://huggingface.co/spaces/mlabonne/TwinLlama-3.1-8B

 	TwinLlama 3.1 8B DPO: https://huggingface.co/spaces/mlabonne/TwinLlama-3.1-8B-DPO

 Most ML tools provide model registry features. For example, ZenML, Comet, and SageMaker, which we will present in future sections, also offer their own model registries. They are good options, but we picked Hugging Face solely because of its ecosystem, which provides easy shareability and integration throughout the open-source environment. Thus, you will usually select the model registry that integrates the most with your project’s tooling and requirements.

 ZenML: orchestrator, artifacts, and metadata

 ZenML acts as the bridge between ML and MLOps. Thus, it offers multiple MLOps features that make your ML pipeline traceability, reproducibility, deployment, and maintainability easier. At its core, it is designed to create reproducible workflows in machine learning. It addresses the challenge of transitioning from exploratory research in Jupyter notebooks to a production-ready ML environment. It tackles production-based replication issues, such as versioning difficulties, reproducing experiments, organizing complex ML workflows, bridging the gap between training and deployment, and tracking metadata. Thus, ZenML’s main features are orchestrating ML pipelines, storing and versioning ML pipelines as outputs, and attaching metadata to artifacts for better observability.

 Instead of being another ML platform, ZenML introduced the concept of a stack, which allows you to run ZenML on multiple infrastructure options. A stack will enable you to connect ZenML to different cloud services, such as:

 	An orchestrator and compute engine (for example, AWS SageMaker or Vertex AI)

 	Remote storage (for instance, AWS S3 or Google Cloud Storage buckets)

 	A container registry (for example, Docker Registry or AWS ECR)

 Thus, ZenML acts as a glue that brings all your infrastructure and tools together in one place through its stack feature, allowing you to quickly iterate through your development processes and easily monitor your entire ML system. The beauty of this is that ZenML doesn’t vendor-lock you into any cloud platform. It completely abstracts away the implementation of your Python code from the infrastructure it runs on. For example, in our LLM Twin use case, we used the AWS stack:

 	SageMaker as our orchestrator and compute

 	S3 as our remote storage used to store and track artifacts

 	ECR as our container registry

 However, the Python code contains no S3 or ECR particularities, as ZenML takes care of them. Thus, we can easily switch to other providers, such as Google Cloud Storage or Azure. For more details on ZenML stacks, you can start here: https://docs.zenml.io/user-guide/production-guide/understand-stacks.

 We will focus only on the ZenML features used throughout the book, such as orchestrating, artifacts, and metadata. For more details on ZenML, check out their starter guide: https://docs.zenml.io/user-guide/starter-guide.

 The local version of the ZenML server comes installed as a Python package. Thus, when running poetry install, it installs a ZenML debugging server that you can use locally. In Chapter 11, we will show you how to use their cloud serverless option to deploy the ML pipelines to AWS.

 Orchestrator

 An orchestrator is a system that automates, schedules, and coordinates all your ML pipelines. It ensures that each pipeline—such as data ingestion, preprocessing, model training, and deployment—executes in the correct order and handles dependencies efficiently. By managing these processes, an orchestrator optimizes resource utilization, handles failures gracefully, and enhances scalability, making complex ML pipelines more reliable and easier to manage.

 How does ZenML work as an orchestrator? It works with pipelines and steps. A pipeline is a high-level object that contains multiple steps. A function becomes a ZenML pipeline by being decorated with @pipeline, and a step when decorated with @step. This is a standard pattern when using orchestrators: you have a high-level function, often called a pipeline, that calls multiple units/steps/tasks.

 Let’s explore how we can implement a ZenML pipeline with one of the ML pipelines implemented for the LLM Twin project. In the code snippet below, we defined a ZenML pipeline that queries the database for a user based on its full name and crawls all the provided links under that user:

 from zenml import pipeline
from steps.etl import crawl_links, get_or_create_user
@pipeline
def digital_data_etl(user_full_name: str, links: list[str]) -> None:
 user = get_or_create_user(user_full_name)
 crawl_links(user=user, links=links)

 You can run the pipeline with the following CLI command: poetry poe run-digital-data-etl. To visualize the pipeline run, you can go to your ZenML dashboard (at http://127.0.0.1:8237/) and, on the left panel, click on the Pipelines tab and then on the digital_data_etl pipeline, as illustrated in Figure 2.2:

 [image:]
 Figure 2.2: ZenML Pipelines dashboard

 After clicking on the digital_data_etl pipeline, you can visualize all the previous and current pipeline runs, as seen in Figure 2.3. You can see which one succeeded, failed, or is still running. Also, you can see the stack used to run the pipeline, where the default stack is the one used to run your ML pipelines locally.

 [image:]
 Figure 2.3: ZenML digital_data_etl pipeline dashboard. Example of a specific pipeline

 Now, after clicking on the latest digital_data_etl pipeline run (or any other run that succeeded or is still running), we can visualize the pipeline’s steps, outputs, and insights, as illustrated in Figure 2.4. This structure is often called a directed acyclic graph (DAG). More on DAGs in Chapter 11.

 [image:]
 Figure 2.4: ZenML digital_data_etl pipeline run dashboard (example of a specific pipeline run)

 By clicking on a specific step, you can get more insights into its code and configuration. It even aggregates the logs output by that specific step to avoid switching between tools, as shown in Figure 2.5.

 [image:]
 Figure 2.5: Example of insights from a specific step of the digital_data_etl pipeline run

 Now that we understand how to define a ZenML pipeline and how to look it up in the dashboard, let’s quickly look at how to define a ZenML step. In the code snippet below, we defined the get_or_create_user() step, which works just like a normal Python function but is decorated with @step. We won’t go into the details of the logic, as we will cover the ETL logic in Chapter 3. For now, we will focus only on the ZenML functionality.

 from loguru import logger
from typing_extensions import Annotated
from zenml import get_step_context, step
from llm_engineering.application import utils
from llm_engineering.domain.documents import UserDocument
@step
def get_or_create_user(user_full_name: str) -> Annotated[UserDocument, "user"]:
 logger.info(f"Getting or creating user: {user_full_name}")
 first_name, last_name = utils.split_user_full_name(user_full_name)
 user = UserDocument.get_or_create(first_name=first_name, last_name=last_name)
 return user

 Within a ZenML step, you can define any Python logic your use case needs. In this simple example, we are just creating or retrieving a user, but we could replace that code with anything, starting from data collection to feature engineering and training. What is essential to notice is that to integrate ZenML with your code, you have to write modular code, where each function does just one thing. The modularity of your code makes it easy to decorate your functions with @step and then glue multiple steps together within a main function decorated with @pipeline. One design choice that will impact your application is deciding the granularity of each step, as each will run as a different unit on a different machine when deployed in the cloud.

 To decouple our code from ZenML, we encapsulated all the application and domain logic into the llm_engineering Python module. We also defined the pipelines and steps folders, where we defined our ZenML logic. Within the steps module, we only used what we needed from the llm_engineering Python module (similar to how you use a Python package). In the pipelines module, we only aggregated ZenML steps to glue them into the final pipeline. Using this design, we can easily swap ZenML with another orchestrator or use our application logic in other use cases, such as a REST API. We only have to replace the ZenML code without touching the llm_engineering module where all our logic resides.

 This folder structure is reflected at the root of the LLM-Engineers-Handbook repository, as illustrated in Figure 2.6:

 [image:]
 Figure 2.6: LLM-Engineers-Handbook repository folder structure
 One last thing to consider when writing ZenML steps is that if you return a value, it should be serializable. ZenML can serialize most objects that can be reduced to primitive data types, but there are a few exceptions. For example, we used UUID types as IDs throughout the code, which aren’t natively supported by ZenML. Thus, we had to extend ZenML’s materializer to support UUIDs. We raised this issue to ZenML. Hence, in future ZenML versions, UUIDs will be supported, but it was an excellent example of the serialization aspect of transforming function outputs in artifacts.

 Artifacts and metadata

 As mentioned in the previous section, ZenML transforms any step output into an artifact. First, let’s quickly understand what an artifact is. In MLOps, an artifact is any file(s) produced during the machine learning lifecycle, such as datasets, trained models, checkpoints, or logs. Artifacts are crucial for reproducing experiments and deploying models. We can transform anything into an artifact. For example, the model registry is a particular use case for an artifact. Thus, artifacts have these unique properties: they are versioned, sharable, and have metadata attached to them to understand what’s inside quickly. For example, when wrapping your dataset with an artifact, you can add to its metadata the size of the dataset, the train-test split ratio, the size, types of labels, and anything else useful to understand what’s inside the dataset without actually downloading it.

 Let’s circle back to our digital_data_etl pipeline example, where we had as a step output an artifact, the crawled links, which are an artifact, as seen in Figure 2.7

 [image:]
 Figure 2.7: ZenML artifact example using the digital_data_etl pipeline as an example

 By clicking on the crawled_links artifact and navigating to the Metadata tab, we can quickly see all the domains we crawled for a particular author, the number of links we crawled for each domain, and how many were successful, as illustrated in Figure 2.8:

 [image:]
 Figure 2.8: ZenML metadata example using the digital_data_etl pipeline as an example

 A more interesting example of an artifact and its metadata is the generated dataset artifact. In Figure 2.9, we can visualize the metadata of the instruct_datasets artifact, which was automatically generated and will be used to fine-tune the LLM Twin model. More details on the instruction datasets are in Chapter 5. For now, we want to highlight that within the dataset’s metadata, we have precomputed a lot of helpful information about it, such as how many data categories it contains, its storage size, and the number of samples per training and testing split.

 [image:]
 Figure 2.9: ZenML metadata example for the instruct_datasets artifact

 The metadata is manually added to the artifact, as shown in the code snippet below. Thus, you can precompute and attach to the artifact’s metadata anything you consider helpful for dataset discovery across your business and projects:

OEBPS/Images/B31105_01_01.png
Data
collection

Testing and
debugging

Data
verification
Configs
Automation

Resource
management

Model

analysis

Serving
nfrastructure

Process
management

Metadata
management

OEBPS/Images/B31105_02_01.png
€ mlabonne TwinLlama-3.1-8B T Olike 3

% TextGeneration @ Transformers € Safetensors & mlabon

@ License: apache-2.0

Modelcard °I- Filesand versions ¢ Community

OEBPS/Text/toc.xhtml

 Contents

 		Preface

 		Who this book is for

 		What this book covers

 		To get the most out of this book

 		Get in touch

 		Understanding the LLM Twin Concept and Architecture

 		Understanding the LLM Twin concept

 		What is an LLM Twin?

 		Why building an LLM Twin matters

 		Why not use ChatGPT (or another similar chatbot)?

 		Planning the MVP of the LLM Twin product

 		What is an MVP?

 		Defining the LLM Twin MVP

 		Building ML systems with feature/training/inference pipelines

 		The problem with building ML systems

 		The issue with previous solutions

 		The solution – ML pipelines for ML systems

 		The feature pipeline

 		The training pipeline

 		The inference pipeline

 		Benefits of the FTI architecture

 		Designing the system architecture of the LLM Twin

 		Listing the technical details of the LLM Twin architecture

 		How to design the LLM Twin architecture using the FTI pipeline design

 		Data collection pipeline

 		Feature pipeline

 		Training pipeline

 		Inference pipeline

 		Final thoughts on the FTI design and the LLM Twin architecture

 		Summary

 		References

 		Tooling and Installation

 		Python ecosystem and project installation

 		Poetry: dependency and virtual environment management

 		Poe the Poet: task execution tool

 		MLOps and LLMOps tooling

 		Hugging Face: model registry

 		ZenML: orchestrator, artifacts, and metadata

 		Orchestrator

 		Artifacts and metadata

 		How to run and configure a ZenML pipeline

 		Comet ML: experiment tracker

 		Opik: prompt monitoring

 		Databases for storing unstructured and vector data

 		MongoDB: NoSQL database

 		Qdrant: vector database

 		Preparing for AWS

 		Setting up an AWS account, an access key, and the CLI

 		SageMaker: training and inference compute

 		Why AWS SageMaker?

 		Summary

 		References

 		Data Engineering

 		Designing the LLM Twin’s data collection pipeline

 		Implementing the LLM Twin’s data collection pipeline

 		ZenML pipeline and steps

 		The dispatcher: How do you instantiate the right crawler?

 		The crawlers

 		Base classes

 		GitHubCrawler class

 		CustomArticleCrawler class

 		MediumCrawler class

 		The NoSQL data warehouse documents

 		The ORM and ODM software patterns

 		Implementing the ODM class

 		Data categories and user document classes

 		Gathering raw data into the data warehouse

 		Troubleshooting

 		Selenium issues

 		Import our backed-up data

 		Summary

 		References

 		RAG Feature Pipeline

 		Understanding RAG

 		Why use RAG?

 		Hallucinations

 		Old information

 		The vanilla RAG framework

 		Ingestion pipeline

 		Retrieval pipeline

 		Generation pipeline

 		What are embeddings?

 		Why embeddings are so powerful

 		How are embeddings created?

 		Applications of embeddings

 		More on vector DBs

 		How does a vector DB work?

 		Algorithms for creating the vector index

 		DB operations

 		An overview of advanced RAG

 		Pre-retrieval

 		Retrieval

 		Post-retrieval

 		Exploring the LLM Twin’s RAG feature pipeline architecture

 		The problem we are solving

 		The feature store

 		Where does the raw data come from?

 		Designing the architecture of the RAG feature pipeline

 		Batch pipelines

 		Batch versus streaming pipelines

 		Core steps

 		Change data capture: syncing the data warehouse and feature store

 		Why is the data stored in two snapshots?

 		Orchestration

 		Implementing the LLM Twin’s RAG feature pipeline

 		Settings

 		ZenML pipeline and steps

 		Querying the data warehouse

 		Cleaning the documents

 		Chunk and embed the cleaned documents

 		Loading the documents to the vector DB

 		Pydantic domain entities

 		OVM

 		The dispatcher layer

 		The handlers

 		The cleaning handlers

 		The chunking handlers

 		The embedding handlers

 		Summary

 		References

 		Supervised Fine-Tuning

 		Creating an instruction dataset

 		General framework

 		Data quantity

 		Data curation

 		Rule-based filtering

 		Data deduplication

 		Data decontamination

 		Data quality evaluation

 		Data exploration

 		Data generation

 		Data augmentation

 		Creating our own instruction dataset

 		Exploring SFT and its techniques

 		When to fine-tune

 		Instruction dataset formats

 		Chat templates

 		Parameter-efficient fine-tuning techniques

 		Full fine-tuning

 		LoRA

 		QLoRA

 		Training parameters

 		Learning rate and scheduler

 		Batch size

 		Maximum length and packing

 		Number of epochs

 		Optimizers

 		Weight decay

 		Gradient checkpointing

 		Fine-tuning in practice

 		Summary

 		References

 		Fine-Tuning with Preference Alignment

 		Understanding preference datasets

 		Preference data

 		Data quantity

 		Data generation and evaluation

 		Generating preferences

 		Tips for data generation

 		Evaluating preferences

 		Creating our own preference dataset

 		Preference alignment

 		Reinforcement Learning from Human Feedback

 		Direct Preference Optimization

 		Implementing DPO

 		Summary

 		References

 		Evaluating LLMs

 		Model evaluation

 		Comparing ML and LLM evaluation

 		General-purpose LLM evaluations

 		Domain-specific LLM evaluations

 		Task-specific LLM evaluations

 		RAG evaluation

 		Ragas

 		ARES

 		Evaluating TwinLlama-3.1-8B

 		Generating answers

 		Evaluating answers

 		Analyzing results

 		Summary

 		References

 		Inference Optimization

 		Model optimization strategies

 		KV cache

 		Continuous batching

 		Speculative decoding

 		Optimized attention mechanisms

 		Model parallelism

 		Data parallelism

 		Pipeline parallelism

 		Tensor parallelism

 		Combining approaches

 		Model quantization

 		Introduction to quantization

 		Quantization with GGUF and llama.cpp

 		Quantization with GPTQ and EXL2

 		Other quantization techniques

 		Summary

 		References

 		RAG Inference Pipeline

 		Understanding the LLM Twin’s RAG inference pipeline

 		Exploring the LLM Twin’s advanced RAG techniques

 		Advanced RAG pre-retrieval optimizations: query expansion and self-querying

 		Query expansion

 		Self-querying

 		Advanced RAG retrieval optimization: filtered vector search

 		Advanced RAG post-retrieval optimization: reranking

 		Implementing the LLM Twin’s RAG inference pipeline

 		Implementing the retrieval module

 		Bringing everything together into the RAG inference pipeline

 		Summary

 		References

 		Inference Pipeline Deployment

 		Criteria for choosing deployment types

 		Throughput and latency

 		Data

 		Understanding inference deployment types

 		Online real-time inference

 		Asynchronous inference

 		Offline batch transform

 		Monolithic versus microservices architecture in model serving

 		Monolithic architecture

 		Microservices architecture

 		Choosing between monolithic and microservices architectures

 		Exploring the LLM Twin’s inference pipeline deployment strategy

 		The training versus the inference pipeline

 		Deploying the LLM Twin service

 		Implementing the LLM microservice using AWS SageMaker

 		What are Hugging Face’s DLCs?

 		Configuring SageMaker roles

 		Deploying the LLM Twin model to AWS SageMaker

 		Calling the AWS SageMaker Inference endpoint

 		Building the business microservice using FastAPI

 		Autoscaling capabilities to handle spikes in usage

 		Registering a scalable target

 		Creating a scalable policy

 		Minimum and maximum scaling limits

 		Cooldown period

 		Summary

 		References

 		MLOps and LLMOps

 		The path to LLMOps: Understanding its roots in DevOps and MLOps

 		DevOps

 		The DevOps lifecycle

 		The core DevOps concepts

 		MLOps

 		MLOps core components

 		MLOps principles

 		ML vs. MLOps engineering

 		LLMOps

 		Human feedback

 		Guardrails

 		Prompt monitoring

 		Deploying the LLM Twin’s pipelines to the cloud

 		Understanding the infrastructure

 		Setting up MongoDB

 		Setting up Qdrant

 		Setting up the ZenML cloud

 		Containerize the code using Docker

 		Run the pipelines on AWS

 		Troubleshooting the ResourceLimitExceeded error after running a ZenML pipeline on SageMaker

 		Adding LLMOps to the LLM Twin

 		LLM Twin’s CI/CD pipeline flow

 		More on formatting errors

 		More on linting errors

 		Quick overview of GitHub Actions

 		The CI pipeline

 		GitHub Actions CI YAML file

 		The CD pipeline

 		Test out the CI/CD pipeline

 		The CT pipeline

 		Initial triggers

 		Trigger downstream pipelines

 		Prompt monitoring

 		Alerting

 		Summary

 		References

 		Appendix: MLOps Principles

 		 Automation or operationalization

 		 Versioning

 		 Experiment tracking

 		 Testing

 		Test types

 		What do we test?

 		Test examples

 		 Monitoring

 		Logs

 		Metrics

 		System metrics

 		Model metrics

 		Drifts

 		Monitoring vs. observability

 		Alerts

 		 Reproducibility

 		Other Books You May Enjoy

 		Index

 Landmarks

 		

 Cover

 		

 Index

OEBPS/Images/blockquote-top.png

OEBPS/Images/B31105_02_06.png
(@ LLM-Engineers-Handbook (7iic)

¥ 7Branches © 0 Tags Q Gotofile ®

@ iusztinpaul docs: Improve README 431231417 hours ago) 116 Comits
B githubjworkflows fix: Loading Settings from ZenML secrets 2months ago
W wscode feat: Add DE pipeline logic 4 months ago
B8 code_snippets foat: Add custom ODM example last week
B configs docs: Extend README yesterday
8 dummy_dataset added finetuning script vi 2months ago
M images docs: Update README with .en details 3days ago
8 lim_engineering docs: Extend README yesterday
L] feat: Add dataset generation logic with prefernce support 2 weeks ago
™ steps feat: Add dataset generation logic with prefernce support 2 weeks ago
™ tools feat: Add dataset generation logic with prefernce support 2 weeks ago

OEBPS/Images/B31105_01_06.png
Data Collection Pipeline

Feature Pipeline

GitHub

() -

CED\E— -
[—

m NoSQL DB Code

(o)

Data for

Fine-tuning
&RAG

Training Pipeline

N
Experiment LLM -— Retrieval —
Tracker tuning [Froronmg — Client —-—
D (e FRl—— S
Instruct Vector D
Dataset \

UM Production

Candidate
H
— S
—] .—,i
Depls
| — Accepted LM oy
Model {
Registry $ “Wiite a post about...”
LM
i =
—

Inference Pipeline

OEBPS/Images/tip.png

OEBPS/Images/B31105_02_09.png
8bba3sed-8ff9-4d8f-a039-08046efcofdc
£ instruct_datasets

() overview [©) Metadata [I]) Visualization

V' Uncategorized

data_categories articles
storage_size 493.23 KB
test_split_size 01
> schema
 train_num_samples_per_category
articles 738
\ test_num_samples_per_category

82

articles

OEBPS/Images/B31105_Free_PDF_QR.png

OEBPS/Images/B31105_01_05.png
Transform dafa info
features & labels

Tools: Pandos, Polars,
Spark, DB, Fiiak, Bylowax

Train models with
feature & lubels

Tools: PyTorch, TensorFlow,
Scikitlarn, XGBoos!, Jox

Features
& Lobels

Make predictions with
models & new features
Tools: PyTorch, TensorFlow,
Scikitearn, XGBoosl, Jox

H
5e

Store

OEBPS/Images/B31105_02_05.png
© get_or_create_user « conetea

() overview [7] Code %% Configuration

v Logs

Step get_or_create_user has started.

2024-09-26 15:38:51.597 | INFO | steps.etl.get_or_create_useriget_or_create_user:1l
- Getting or creating user: Maxime Labonne

Step get_or_create_user has finished in 0.073s.

Step get_or_create_user completed successfully.

OEBPS/Images/info.png

OEBPS/Images/B31105_02_08.png
cbBfBac7-30bd-48fa-b5a2-e2958096¢15a

() crawled_links ¢

(D) Overview [) Metadata (i) Visualization

> Uncategorized

~ miabonne.github.io

successful 2

total 2

~ maximelabonne.substack.com

successful 2

total 2

OEBPS/Images/blockquote-bottom.png

OEBPS/Images/B31105_01_04.png

OEBPS/Images/9781836200079.png
4178 29483

LLM Engineer’s
Hcmdl?ook

Master the art of engineering large
language models from concept to production

Forewords by

Julien Chaumond Hamza Tahir Antonio Gulli
Co-founder and CTO, Co-founder and CTO Senior Director
Hugging Face ZenML Google

Paul lusztin | Maxime Labonne (quk.I.)

OEBPS/Images/B31105_02_04.png
© digital_data_etl_run_2024_09_26.15_38_51 ©

+ S Runnsights
B @ overview 2 Confguation
c —
© get_or_create_user © oot
" eTasa1-4se2 b4 1025487 TcC
g uer staws
fim_engineering.domain.documents.Use...
Pipoine
Author
© crawl_links StartTime 2610972026, 153851
nd Time 2610072020, 153851
[y crawedlinks .
builtns list v sux S

Avitact sore aotaut

OEBPS/Images/B31105_02_02.png
Pipelines

B cetaur |« Pipelines
Production Setup > Search.
0/2

Pipsline

) Overview

B Pipelines B digital_data_etl ©

) Models “E export_artifact_to_json ()

[Artifacts
generate_datasets ()

< Stacks

B
“E generate_instruct_datasets ©
B

feature_engineering ©

OEBPS/Images/B31105_01_02.png
Training
Data

@ Upload: Dowaload:
Model Weights Model Weights

Inference
Data

OEBPS/Images/New_Packt_Logo.png
<PACKD

OEBPS/Images/QR_Code79969828252392890.png

OEBPS/Images/B31105_01_03.png
Training
Data

Upload: Download:
Model Weights Model Weights

Result

OEBPS/Images/B31105_02_03.png
digital_data.etl_run_2024.09.26.15.38.51 ©)

digital_dta_ellrun_2024.09.24.12.29.57

digital_data_etlrun2024.09.24.12.29.31 ©

digital_data_etl_run_2024.09_24.12.28_40 ()

digital_data_etlrun.2024.08.26.09.14.06 ©

aotour

aotoun

aetout

aotoun

aetoun

Repository.

2600972024, 159051

2410972024, 122058

2410972026, 122951

2410072024, 122841

2600812024, 11405

o deteur

aetaut

aotaut

aotout

aetautt

OEBPS/Images/B31105_02_07.png
© get_or_create_user

user
im_engineering.domain.documents.Use.

© crawl_links

crawled_links

builtins list

