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This book is dedicated to my mother, whom I lost while making this book.

Thanks, Mom! You are inside every line I write.

– Tivadar Danka






Foreword

I met Tivadar during Covid. We were all stuck at home, unsure what to do with all the extra time, so we started talking about building something together.

I wanted to teach people Machine Learning. I had this idea about building a website that would ask random questions for people to answer. I wanted the site to do a hundred different things, but one thing was non-negotiable: I wanted people to leave feeling they had learned something different.

Tivadar was the answer to that.

Machine Learning is tough, and unfortunately, most educational content you find online suffers from chronic handwaving syndrome: overused buzzwords, skipped intuition, and more confusion than when you started.

At the time, Tivadar was already writing online about math. He wasn’t the only one, but he was different. He was taking seemingly mundane topics and telling stories around them that were surprisingly effective.

There wasn’t any handwaving or burying people under a mountain of theoretical ideas. The writing was different, sharp, and fresh.

I had never been excited about math before. I read every single one of Tivadar’s posts. I wasn’t just learning the rules, I was learning how to think. And, shockingly, I was entertained.

I had never seen that combination before.

I asked Tivadar to help me with the site, and he did – for a while – until he decided to move on to start writing this book. I remember telling him I understood, but I was secretly sad – really sad.

Today, I’m thrilled this happened the way it did.

Mathematics of Machine Learning is the inevitable consequence of those short posts that excited me about math for the first time. It’s not just the best book I’ve read on the subject, it’s the one I wish had existed when I started.

This book does something rare: it teaches you the math behind machine learning without boring you with vague concepts—or making you forget why you showed up in the first place.

The book is laser-focused on what you need and says nothing about what you don’t. The explanations are vintage Tivadar: sharp, detailed, and entertaining. You can’t just read or memorize them; you’ll understand them.

I’ve been reading this book since it was an idea and a bunch of notes and sketches. I’ve watched it grow from online posts to something polished and powerful. And I’ve learned a lot – not just about math, but about how to explain math.

I’ll leave you to it. You’re in for a treat. Enjoy the journey – I know I did.


Santiago Valdarrama,

Founder of ml.school
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Introduction

Why do I have to learn mathematics? - This is a question I am asked daily.

Well, you don’t have to. But you should!

On the surface, advanced mathematics doesn’t impact software engineering and machine learning in a production setting. You don’t have to calculate gradients, solve linear equations, or find eigenvalues by hand. Basic and advanced algorithms are abstracted away into libraries and APIs, performing all the hard work for you.

Nowadays, implementing a state-of-the-art deep neural network is almost equivalent to instantiating an object in PyTorch, loading the pre-trained weights, and letting the data blaze through the model. Just like all technological advances, this is a double-edged sword. On the one hand, frameworks that accelerate prototyping and development enable machine learning in practice. Without them, we wouldn’t have seen the explosion in deep learning that we witnessed in the last decade.

On the other hand, high-level abstractions are barriers between us and the underlying technology. User-level knowledge is only sufficient when one is treading on familiar paths. (Or until something breaks.)

If you are not convinced, let’s do a thought experiment! Imagine moving to a new country without speaking the language and knowing the way of life. However, you have a smartphone and a reliable internet connection.

How do you start exploring?

With Google Maps and a credit card, you can do many awesome things there: explore the city, eat in excellent restaurants, and have a good time. You can do the groceries every day without speaking a word: just put the stuff in your basket and swipe your card at the cashier.

After a few months, you’ll also start to pick up some language – simple things like saying greetings or introducing yourself. You are off to a good start!

There are built-in solutions for everyday tasks that just work – food ordering services, public transportation, etc. However, at some point, they will break down. For instance, you need to call the delivery person who dropped off your package at the wrong door. You need to call help if your rental car breaks down.

You may also want to do more. Get a job, or perhaps even start your own business. For that, you need to communicate with others effectively.

Learning the language when you plan to live somewhere for a few months is unnecessary. However, if you want to stay there for the rest of your life, it is one of the best investments you can make.

Now, replace the country with machine learning and the language with mathematics.

The fact is that algorithms are written in the language of mathematics. To get proficient with algorithms, you have to speak it.


What is this book about?


”There is a similarity between knowing one’s way about a town and mastering a field of knowledge; from any given point one should be able to reach any other point. One is even better informed if one can immediately take the most convenient and quickest path from one point to the other.”


— George Pólya and Gábor Szegő, in the introduction of the legendary book Problems and Theorems in Analysis




The above quote is one of my all-time favorites. For me, it says that knowledge rests on many pillars. Like a chair has four legs, a well-rounded machine learning engineer also has a broad skill set that enables them to be effective in their job. Each of us focus on a balanced constellation of skills, and mathematics is a great addition for many. You can start machine learning without advanced mathematics, but at some point in your career, getting familiar with the mathematical background of machine learning can help you bring your skills to the next level.

There are two paths to mastery in deep learning. One starts from the practical parts and the other starts from theory. Both are perfectly viable, and eventually, they intertwine. This book is for those who started on the practical, application-oriented path, like data scientists, machine learning engineers, or even software developers interested in the topic.

This book is not a 100% pure mathematical treatise. At points, I will make some shortcuts to balance between clarity and mathematical correctness. My goal is to give you the “Eureka!” moments and help you understand the bigger picture instead of preparing you for a PhD in mathematics.

Most machine learning books I have read fall into one of two categories.


	Focus on practical applications, but unclear and imprecise with mathematical concepts.

	Focus on theory, involving heavy mathematics with almost no real applications.



I want this book to offer the best of both approaches: a sound introduction of basic and advanced mathematical concepts, keeping machine learning in sight at all times.

My goal is not only to cover the bare fundamentals but to give a breadth of knowledge. In my experience, to master a subject, one needs to go both deep and wide. Covering only the very essentials of mathematics would be like a tightrope walk. Instead of performing a balancing act every time you encounter a mathematical subject in the future, I want you to gain a stable footing. Such confidence can bring you very far and set you apart from others.

During our journey, we are going to follow a roadmap that takes us through


	linear algebra,

	calculus,

	multivariable calculus,

	and probability theory.



We are going to begin our journey with linear algebra. In machine learning, data is represented by vectors. Training a learning algorithm is the same as finding more descriptive representations of data through a series of transformations.

Linear algebra is the study of vector spaces and their transformations.

Simply put, a neural network is just a function that maps the data to a high-level representation. Linear transformations are the fundamental building blocks of these. Developing a good understanding of them will go a long way, as they are everywhere in machine learning.

While linear algebra shows how to describe predictive models, calculus has the tools to fit them to the data. When you train a neural network, you are almost certainly using gradient descent, a technique rooted in calculus and the study of differentiation.

Besides differentiation, its “inverse” is also a central part of calculus: integration. Integrals express essential quantities such as expected value, entropy, mean squared error, etc. They provide the foundations for probability and statistics.

However, when doing machine learning, we deal with functions with millions of variables. In higher dimensions, things work differently. This is where multivariable calculus comes in, where differentiation and integration are adapted to these spaces.

With linear algebra and calculus under our belt, we are ready to describe and train neural networks. However, we lack the understanding of extracting patterns from data. How do we draw conclusions from experiments and observations? How do we describe and discover patterns in them? These are answered by probability theory and statistics, the logic of scientific thinking. In the final chapter, we extend the classical binary logic and learn to deal with uncertainty in our predictions.



How to read this book

Mathematics follows a definition-theorem-proof structure that might be difficult to follow at first. If you are unfamiliar with such a flow, don’t worry. I’ll give a gentle introduction right now.

In essence, mathematics is the study of abstract objects (such as functions) through their fundamental properties. Instead of empirical observations, mathematics is based on logic, making it universal. If we want to use the powerful tool of logic, the mathematical objects need to be precisely defined. Definitions are presented in boxes like this below.


  Definition 1. (An example definition)

Definitions appear like this.



Given a definition, results are formulated as if A, then B statements, where A is the premise, and B is the conclusion. Such results are called theorems. For instance, if a function is differentiable, then it is also continuous. If a function is convex, then it has global minima. If we have a function, then we can approximate it with arbitrary precision using a single-layer neural network. You get the pattern. Theorems are the core of mathematics.

We must provide a sound logical argument to accept the validity of a proposition, one that deduces the conclusion from the premise. This is called a proof, responsible for the steep learning curve of mathematics. Contrary to other scientific disciplines, proofs in mathematics are indisputable statements, set in stone forever. On a practical note, look out for these boxes.


  Theorem 1. (An example theorem)

Let x be a fancy mathematical object. The following two statements hold.

(a If A, then B.

(b) If C and D, then E.









Proof. This is where the proof goes.





To enhance the learning experience, I’ll often make good-to-know but not absolutely essential information into remarks.


  Remark 1. (An exciting remark)

Mathematics is awesome. You’ll be a better engineer because of it.



The most effective way of learning is building things and putting theory into practice. In mathematics, this is the only way to learn. What this means is that you need to read through the text carefully. Don’t take anything for granted just because it is written down. Think through every sentence. Take every argument and calculation apart. Try to prove theorems by yourself before reading the proofs.

With that in mind, let’s get to it! Buckle up for the ride; the road is long and full of twists and turns.



Conventions used

There are a number of text conventions used throughout this book. CodeInText indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, or URLs. For example: “Slicing works by specifying the first and last elements with an optional step size, using the syntax object[first:last:step].”

A block of code is set as follows:







from sklearn.datasets import load_iris 
data = load_iris() 
x, y = data["data"], data["target"] 
x[:10]





Any command-line input or output is written as follows:

(3.5, -2.71, 'a string')

Italics indicate new concepts or emphasis. For instance, words in menus or dialog boxes appear in the text like this. For example: "This is our first example of a non-differentiable function."



What this book covers

Chapter 1, Vectors and vector spaces covers what vectors are and how to work with them. We’ll travel from concrete examples through precise mathematical definitions to implementations, understanding vector spaces and NumPy arrays, which are used to represent vectors efficiently. Besides the fundamentals, we’ll learn

Chapter 2, The geometric structure of vector spaces moves forward by studying the concept of norms, distances, inner products, angles, and orthogonality, enhancing the algebraic definition of vector spaces with some much-needed geometric structure. These are not just tools for visualization; they play a crucial role in machine learning. We’ll also encounter our first algorithm, the Gram-Schmidt orthogonalization method, turning any set of vectors into an orthonormal basis.

In Chapter 3, Linear algebra in practice, we break out NumPy once more, and implement everything that we’ve learned so far. Here, we learn how to work with the high-performance NumPy arrays in practice: operations, broadcasting, functions, culminating in the from-scratch implementation of the Gram-Schmidt algorithm. This is also the first time we encounter matrices, the workhorses of linear algebra.

Chapter 4, Linear transformations is about the true nature of matrices; that is, structure-preserving transformations between vector spaces. This way, seemingly arcane things – such as the definition of matrix multiplication – suddenly make sense. Once more, we take the leap from algebraic structures to geometric ones, allowing us to study matrices as transformations that distort their underlying space. We’ll also look at one of the most important descriptors of matrices: the determinants, describing how the underlying linear transformations affect the volume of the spaces.

Chapter 5, Matrices and equations presents the third (and for us, the final) face of matrices as systems of linear equations. In this chapter, we first learn how to solve systems of linear equations by hand using the Gaussian elimination, then supercharge it via our newfound knowledge of linear algebra, obtaining the mighty LU decomposition. With the help of the LU decomposition, we go hard and achieve a roughly 70000 × speedup on computing determinants.

Chapter 6 introduces two of the most important descriptors of matrices: eigenvalues and eigenvectors. Why do we need them?

Because in Chapter 7, Matrix factorizations, we are able to reach the pinnacle of linear algebra with their help. First, we show that real and symmetric matrices can be written in diagonal form by constructing a basis from their eigenvectors, known as the spectral decomposition theorem. In turn, a clever application of the spectral decomposition leads to the singular value decomposition, the single most important result of linear algebra.

Chapter 8, Matrices and graphs closes the linear algebra part of the book by studying the fruitful connection between linear algebra and graph theory. By representing matrices as graphs, we are able to show deep results such as the Frobenius normal form, or even talk about the eigenvalues and eigenvectors of graphs.

In Chapter 9, Functions, we take a detailed look at functions, a concept that we have used intuitively so far. This time, we make the intuition mathematically precise, learning that functions are essentially arrows between dots.

Chapter 10, Numbers, sequences, and series continues down the rabbit hole, looking at the concept of numbers. Each step from natural numbers towards real numbers represents a conceptual jump, peaking at the study of sequences and series.

With Chapter 11, Topology, limits, and continuity, we are almost at the really interesting parts. However, in calculus, the objects, concepts, and tools are most often described in terms of limits and continuous functions. So, we take a detailed look at what they are.

Chapter 12 is about the single most important concept in calculus: Differentiation. In this chapter, we learn that the derivative of a function describes 1) the slope of the tangent line, and 2) the best local linear approximation to a function. From a practical side, we also look at how derivatives behave with respect to operations, most importantly the function composition, yielding the essential chain rule, the bread and butter of backpropagation.

After all the setup, Chapter 13, Optimization introduces the algorithm that is used to train virtually every neural network: gradient descent. For that, we learn how the derivative describes the monotonicity of functions and how local extrema can be characterized with the first and second order derivatives.

Chapter 14, Integration wraps our study of univariate functions. Intuitively speaking, integration describes the (signed) area under the functions’ graph, but upon closer inspection, it also turns out to be the inverse of differentiation. In machine learning (and throughout all of mathematics, really), integrals describe various probabilities, expected values, and other essential quantities.

Now that we understand how calculus is done in single variables, Chapter 15 leads us to the world of Multivariable functions, where machine learning is done. There, we have an entire zoo of functions: scalar-vector, vector-scalar, and vector-vector ones.

In Chapter 16, Derivatives and gradients, we continue our journey, overcoming the difficulties of generalizing differentiation to multivariable functions. Here, we have three kinds of derivatives: partial, total, and directional; resulting in the gradient vector and the Jacobian and Hessian matrices.

As expected, optimization is also slightly more complicated in multiple variables. This issue is cleared up by Chapter 17, Optimization in multiple variables, where we learn the analogue of the univariate second-derivative test, and implement the almighty gradient descent in its final form, concluding our study of calculus.

Now that we have a mechanistic understanding of machine learning, Chapter 18, What is probability? shows us how to reason and model under uncertainty. In mathematical terms, probability spaces are defined by the Kolmogorov axioms, and we’ll also learn the tools that allow us to work with probabilistic models.

Chapter 19 introduces Random variables and distributions, allowing us not only to bring the tools of calculus into probability theory, but to compact probabilistic models into sequences or functions.

Finally, in Chapter 20, we learn the concept of The expected value, quantifying probabilistic models and distributions with averages, variances, covariances, and entropy.



To get the most out of this book

The code for this book is provided in the form of Jupyter notebooks, hosted on GitHub at  https://github.com/cosmic-cortex/mathematics-of-machine-learning-book. To run the notebooks, you’ll need to install the required packages.

The easiest way to install them is using Conda. Conda is a great package manager for Python. If you don’t have Conda installed on your system, the installation instructions can be found here: https://bit.ly/InstallConda.

Note that Conda’s license might have some restrictions for commercial use. After installing Conda, follow the environment installation instructions in the book’s repository README.md.



Download the example code files

The code bundle for the book is hosted on GitHub at  https://github.com/cosmic-cortex/mathematics-of-machine-learning-book. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!



Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/gbp/9781837027873.



Get in touch

Feedback from our readers is always welcome. General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com. Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form. Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material. If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.
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Once you’ve read Mathematics of Machine Learning, we’d love to hear your thoughts! Click here to go straight to the Amazon review page for this book and share your feedback.
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1

Linear Algebra

This part comprises the following chapters:


	Chapter 1, Vectors and Vector Spaces

	Chapter 2, The Geometric Structure of Vector Spaces

	Chapter 3, Linear Algebra in Practice

	Chapter 4, Linear Transformations

	Chapter 5, Matrices and Equations

	Chapter 6, Eigenvalues and Eignevectors

	Chapter 7, Matrix Factorizations

	Chapter 8, Matrices and Graphs







1

Vectors and Vector Spaces


”I want to point out that the class of abstract linear spaces is no larger than the class of spaces whose elements are arrays. So what is gained by abstraction? First of all, the freedom to use a single symbol for an array; this way we can think of vectors as basic building blocks, unencumbered by components. The abstract view leads to simple, transparent proofs of results.”


— Peter D. Lax, in Chapter 1 of his book Linear Algebra and its Applications





The mathematics of machine learning rests upon three pillars: linear algebra, calculus, and probability theory. Linear algebra describes how to represent and manipulate data; calculus helps us fit the models; while probability theory helps interpret them.

These build on top of each other, and we will start at the beginning: representing and manipulating data.

To guide us throughout this section, we will look at the famous Iris dataset ( https://en.wikipedia.org/wiki/Iris_flower_data_set). This contains the measurements from three species of Iris: the lengths and widths of sepals and petals. Each data point includes these four measurements, for which we also have the corresponding species: Iris setosa, Iris virginica, or Iris versicolor. (Sepals are the typically green, leaf-like structures at the base of a flower that protect the developing bud before it opens. Petals are the colorful, soft parts of a flower that attract pollinators like insects or birds.)

The dataset can be loaded right away from scikit-learn (https://scikit-learn.org/), so let’s take a look!







from sklearn.datasets import load_iris 
data = load_iris() 
X, y = data["data"], data["target"] 
X[:10]





array([[5.1, 3.5, 1.4, 0.2], 
      [4.9, 3. , 1.4, 0.2], 
      [4.7, 3.2, 1.3, 0.2], 
      [4.6, 3.1, 1.5, 0.2], 
      [5. , 3.6, 1.4, 0.2], 
      [5.4, 3.9, 1.7, 0.4], 
      [4.6, 3.4, 1.4, 0.3], 
      [5. , 3.4, 1.5, 0.2], 
      [4.4, 2.9, 1.4, 0.2], 
      [4.9, 3.1, 1.5, 0.1]])

Before going into the mathematical definitions, let’s establish a common vocabulary first. The measurements themselves are stored in a tabular format. Rows represent samples, and columns represent measurements. A particular measurement type is often called a feature. As X.shape tells us, the Iris dataset has 150 data points and four features:







X.shape





(150, 4)

(Don’t worry if you are not familiar with NumPy. We’ll learn about the details in due time. For now, it’s enough to understand that an array’s shape describes its dimensions.)

For a given sample, the corresponding species is called the label. In our case, this is either Iris setosa, Iris virginica, or Iris versicolor. Here, the labels are encoded with the numbers 0, 1, and 2:







y





array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
      0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
      1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
      1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
      2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
      2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

In mathematical terms, the Iris dataset forms a matrix, and the data points form vectors. Simply speaking, matrices are tables, while vectors are tuples. (Tuples are just finite and ordered sequences of objects, like (1.297,−2.35,32.3,29.874).) However, this simplistic view doesn’t show us the big picture. Vectors and matrices have a beautiful geometrical and algebraic structure, and exploring their mathematical theory allows us to see the patterns behind the data.

How so? Say, besides representing the data points in a compact form, we want to perform operations on them, like addition and scalar multiplication. Why do we need to add data points together? To give you a simple example, it is often beneficial if the features are on the same scale. If a given feature is distributed on a smaller scale than the others, it will have less influence on the predictions.

Think about this: if somebody is whispering to you something from the next room while speakers blast loud music right next to your ear, you won’t hear anything of what the person is saying to you. Large-scale features are the blasting music, while the smaller ones are the whisper. You may obtain much more information from the whisper, but you need to quiet down the music first.

To see this phenomenon in action, let’s take a look at the distribution of the features of our dataset!







import pandas as pd 
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

sns.set_theme(style="white", rc={"axes.facecolor": (0, 0, 0, 0)})

# Create the data
x = X.ravel()
labels = ["sepal length", "sepal width", "petal length", "petal width"]
g = np.tile(labels, len(X))
df = pd.DataFrame(dict(x=x, g=g))

# Initialize the FacetGrid object
pal = sns.cubehelix_palette(10, rot=-.25, light=.7)
g = sns.FacetGrid(df, row="g", hue="g", aspect=10, height=1.5, palette=pal)

# Draw the densities
g.map(sns.kdeplot, "x", bw_adjust=.5, clip_on=False, fill=True, alpha=1, linewidth=1.5)
g.map(sns.kdeplot, "x", clip_on=False, color="w", lw=2, bw_adjust=.5)

# Add reference line
g.refline(y=0, linewidth=2, linestyle="-", color=None, clip_on=False)

# Label each plot
g.map(lambda x, color, label: plt.gca().text(0, .2, label, fontweight="bold", color=color,ha="left", va="center", transform=plt.gca().transAxes), "x")

# Adjust subplots and aesthetics
g.figure.subplots_adjust(hspace=-.25)
g.set_titles("")
g.set(yticks=[], ylabel="")
g.despine(bottom=True, left=True)

plt.show()






[image: PIC] 

Figure 1.1: The raw features of the Iris dataset 


You can see in the figure above that some are more stretched out (like sepal length), while others are narrower (like sepal width). In practical scenarios, this can hurt the predictive performance of our algorithms.

To solve it, we can remove the mean and the standard deviation of a dataset. If the dataset consists of the vectors x1,x2,…,x150 , we can calculate their mean by


[image:  150 μ = -1--∑ x ∈ ℝ4 150 i=1 i ]


and their standard deviation by


[image:  ┌ ---------------- ││ 1 1∑50 σ = ∘ ---- (xi − μ )2 ∈ ℝ4, 150 i=1 ]


where the subtraction and square operation in (xi −μ)2 is taken elementwise.

The components of μ = (μ1,μ2,μ3,μ4) and σ = (σ1,σ2,σ3,σ4) are the means and variances of the individual features. (Recall that the Iris dataset contains 150 samples and 4 features per sample.)

In other words, the mean describes the average of samples, while the standard deviation represents the average distance from the mean. The larger the standard deviation is, the more spread out the samples are.

With these quantities, the scaled dataset can be described as


[image: x1-−-μ- x2-−-μ- x150-−-μ σ , σ ,..., σ , ]


where both the subtraction and the division are taken elementwise.

If you are familiar with Python and NumPy, this is how it is done. (Don’t worry if you are not – everything you need to know about them will be explained in the next chapter, with example code.)



X_scaled = (X - X.mean(axis=0))/X.std(axis=0)
X_scaled[:10]





array([[-0.90068117,  1.01900435, -1.34022653, -1.3154443 ], 
      [-1.14301691, -0.13197948, -1.34022653, -1.3154443 ], 
      [-1.38535265,  0.32841405, -1.39706395, -1.3154443 ], 
      [-1.50652052,  0.09821729, -1.2833891 , -1.3154443 ], 
      [-1.02184904,  1.24920112, -1.34022653, -1.3154443 ], 
      [-0.53717756,  1.93979142, -1.16971425, -1.05217993], 
      [-1.50652052,  0.78880759, -1.34022653, -1.18381211], 
      [-1.02184904,  0.78880759, -1.2833891 , -1.3154443 ], 
      [-1.74885626, -0.36217625, -1.34022653, -1.3154443 ], 
      [-1.14301691,  0.09821729, -1.2833891 , -1.44707648]])







# Create the data
x = X_scaled.ravel()
labels = ["sepal length", "sepal width", "petal length", "petal width"]
g = np.tile(labels, X_scaled.shape[0])
df = pd.DataFrame(dict(x=x, g=g))

# Initialize the FacetGrid object
pal = sns.cubehelix_palette(10, rot=-.25, light=.7)
grid = sns.FacetGrid(df, row="g", hue="g", aspect=10, height=1.5, palette=pal)

# Draw the densities
grid.map(sns.kdeplot, "x", bw_adjust=.5, clip_on=False, fill=True, alpha=1, linewidth=1.5)
grid.map(sns.kdeplot, "x", clip_on=False, color="w", lw=2, bw_adjust=.5)

# Add reference line
grid.refline(y=0, linewidth=2, linestyle="-", color=None, clip_on=False)

# Add labels to each plot
grid.map(lambda x, color, label: plt.gca().text(0, .2, label, fontweight="bold", color=color,ha="left", va="center", transform=plt.gca().transAxes), "x")

# Adjust subplots and aesthetics
grid.figure.subplots_adjust(hspace=-.25)
grid.set_titles("")
grid.set(yticks=[], ylabel="")
grid.despine(bottom=True, left=True)

plt.show()
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Figure 1.2: The scaled features of the Iris dataset 


If you compare the modified version to the original, you can see that its features are on the same scale. In other words, we transformed the dataset to a more expressive one. From a (very) abstract point of view, machine learning is nothing else but a series of learned data transformations, turning raw data into a form where prediction is simple.

In a mathematical setting, manipulating data and modeling its relations to the labels arise from the concept of vector spaces and transformations between them. Let’s take the first steps by making the definition of vector spaces precise!


1.1  What is a vector space?

Representing multiple measurements as a tuple (x1,x2,…,xn) is a natural idea that has a ton of merits. The tuple form suggests that the components belong together in a precise order, giving a clear and concise way to store information.

However, this comes at a cost: now we have to work with more complex objects. Despite dealing with tuples like (x1,…,xn) instead of numbers, there are similarities. For instance, any two tuple x = (x1,…,xn) and y = (y1,…,yn)


	can be added together by x+ y = (x1 + y1,…,xn + yn),

	and can be multiplied with scalars: if c ∈ℝ, then cx = (cx1,…,cxn).



It’s almost like using a number.

These operations have clear geometric interpretations as well. Addition is the same as translation, while multiplication with a scalar is a simple stretching. (Or squeezing, if |c|<1.) 


[image: PIC] 

Figure 1.3: Geometric interpretation of addition and scalar multiplication 


On the other hand, if we want to follow our geometric intuition (which we definitely do), it is unclear how to define vector multiplication. Even though the definition


[image: xy = (x1y1,...,xnyn) ]


makes sense algebraically, we don’t see what it means in a geometric sense.

When we think about vectors and vector spaces, we are thinking about a mathematical structure that fits our intuitive views and expectations. So, let’s turn these into the definition!


  Definition 2. (Vector spaces)

A vector space is a mathematical structure (V,F,+,⋅), where

(a) V is the set of vectors,

(b) F is a field of scalars (most commonly the real numbers ℝ or the complex numbers ℂ),

(c) + : V ×V → V is the addition operation, satisfying the following properties:


	x+ y = y + x (commutativity),

	x+ (y + z) = (x+ y) + z (associativity),

	there is an element 0 ∈V such that x + 0 = x (existence of the null vector),

	and there is an inverse −x ∈V for each x ∈V such that x+(−x) = 0 (existence of additive inverses)



for all vectors x,y,z ∈V ,

(d) and ⋅ : F ×V →V is the scalar multiplication operation, satisfying


	a(bx) = (ab)x (associativity),

	a(x+ y) = ax + ay (distributivity),

	and 1x = x



for all scalars a,b ∈F and vectors x,y ∈V .



This definition is overloaded with new concepts, so let’s unpack it.

First, looking at operations like addition and scalar multiplication as functions might be unusual for you, but this is a perfectly natural representation. (We’ll learn about functions later in detail, but for now, feel free to think about them intuitively.) In writing, we use the notation x + y , but when thinking about + as a function of two variables, we might as well write +(x,y). The form x + y is called infix notation, while +(x,y) is called prefix notation.

In vector spaces, the inputs of addition are two vectors and the result is a single vector, thus + is a function that maps the Cartesian product V ×V to V .

Similarly, scalar multiplication takes a scalar and a vector, resulting in a vector; meaning a function that maps F ×V to V .

(The Cartesian product V ×V is just a set of ordered pairs:


[image: V × V = {(u,v) : u,v ∈ V }. ]


Feel free to check out the set theory appendix (Appendix C) for more details, but for now, the intuitive understanding is enough.)

This is also good place to note that mathematical definitions are always formalized in hindsight, after the objects themselves are somewhat crystallized and familiar to the users. Mathematics is often presented as definitions first, theorems second. This is not how it is done in practice. Examples motivate definitions, not the other way around.

In general, the field of scalars can be something other than real or complex numbers. The term field refers to a well-defined mathematical structure, which makes a natural notion mathematically precise. Without going into the technical details, we will think about fields as “a set of numbers where addition and multiplication work just as for real numbers”.

Since we are not concerned with the most general case, we will use ℝ or ℂ to avoid unnecessary difficulty. If you are not familiar with the exact mathematical definition of a field, don’t worry – just think of ℝ each time you read the word “field”.

When everything is clear from the context, (V,ℝ,+,⋅) will often be referred to as V for notational simplicity. So, if the field F is not specified, it is implicitly assumed to be ℝ. When we want to emphasize this, we’ll call these real vector spaces.

At first sight, Definition 2 is certainly too complex to comprehend. It seems like just a bunch of sets, operations, and properties thrown together. However, to help us build a mental model, we can imagine a vector as an arrow, starting from the null vector. (Recall that the null vector 0 is that special one for which x + 0 = x holds for all x. Thus, it can be considered as an arrow with zero length; the origin.)

To further familiarize ourselves with the concept, let’s see some examples of vector spaces!


1.1.1  Examples of vector spaces

Examples are one of the best ways of building insight into seemingly difficult concepts like vector spaces. We humans, usually think in terms of models instead of abstractions. (Yes, this includes pure mathematicians. Even though they might deny it.)

Example 1. The most ubiquitous instance of the vector space is (ℝn,ℝ,+,⋅), the same one we used to motivate the definition itself. (ℝn refers to the n-fold Cartesian product of the set of real numbers. If you are unfamiliar with this notion, check the set theory tutorial in Appendix C.)

(ℝn,ℝ,+,⋅) is the canonical model, the one we use to guide us throughout our studies. If n = 2, we are simply talking about the familiar Euclidean plane.


[image: PIC] 

Figure 1.4: The Euclidean plane as a vector space 


Using ℝ2 or ℝ3 for visualization can help a lot. What works here will usually work in the general case, although sometimes this can be dangerous. Math relies on both intuition and logic. We develop ideas using our intuition, but we confirm them with our logic.

Example 2. Vector spaces are not just a collection of finite tuples. An example is the space of polynomial functions with real coefficients, defined by


[image:  ∑n ℝ [x ] = { pixi : pi ∈ ℝ, n = 0,1,...}. i=0 ]


Two polynomials p(x) and q(x) can be added together by


[image:  ∑n i p(x)+ q(x) := (pi + qi)x , k=1 ]


and can be multiplied with a real scalar by


[image:  ∑n cp(x) = cpixi. k=1 ]


With these operations, (ℝ[x],ℝ,+,⋅) is a vector space. Although most of the time we percieve polynomials as functions, they can be represented as tuples of coefficients as well:


[image: ∑n pixi ← → (p0,...,pn). i=0 ]


Note that n – the degree of the polynomial – is unbounded. As a consequence, this vector space has a significantly richer structure than ℝn.

Example 3. The previous example can be further generalized. Let C([0,1]) denote the set of all continuous real functions f : [0,1] →ℝ. Then (C(ℝ),ℝ,+,⋅) is a vector space, where the addition and scalar multiplication are defined elementwise:


[image: (f + g )(x) := f(x)+ g(x), (cf)(x) = cf (x ) ]


for all f,g ∈C(ℝ) and c ∈ℝ. (Although continuity is a concept that we haven’t defined yet, feel free to think of a continuous function as one whose graph can be drawn without lifting your pen.)

Yes, that is right: functions can be thought of as vectors as well. Spaces of functions play a significant role in mathematics, and they come in several different forms. We often restrict the space to continuous functions, differentiable functions, or basically any subset that is closed under the given operations.

(In fact, ℝn can be also thought of as a function space. From an abstract viewpoint, each vector x = (x1,…,xn) is a mapping from {1,2,…,n} to ℝ.)

Function spaces are encountered in more advanced topics, such as inverting ResNet architectures, which we won’t deal with in this book. However, it is worth seeing examples that are different (and not as straightforward) as ℝn.




1.2  The basis

Although our vector spaces contain infinitely many vectors, we can reduce the complexity by finding special subsets that can express any other vector.

To make this idea precise, let’s consider our recurring example ℝn. There, we have a special vector set




	e1
	= (1,0,…,0)
	
	



	e2
	= (0,1,…,0)
	
	



	
	[image: .. .]
	
	



	en
	= (0,0,…,1)
	
	





which can be used to express each vector x = (x1,…,xn) as


[image:  n x = ∑ xe , x ∈ ℝ, e ∈ ℝn i i i i i=1 ]


For instance, e1 = (1,0) and e2 = (0,1) in ℝ2.

What we have just seen feels extremely trivial and it seems to only complicate things. Why would we need to write vectors in the form of x = ∑ i=1nxiei, instead of simply using the coordinates (x1,…,xn) ? Because, in fact, the coordinate notation depends on the underlying vector set ({e1,…,en} in our case) used to express other vectors.

A vector is not the same as its coordinates! A single vector can have multiple different coordinates in different systems, and switching between these is a useful tool.

Thus, the set E = {e1,…,en}⊆ℝn is rather special, as it significantly reduces the complexity of representing vectors. With the vector addition and scalar multiplication operations, it spans our vector space entirely. E is an instance of a vector space basis, a set that serves as a skeleton of ℝn.

In this section, we are going to introduce and study the concept of vector space basis in detail.


1.2.1  Linear combinations and independence

Let’s zoom out from the special case ℝn and start talking about general vector spaces. From our motivating example regarding bases, we have seen that sums of the form


[image: ∑n xivi, i=1 ]


where the vi-s are vectors and the xi coefficients are scalars, play a crucial role. These are called linear combinations. A linear combination is called trivial if all of the coefficients are zero.

Given a set of vectors, the same vector can potentially be expressed as a linear combination in multiple ways. For example, if v1 = (1,0),v2 = (0,1), and v3 = (1,1), then




	(2,1)
	= 2v1 + v2
	
	



	
	= v1 + v3.
	
	





This suggests that the set S = {v1,v2,v3} is redundant, as it contains duplicate information. The concept of linear dependence and independence makes this precise.


  Definition 3. (Linear dependence and independence)

Let V be a vector space and S = {v1,…,vn} be a subset of its vectors. S is said to be linearly dependent if it only contains the zero vector, or there is a nonzero vk that can be expressed as a linear combination of the other vectors v1,…,vk−1,vk+1,…,vn.

S is said to be linearly independent if it is not linearly dependent.



Linear dependence and independence can be looked at from a different angle. If


[image:  k∑−1 ∑n vk = xivi + xivi, i=1 i=k+1 ]


for some nonzero vk, then by subtracting vk, we obtain that the null vector can be obtained as a nontrivial linear combination


[image:  ∑n 0 = xivi i=1 ]


for some scalars xi, where xk = −1. This is an equivalent definition of linear dependence. With this, we have proved the following theorem.


  Theorem 2. 

Let V be a vector space and S = {v1,…,vn}be a subset of its vectors.

(a) S is linearly dependent if and only if the null vector 0 can be obtained as a nontrivial linear combination.

(b) S is linearly independent if and only if whenever 0 = ∑ i=1nxivi, all coefficients xi are zero.





1.2.2  Spans of vector sets

Linear combinations provide a way to take a small set of vectors and generate a whole lot of others from them. For a set of vectors S, taking all of its possible linear combinations is called spanning, and the generated set is called the span. Formally, it is defined by


[image:  ∑n span(S ) = { xivi : n ∈ ℕ, vi ∈ S,xi is a scalar}. i=1 ]


Note that the vector set S is not necessarily finite. To help illustrate the concept of span, we can visualize the process in three dimensions. The span of two linearly independent vectors is a plane.


[image: PIC] 

Figure 1.5: The span of two linearly independent vectors u,v ∈ℝ3 


When we talk about the span of a finite set {v1,…,vn}, we denote the span as


[image: span (v ,...,v ). 1 n ]


This helps us avoid overcomplicating notations by naming every set.


  Proposition 1.  Let V be a vector space and S,S1,S2 ⊆V be subsets of its vectors.

(a) If S1 ⊆S2, then span(S1) ⊆ span(S2).

(b) span(span(S)) = span(S).



This is our very first proof! Give it a read, and if it’s too difficult, move on and revisit it later. Just make sure that you understand what the proposition says.







Proof. The property (a) follows directly from the definition. To prove (b), we have to show that span(S) ⊆ span(span(S)) and span(span(S)) ⊆ span(S).

(This is one of those steep learning curve moments, but think about it for a second: two sets A and B are equal if and only if A ⊆ B and B ⊆A.)

The former follows from the definition. For the latter, let x ∈ span(span(S)). Then


[image:  ∑n x = xivi i=1 ]


for some vi ∈ span(S). Because of vi being in the span of S, we have


[image:  ∑m vi = vi,juj j=1 ]


for some uj ∈S. Thus,


[image:  ∑n ∑n ∑m ∑m ∑n x = xivi = xi vi,juj = ( xivi,j)uj, i=1 i=1 j=1 j=1 i=1 ]


implying that x ∈ span(S) as well.





Because of span(span(S)) = span(S), if S is linearly dependent, we can remove the redundant vectors and still keep the span the same.

Think about it: if S = {v1,…,vn} and, say, vn = ∑ i=1n−1xivi , then vn ∈ span(S ∖{vn}). So,


[image: span(S ∖{vn }) = span (span(S ∖ {vn})) = span (S ). ]


(The operation A ∖B is the set difference, containing all that are elements of A, but not elements of B. Feel free to check out Appendix C for more details.)

Among sets of vectors, those that generate the entire vector space are special. After all this setup, we are ready to make a formal definition. Any set of vectors S that have the property span(S) = V is called a generating set for V .

S can be thought of as a “lossless compression” of V , as it contains all the information needed to reconstruct any element in V , yet it is smaller than the entire space. Thus, we want to reduce the size of the generating set as much as possible. This leads us to one of the most important concepts in linear algebra: minimal generating sets, or bases, as we prefer to call them.



1.2.3  Bases, the minimal generating sets

With all the intuition we have built so far, let’s jump into the definition right away!


  Definition 4. (Basis)

Let V be a vector space and S be a subset of its vectors. S is a basis of V if:

(a) S is linearly independent,

(b) and span(S) = V .

The elements of a basis set are called basis vectors.



It can be shown that these defining properties mean that every vector x can be uniquely written as a linear combination of S. (This is left as an exercise for the reader.)

Let’s see some examples! In ℝ3, the set {(1,0,0),(0,1,0),(0,0,1)} is a basis, but so is {(1,1,1),(1,1,0),(0,1,1)}. So, there can be more than one basis for the same vector space.

For ℝn, the most commonly used basis is {e1,…,en}, where ei is a vector whose all coordinates are 0, except the i-th one, which is 1. This is called the standard basis.

In terms of the “information” contained in a set of vectors, bases hit the sweet spot. Adding any new vector to a basis set would introduce redundancy; removing any of its elements would cause the set to be incomplete.

These notions are formalized in the two theorems below.


  Theorem 3. 

Let V be a vector space and S = {v1,…,vn} be a subset of vectors. The following are equivalent:

(a) S is a basis.

(b) S is linearly independent and for any x ∈V ∖S, the vector set S ∪{x} is linearly dependent. In other words, S is a maximal linearly independent set.









Proof. To show the equivalence of two propositions, we have to prove two things: that (a) implies (b); and that (b) implies (a). Let’s start with the first one!

(a) [image: =⇒] (b) If S is a basis, then any x ∈V can be written as


[image:  n ∑ x = xivi i=1 ]


for some xi ∈ℝ. Thus, by definition, S ∪{x} is linearly dependent.

(b) [image: =⇒] (a) Our goal is to show that any x can be written as a linear combination of the vectors in S. By our assumption, S ∪{x} is linearly dependent, so 0 can be written as a nontrivial linear combination:


[image:  ∑n 0 = αx + xivi, i=1 ]


where not all coefficients are zero. Because S is linearly independent, α cannot be zero (as it would imply the linear dependence of S, which would go against our assumptions). Thus,


[image:  ∑n x = − xivi, i=1 α ]


showing that S is a basis.





Next, we are going to show that every vector of a basis is essential.


  Theorem 4. 

Let V be a vector space and S = {v1,…,vn}a basis. Then, for any vi ∈S,


[image: span(S ∖ {vi}) ⊂ V, ]


that is, the span of S ∖{vi}is a proper subset of V .









Proof. We are going to prove this by contradiction. Without loss of generality, we can assume that i = 1. If


[image: span(S ∖{v1 }) = V, ]


then


[image:  n ∑ v1 = xivi. i=2 ]


This means that S = {v1,…,vn} is not linearly independent, contradicting our assumptions.





In other words, the above results mean that a basis is a maximal linearly independent and a minimal generating set at the same time.

Given a basis S = {v1,…,vn}, we implictly write the vector x = ∑ i=1nxivi as x = (x1,…,xn). Since this decomposition is unique, we can do this without issues. The coefficients xi are also called coordinates. (Note that the coordinates strongly depend on the basis. Given two different bases, the coordinates of the same vector can be different.)



1.2.4  Finite dimensional vector spaces

As we have seen previously, a single vector space can have many different bases, so bases are not unique. A very natural question that arises in this context is the following. If S1 and S2 are two bases for V , then does jS1j = jS2j hold? (Where jSj denotes the cardinality of the set S, that is, its “size”.)

In other words, can we do better if we select our basis more cleverly? It turns out that we cannot, and the sizes of any two basis sets is equal. We are not going to prove this, but here is the theorem in its entirety.


  Theorem 5. 

Let [image: V ] be a vector space, and let [image: S1 ] and [image: S2 ] be two bases of [image: V ]. Then, [image: |S1| = |S2| ].



This gives us a way to define the dimension of a vector space, which is simply the cardinality of its basis. We’ll denote the dimension of V as dim(V ). For example, ℝn is n-dimensional, as shown by the standard basis {(1,0,…,0),…,(0,0,…,1)}.

If you recall the previous theorems, we assumed that a basis is finite. You might ask the question: is this always true? The answer is no. Examples 2 and 3 show that this is not the case. For instance, the countably infinite set {1,x,x2,x3,…} is a basis for ℝ[x]. So, according to the theorem above, no finite basis can exist there.

This marks an important distinction between vector spaces: those with finite bases are called finite-dimensional. I have some good news: all finite-dimensional real vector spaces are essentially ℝn. (Recall that we call a vector space real if its scalars are the real numbers.)

To see why, suppose that V is an n-dimensional real vector space with basis {v1,…,vn}, and define the mapping φ : V →ℝn by


[image:  ∑n φ : xivi → (x1,...,xn). i=1 ]


φ is invertible and preserves the structure of V , that is, the addition and scalar multiplication operations. Indeed, if u,v ∈V and α,β ∈ℝ, then φ(αu + βv) = αφ(x) + βφ(y). Such mappings are called isomorphisms. The word itself is derived from ancient Greek, with isos meaning same and morphe meaning shape. Even though this sounds abstract, the existence of an isomorphism between two vector spaces mean that they have the same structure. So, ℝn is not just an example of finite dimensional real vector spaces, it is a universal model of them. Note that if the scalars are not the real numbers, the isomorphism to ℝn is not true. (We’ll talk more about transformations like this in later chapters.)

Considering that we’ll almost exclusively deal with finite dimensional real vector spaces, this is good news. Using ℝn is not just a heuristic, it is a good mental model.



1.2.5  Why are bases so important?

If every finite-dimensional real vector space is essentially the same as ℝn, what do we gain from abstraction? Sure, we can just work with ℝn without talking about bases, but to develop a deep understanding of the core mathematical concepts in machine learning, we need the abstraction.

Let’s look ahead briefly and see an example. If you have some experience with neural networks, you know that matrices play an essential role there. Without any context, matrices are just a table of numbers with seemingly arbitrary rules of computation. Have you ever wondered why matrix multiplication is defined the way it is?

Although we haven’t precisely defined matrices yet, you have probably encountered them previously. We’ll learn all about them in Chapter 3 and Chapter 4, but for the two matrices


[image:  ⌊ ⌋ ⌊ ⌋ |a1,1 a1,2 ... a1,n| | b1,1 b1,2 ... b1,n| ||a2,1 a2,2 ... a2,n|| || b2,1 b2,2 ... b2,n|| | . . . . | | . . . . | A = || .. .. .. .. || , B = || .. .. .. .. || , ||a a ... a || ||b b ... b || ⌈ n,1 n,2 n,n⌉ ⌈ n,1 n,2 n,n⌉ ]


their product AB is defined by


[image:  ⌊∑ ∑ ∑ ⌋ nk=1 a1,kbk,1 nk=1 a1,kbk,2 ... nk=1a1,kbk,n ||∑n ∑n ∑n || || k=1 a2,kbk,1 k=1 a2,kbk,2 ... k=1a2,kbk,n|| AB = || ... ... ... ... || , |∑n ∑n ∑n | |⌈ k=1 an,kbk,1 k=1 an,kbk,2 ... k=1an,kbk,n|⌉ ]


that is, the (i,j)-th element of AB is defined by


[image:  n ∑ a b . i,kk,j k=1 ]


This definition feels random. Why not just take the componentwise product (ai,jbi,j)i,j=1n? The definition becomes crystal clear once we look at a matrix as a tool to describe linear transformations between vector spaces, as the elements of the matrix describe the images of basis vectors. In this context, multiplication of matrices is just the composition of linear transformations.

Instead of just putting out the definition and telling you how to use it, I want you to understand why it is defined that way. In the next chapters, we are going to learn every nook and cranny of matrix multiplication.



1.2.6  The existence of bases

At this point, you might ask the question: for a given vector space, are we guaranteed to find a basis? Without such a guarantee, the previous setup might be wasted. (As there might not be a basis to work with.)

Fortunately, this is not the case. As the proof is extremely difficult, we will not show this, but this is so important that we should at least state the theorem. If you are interested in how this can be done, I included a proof sketch. Feel free to skip this, as it is not going to be essential for our purposes.


  Theorem 6. 

Every vector space has a basis.









Proof. (Sketch.) The proof of this uses an advanced technique called transfinite induction, which is way beyond our scope. (Check out Naive Set Theory by Paul Halmos for details.) Instead of being precise, let’s just focus on building intuition about how to construct a basis for any vector space.

For our vector space V , we will build a basis one by one. Given any non-null vector v1, if span(S1)≠V , the set S1 = {v1} is not yet a basis. Thus, we can find a vector v2 ∈ V ∖ span(S1) so that S2 := S1 ∪{v2} is still linearly independent.

Is S2 a basis? If not, we can continue the process. In case the process stops in finitely many steps, we are done. However, this is not guaranteed. Think about ℝ[x], the vector space of polynomials, which is not finite-dimensional, as we saw in Section 1.2.4.

This is where we need to employ some set-theoretical heavy machinery (which we don’t have).

If the process doesn’t stop, we need to find a set Sℵ0 that contains all Si as a subset. (Finding this Sℵ0 set is the tricky part.) Is Sℵ0 a basis? If not, we continue the process.

This is difficult to show, but the process eventually stops, and we can’t add any more vectors to our linearly independent vector set without destroying the independence property. When this happens, we have found a maximal linearly independent set — that is, a basis.





For finite dimensional vector spaces, the above process is easy to describe. In fact, one of the pillars of linear algebra is the so-called Gram-Schmidt process, used to explicitly construct special bases for vector spaces. As several quintessential results rely on this, we are going to study it in detail during the next chapters.



1.2.7  Subspaces

Before we get our hands dirty with vectors in Python, there is one more subject we need to talk about, one that will come in handy when talking about linear transformations. (But again, linear transformations are at the heart of machine learning. Everything we learn is to get to know them better.) For a given vector space V , we are often interested in one of its subsets that is a vector space in its entirety. This is described by the concept of subspaces.


  Definition 5. (Subspaces)

Let V be a vector space. The set U ⊆V is a subspace of V if it is closed under addition and scalar multiplication.

U is a proper subspace if it is a subspace and U ⊂V .



By definition, subspaces are vector spaces themselves, so we can define their dimension as well. There are at least two subspaces of each vector space: itself and {0}. These are called trivial subspaces. Besides those, the span of a set of vectors is always a subspace. One such example is illustrated in Figure 1.5.

One of the most important aspects of subspaces is that we can use them to create more subspaces. This notion is made precise below.


  Definition 6. (Direct sum of subspaces)

Let V be a vector space and U1,U2 be two of its subspaces. The direct sum of U1 and U2 is defined by


[image: U1 + U2 = {u1 + u2 : u1 ∈ U1, u2 ∈ U2}. ]




You can easily verify that U1 + U2 is a subspace indeed, moreover U1 + U2 = span(U1 ∪U2). Subspaces and their direct sum play an essential role in several topics, such as matrix decompositions. For example, we’ll see later that many of them are equivalent to decomposing a linear space into a sum of vector spaces.

The ability to select a basis whose subsets span certain given subspaces often comes in handy. This is formalized by the next result.


  Theorem 7. 

Let V be a vector space and U1,U2 be two of its subspaces such that U1 + U2 = V . Moreover, let {p1,…,pk} ⊆ U1 be a basis of U1 and {q1,…,ql}⊆U2 be a basis of U2. Then the union


[image: {p1,...,pk} ∪ {q1,...,ql} ]


is a basis in V .









Proof. This follows directly from the direct sum’s definition. If V = U1 + U2, then any x ∈V can be written in the form x = a + b, where a ∈U1 and b ∈U2.

In turn, since p1,…,pk form a basis in U1 and q1,…,ql form a basis in U2, the vectors a and b can be written as


[image:  k l a = ∑ a p , b = ∑ bq . i=1 i i i=1 i i ]


Thus, any x takes the form


[image:  ∑k ∑ l x = aipi + biqi, i=1 i=1 ]


which is the definition of the basis.





We are barely scratching the surface. Bases are essential, but they only provide the skeleton for the vector spaces encountered in practice. To properly represent and manipulate data, we need to build a geometric structure around this skeleton. How can we measure the “distance” between two measurements? What about their similarity?

Besides all that, there is an even more crucial question: how on earth will we represent vectors inside a computer? In the next section, we will take a look at the data structures of Python, laying the foundation for the data manipulations and transformations we’ll do later.




1.3  Vectors in practice

So far, we have mostly talked about the theory of vectors and vector spaces. However, our ultimate goal is to build computational models for discovering and analyzing patterns in data. To put theory into practice, we will take a look at how vectors are represented in computations.

In computer science, there is a stark contrast between how we think about mathematical structures and how we represent them inside a computer. Until this point, our goal was to develop a mathematical framework that enables us to reason about the structure of data and its transformations. We want a language that is


	expressive,

	easy to speak,

	as compact as possible.



However, our goals change when we aim to do computations instead of pure logical reasoning. We want implementations that are


	easy to work with,

	memory-efficient,

	fast to access, manipulate and transform.



These are often contradicting requirements, and particular situations might prefer one over the other. For instance, if we have plenty of memory but want to perform lots of computations, we can sacrifice size for speed. Because of all the potential use-cases, there are multiple formats to represent the same mathematical concepts. These are called data structures.

Different programming languages implement vectors differently. Because Python is ubiquitous in data science and machine learning, it’ll be our language of choice. In this chapter, we are going to study all the possible data structures in Python to see which one is suitable to represent vectors for high performance computations.


1.3.1  Tuples

In standard Python, there are (at least) two built-in data structures that can be used to represent vectors: tuples and lists. Let’s start with tuples! They can be simply defined by enumerating their elements between two parentheses, separating them with commas.







v_tuple = (1, 3.5, -2.71, "a string", 42) 
v_tuple





(1, 3.5, -2.71, ’a string’, 42)







type(v_tuple)





tuple

A single tuple can hold elements of various types. Even though we’ll exclusively deal with floats in computational linear algebra, this property is extremely useful for general-purpose programming.

We can access the elements of a tuple by indexing. Just like in several other programming languages, indexing starts from zero. This is in stark contrast with mathematics, where we often start indexing from one. Accordingly, in most languages designed for scientific computing, such as Fortran, Matlab, or Julia, indexing starts from one.

(Don’t tell this to anybody else, but indexing from zero used to drive me crazy. I am a mathematician by training.)







v_tuple[0]





1

The size of a tuple can be accessed by calling the built-in len function.







len(v_tuple)





5

Besides indexing, we can also access multiple elements by slicing.







v_tuple[1:4]





(3.5, -2.71, ’a string’)

Slicing works by specifying the first and last elements with an optional step size, using the syntax object[first:last:step].

Tuples are rather inflexible, as you cannot change their components. Attempting to do so results in a TypeError, Python’s standard way of telling you that the object does not support the method you are trying to call. (In our case, item assignment.)







v_tuple[0] = 2





---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[22], line 1
----> 1 v_tuple[0] = 2

TypeError: 'tuple' object does not support item assignment

Besides that, extending the tuple with additional elements is also not supported. As we cannot change the state of a tuple object in any way after it has been instantiated, they are immutable. Depending on the use-case, immutability can be an advantage and a disadvantage as well. Immutable objects eliminate accidental changes, but each operation requires the creation of a new object, resulting in a computational overhead. Thus, tuples are not going to be optimal to represent large amounts of data in complex computations.

This issue is solved by lists. Let’s take a look at them, and the new problems they introduce!



1.3.2  Lists

Lists are the workhorses of Python. In contrast with tuples, lists are extremely flexible and easy to use, albeit this comes at the cost of runtime. Similarly to tuples, a list object can be created by enumerating its objects between square brackets, separated by commas.







v_list = [1, 3.5, -2.71, "qwerty"]
type(v_list)





list

Just like tuples, accessing the elements of a list is done by indexing or slicing. We can do all kinds of operations on a list: overwrite its elements, append items, or even remove others.







v_list[0] = "this is a string"
v_list





[’this is a string’, 3.5, -2.71, ’qwerty’]

This example illustrates that lists can hold elements of various types as well. Adding and removing elements can be done with methods like append, push, pop, and remove.

Before trying that, let’s quickly take note of the memory address of our example list, accessed by calling the id function.







v_list_addr = id(v_list) 
v_list_addr





126433407319488

This number simply refers to an address in my computer’s memory, where the v_list object is located. Quite literally, as this book is compiled on my personal computer.

Now, we are going to perform a few simple operations on our list and show that the memory address doesn’t change. Thus, no new object is created.







v_list.append([42])    # adding the list [42] to the end of our list 
v_list





[’this is a string’, 3.5, -2.71, ’qwerty’, [42]]







id(v_list) == v_list_addr    # adding elements doesn’t create any new objects





True







v_list.pop(1)    # removing the element at the index "1" 
v_list





[’this is a string’, -2.71, ’qwerty’, [42]]







id(v_list) == v_list_addr    # removing elements still doesn’t create any new objects





True

Unfortunately, adding lists together achieves a result that is completely different from our expectations.







[1, 2, 3] + [4, 5, 6]





[1, 2, 3, 4, 5, 6]

Instead of adding the corresponding elements together, like we want vectors to behave, the lists are concatenated. This feature is handy when writing general-purpose applications. However, this is not well-suited for scientific computations. “Scalar multiplication” also has strange results.







3*[1, 2, 3]





[1, 2, 3, 1, 2, 3, 1, 2, 3]

Multiplying a list with an integer repeats the list by the specified number of times. Given the behavior of the + operator on lists, this seems logical as multiplication with an integer is repeated addition:


[image: a⋅b = b◟+--⋅◝⋅⋅◜+--b◞. a times ]


Overall, lists can do much more than we need to represent vectors. Although we potentially want to change elements of our vectors, we don’t need to add or remove elements from them, and we also don’t need to store objects other than floats. Can we sacrifice these extra features and obtain an implementation that’s suitable for our purposes yet has lightning-fast computational performance? Yes. Enter NumPy arrays.



1.3.3  NumPy arrays

Even though Python’s built-in data structures are amazing, they are optimized for ease of use, not for scientific computation. This problem was realized early on in the language’s development and was addressed by the NumPy library.

One of the main selling points of Python is how fast and straightforward it is to write code, even for complex tasks. This comes at the price of speed. However, in machine learning, speed is crucial for us. When training a neural network, a small set of operations are repeated millions of times. Even a small percentage of improvement in performance can save hours, days, or even weeks in the case of extremely large models.

The C language is at the other end of the spectrum. While C code is hard to write, it executes blazingly fast when done correctly. As Python is written in C, a tried and true method for achieving fast performance is to call functions written in C from Python. In a nutshell, this is what NumPy provides: C arrays and operations, all in Python.

To get a glimpse into the deep underlying issues with Python’s built-in data structures, we should put numbers and arrays under our magnifying glass. Inside a computer’s memory, objects are represented as fixed-length 0-1 sequences. Each component is called a bit. Bits are usually grouped into 8-, 16-, 32-, 64-, or even 128 sized chunks. Depending on what we want to represent, identical sequences can mean different things. For instance, the 8-bit sequence 00100110 can represent the integer 38 or the ASCII character “&.


[image: PIC] 

Figure 1.6: An 8-bit object in memory 


By specifying the data type, we can decode binary objects. 32-bit integers are called int32 types, 64-bit floats are float64, and so on.

Since a single bit contains very little information, memory is addressed by dividing it into 32- or 64-bit sized chunks and numbering them consecutively. This address is a hexadecimal number, starting from 0. (For simplicity, let’s assume that the memory is addressed by 64 bits. This is customary in modern computers.)

A natural way to store a sequence of related objects (with matching data type) is to place them next to each other in the memory. This data structure is called an array.


[image: PIC] 

Figure 1.7: An array of int64 objects 


By storing the memory address of the first object, say 0x23A0, we can instantly retrieve the k-th element by accessing the memory at 0x23A0 + k.

We call this the static array or often the C array because this is how it is done in the magnificent C language. Although this implementation of arrays is lightning fast, it is relatively inflexible. First, you can only store objects of a single type. Second, you have to know the size of your array in advance, as you cannot use memory addresses that overextend the pre-allocated part. Thus, before you start working with your array, you have to allocate memory for it. (That is, reserve space so that other programs won’t overwrite it.)

However, in Python, you can store arbitrarily large and different objects in the same list, with the option of removing and adding elements to it.







l = [2**142 + 1, "a string"]
l.append(lambda x: x) 
l





[5575186299632655785383929568162090376495105,
 'a string',
 <function __main__.<lambda>(x)>]

In the example above, l[0] is an integer so large that it doesn’t fit into 128 bits. Also, there are all kinds of objects in our list, including a function. How is this possible?

Python’s list provides a flexible data structure by


	Overallocating the memory, and

	Keeping memory addresses to the objects in the list instead of the objects themselves.



(At least in the most widespread CPython implementation ( https://docs.python.org/3/faq/design.html\#how-are-lists-implemented-in-cpython).)


[image: PIC] 

Figure 1.8: CPython implementation of lists 


By checking the memory addresses of each object in our list l, we can see that they are all over the memory.







[id(x) for x in l]





[126433412959232, 126433407528240, 126433410174944]

Due to the overallocation, deletion or insertion can always be done simply by shifting the remaining elements. Since the list stores the memory address of its elements, all types of objects can be stored within a single structure.

However, this comes at a cost. Because the objects are not contiguous in memory, we lose locality of reference (https://en.wikipedia.org/wiki/Locality_of_reference), meaning that since we frequently access distant locations of the memory, our reads are much slower. Thus, looping over a Python list is not efficient.

So, NumPy arrays are essentially the good old C arrays in Python, with the user-friendly interface of Python lists. (If you have ever worked with C, you know how big of a blessing this is.) Let’s see how to work with them!

First, we import the numpy library. (To save on the characters, it is customary to import it as np.)







import numpy as np





The main data structure is np.ndarray, short for n-dimensional array. We can use the np.array function to create NumPy arrays from standard Python containers or initialize from scratch. (Yes, I know. This is confusing, but you’ll get used to it. Just take a mental note that np.ndarray is the class, and np.array is the function you use to create NumPy arrays from Python objects.)







X = np.array([87.7, 4.5, -4.1, 42.1414, -3.14, 2.001])    # creating a NumPy array from a Python list 
X





array([87.7   ,  4.5   , -4.1   , 42.1414, -3.14  ,  2.001 ])


np.ones(shape=7) # initializing a NumPy array from scratch using ones



array([1., 1., 1., 1., 1., 1., 1.])







np.zeros(shape=5)    # initializing a NumPy array from scratch using zeros





array([0., 0., 0., 0., 0.])

We can even initialize NumPy arrays using random numbers.







np.random.rand(10)





array([0.92428404, 0.37719596, 0.92071695, 0.56905245, 0.12024811, 
      0.02868856, 0.53215047, 0.51749348, 0.21022765, 0.96749756])

Most importantly, when we have a given array, we can initialize another one with the same dimensions using the np.zeros_like, np.ones_like, and np.empty_like functions.







np.zeros_like(X)





array([0., 0., 0., 0., 0., 0.])

Just like Python lists, NumPy arrays support item assignments and slicing.







X[0] = 1545.215 
X





array([1545.215 ,    4.5   ,   -4.1   ,   42.1414,   -3.14  ,    2.001 ])







X[1:4]





array([ 4.5   , -4.1   , 42.1414])

However, as expected, you can only store a single data type within each ndarray. When trying to assign a string as the first element, we get an error message.







X[0] = "str"





--------------------------------------------------------------------------- 
ValueError                              Traceback (most recent call last) 
Cell In[48], line 1 
----> 1 X[0] = "str" 
 
ValueError: could not convert string to float: ’str’

As you might have guessed, every ndarray has a data type attribute that can be accessed at ndarray.dtype. If a conversion can be made between the value to be assigned and the data type, it is automatically performed, making the item assignment successful.







X.dtype





dtype(’float64’)







val = 23 
type(val)





int







X[0] = val 
X





array([23.    ,  4.5   , -4.1   , 42.1414, -3.14  ,  2.001 ])

NumPy arrays are iterable, just like other container types in Python.







for x in X: 
    print(x)





23.0 
4.5 
-4.1 
42.1414 
-3.14 
2.001

Are these suitable to represent vectors? Yes. We’ll see why!



1.3.4  NumPy arrays as vectors

Let’s talk about vectors once more. From now on, we are going to use NumPy ndarray-s to model vectors.







v_1 = np.array([-4.0, 1.0, 2.3]) 
v_2 = np.array([-8.3, -9.6, -7.7])





The addition and scalar multiplication operations are supported by default and perform as expected.







v_1 + v_2    # adding v_1 and v_2 together as vectors





array([-12.3,  -8.6,  -5.4])







10.0*v_1    # multiplying v_1 with a scalar





array([-40.,  10.,  23.])







v_1 * v_2    # the elementwise product of v_1 and v_2





array([ 33.2 ,  -9.6 , -17.71])







np.zeros(shape=3) + 1





array([1., 1., 1.])

Because of the dynamic typing of Python, we can (often) plug NumPy arrays into functions intended for scalars.







def f(x): 
    return 3*x**2 - x**4 
f(v_1)





array([-208.    ,    2.    ,  -12.1141])

So far, NumPy arrays satisfy almost everything we require to represent vectors. There is only one box to be checked: performance. To investigate this, we measure the execution time with Python’s built-in timeit tool.

In its first argument, timeit (https://docs.python.org/3/library/timeit.html) takes a function to be executed and timed. Instead of passing a function object, it also accepts executable statements as a string. Since function calls have a significant computational overhead in Python, we are passing code rather than a function object in order to be more precise with the time measurements.

Below, we compare adding together two NumPy arrays vs. Python lists containing a thousand zeros.







from timeit import timeit


n_runs = 100000
size = 1000


t_add_builtin = timeit(
    "[x + y for x, y in zip(v_1, v_2)]",
    setup=f"size={size}; v_1 = [0 for _ in range(size)]; v_2 = [0 for _ in range(size)]",
    number=n_runs
)

t_add_numpy = timeit(
    "v_1 + v_2",
    setup=f"import numpy as np; size={size}; v_1 = np.zeros(shape=size); 
    v_2 = np.zeros(shape=size)",
    number=n_runs
)


print(f"Built-in addition:       \t{t_add_builtin} s")
print(f"NumPy addition:          \t{t_add_numpy} s")
print(f"Performance improvement: \t{t_add_builtin/t_add_numpy:.3f} times faster")





Built-in addition:             3.3522969299992837 s 
NumPy addition:               0.09616518099937821 s 
Performance improvement:       34.860 times faster

NumPy arrays are much-much faster. This is because they are


	contiguous in memory,

	homogeneous in type,

	with operations implemented in C.



This is just the tip of the iceberg. We have only seen a small part of it, but NumPy provides much more than a fast data structure. As we progress in the book, we’ll slowly dig deeper and deeper, eventually discovering the vast array of functionalities it provides.



1.3.5  Is NumPy really faster than Python?

NumPy is designed to be faster than vanilla Python. Is this really the case? Not all the time. If you use it wrong, it might even hurt performance! To know when it is beneficial to use NumPy, we will look at why exactly it is faster in practice.

To simplify the investigation, our toy problem will be random number generation. Suppose that we need just a single random number. Should we use NumPy? Let’s test it! We are going to compare it with the built-in random number generator by running both ten million times, measuring the execution time.







from numpy.random import random as random_np
from random import random as random_py


n_runs = 10000000
t_builtin = timeit(random_py, number=n_runs)
t_numpy = timeit(random_np, number=n_runs)

print(f"Built-in random:\t{t_builtin} s")
print(f"NumPy random:   \t{t_numpy} s")





Built-in random:      0.47474874800172984 s 
NumPy random:         5.1664929229991685 s

For generating a single random number, NumPy is significantly slower. Why is this the case? What if we need an array instead of a single number? Will this also be slower?

This time, let’s generate a list/array of a thousand elements.


size = 1000
n_runs = 10000

t_builtin_list = timeit(
    "[random_py() for _ in range(size)]",
    setup=f"from random import random as random_py; size={size}",
    number=n_runs
)

t_numpy_array = timeit(
    "random_np(size)",
    setup=f"from numpy.random import random as random_np; size={size}",
    number=n_runs
)

print(f"Built-in random with lists:\t{t_builtin_list}s")
print(f"NumPy random with arrays:  \t{t_numpy_array}s")



Built-in random with lists:    0.5773125300001993s 
NumPy random with arrays:       0.08449692800058983s

(Again, I don’t want to wrap the timed expressions in lambdas since function calls have an overhead in Python. I want to be as precise as possible, so I pass them as strings to the timeit function.)

Things are looking much different now. When generating an array of random numbers, NumPy wins hands down.

There are some curious things about this result as well. First, we generated a single random number 10000000 times. Second, we generated an array of 1000 random numbers 10000 times. In both cases, we have 10000000 random numbers in the end. Using the built-in method, it took ˜2x time when we put them in a list. However, with NumPy, we see a ˜30x speedup compared to itself when working with arrays! (The actual numbers might be different on your computer.)

To see what happens behind the scenes, we are going to profile the code using cProfiler (https://docs.python.org/3/library/profile.html). With this, we’ll see exactly how many times a given function was called and how much time we spent inside it.

Let’s take a look at the built-in function first. In the following function, we create 10000000 random numbers, just as before.







def builtin_random_single(n_runs): 
    for _ in range(n_runs): 
        random_py()





From Jupyter Notebooks, where this book is written, cProfiler can be called with the magic command %prun.







n_runs = 10000000 
 
%prun builtin_random_single(n_runs)





 10000558 function calls (10000539 primitive calls) in 2.082 seconds 
 
   Ordered by: internal time 
 
   ncalls  tottime  percall  cumtime  percall filename:lineno(function) 
       1    0.937    0.937    1.671    1.671 2471337341.py:1(builtin_random_single) 
 10000000    0.911    0.000    0.911    0.000 {method ’random’ of ’_random.Random’ objects} 
     4/0    0.213    0.053    0.000         {method ’poll’ of ’select.epoll’ objects} 
      10    0.009    0.001    0.016    0.002 socket.py:626(send) 
       2    0.009    0.004    0.015    0.008 {method ’__exit__’ of ’sqlite3.Connection’ objects}

There are two important columns here for our purposes. ncalls shows how many times a function was called, while tottime is the total time spent in a function, excluding time spent in subfunctions.

The built-in function random.random() was called 10000000 times as expected. Take note of the total time spent in the function. (I can’t give you an exact figure here, as it depends on the machine this book is built on.)

What about the NumPy version? The results are surprising.


def numpy_random_single(n_runs):
    for _ in range(n_runs):
        random_np()

%prun numpy_random_single(n_runs)



448 function calls (444 primitive calls) in 7.203 seconds 
 
   Ordered by: internal time 
 
   ncalls  tottime  percall  cumtime  percall filename:lineno(function) 
       1    7.029    7.029    7.029    7.029 2015715881.py:1(numpy_random_single) 
       2    0.136    0.068    0.136    0.068 {method ’poll’ of ’select.epoll’ objects} 
       2    0.015    0.007    0.015    0.007 {method ’__exit__’ of ’sqlite3.Connection’ objects} 
       1    0.011    0.011    0.011    0.011 {method ’execute’ of ’sqlite3.Connection’ objects} 
       3    0.010    0.003    7.339    2.446 base_events.py:1910(_run_once) 
       7    0.000    0.000    0.000    0.000 socket.py:626(send) 
       1    0.000    0.000    0.000    0.000 {method ’disable’ of ’_lsprof.Profiler’ objects} 
       1    0.000    0.000    0.026    0.026 history.py:833(_writeout_input_cache) 
       1    0.000    0.000    0.000    0.000 inspect.py:3102(_bind) 
   88/84    0.000    0.000    0.000    0.000 {built-in method builtins.isinstance}

Similarly, as before, the numpy.random.random() function was indeed called 10000000 times, as expected. Yet, the script spent significantly more time in this function than in the Python built-in random before. Thus, it is more costly per call.

When we start working with large arrays and lists, things change dramatically. Next, we generate a list/array of 1000 random numbers, while measuring the execution time.







def numpy_random_single(n_runs): 
    for _ in range(n_runs): 
        random_np() 
%prun numpy_random_single(n_runs)





448 function calls (444 primitive calls) in 7.203 seconds 
 
   Ordered by: internal time 
 
   ncalls  tottime  percall  cumtime  percall filename:lineno(function) 
       1    7.029    7.029    7.029    7.029 2015715881.py:1(numpy_random_single) 
       2    0.136    0.068    0.136    0.068 {method ’poll’ of ’select.epoll’ objects} 
       2    0.015    0.007    0.015    0.007 {method ’__exit__’ of ’sqlite3.Connection’ objects} 
       1    0.011    0.011    0.011    0.011 {method ’execute’ of ’sqlite3.Connection’ objects} 
       3    0.010    0.003    7.339    2.446 base_events.py:1910(_run_once) 
       7    0.000    0.000    0.000    0.000 socket.py:626(send) 
       1    0.000    0.000    0.000    0.000 {method ’disable’ of ’_lsprof.Profiler’ objects} 
       1    0.000    0.000    0.026    0.026 history.py:833(_writeout_input_cache) 
       1    0.000    0.000    0.000    0.000 inspect.py:3102(_bind) 
   88/84    0.000    0.000    0.000    0.000 {built-in method builtins.isinstance}

As we see, about 60% of the time was spent on the list comprehensions. (Note that tottime doesn’t count subfunction calls like calls to random.random() here.)

Now we are ready to see why NumPy is faster when used right.







def numpy_random_array(size, n_runs): 
    for _ in range(n_runs): 
        random_np(size) 
%prun numpy_random_array(size, n_runs)





149 function calls (148 primitive calls) in 0.132 seconds 
 
   Ordered by: internal time 
 
   ncalls  tottime  percall  cumtime  percall filename:lineno(function) 
       1    0.122    0.122    0.122    0.122 1681905588.py:1(numpy_random_array) 
       2    0.009    0.004    0.009    0.004 {method ’__exit__’ of ’sqlite3.Connection’ objects} 
     2/1    0.000    0.000    0.122    0.122 {built-in method builtins.exec}

With each of the 10000 function calls, we get a numpy.ndarray of 1000 random numbers. The reason why NumPy is fast when used right is that its arrays are extremely efficient to work with. They are like C arrays instead of Python lists.

As we have seen, there are two significant differences between them.


	Python lists are dynamic, so for instance, you can append and remove elements. NumPy arrays have fixed lengths, so you cannot add or delete without creating a new one.

	Python lists can hold several data types simultaneously, while a NumPy array can only contain one.



So, NumPy arrays are less flexible but significantly more performant. When this additional flexibility is not needed, NumPy outperforms Python.

To see precisely at which size does NumPy overtakes Python in random number generation, we can compare the two by measuring the execution times for several sizes.







sizes = list(range(1, 100))

runtime_builtin = [
    timeit(
        "[random_py() for _ in range(size)]",
        setup=f"from random import random as random_py; size={size}",
        number=100000
    )
    for size in sizes
]


runtime_numpy = [
    timeit(
        "random_np(size)",
        setup=f"from numpy.random import random as random_np; size={size}",
        number=100000
    )
    for size in sizes





sizes = import matplotlib.pyplot as plt


with plt.style.context("seaborn-v0_8"):
    plt.figure(figsize=(10, 5))
    plt.plot(sizes, runtime_builtin, label="built-in")
    plt.plot(sizes, runtime_numpy, label="NumPy")
    plt.xlabel("array size")
    plt.ylabel("time (seconds)")
    plt.title("Runtime of random array generation")
    plt.legend()
    plt.show()


[image: PIC] 

Figure 1.9: Runtime of random array generation 


Around 20, NumPy starts to beat Python in performance. Of course, this number might be different for other operations like calculating the sine or adding numbers together, but the tendency will be the same. Python will slightly outperform NumPy for small input sizes, but NumPy wins by a large margin as the size grows.




1.4  Summary

In this chapter, we have learned what vectors are and why we must use them in data science and machine learning. Vectors are not just a bunch of numbers bundled together but a mathematical structure that allows us to reason about data more effectively, both in theory and in practice. Contrary to popular belief, vectors are vectors not because they have direction and magnitude but because you can add them together.

This is formalized by the concept of vector spaces, providing the mathematical framework for our studies. Vector spaces are best described by bases, that is, minimal and linearly independent generating sets. Understanding vector spaces and their bases will pay enormous dividends when we study linear transformations, the most important building block of predictive models.

Besides the leap of abstraction provided by vectors, we reap significant benefits in practice by vectorizing our code, compressing complex logic into one-liners such as data scaling:

X_scaled = (X - X.mean(axis=0)) / X.std(axis=0)

Besides the conceptual jump from scalars to vectors and matrices, efficient data processing is made possible by NumPy (short for Numerical Python), the number one library in the machine learning toolkit. If a tensor library doesn’t use NumPy, it is inspired by it. We already understand its basics and know why and when to use it.

In the next chapter, we continue exploring vector spaces. Bases are cool and all, but besides them, vector spaces have a beautiful and rich geometric structure. Let’s see it!



1.5  Problems

Problem 1. Not all vector spaces are infinite. There are some that only contain a finite number of vectors, as we shall see next in this problem. Define the set


[image: ℤ2 := {0,1}, ]

where the operations +,⋅ are defined by the rules




	0 + 0
	= 0
	
	



	0 + 1
	= 1
	
	



	1 + 0
	= 1
	
	



	1 + 1
	= 0
	
	





and




	0 ⋅ 0
	= 0
	
	



	0 ⋅ 1
	= 0
	
	



	1 ⋅ 0
	= 0
	
	



	1 ⋅ 1
	= 1.
	
	





This is called binary (or modulo-2) arithmetic.

(a) Show that (ℤ2,ℤ2,+,⋅) is a vector space.

(b) Show that(ℤ2n,ℤ2,+,⋅) is also a vector space, where ℤ2n is the n-fold Cartesian product


[image:  n ℤ 2 = ℤ◟2-×-⋅⋅◝◜⋅×-ℤ2◞, n times ]


and the addition and scalar multiplication are defined elementwise:




	x+ y
	= (x1 + y1,…,xn + yn), x,y ∈ℤ2n,
	
	



	cx
	= (cx1,…,cxn), c ∈ℤ2.
	
	





Problem 2. Are the following vector sets linearly independent?

(a) S1 = {(1,0,0),(1,1,0),(1,1,1)}⊆ℝ3

(b) S2 = {(1,1,1),(1,2,4),(1,3,9)}⊆ℝ3

(c) S3 = {(1,1,1),(1,1,−1),(1,−1,−1)}⊆ℝ3

(d) S4 = {(π,e),(−42,13∕6),(π3,−2)}⊆ℝ2

Problem 3. Let V be a finite n-dimensional vector space and let S = {v1,…,vm} be a linearly independent set of vectors, m>n. Show that there is a basis set B such that S ⊂B. 

Problem 4. Let V be a vector space and S = {v1,…,vn} be its basis. Show that every vector x ∈V can be uniquely written as a linear combination of vectors in S. (That is, if x = ∑ i=1nαivi = ∑ i=1nβivi, then αi = βi for all i = 1,…,n.)

Problem 5. Let V be an arbitrary vector space and U1,U2 ⊆V be two of its subspaces. Show that U1 + U2 = span(U1 ∪U2).

Hint: to prove the equality of these two sets, you need to show two things: 1) if x ∈U1 + U2, then x ∈ span(U1 ∪U2) as well, 2) if x ∈ span(U1 ∪U2), then x ∈U1 + U2 as well.

Problem 6. Consider the vector space of polynomials with real coefficients, defined by


[image:  n ℝ [x] = {p(x) = ∑ pxi : p ∈ ℝ, n = 0,1,...}. i i i=0 ]


(a) Show that


[image:  ∑n i xℝ[x] := {p(x) = pix : pi ∈ ℝ, n = 1,2,...} i=1 ]


is a proper subspace of ℝ[x].

(b) Show that


[image: f : ℝ[x] → xℝ [x ], p(x) ↦→ xp(x) ]


is a bijective and linear. (A function f : X →Y is bijective if every y ∈Y has exactly one x ∈X for which f(x) = y. If you are not comfortable with this notion, feel free to revisit this problem after Chapter 9.)

In general, a linear and bijective function f : U →V between vector spaces is called an isomorphism. Given the existence of such a function, we call the vector spaces U and V isomorphic, meaning that they have an identical algebraic structure.

Combining (a) and (b), we obtain that ℝ[X] is isomorphic with its proper subspace xℝ[X]. This is quite an interesting phenomenon: a vector space that is algebraically identical to its proper subspace. (Note that this cannot happen in finite dimensions, such as ℝn.)
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The Geometric Structure of Vector Spaces

Let’s revisit the Iris dataset introduced in the previous chapter! I want to test your intuition. I plotted the petal widths against the petal lengths while hiding the class labels in Figure 2.1:
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