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			Preface

			Running business applications in the form of microservices that are packaged in containers is the norm today. As per a survey done by Cloud Native Computing Foundation in 2021 (https://www.cncf.io/reports/cncf-annual-survey-2021/), around 80% of applications are deployed on Kubernetes. However, building containerized applications and production-grade Kubernetes platforms are some hard nuts to crack. Moreover, enterprises consider a multi-cloud deployment strategy that adds more operational complexities for different reasons. In this book, we will learn how different tools in the VMware Tanzu portfolio come together to solve the challenges of building, running, and managing modern applications on multi-cloud Kubernetes platforms.

			We have divided this book into three logical parts in line with the application development life cycle. In the first part, we will review different tools that help build secure applications. In this part, we will also see how to containerize these applications and manage the APIs exposed by them. In the second part, we will dive deeper into the tools that help run these apps at scale. We will cover tools that will help manage container images and deploy Kubernetes platforms in multi-cloud setups. This section also covers deploying secure paths to production with supply chain choreography. In the last part of the book, we will see how to manage large Kubernetes deployments. This section covers a single pane of glass for monitoring, securing, and governing multi-cloud deployments.

			Each chapter in this book covers one aspect of the modern application life cycle and the respective Tanzu tool(s) related to that aspect. These chapters describe the business case and its applicable challenges first – the why behind the tool(s). Then, they provide the required details for the applicable tool(s) at a high level – the what behind the tool(s). Finally, they cover the details on how to get started with them – the how behind the tool(s).

			By the end of this book, you will have an in-depth understanding of the Tanzu platform and its capabilities to put DevSecOps into practice for your modern containerized apps.

			Who this book is for

			This book is for anyone who wants to know what VMware Tanzu is. The reader will learn about different security, operational, and developer productivity challenges that are addressed by this platform. The purpose of this book is to acquire a good level of understanding about this technology from a learning point of view. It is also aimed to help the reader to perform primary day-1 and day-2 operations on different tools for a hands-on experience. If you are a cloud or application architect, this book will help you understand the various capabilities these tools offer to decide how to or whether to include them in your solutions. If you are either a developer or a development lead, you will learn about different ways to improve developer productivity. If you are a security officer, you will find better ways to secure your cloud-native applications and Kubernetes platforms. Lastly, if you are a DevOps engineer or a cloud platform operator, you will learn how to work with these products for various operations around them.

			This book can be read and understood by anyone with a couple of years of experience in the area of building and running modern applications. However, some experience with Kubernetes will help to relate the concepts and challenges better. Additionally, the reader should have some experience working with command-line interfaces (CLIs) to follow all the hands-on instructions.

			What this book covers

			Chapter 1, Understanding the Need to Move to a Cloud Platform, sets the context and provides a subject background all about modern applications for the reader.

			Chapter 2, Developing Cloud-Native Applications, explains how to develop secure cloud-native applications using predefined application templates containing the required framework and the boilerplate code.

			Chapter 3, Building Secure Container Images with Build Service, guides the reader on how to build secure container images in a fully automated manner from the application code or artifacts.

			Chapter 4, Provisioning Backing Services for Applications, details how to build a catalog of popular open source tools so that their secure container images can be used as application backend services.

			Chapter 5, Defining and Managing Business APIs, is all about how to build and manage secure application APIs.

			Chapter 6, Managing Container Images with Harbor, provides instructions on how to store and manage container images with a private container image registry.

			Chapter 7, Orchestrating Containers across Clouds with Tanzu Kubernetes Grid, unpacks the details of a multi-cloud Kubernetes platform.

			Chapter 8, Enhancing Developer Productivity with Tanzu Application Platform, breaks down how to set up a secure supply chain of applications to build a rapid path to production.

			Chapter 9, Managing and Controlling Kubernetes Clusters with Tanzu Mission Control, teaches the reader how to centrally manage a fleet of different flavors of Kubernetes clusters deployed in a multi-cloud environment.

			Chapter 10, Realizing Full-Stack Visibility with VMware Aria Operations for Applications, demonstrates how to monitor multi-cloud deployed applications, their Kubernetes platforms, and the underlying infrastructure.

			Chapter 11, Enabling Secure Inter-Service Communication with Tanzu Service Mesh, explores how to establish secure communication for microservices deployed on Kubernetes in a multi-cloud/multi-cluster setup.

			Chapter 12, Bringing It All Together, summarizes the end-to-end picture of the technology landscape, along with some future predictions for the technologies involved.

			To get the most out of this book

			The barrier to entry for this book is very low. Anybody with some experience in application development and/or infrastructure operations could use this book to learn about what the Tanzu platform has to offer. However, the reader would get the most out of the book by having some familiarity with Kubernetes and containerized applications. To follow the hands-on instructions given in the book, the reader should also be familiar with CLI commands.
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			The step-by-step instructions given in the book are performed on macOS systems. However, most instructions will work on either Linux or Windows machines without modifications.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			There are places in the book where we have used some sample applications and Kubernetes configurations. Readers may download them using the GitHub repository provided in the following section.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/DevSecOps-in-Practice-with-VMware-Tanzu. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://packt.link/xL5cm.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “From there, you can follow the instructions in README.md to run the app locally and deploy it to Kubernetes.”

			A block of code is set as follows:

			
$ kubectl port-forward -n kubeapps svc/kubeapps 8080:80
Forwarding from 127.0.0.1:8080 -> 8080
Forwarding from [::1]:8080 -> 8080

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
$ chmod +x gradlew && ./gradlew openApiGenerate  # (this will create a maven project in-place, use gradlew.bat on Windows)
...
$ mvn spring-boot:run

			Any command-line input or output is written as follows:

			
kubectl apply -f ./accelerator-k8s-resource.yaml

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “From the TAP GUI’s Create page, let’s click the Choose button underneath the Hello Fun Accelerator.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read DevSecOps in Practice with VMware Tanzu, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application. 

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below[image: ]


			

			 

			https://packt.link/free-ebook/9781803241340

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	


		
			Part 1 – Building Cloud-Native Applications on the Tanzu Platform

			This part includes the details of different Tanzu tools that can be useful to enhance developer productivity and the security of the software supply chain for cloud-native application development.

			This part of the book comprises the following chapters:

			
					Chapter 1, Understanding the Need to Move to a Cloud Platform

					Chapter 2, Developing Cloud Native Applications

					Chapter 3, Building Secure Container Images with Build Service

					Chapter 4, Provisioning Backing Services for Applications

					Chapter 5, Defining and Managing Business APIs

			

		

		
			
			

		

	


		
			1

			Understanding the Need to Move to a Cloud Platform

			Welcome! If you have any connection to delivering software at scale in the enterprise, we hope this book will be beneficial to you. In this first chapter, we’ll establish the context in which a product such as VMware Tanzu could emerge. We’ll do this with a walk-through of the evolution of enterprise software over the last 20 years covering the major milestones, inflection points, and problems that surfaced along the way.

			Then, once we have established the necessary context, we can give a 10,000-foot overview of Tanzu covering the tools, benefits, and features. And finally, we’ll set you up for success by covering some of the technical prerequisites you should have in place if you want to engage with any of the hands-on content in this book.

			In this chapter, we will cover the following:

			
					The challenges of running a software supply chain

					The emergence of the cloud and containers

					Kubernetes

					Outcome-driven approach

					The need for VMware Tanzu

			

			The challenges of running a software supply chain

			VMware Tanzu is a modular software application platform that runs natively on multiple clouds and is geared toward important business outcomes such as developer productivity, operator efficiency, and security by default. If you are looking for a hands-on detailed treatment of VMware Tanzu, you won’t be disappointed.

			However, before diving into the platform’s components, it may help to understand some history and background. If you’re reading this, there’s a good chance you participate in the coding, designing, architecting, operating, monitoring, or managing of software. However, you may not have considered that you are participating in a supply chain.

			According to Adam Hayes in his Investopedia article, The Supply Chain: From Raw Materials to Order Fulfillment, a supply chain “refers to the network of organizations, people, activities, information and resources involved in delivering a product or service to a consumer.”

			When a piece of software makes the journey from a developer’s workstation to an end user, that’s as much of a supply chain as when Red Bull and ramen noodles make the trek from raw ingredients to a production facility to a warehouse to the neighborhood grocery store.

			Every supply chain has its own set of challenges, and software supply chains are no exception. Most software written today consists of libraries and frameworks containing millions of lines of open source software developed by people who are essentially anonymous and whose motivations are not entirely clear.

			Much of that software changes hands many times as it moves from an open source repository to the developer, to source control, to building and packaging, to testing, to staging, and finally, to running in production. Furthermore, the infrastructure on which that software runs is often open source as well, with a worldwide community of hackers working to identify vulnerabilities in the operating systems, network protocol implementations, and utilities that make up the dial tone that your software runs on. This ecosystem presents an enormous surface area for bad things to happen.

			For further reading on real-world examples of what can go wrong with software supply chains, I’d recommend a quick search of the web for the 2020 SolarWinds incident or the 2021 emergence of Log4Shell (CVE-2021-44228). The authors of this book, in their capacity as Tanzu solution engineers, have seen first-hand the impact software supply chain issues can have across the financial, government, telecom, retail, and entertainment sectors.

			The emergence of the cloud and containers

			Happily, the tech industry has begun to coalesce around some key technologies that have come a long way in addressing some of these concerns. The first is what is known colloquially as The Cloud. Enterprises with a big technology footprint began to realize that managing data centers and infrastructure was not the main focus of their business and could be done more efficiently by third parties for which those tasks were a core competency.

			Rather than staff their own data centers and manage their own hardware, they could rent expertly managed and maintained technology infrastructure, and they could scale their capacity up and back down based on real-time business needs. This was a game-changer on many levels. One positive outcome of this shift was a universal raising of the bar with regard to vulnerable and out-of-date software on the internet. As vulnerabilities emerged, the cloud providers could make the right thing to do the easiest thing to do. Managed databases that handle their own operating system updates and object storage that is publicly inaccessible by default are two examples that come immediately to mind. Another outcome was a dramatic increase in deployment velocity as infrastructure management was taken off developers’ plates.

			As The Cloud became ubiquitous in the world of enterprise software and infrastructure capacity became a commodity, this allowed some issues that were previously obscured by infrastructure concerns to take center stage. Developers could have something running perfectly in their development environment only to have it fall over in production. This problem became so common that it earned its own subgenre of programmer humor called It Works on My Machine.

			Another of these issues was unused capacity. It had become so easy to stand up new server infrastructure, that app teams were standing up large (and expensive) fleets only to have them running nearly idle most of the time.

			Containers

			That brings us to the subject of containers. Many application teams would argue that they needed their own fleet of servers because they had a unique set of dependencies that needed to be installed on those servers, which conflicted with the libraries and utilities required by other apps that may want to share those servers. It was the happy confluence of two technical streams that solved this problem, allowing applications with vastly different sets of dependencies to run side by side on the same server without them even being aware of one another.

			Container runtimes

			The first stream was the concept of cgroups and kernel namespaces. These were abstractions that were built into the Linux kernel that gave a process some guarantee as to how much memory and processor capacity it would have available to it, as well as the illusion of its own process space, its own networking stack, and its own root filesystem, among other things.

			Container packaging and distribution

			The second was an API by which you could package up an entire Linux root filesystem, complete with its own unique dependencies, store it efficiently, unpack it on an arbitrary server, and run it in isolation from other processes that were running with their own root filesystems.

			When combined, developers found that they could stand up a fleet of servers and run many heterogeneous applications safely on that single fleet, thereby using their cloud infrastructure much more efficiently.

			Then, just as the move to the cloud exposed a new set of problems that would lead to the evolution of a container ecosystem, those containers created a new set of problems, which we’ll cover in the next section about Kubernetes.

			Kubernetes

			When containers caught on, they took off in a big way, but they were not the be-all-and-end-all solution developers had hoped for. A container runtime on a server often required big trade-offs between flexibility and security. Because the container runtime needed to work closely with the Linux kernel, users often required elevated permissions just to run their containers. Furthermore, there were multiple ways to run containers on a server, some of which were tightly coupled to specific cloud providers. Finally, while container runtimes let developers start up their applications, they varied widely in their support for things like persistent storage and networking, which often required manual configuration and customization.

			These were the problems that Joe Beda, Craig McLuckie, and Brendan Burns at Google were trying to solve when they built Kubernetes. Rather than just a means of running containerized applications on a server, Kubernetes evolved into what Google Distinguished Developer Advocate Kelsey Hightower called ”a platform for building platforms.” Kubernetes offered many benefits over running containers directly on a server:

			
					It provided a single flexible declarative API for describing the desired state of a running application – 9 instances, each using 1 gigabyte of RAM and 500 millicores of CPU spread evenly over 3 availability zones, for example

					It handled running the instances across an elastic fleet of servers complete with all the necessary networking and resource management

					It provided a declarative way to expose cloud-provider-specific implementations of networking and persistent storage to container workloads

					It provided a framework for custom APIs such that any arbitrary object could be managed by Kubernetes

					It shipped with developer-oriented abstractions such as Deployments, Stateful Sets, Config Maps, and Secrets, which handled many common use cases

			

			Many of us thought that perhaps Kubernetes was the technological advance that would finally solve all of our problems, but just as with each previous technology iteration, the solution to a particular set of problems simply exposes a new generation of problems.

			As companies with large teams of developers began to onboard onto Kubernetes, these problems became increasingly pronounced. Here are some examples:

			
					Technology sprawl took hold, with each team solving the same problem differently

					Teams had their own ops tooling and processes making it difficult to scale operations across applications

					Enforcing best practices involved synchronous human-bound processes that slowed developer velocity

					Each cloud provider’s flavor of Kubernetes was slightly different, making multi-cloud and hybrid-cloud deployments difficult

					Many of the core components of a Kubernetes Deployment – container images, for example – simply took existing problems and allowed developers to deploy vulnerable software much more quickly and widely than before, actually making the problem worse

					Entire teams had to be spun up just to manage developer tooling and try to enforce some homogeneity across a wide portfolio of applications

					Running multiple different applications on a single Kubernetes cluster requires significant operator effort and investment

			

			Alas, Kubernetes was not the panacea we had hoped it would be; rather, it was just another iteration of technology that moves the industry forward by solving one set of problems but inevitably surfacing a new set of problems. This is where the Tanzu team at VMware comes into the picture.

			Outcome-driven approach

			The Tanzu team at VMware came into existence just as Kubernetes was hitting its stride in the enterprise. VMware was poised for leadership in the space with the acquisition of Heptio, which brought deep Kubernetes knowledge and two of the original creators. It also acquired a well-honed philosophy of software delivery through the acquisition of Pivotal. The Tanzu team continues to deliver a thoughtful and nuanced Kubernetes-based application platform focused on meaningful business outcomes that were important to customers.

			There is no doubt that many mature Tanzu customers were facing some of the problems with Kubernetes mentioned in the last section, but they were also focused on some key outcomes, such as the following:

			
					Maximizing developer velocity, productivity, and impact

					Maximizing operator efficiency

					Operating seamlessly across the data center and multiple cloud providers

					Making software secure by default

			

			These were the outcomes Tanzu set out to achieve for customers, and in the process, they would take on many of the issues people were running into with Kubernetes.

			The Tanzu portfolio would take an outcome-driven approach to deliver an opinionated Kubernetes-based cloud-native application platform that was optimized for operator efficiency, developer productivity, seamless multi-cloud operation, and application security. That is the platform that we’ll cover in this book.

			The need for VMware Tanzu

			Companies with a large development footprint that were looking at or actively using Kubernetes faced two sources of resistance. First, they faced a myriad of problems running Kubernetes at scale across multiple teams. These are the problems listed at the end of the Kubernetes section of this chapter. Second, these teams were under pressure to use technology to deliver meaningful outcomes. This meant developers needed to be operating at their full potential with minimum friction, and operators needed to be able to scale across multiple teams with a unified set of tools. This is the outcome-driven approach described in the previous section. VMware Tanzu is a portfolio of tools geared specifically toward addressing both sets of needs for software teams.

			This diagram highlights where VMware Tanzu fits both as the next iteration of software platforms on Kubernetes, as well as the integrated toolkit enabling world-class outcomes from software development, operations, and security engineers:

			
				
					[image: Figure 1.1 – VMware Tanzu in ﻿context]
				

			

			Figure 1.1 – VMware Tanzu in context

			Now that we’ve established the context that prompted the creation of VMware Tanzu, we’re ready to describe the product itself.

			Features, tools, benefits, and applications of VMware Tanzu

			It is a combination of open source, proprietary, and Software as a Service (SaaS) offerings that work together to enable the outcomes that are important to software teams. These tools are tightly integrated and give developers a single toolset geared toward delivering important outcomes and running Kubernetes at scale. These tools and applications fall into three broad groups.

			Build and develop

			Tools that enable developers to efficiently and reliably develop and build software go in this group. This includes Application Accelerator for VMware Tanzu, VMware Tanzu Build Service, VMware Application Catalog, and API portal for VMware Tanzu.

			Run

			This group contains the tools and applications to efficiently deliver and run applications on an ongoing basis. It includes Harbor, Tanzu Kubernetes Grid, and Tanzu Application Platform.

			Manage

			The final group contains tools for the management of applications and the platform itself. It includes Tanzu Mission Control, VMware Aria operations for Applications, and Tanzu Service Mesh.

			Prerequisites

			Now that we’ve laid out the why and the what of VMware Tanzu, we’re ready to get our hands dirty solving some real-world problems. This book is geared toward software professionals, and there are some tools and concepts that this book assumes you know about. Don’t worry if you’re not strong across all of these areas as each chapter will walk you through step by step.

			The Linux console and tools

			You can follow along with most chapters in this book using a Windows machine, but experience dictates that things work much more smoothly if you use a Mac or a Linux workstation. There are numerous options available for Windows users, including virtual machines, dual-booting into Linux, or working from a cloud-based virtual machine. This book assumes you are comfortable with navigating a filesystem, finding and viewing files, and editing them with an editor such as Vim or nano.

			Docker

			This book is heavily geared toward containers. The primary way to interact with APIs that build and run containers is with the Docker CLI. You will need both a Docker daemon and the Docker CLI to work through some of the chapters in this book. It assumes that you are comfortable listing container images as well as running containers.

			Kubernetes

			Kubernetes is at the core of the Tanzu portfolio. This book assumes you can stand up a Kubernetes cluster locally or on a public cloud provider. It also assumes that you are comfortable with the kubectl CLI to interact with a Kubernetes cluster. Finally, you should be able to read YAML Kubernetes manifests.

			Workstation requirements and public cloud resources

			Some of the tools discussed in this book can be run locally on your workstation, while others are better suited to the public cloud. Others require only a web browser and a pre-existing Kubernetes cluster.

			If you want to run Tanzu Kubernetes Grid locally, a minimum of 32 gigabytes of RAM is strongly recommended. You may find that other tools, such as Tanzu Application Platform or Harbor, run best on a Kubernetes cluster provided by a public cloud provider. I highly recommend using the providers’ built-in budgeting tools to make sure that you don’t rack up an unexpected bill.

			Now that you know what you’ll need, I encourage you to find a topic of interest and dive in. All Packt books are organized with self-contained chapters so you can work through the book front-to-back or jump straight to the topics that interest you.

			Summary

			In this chapter, we gave a brief history of enterprise software and how its evolution set the stage for VMware Tanzu. Then, we gave a high-level overview of the Tanzu product itself. And finally, we covered some technical requirements to set you up for success in the hands-on exercises.

			With all that in place, you’re free to jump to any chapter that piques your interest; they’re all self-contained and can be read on their own. Or, if you’re going in order, we’ll start at the beginning of the software development process. Application Accelerator for VMware Tanzu is a tool for bootstrapping a new application with all of the enterprise standards and approved libraries built in, giving you a more uniform portfolio of apps and preventing software teams from repeating past mistakes. Regardless of your approach to the book, we hope you enjoy the material, and we wish you great success putting it into practice.

		

	
		
			2

			Developing Cloud-Native Applications

			A common problem across large enterprises is technology sprawl. When starting a new development endeavor, considerable day-0 cycles are wasted choosing the right technology and bad decisions can lead to ongoing operational headaches for many years.

			This chapter will first focus on Application Accelerator for VMware Tanzu, or App Accelerator for short, a tool that addresses the day-0 problem of standing up a new project. It allows developers to pull down preconfigured application templates that already pass muster with enterprise architecture, have all the corporate security opinions and safeguards built in, include all the corporate standard libraries, use a corporate-standard format and layout, and allow for the configuration of common properties (Git repos, databases, API schemas, etc.)

			Then, we’ll touch on a couple of development frameworks that currently make up a significant portion of software running in the enterprise: Spring Boot and .NET Core with Steeltoe.

			In this chapter, we’re going to cover the following topics:

			
					The business needs addressed by App Accelerator

					Technical requirements

					Overview of App Accelerator

					Getting started with App Accelerator

					Advanced topics on App Accelerator

					Day-2 operations with App Accelerator

					Cloud-native development frameworks under the Tanzu umbrella

			

			The business needs addressed by App Accelerator

			Before we jump into the actual product installation, let’s take a moment to think about the life of an enterprise application developer. Let’s assume Cody is a developer in our organization.

			Today, Cody has been tasked with kicking off a new service that is expected to generate significant revenue for the company. If we were to ask him to list a few of the things that could hamper his ability to deliver that service, we might get a list such as this:

			
					Finding the right application framework for the task at hand

					Importing the necessary libraries into that framework

					Importing all the corporate-mandated libraries

					Resolving any version incompatibilities introduced in the previous two points

					Attesting that all of the corporate security standards are being adhered to in this project

					Making all the imported libraries work together

					Researching and importing all the corporate coding conventions, project structure, documentation layout, and so on

					Waiting for review to ensure that all the standards have been interpreted and implemented correctly

			

			As a software developer, maybe you relate to some of Cody’s concerns:

			
				
					[image: Figure 2.1 – Cody the developer]
				

			

			Figure 2.1 – Cody the developer

			This is an enormous burden on Cody and even more so for a new developer onboarding onto a project. Much of this work must be repeated every time a new project gets created, it will inevitably result in configuration drift as different developers interpret standards differently, and it constitutes a considerable expenditure of time and effort before a single line of value-delivering code gets written.

			Now, let’s shift our perspective to that of an enterprise architect. Let’s call her Alana. She’s tasked with optimizing the time to value for developers, setting the technical direction, and creating and enforcing a set of standards that balances consistency and security with developer productivity and satisfaction. She has a very similar list of hindrances that prevent her from maximizing her developers’ performance:

			
					New developers must learn about the quirks of each project before they can become productive

					The process of manually reviewing each component to ensure that all the corporate standards are being adhered to becomes a bottleneck

					Developers gloss over or ignore standards that they don’t understand or choose not to implement

					Developers use outdated and unpatched libraries

					Developers use unvetted and unapproved technologies and frameworks

					Job satisfaction for developers suffers due to repetitive, tedious, and error-prone steps in the Software Development Lifecycle (SDLC)

					There are few, if any, assumptions she can make about the entire portfolio such that it can be centrally managed

					Attempts at cross-project concerns such as automated scanning, deployment, or backups are hindered by the heterogeneity of the portfolio

			

			If you’re focused more on the Ops in DevOps, perhaps some of Alana’s concerns in this visualization resonate with you:
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			Figure 2.2 – Alana, our enterprise architect

			Now that we know why we’re here, let’s dig into the details of App Accelerator and start addressing Cody’s and Alana’s pain points.

			Technical requirements

			App Accelerator is a subcomponent of Tanzu Application Platform (TAP), which is covered in Chapter 8, Enhancing Developer Productivity with Tanzu Application Platform. To get started with App Accelerator, we’ll first need to install a Kubernetes cluster and then layer TAP over that. You’re free to use whichever Kubernetes distribution you prefer. If you’d like some guidance around standing up a cluster, the appendix at the end of the book gives several options for getting Kubernetes up and running.

			Once you have a running Kubernetes cluster, you’ll need to jump briefly to Chapter 8, Enhancing Developer Productivity with Tanzu Application Platform, where we walk through the installation of TAP. That chapter walks through a more complex end-to-end use case, while this chapter focuses solely on the Application Accelerator component.

			Depending on your Kubernetes cluster, your TAP GUI may be at a local address such as http://localhost:8081, or possibly at an ingress domain you set up such as http://tap-gui.example.com.

			When you open a browser to the TAP GUI, you should see something similar to this screenshot:
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			Figure 2.3 – Screenshot of the Tanzu Application Platform GUI

			When you click on the Create link in the left-hand menu bar, you’ll see the default application accelerators that ship with the TAP GUI:

			
				
					[image: Figure 2.4 – Screenshot of the empty Create section]
				

			

			Figure 2.4 – Screenshot of the empty Create section

			Congratulations! If you’ve made it this far, you are ready to start using App Accelerator!

			Overview of App Accelerator

			App Accelerator is a tool that Alana uses to provide Cody and his peers with a vetted, approved, preconfigured jumping-off point in their language or framework of choice. With App Accelerator, Alana can handle repetitive, low-value tasks such as choosing a technology and ensuring its interoperability and compatibility with other apps and enterprise standards. This frees up Cody and his developer peers to deliver business value with great software.

			App Accelerator consists of several APIs and interfaces geared specifically to either Alana the architect’s or Cody the coder’s persona:
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			Figure 2.5 – App Accelerator architecture

			Alana starts with a Git repo containing the skeleton of a project. In addition to boilerplate code, pre-approved libraries, and standardized documentation and testing structure, this project contains a special YAML file called, by convention, accelerator.yaml. This file contains the details of how consumers of the template application (called an accelerator) can customize the app template. Running inside Alana and Cody’s Kubernetes cluster is a controller for a Custom Resource Definition (CRD), accelerator.apps.tanzu.vmware.com/v1alpha1. Alana deploys an instance of the accelerator custom resource, and the controller becomes aware of Alana’s Git repo, making it available to Cody:

			
				
					[image: Figure 2.6 – Accelerator CRDs]
				

			

			Figure 2.6 – Accelerator CRDs

			App Accelerator presents a different view to Cody. He opens up a UI containing details of all of the accelerators available to him. Alana has provided a wide array of languages and frameworks to give developers the flexibility to use the right tool for the job without having to reinvent the wheel with regard to choosing libraries, ensuring compatibility, and navigating the maze of corporate governance.

			Cody can search by tags and preview the contents of the various accelerators. Many accelerators will prompt Cody for certain inputs and customize the project accordingly. This is done via the Template Engine component in the preceding architectural diagram. App Accelerator provides a rich set of transformations so that a small piece of input from Cody, what sort of database do you want to use?, for example, can result in complex configuration options and libraries being preconfigured. The idea is to abstract as much complexity as possible away from the developer to maximize reuse and developer productivity.

			Now that we understand how App Accelerator works, let’s get started with our own installation.

			Getting started with App Accelerator

			If you worked through the Technical Requirements section at the beginning of this chapter, you should have a running instance of Tanzu Application Platform and you're ready to begin exploring App Accelerator.

			Exploring App Accelerator

			When we installed App Accelerator, we got a set of out-of-the-box accelerators that enable developers to hit the ground running with enterprise-ready application templates, like the ones shown as follows:
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			Figure 2.7 – Application accelerators installed

			You can click on the CHOOSE button for any of these accelerators and you’ll navigate to a page where you can supply any of the required parameters, as well as explore the project template and preview its files. Once you’ve chosen the accelerator that meets your needs, you can fill in the required parameters and click on Next Step and Create. At that point, you’ll be able to download a ZIP file containing the beginnings of your next great app with all your company’s conventions and best practices baked in!

			Downloading, configuring, and running App Accelerator

			From the TAP GUI’s Create page, let’s click on the CHOOSE button underneath the Hello Fun accelerator. Let’s change the name to hello-fun-tanzu-devsecops and make sure Kubernetes deployment and service is selected under deploymentType. Then, we click Next Step | Create | Download Zip File. This will download a ZIP file that you can unzip, run locally, and deploy to your Kubernetes cluster.

			Use your favorite zip tool to unzip the archive and then open the project in your favorite IDE. From there, you can follow the instructions in README.md to run the app locally and deploy it to Kubernetes.

			Once you are comfortable downloading, configuring, and running the accelerator, you’re ready to move to some more advanced tasks and topics.

			Advanced topics on App Accelerator

			Let’s say you’re one of the aforementioned enterprise architects or security engineers who wants to delight your developer colleagues with a panoply of choices from the latest and greatest technologies while baking in all your hard-learned lessons around tech longevity, best practices, and security. How would you go about creating your own app accelerator? Let’s do that next. Let’s implement a custom app accelerator.

			Let’s start by logging into GitHub and forking this book’s GitHub project. Visit https://github.com/PacktPublishing/DevSecOps-in-Practice-with-VMware-Tanzu and click Fork. Now, you have your own copy of the code repo in your GitHub account. Your copy of the App Accelerator is located at https://github.com/<your-username>/DevSecOps-in-Practice-with-VMware-Tanzu/tree/main/chapter-02/openapi-accelerator.

			This accelerator takes as input an OpenAPI 3.0 specification. It then outputs a project capable of building an entire API skeleton around that specification and a SwaggerUI frontend to test it out with. How’s that for best practices?

			Once you’ve forked the accelerator project, let’s tell the controller running in Kubernetes that we have another app accelerator that we’d like to make available. Let’s clone the accelerator locally:

			
git clone https://github.com/<your-username>/DevSecOps-in-Practice-with-VMware-Tanzu.git

			Next, navigate to the project and open the chapter-02/openapi-accelerator/accelerator-k8s-resource.yaml file in a text editor. Modify the spec.git.url (highlighted) property to point to your fork of the project, as shown in the following screenshot:

			
				
					[image: Figure 2.8 – accelerator-k8s-resource.yaml (point it to your fork of the Git repo)]
				

			

			Figure 2.8 – accelerator-k8s-resource.yaml (point it to your fork of the Git repo)

			Then, you can tell the App Accelerator controller about your new accelerator by applying accelerator-k8s-resource.yaml:

			
kubectl apply -f ./accelerator-k8s-resource.yaml

			Now, you should be able to return to the TAP GUI’s Create page, refresh it, and see your OpenAPI 3.0 Spring Boot accelerator ready to go:

			
				
					[image: Figure 2.9 – Custom OpenAPI 3.0 Spring Boot accelerator in the TAP GUI]
				

			

			Figure 2.9 – Custom OpenAPI 3.0 Spring Boot accelerator in the TAP GUI

			From here, you could use the accelerator to generate a Spring Boot project customized with your own OpenApi 3.0 specification:

			
					Click on the accelerator’s CHOOSE button.

					Give it a clever name.

					Use the default (provided) OpenApi spec or paste in one of your own. There’s a good one here: https://raw.githubusercontent.com/PacktPublishing/DevSecOps-in-Practice-with-VMware-Tanzu/main/chapter-02/petstore.yaml:

			

			
				
					[image: Figure 2.10 – Exploring our accelerator after plugging in a custom API spec]
				

			

			Figure 2.10 – Exploring our accelerator after plugging in a custom API spec

			
					Click Next Step, Create, and Download Zip File.

					Unzip the project and navigate to that directory.

					Build the Spring Boot project and run the app:
$ chmod +x gradlew && ./gradlew openApiGenerate  # (this will create a maven project in-place, use gradlew.bat on Windows)

...

$ mvn spring-boot:run


					Point your browser to http://localhost:8080:

			

			
				
					[image: Figure 2.11 – Our custom OpenAPI 3.0 API in Swagger UI]
				

			

			Figure 2.11 – Our custom OpenAPI 3.0 API in Swagger UI

			And voila! With a simple download, we have a fully functional REST API and Swagger UI ready for us to start implementing business logic. We can start delivering value immediately because all our corporate governance, libraries, and opinions are conveniently baked into the project from its inception.

			Congratulations! If you’ve made it this far, you’ve put pre-vetted, pre-audited, secure software frameworks in front of your developers, allowing them to skip over the tedious administrative work and get right down to delivering real value with their software.

			However, the software is always changing and a software framework that was last week’s up-to-date, rock-solid building block is this week’s Critical Vulnerability and Exposure (CVE).

			Let’s move on to some day-2 operations now and look at how we keep our app accelerators patched and up to date.

			Day-2 operations with App Accelerator

			In software development, getting something deployed into production is often the easy part. Keeping that software up to date and patched with minimal user disruption is where most of your time will be spent. App Accelerator was designed with day 2 in mind.

			As it turns out, the component versions in our OpenAPI application accelerator have already gone out of date. Let’s quickly update and patch our accelerator.

			First, let’s find our local copy of the openapi-accelerator project. Open build.gradle in your favorite editor. Notice the org.springframework.boot and org.openapi.generator dependencies are not the most recent and could therefore contain bugs or even known vulnerabilities. Notice that org.springframework.boot is at 2.5.6 and org.openapi.generator is at 5.2.1:

			
				
					[image: Figure 2.12 – Our build.gradle file with out-of-date versions of Spring Boot and OpenAPI Generator]
				

			

			Figure 2.12 – Our build.gradle file with out-of-date versions of Spring Boot and OpenAPI Generator

			First, let’s visit https://start.spring.io to find out what the latest release version of Spring Boot is. At the time of writing, it’s 2.6.2:

			
				
					[image: Figure 2.13 – Latest Spring Boot version from start.spring.io]
				

			

			Figure 2.13 – Latest Spring Boot version from start.spring.io

			We can also grab the latest version of the openapi plugin from https://plugins.gradle.org/plugin/org.openapi.generator. As you can see in the following screenshot, it’s 5.3.1 at the time of writing:

			
				
					[image: Figure 2.14 – The latest release version of the org.openapi.generator plugin (5.3.1)]
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