
		
			[image: cover.png]
		

	
		
			THE KUBERNETES BIBLE

			The definitive guide to deploying and managing Kubernetes across major cloud platforms

			Nassim Kebbani

			Piotr Tylenda

			Russ McKendrick

			 

			[image:]

			BIRMINGHAM—MUMBAI

			THE KUBERNETES BIBLE

			Copyright © 2022 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Rahul Nair

			Publishing Product Manager: Shrilekha Malpani

			Senior Editor: Athikho Sapuni Rishana

			Content Development Editor: Nihar Kapadia

			Technical Editor: Shruthi Shetty

			Copy Editor: Safis Editing

			Project Coordinator: Neil D'mello

			Proofreader: Safis Editing

			Indexer: Tejal Daruwale Soni

			Production Designer: Alishon Mendonca

			Marketing Coordinator: Sanjana Gupta

			First published: February 2022

			Production reference: 1130122

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-83882-769-4

			www.packt.com

			Contributors

			About the authors

			Nassim Kebbani is an experienced software engineer with in-depth expertise in Kubernetes and the Amazon Web Services cloud provider. He has an extensive background both in software development and operations teams, having implemented the entire spectrum of a DevOps life cycle chain, from application code to pipelines, and carried out monitoring in various industries such as e-commerce, media, and financial services.

			He has implemented numerous cloud-native architectures and containerized applications on Docker and AWS and holds both Kubernetes CKA and CKAD certifications.

			Piotr Tylenda is an experienced DevOps and software engineer with a passion for Kubernetes and Azure technologies. In his projects, he has focused on the adoption of microservices architecture for monolithic applications, developing big data pipelines for e-commerce, and architecting solutions for scalable log and telemetry analytics for hardware. His most notable contribution to Kubernetes' open source ecosystem is the development of Ansible automation for provisioning and deploying hybrid Windows/Linux Kubernetes clusters. Currently, he works at Microsoft Development Center Copenhagen in Denmark as part of a team developing a Microsoft Dynamics 365 Business Central SaaS offering.

			Russ McKendrick is an experienced DevOps practitioner and system administrator with a passion for automation and containers. He has been working in IT and related industries for the better part of 27 years. During his career, he has had varied responsibilities in many different sectors, including first-line, second-line, and senior support in both client-facing and internal teams for small and large organizations. He works almost exclusively with Linux, using open source systems and tools across both dedicated hardware and virtual machines hosted in public and private clouds at N4Stack, which is a Node4 company, where he holds the title of practice manager (SRE and DevOps). He also buys way too many records!

			About the reviewer

			Dushyant Nathalal Dubaria pursued a Master of Science degree in network and telecommunication engineering from Southern Methodist University, USA, in December 2019. He is passionate about DevOps, the cloud, networking, virtualization, and automation, and has a keen interest in technologies such as Docker and Kubernetes. He has published articles in three international journal publications in IEEE, held at Columbia University, New York, and at the University of Nevada, Las Vegas. He was a teaching assistant and lecturer at Southern Methodist University and loves teaching DevOps for networking, network automation, and programmability to graduate students. He likes contributing to open source projects and was a speaker at the Linux Foundation Event: Open Networking Summit, San Jose, April 2019, and at the Open Source Summit, San Diego, August 2019.

			Reviewing a book is harder than I thought and more rewarding than I could have ever imagined. I would like to thank my friend, Jay Ashok Shah, who introduced me to the world of DevOps and Kubernetes.

			To my caring parents for always encouraging me to accomplish my goals.

			To my loving wife, Monika, for her continued support with everything I do.

			Finally, my sincere appreciation to the Packt committee for the learning opportunities they have afforded me, especially Kajol Pawar and Neil D'mello.

		

	
		
			Table of Contents

			Preface

			Section 1: Introducing Kubernetes

			Chapter 1: Kubernetes Fundamentals

			Understanding monoliths and microservices

			Understanding the growth of the internet since the late 1990s

			Understanding the need for more frequent software releases

			Understanding the organizational shift to agile methodologies

			Understanding the shift from on-premises to the cloud

			Understanding why the cloud is well suited for scalability

			Exploring the monolithic architecture

			Exploring the microservices architecture

			Choosing between monolithic and microservices architectures

			Understanding containers and Docker

			Understanding why Docker is good for microservices

			Understanding the benefit of Docker container isolation

			How can Kubernetes help you to manage your Docker containers?

			Understanding that Kubernetes is meant to use Docker in production

			Exploring the problems that Kubernetes solves

			Ensuring high availability

			Release management and container deployment

			Autoscaling containers

			When and where is Kubernetes not the solution?

			Understanding the history of Kubernetes

			Understanding how and where Kubernetes started

			Who manages Kubernetes today?

			Where is Kubernetes today?

			Summary

			Chapter 2: Kubernetes Architecture – From Docker Images to Running Pods

			Understanding the difference between the master and worker nodes

			The kube-apiserver component

			The role of kube-apiserver

			How do you install kube-apiserver?

			Where do you install kube-apiserver?

			Exploring the kubectl command-line tool and YAML syntax

			The role of kubectl

			How does kubectl work?

			The YAML syntax

			kubectl should be installed on any machine that needs to interact with the cluster

			The Etcd datastore

			The role of the Etcd datastore

			Where do you install Etcd?

			The Kubelet and worker node components

			The Kubelet agent

			The kube-proxy component

			The kube-scheduler component

			The role of the kube-scheduler component

			Where do you install kube-scheduler?

			The kube-controller-manager component

			The role of the kube-controller-manager component

			Where do you install kube-controller-manager?

			How to make Kubernetes highly available

			The single-node cluster

			The single-master cluster

			The multi-master multi-node cluster

			Summary

			Chapter 3: Installing Your First Kubernetes Cluster

			Technical requirements

			Installing a single-node cluster with Minikube

			Launching a single-node Kubernetes cluster using Minikube

			Stopping and deleting the local Minikube cluster

			Launching a multi-node Kubernetes cluster with Kind

			Installing Kind onto your local system

			Stopping and deleting the local Kind cluster

			Installing a Kubernetes cluster using Google GKE

			Launching a multi-node Kubernetes cluster on Google GKE

			Stopping and deleting a Kubernetes cluster on Google GKE

			Installing a Kubernetes cluster using Amazon EKS

			Launching a multi-node Kubernetes cluster on Amazon EKS

			Deleting the Kubernetes cluster on Amazon EKS

			Installing a Kubernetes cluster using Azure AKS

			Launching a multi-node Kubernetes cluster on Azure AKS

			Stopping and deleting a Kubernetes cluster on Azure AKS

			Summary

			Section 2: Diving into Kubernetes Core Concepts

			Chapter 4: Running Your Docker Containers

			Technical requirements

			Let's explain the notion of Pods

			Each Pod gets an IP address

			How you should design your Pods

			Launching your first Pods

			Creating a Pod with imperative syntax

			Creating a Pod with declarative syntax

			Reading the Pod's information and metadata

			Listing the objects in JSON or YAML

			Backing up your resource using the list operation

			Getting more information from the list operation

			Accessing a Pod from the outside world

			Entering a container inside a Pod

			Deleting a Pod

			Labeling and annotating the Pods

			What are labels and why do we need them?

			What are annotations and how do they differ from labels?

			Adding a label

			Listing labels attached to a Pod

			Adding or updating a label to/of a running Pod

			Deleting a label attached to a running Pod

			Adding an annotation

			Launching your first job

			What are jobs?

			Creating a job with restartPolicy

			Understanding the job's backoffLimit

			Running a task multiple times using completions

			Running a task multiple times in parallel

			Terminating a job after a specific amount of time

			What happens if a job succeeds?

			Deleting a job

			Launching your first Cronjob

			What are Cronjobs?

			Creating your first Cronjob

			Understanding the schedule

			Understanding the role of the jobTemplate section

			Controlling the Cronjob execution deadline

			Managing the history limits of jobs

			Creating a Cronjob

			Deleting a Cronjob

			Summary

			Chapter 5: Using Multi-Container Pods and Design Patterns

			Technical requirements

			Understanding what multi-container Pods are

			Concrete scenarios where you need multi-container Pods

			When not to create a multi-container Pod

			Creating a Pod made up of two containers

			What happens when Kubernetes fails to launch one container in a Pod?

			Deleting a multi-container Pod

			Understanding the Pod deletion grace period

			Accessing a specific container inside a multi-container Pod

			Running commands in containers

			Overriding the default commands run by your containers

			Introducing initContainers

			Accessing the logs of a specific container

			Sharing volumes between containers in the same Pod

			What are Kubernetes volumes?

			Creating and mounting an emptyDir volume

			Creating and mounting a hostPath volume

			The ambassador design pattern

			What is the ambassador design pattern?

			A simple example of an ambassador multi-container Pod

			The sidecar design pattern

			What is the sidecar design pattern?

			A simple example of a sidecar multi-container Pod

			The adapter design pattern

			What is the adapter design pattern?

			A simple example of an adapter multi-container Pod

			Summary

			Chapter 6: Configuring Your Pods Using ConfigMaps and Secrets

			Technical requirements

			Understanding what ConfigMaps and Secrets are

			Decoupling your application and your configuration

			Understanding how Pods consume ConfigMaps and Secrets

			Configuring your Pods using ConfigMaps

			Listing ConfigMaps

			Creating a ConfigMap

			Creating a ConfigMap from literal values

			Storing entire configuration files in a ConfigMap

			Creating a ConfigMap from an env file

			Reading values inside a ConfigMap

			Linking ConfigMaps as environment variables

			Mounting a ConfigMap as a volume mount

			Deleting a ConfigMap

			Updating a ConfigMap

			Managing sensitive configuration with the Secret object

			Listing Secrets

			Creating a Secret imperatively with --from-literal

			Creating a Secret declaratively with a YAML file

			Creating a Secret with content from a file

			Reading a Secret

			Consuming a Secret as an environment variable

			Consuming a Secret as a volume mount

			Deleting a Secret

			Updating a Secret

			Summary

			Chapter 7: Exposing Your Pods with Services

			Technical requirements

			Why would you want to expose your Pods?

			Understanding Pod IP assignment

			Understanding Pod IP assignment is dynamic

			Never hardcode a pod's IP addresses in your application code

			Understanding how services route traffic to Pods

			Understanding round-robin load balancing in Kubernetes

			Understanding how to call a service in Kubernetes

			Understanding how DNS names are generated for services

			How services get a list of the Pods they service traffic to

			Using the dnsutils Docker image to debug your services

			Why you shouldn't use the --expose flag

			Understanding how DNS names are generated for services

			Understanding the different types of services

			The NodePort service

			Why do you need NodePort services?

			Creating two containous/whoami Pods

			Understanding NodePort YAML definition

			Making sure NodePort works as expected

			Is this setup production-ready?

			Listing NodePort services

			Adding more Pods to NodePort services

			Describing NodePort services

			Deleting NodePort services

			NodePort or kubectl port-forward?

			The ClusterIP service

			Why do you need ClusterIP services?

			How do I know if I need NodePort or ClusterIP services to expose my Pods?

			Listing ClusterIP services

			Creating ClusterIP services using the imperative way

			Describing ClusterIP services

			Creating ClusterIP services using the declarative way

			Deleting ClusterIP services

			Understanding headless services

			The LoadBalancer service

			Explaining the LoadBalancer services

			Should I use the LoadBalancer service type?

			Implementing ReadinessProbe

			Why do you need ReadinessProbe?

			Implementing ReadinessProbe

			What is LivenessProbe and why do you need it?

			Implementing LivenessProbe

			Using ReadinessProbe and LivenessProbe together

			Securing your Pods using the NetworkPolicy object

			Why do you need NetworkPolicy?

			Understanding Pods are not isolated by default

			Configuring NetworkPolicy with labels and selectors

			Summary

			Chapter 8: Managing Namespaces in Kubernetes

			Technical requirements

			Introduction to Kubernetes namespaces

			Why do you need namespaces?

			How namespaces are used to split resources into chunks

			Understanding default namespaces

			How namespaces impact your resources and services

			Listing namespaces inside your cluster

			Retrieving the data of a specific namespace

			Creating a namespace using imperative syntax

			Creating a namespace using declarative syntax

			Deleting a namespace

			Creating a resource inside a namespace with the -n option

			Listing resources inside a specific namespace

			Listing all the resources inside a specific namespace

			Understanding that names are scoped to a namespace

			Understanding that not all resources are in a namespace

			Resolving a service using namespaces

			Switching between namespaces with kubectl

			Displaying the current namespace with kubectl

			Configuring ResourceQuota and Limit at the namespace level

			Understanding why you should set ResourceQuota

			Understanding how Pods consume these resources

			Understanding how Pods can require computing resources

			Understanding how you can limit resource consumption

			Understanding why you need ResourceQuota

			Creating a ResourceQuota

			Listing ResourceQuota

			Deleting ResourceQuota

			Introducing LimitRange

			Listing LimitRange

			Deleting LimitRange

			Summary

			Chapter 9: Persistent Storage in Kubernetes

			Technical requirements

			Why you would want to use PersistentVolume

			Introducing PersistentVolumes

			Introducing PersistentVolume types

			The benefits brought by PersistentVolume

			Introducing access modes

			Understanding that not all access modes are available to all PersistentVolume types

			Creating our first PersistentVolume

			How does Kubernetes PersistentVolumes handle cloud-based storage?

			Amazon EBS PersistentVolume YAML

			GCE PersistentDisk PersistentVolume YAML

			NFS PersistentVolume YAML

			Can Kubernetes handle the provisioning or creation of the resource itself?

			Understanding how to mount a PersistentVolume to your Pod claims

			Introducing PersistentVolumeClaim

			Splitting storage creation and storage consumption

			The summarized PersistentVolume workflow

			Creating a Pod with a PersistentVolumeClaim object

			Understanding the life cycle of a PersistentVolume object in Kubernetes

			Understanding that PersistentVolume objects are not bound to namespaces

			Reclaiming a PersistentVolume object

			Updating a reclaim policy

			Understanding PersistentVolume and PersistentVolumeClaims statuses

			Static and dynamic PersistentVolume provisioning

			Static versus dynamic provisioning

			Introducing dynamic provisioning

			Introducing StorageClasses

			Understanding the role of PersistentVolumeClaim for dynamic storage provisioning

			Summary

			Section 3: Using Managed Pods with Controllers

			Chapter 10: Running Production-Grade Kubernetes Workloads

			Technical requirements

			Ensuring HA and FT on Kubernetes

			High Availability

			Fault Tolerance

			HA and FT for Kubernetes applications

			What is ReplicationController?

			Creating a ReplicationController object

			Testing the behavior of ReplicationController

			Scaling ReplicationController

			Deleting ReplicationController

			What is ReplicaSet and how does it differ from ReplicationController?

			Creating a ReplicaSet object

			Testing the behavior of ReplicaSet

			Scaling ReplicaSet

			Using Pod liveness probes together with ReplicaSet

			Deleting a ReplicaSet object

			Summary

			Further reading

			Chapter 11: Deployment – Deploying Stateless Applications

			Technical requirements

			Introducing the Deployment object

			Creating a Deployment object

			Exposing Deployment Pods using Service objects

			Scaling a Deployment object

			Deleting a Deployment object

			How does a Deployment object manage revisions and version rollout?

			Updating a Deployment object

			Rolling back a Deployment object

			Deployment object best practices

			Use declarative object management for Deployments

			Do not use the Recreate strategy for production workloads

			Do not create Pods that match an existing Deployment label selector

			Carefully set up your container probes

			Use meaningful and semantic image tags

			Migrating from older versions of Kubernetes

			Summary

			Further reading

			Chapter 12: StatefulSet – Deploying Stateful Applications

			Technical requirements

			Introducing the StatefulSet object

			Managing state in containers

			Managing state in Kubernetes Pods

			StatefulSet and how it differs from a Deployment object

			Managing StatefulSet

			Creating a StatefulSet

			Using the headless Service and stable network identities

			State persistence

			Scaling StatefulSet

			Deleting a StatefulSet

			Releasing a new version of an app deployed as a StatefulSet

			Updating StatefulSet

			Rolling back StatefulSet

			StatefulSet best practices

			Use declarative object management for StatefulSets

			Do not use the TerminationGracePeriodSeconds Pod with a 0 value for StatefulSets

			Scale down StatefulSets before deleting

			Ensure state compatibility during StatefulSet rollbacks

			Do not create Pods that match an existing StatefulSet label selector

			Summary

			Further reading

			Chapter 13: DaemonSet – Maintaining Pod Singletons on Nodes

			Technical requirements

			Introducing the DaemonSet object

			Creating and managing DaemonSets

			Creating a DaemonSet

			Modifying a DaemonSet

			Deleting a DaemonSet

			Common use cases for DaemonSets

			Alternatives to DaemonSets

			Summary

			Further reading

			Section 4: Deploying Kubernetes on the Cloud

			Chapter 14: Kubernetes Clusters on Google Kubernetes Engine

			Technical requirements

			What are GCP and GKE?

			Google Cloud Platform

			Google Kubernetes Engine

			Preparing your environment

			Signing up for a GCP account

			Creating a project

			Installing the GCP command-line interface

			Launching your first GKE cluster

			Deploying a workload and interacting with your cluster

			Configuring your local client

			Launching an example workload

			Exploring Google Cloud Console

			Deleting your cluster

			More about cluster nodes

			Summary

			Further reading

			Chapter 15: Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes Service

			Technical requirements

			What are AWS and Amazon EKS?

			AWS

			Amazon EKS

			Preparing your local environment

			Signing up for an AWS account

			Installing the AWS command-line interface

			Installing eksctl, the official CLI for Amazon EKS

			Launching your Amazon EKS cluster

			Deploying a workload and interacting with your cluster

			Deploying the workload

			Exploring the AWS console

			Deleting your Amazon EKS cluster

			Summary

			Further reading

			Chapter 16: Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service

			Technical requirements

			What are Microsoft Azure and AKS?

			Microsoft Azure

			AKS

			Preparing your local environment

			The Azure CLI

			Launching your AKS cluster

			Deploying a workload and interacting with your cluster

			Launching the workload

			Exploring the Azure portal

			Deleting your AKS cluster

			Summary

			Further reading

			Section 5: Advanced Kubernetes

			Chapter 17: Working with Helm Charts

			Technical requirements

			Understanding Helm

			Releasing software to Kubernetes using Helm

			Installing Helm on Ubuntu

			Installing Helm on Windows

			Installing Helm on macOS

			Deploying an example chart

			Helm chart anatomy

			Installing popular solutions using Helm charts

			Kubernetes Dashboard

			Elasticsearch with Kibana

			Prometheus with Grafana

			Summary

			Further reading

			Chapter 18: Authentication and Authorization on Kubernetes

			Technical requirements

			Authentication and user management

			Static token files

			ServiceAccount tokens

			X.509 client certificates

			OpenID Connect tokens

			Other methods

			Authorization and introduction to RBAC

			RBAC mode in Kubernetes

			Azure Kubernetes Service and Azure Active Directory integration

			Prerequisites

			Deploying a managed AKS cluster with AAD and Azure RBAC integration

			Accessing the AKS cluster with AAD integration enabled

			Using Azure RBAC for an AKS cluster

			Summary

			Further reading

			Chapter 19: Advanced Techniques for Scheduling Pods

			Technical requirements

			Refresher – What is kube-scheduler?

			Managing Node affinity

			Pod Node name

			Pod Node selector

			Node affinity configuration for Pods

			Using Node taints and tolerations

			Scheduling policies

			Summary

			Further reading

			Chapter 20: Autoscaling Kubernetes Pods and Nodes

			Technical requirements

			Pod resource requests and limits

			Autoscaling Pods vertically using a Vertical Pod Autoscaler

			Enabling a VPA in GKE

			Enabling a VPA for other Kubernetes clusters

			Using a VPA

			Autoscaling Pods horizontally using a Horizontal Pod Autoscaler

			Using an HPA

			Autoscaling Kubernetes Nodes using a Cluster Autoscaler

			Enabling the cluster autoscaler in GKE

			Enabling the cluster autoscaler in the Amazon Elastic Kubernetes Service

			Enabling the cluster autoscaler in the Azure Kubernetes Service

			Using the cluster autoscaler

			Summary

			Further reading

			Chapter 21: Advanced Traffic Routing with Ingress

			Technical requirements

			Refresher: Kubernetes services

			The ClusterIP Service

			NodePort service

			The LoadBalancer service

			Introducing the Ingress object

			Using nginx as an Ingress Controller

			Azure Application Gateway Ingress Controller for AKS

			Summary

			Further reading

			Other Books You May Enjoy

		

	

		
			Preface

			Containers have allowed a real leap forward since their massive adoption in the world of virtualization because they have allowed greater flexibility, especially these days, when buzzwords such as cloud, agile, and DevOps are on everyone's lips.

			Today, almost no one questions the use of containers and they're basically everywhere, especially since the success of Docker.

			Containers have brought tremendous flexibility to organizations, but they have remained questionable for a very long time when organizations went to face the challenge of deploying them in production. For years, companies were using containers for proof-of-concept projects, local development, and suchlike, but the use of containers for real production workloads was inconceivable for many organizations.

			Container orchestrators were the game-changer, with Kubernetes in the lead.

			Originally built by Google, Kubernetes is today the leading container orchestrator that is providing you with all the features you need in order to deploy containers in production at scale. Kubernetes is popular, but it is also complex. This tool is so versatile that getting started with it and progressing to advanced usages is not an easy task: it is not an easy tool to learn and operate.

			As an orchestrator, Kubernetes has its own concepts independent of those of a container engine, such as Docker. But when both are used together, you get a very strong platform ready to deploy your cloud-native applications in production. As engineers working with Kubernetes daily, we were convinced, like many, that it was a technology to master and we decided to share our knowledge in order to make Kubernetes accessible by covering most of this orchestrator.

			This book is entirely dedicated to Kubernetes and is the result of our work: it provides a broad view of Kubernetes and covers a lot of aspects of the orchestrators, from pure container Pod creation to deploying the orchestrator on the public cloud. We didn't want this book to be a Getting started guide.

			We hope this book will teach you everything you want to learn about Kubernetes!

			Who this book is for

			This book is for people who intend to use Kubernetes with Docker. Although Kubernetes can be used together with a lot of different container engines and is not tied to Docker, the combination between the two remains the most frequent use case of Kubernetes.

			This book is very technical. It mainly focuses on Kubernetes and Docker from an engineering perspective, and thus, it is dedicated to engineers, whether they come from a developer or a system background, and not to project managers. It is a Kubernetes bible for people who are going to use Kubernetes daily, or for people who wish to discover this tool. You shouldn't be afraid of typing some commands on a terminal.

			Being a total beginner to Kubernetes or having an intermediate level is not a problem, but you must already have some technical ability with Docker to follow this book. Containers should be familiar to you. This book can also serve as a guide if you are in the process of migrating an existing application to Kubernetes.

			The book incorporates content that will allow readers to deploy Kubernetes on public cloud offerings such as Amazon EKS or Google GKE. Cloud users who wish to add Kubernetes to their stack on the cloud will appreciate this book.

			What this book covers

			Chapter 1, Kubernetes Fundamentals, is an introduction to Kubernetes. We're going to explain what Kubernetes is, why it was created, who created it, who is making this project alive, and when and why you should use it as part of your stack.

			Chapter 2, Kubernetes Architecture – from Docker Images to Running Pods, covers how Kubernetes is built as a distributed software, and is technically not a single monolith binary but built as a set of microservices interacting with each other. We're going to explain this architecture and how Kubernetes proceeds to translate your instructions into running Docker containers.

			Chapter 3, Installing Your First Kubernetes Cluster, explains that Kubernetes is really difficult to install due to its distributed nature, so to make the process easier, it is possible to install by using one of its distributions. Kind and Minikube are two options we're going to discover in this chapter to have a Kubernetes cluster working on your machine.

			Chapter 4, Running Your Docker Containers, is an introduction to the concept of Pods.

			Chapter 5, Using Multi-Container Pods and Design Patterns, introduces multi-container Pods and the design patterns, such as a proxy or sidecar that you can build when running several containers as part of the same Pod.

			Chapter 6, Configuring Your Pods Using ConfigMaps and Secrets, explains how, in Kubernetes, we separate Kubernetes applications from their configurations. Both applications and configurations have their own life cycle thanks to the ConfigMap and Secret resources. This chapter will be dedicated to these two objects and how to mount data in ConfigMap and Secret as environment variables or volumes mounted on your Pod.

			Chapter 7, Exposing Your Pods with Services, teaches you the notion of services in Kubernetes. Each Pod in Kubernetes gets assigned its own IP address dynamically. Services are extremely useful if you want to provide a consistent one to expose Pods within your cluster to other Pods or to the outside world, with a single static DNS name. You'll learn here that there are three main service types, called ClusterIp, NodePort, and LoadBalancer, which are all dedicated to a single use case in terms of Pod exposition.

			Chapter 8, Managing Namespaces in Kubernetes, explains how using namespaces is a key aspect of cluster management and forcibly, you'll have to deal with namespaces during your journey with Kubernetes. Though it's a simple notion, it is a key one, and you'll have to master namespaces perfectly in order to be successful with Kubernetes.

			Chapter 9, Persistent Storage in Kubernetes, covers how, by default, Pods are not persistent. As they're just managing raw Docker containers in the end, destroying them will result in the loss of your data. The solution to that is the usage of persistent storage thanks to the PersistentVolume and PersistentVolumeClaim resource kinds. This chapter is dedicated to these two objects and the StorageClass object: it will teach you that Kubernetes is extremely versatile in terms of storage and that your Pods can be interfaced with a lot of different storage technologies.

			Chapter 10, Running Production-Grade Kubernetes Workloads, takes a deep dive into high availability and fault tolerance in Kubernetes using ReplicationController and ReplicaSet.

			Chapter 11, Deployment – Deploying Stateless Applications, is a continuation of the previous chapter and explains how to manage multiple versions of ReplicaSets using the Deployment object. This is the basic building block for stateless applications running on Kubernetes.

			Chapter 12, StatefulSet – Deploying Stateful Applications, takes a look at the next important Kubernetes object: StatefulSet. This object is the backbone of running stateful applications on Kubernetes. We explain the most important differences between running stateless and stateful applications using Kubernetes.

			Chapter 13, DaemonSet – Maintaining Pod Singletons on Nodes, covers DaemonSet, which is a special Kubernetes object that can be used for running operational or supporting workloads on Kubernetes clusters. Whenever you need to run precisely one container Pod on a single Kubernetes node, DaemonSet is what you need.

			Chapter 14, Kubernetes Clusters on Google Kubernetes Engine, looks at how we can move our Kubernetes workload to Google Cloud using both the native command-line client and the Google Cloud console.

			Chapter 15, Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes Service, looks at moving the workload we launched in the previous chapter to Amazon's Kubernetes offering.

			Chapter 16, Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service, looks at launching a cluster in Microsoft Azure.

			Chapter 17, Working with Helm Charts, covers Helm Charts, which is a dedicated packaging and redistribution tool for Kubernetes applications. Armed with knowledge from this chapter, you will be able to quickly set up your Kubernetes development environment or even plan for the redistribution of your Kubernetes application as a dedicated Helm Chart.

			Chapter 18, Authentication and Authorization on Kubernetes, covers authorization using built-in role-based access control and authorization schemes together with user management.

			Chapter 19, Advanced Techniques for Scheduling Pods, takes a deeper look at Node affinity, Node taints and tolerations, and advanced scheduling policies in general.

			Chapter 20, Autoscaling Kubernetes Pods and Nodes, introduces the principles behind autoscaling in Kubernetes and explains how to use Vertical Pod Autoscaler, Horizontal Pod Autoscaler, and Cluster Autoscaler.

			Chapter 21, Advanced Traffic Routing with Ingress, covers Ingress objects and IngressController in Kubernetes. We explain how to use nginx as an implementation of IngressController and how you can use Azure Application Gateway as a native IngressController in Azure environments.

			To get the most out of this book

			It is necessary to have some prior knowledge to get the most out of this book. Indeed, this book is dedicated to Kubernetes, and although this orchestrator can be used with many container engines, this book will be about using Kubernetes in combination with Docker. It is therefore necessary to know Docker as much as possible. You don't have to be an expert, but you should be able to launch and manage applications on Docker before reading this book.

			While it is possible to run Windows containers with Kubernetes, most of the topics covered in this book will be Linux-based. Having a good knowledge of Linux will be helpful, but not required. Again, you don't have to be an expert: knowing how to use a terminal session and basic Bash scripting should be enough.

			Lastly, having some general knowledge of software architecture such as REST APIs will be beneficial.

			
				
					[image:]
				

			

			We strongly advise you to not attempt to install Kubernetes or Kubectl on your machine for now. Kubernetes is not a single binary but is a distributed software composed of several components and as such, it is really complex to install a complete Kubernetes cluster from scratch. Instead, we recommend that you follow the third chapter of this book, which is dedicated to the setup of Kubernetes.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code via the GitHub repository (link available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Please note that Kubernetes and Kubectl are the two tools we're going to use most frequently in this book, but there is a huge ecosystem around Kubernetes and we might install additional software not mentioned in this section. This book is also about using Kubernetes in the cloud, and we're going to discover how to provision Kubernetes clusters on public cloud platforms such as Amazon Web Services and Google Cloud Platform. As part of this setup, we might install additional software dedicated to these platforms that are not strictly bound to Kubernetes, but also to other services provided by these platforms.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/The-Kubernetes-Bible. In case there's an update to the code, it will be updated on the existing GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781838827694_ColorImages.pdf.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in the text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "Now, we need to create a kubeconfig file for our local Kubectl CLI."

			A block of code is set as follows:

			apiVersion: v1

			kind: Pod

			metadata:

			 name: nginx-Pod

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			apiVersion: v1

			kind: ReplicationController

			metadata:

			 name: nginx-replicationcontroller-example

			Any command-line input or output is written as follows:

			$ kubectl get nodes

			Bold: Indicates a new term, an important word, or words that you see on screen. For example, words in menus or dialog boxes appear in the text like this. Here is an example: "On this screen, you should see an Enable Billing button."

			Tips or Important Notes	

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, selecting your book, clicking on the Errata Submission Form link, and entering the details.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you've read The Kubernetes Bible, we'd love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

		

	

		
			
			

		

		
			Section 1: Introducing Kubernetes

			Kubernetes is a fantastic container orchestrator tool that can manage Docker containers at a large scale. Let's discover what Kubernetes is exactly, how it started as an internal project at Google to become a leading solution, and how it can help you today to manage Docker containers in production.

			This part of the book comprises the following chapters:

			
					Chapter 1, Kubernetes Fundamentals

					Chapter 2, Kubernetes Architecture – From Docker Images to Running Pods

					Chapter 3, Installing Your First Kubernetes Cluster

			

		

	

		
			Chapter 1: Kubernetes Fundamentals

			Welcome to The Kubernetes Bible. This is the first chapter of this book, and I'm happy to accompany you on your journey with Kubernetes. If you are working in the software development industry, you have probably heard about Kubernetes. This is normal because the popularity of Kubernetes has grown a lot in recent years.

			Built by Google, Kubernetes is the leading container orchestrator solution in terms of popularity and adoption: it's the tool you need if you are looking for a solution to manage containerized applications in production at scale, whether it's on-premises or on a public cloud. Be focused on the word. Deploying and managing containers at scale is extremely difficult because, by default, container engines such as Docker do not provide any way on their own to maintain the availability and scalability of containers at scale.

			Kubernetes first emerged as a Google project, and they put a lot of effort into building a solution to deploy a huge number of containers on their massively distributed infrastructure. By adopting Kubernetes as part of your stack, you'll get an open source platform that was built by one of the biggest companies on the internet, with the most critical needs in terms of stability.

			Although Kubernetes can be used with a lot of different container runtimes, this book is going to focus on the Kubernetes + Docker combination.

			Perhaps you are already using Docker on a daily basis, but the world of container orchestration might be completely unknown to you. It is even possible that you do not even see the benefits of using such technology because everything looks fine to you with just raw Docker. That's why, in this first chapter, we're not going to look at Kubernetes in detail. Instead, we will focus on explaining what Kubernetes is and how it can help you to manage your Docker containers in production. It will be easier for you to learn a new technology if you already understand why it was built.

			In this chapter, we're going to cover the following main topics:

			
					Understanding monoliths and microservices

					Understanding containers and Docker

					What is Kubernetes?

					How can Kubernetes help you to manage Docker containers?

					What problem does Kubernetes solve?

					Understanding the story of Kubernetes

			

			Understanding monoliths and microservices

			Let's put Kubernetes and Docker to one side for the moment, and instead, let's talk a little bit about how internet and software development evolved together over the past 20 years. This will help you to gain a better understanding of where Kubernetes sits and what problem it solves.

			Understanding the growth of the internet since the late 1990s

			Since the late 1990s, the popularity of the internet has grown rapidly. Back in the 1990s, and even in the early 2000s, the internet was only used by a few hundred thousand people in the world. Today, almost 2 billion people are using the internet, whether for email, web browsing, video games, or more.

			There are now a lot of people on the internet, and we're using it to answer tons of different needs, and these needs are adressed by dozens of applications deployed on dozens of devices.

			Additionally, the number of connected devices has increased, as each person can now have several devices of a different nature connected to the internet: laptops, computers, smartphones, TVs, tablets, and more.

			Today, we can use the internet to shop, to work, to entertain, to read, or to do whatever. It has entered almost every part of our society and has led to a profound paradigm shift for the last 20 years. All of this has given the utmost importance to software development.

			Understanding the need for more frequent software releases

			To cope with this ever-increasing number of users who are always demanding more in terms of features, the software development industry had to evolve in order to make new software releases faster and more frequent.

			Indeed, back in the 1990s, you could build an application, deploy it to production, and simply update it once or twice a year. Today, companies must be able to update their software in production, sometimes several times a day, whether to deploy a new feature, to integrate with a social media platform, to support the resolution of the latest fashionable smartphone, or even to release a patch to a security breach identified the day before. Everything is far more complex today, and you must go faster than before.

			We constantly need to update our software, and in the end, the survival of many companies directly depends on how often they are able to offer releases to their users. But how do we accelerate software developments life cycles so that we can deliver new versions of our software to our users more frequently?

			IT departments of companies had to evolve, both in an organizational sense and a technical sense. Organizationally, they changed the way they managed projects and teams in order to shift to agile methodologies, and technically, technologies such as cloud computing platforms, containers, virtualization were adopted widely and helped a lot to align technical agility with organizational agility. All of this to ensure more frequent software releases! So, let's focus on this evolution next.

			Understanding the organizational shift to agile methodologies

			From a purely organizational point of view, agile methodologies such as Scrum, Kanban, and DevOps became the standard way to organize IT teams.

			Typical IT departments that do not apply agile methodologies are often made of three different teams, each of them having a single responsibility toward the development and release process life cycle.

			Before the adoption of agile methodologies, there was very strong opposition between them:

			
					The business team: These teams are in charge of explaining the need for a new feature to other teams, especially the developers. Their job is hard because they need to translate business needs into concrete technical features that can be understood by the developers.

					The development team: These teams are in charge of writing the code. First, they take the specs from the business team, and then they implement the software and features. If they do not understand the need, the development of new features can go back and forth between them and the business team, which can lead to a massive loss of time. Even worse, back in the old days, these guys had no clear vision of the type of environment their code would ultimately run on because it was kept at the sole discretion of the operation team.

					The operation team: These teams are in charge of deploying the software to the production servers and operating it. Often, they are not happy when they hear that a new version of a piece of software, which includes new features, has to be deployed because the management judges them on their ability to provide stability to the app. In general, they are here to deploy something that was developed by another team without having a clear vision of what it contains and how it is configured since they did not participate in its development.

			

			These are what we call silos. The roles are clearly defined, people do not work together that much, and when something goes wrong, everyone loses time in an attempt to find the right information from the proper person.

			This kind of siloed organization has led to major issues:

			
					A significantly longer development time

					Greater risk in the deployment of a release that might not work at all in production

			

			And that's essentially what agile methodologies and DevOps broke. The change agile methodologies wrought was to make people work together by creating multidisciplinary teams.

			An agile team consists of a product owner describing concrete features by writing them as user stories that are readable by the developers who are working in the same team as them. Developers should have visibility over the production environment and the ability to deploy on top of it, preferably using a continuous integration and continuous deployment (CI/CD) approach. Testers should also be part of agile teams in order to write tests.

			Simply put, by adopting agile methodologies and DevOps, these silos were broken and multidisciplinary teams capable of formalizing a need, implementing it, testing it, releasing it, and maintaining it in the production environment were created.

			Important Note

			Rest assured, even though we are currently discussing agile methodologies and the whole internet in a lot of detail, this book is really about Kubernetes! We just need to explain some of the problems that we have faced before introducing Kubernetes for real!

			Agile development teams are complete operational units that are capable of handling all development steps on their own. An agile team should understand the business value brought by a new feature. They should have a minimal view of the software architecture, understand how to build it, how to test it, and the production environment it will run on.

			That's the purpose of the expression You Build It, You Run It that you'll see everywhere when reading about this subject: an agile team should be able to cover all aspects of an app's development, release, and maintenance life cycles.

			You just have to bear in mind that before this, teams were siloed and each had its own scope and working process. So, we've covered the organizational transition brought by the adoption of the agile methodologies, now let's discuss the technical evolution that we've gone through over the past several years.

			Understanding the shift from on-premises to the cloud

			Having agile teams is very nice. But agility must also be applied to how the software is built and hosted.

			With the aim to always achieve faster and more recurrent releases, agile software development teams had to revise two important aspects of software development and release:

			
					Hosting

					Software architecture

			

			Today, apps are not just for a few hundred users but potentially for millions of users concurrently. Having more users on the internet also means having more computing power capable of handling them. And indeed, hosting an application became a very big challenge.

			Back in the old days, there were two ways to get machines to host your apps. We call this on-premises hosting:

			
					Renting servers from established hosting providers

					Building your own data center, only for companies willing to invest a large amount of money in data centers

			

			When your user base grows, the need to get more powerful machines to handle the load. The solution is to purchase a more powerful server and install your app on it from the start or to order and rack new hardware if you manage your data center. This is not very flexible. Today, a lot of companies are still using an on-premises solution, and often, it's not super flexible.

			The game-changer was the adoption of the public cloud, which is the opposite of on-premises. The whole idea behind cloud computing is that big companies such as Amazon, Google, and Microsoft, which own a lot of data centers, decided to build virtualization on top of their massive infrastructure to ensure the creation and management of virtual machines was accessible by APIs. In other words, you can get virtual machines with just a few clicks or just a few commands.

			Understanding why the cloud is well suited for scalability

			Today, virtually anyone can get hundreds or thousands of servers, in just a few clicks, in the form of virtual machines or instances created on physical infrastructure maintained by cloud providers such as Amazon Web Services, Google Cloud Platform, and Microsoft Azure. A lot of companies decided to migrate their workload from on-premises to a cloud provider, and their adoption has been massive over these last years.

			Thanks to that, now, computing power is one of the simplest things you can get.

			Cloud computing providers are now typical hosting solutions that agile teams possess in their arsenal. The main reason for this is that the cloud is extremely well suited to modern development.

			Virtual machine configurations, CPUs, OSes, network rules, and more are publicly displayed and fully configurable, so there are no secrets for your team in terms of what the production environment is made of. Because of the programmable nature of cloud providers, it is very easy to replicate a production environment in a development or testing environment, providing more flexibility to teams and helping them face their challenges when developing software.

			That's a useful advantage for an agile development team built around the DevOps philosophy that needs to manage development, release, and application maintenance in production.

			Cloud providers have brought many benefits, as follows:

			
					Offering elasticity and scalability

					Helping to break up silos and enforcing agile methodologies

					Fitting well with agile methodologies and DevOps

					Offering low costs and flexible billing models

					Ensuring there is no need to manage physical servers

					Allowing virtual machines to be destroyed and recreated at will

					More flexible compared to renting a bare-metal machine monthly

			

			Due to these benefits, the cloud is a wonderful asset in the arsenal of an agile development team. Essentially, you can build and replicate a production environment over and over without the hassle of managing the physical machine by yourself. The cloud enables you to scale your app based on the number of users using it or the computing resources they are consuming. You'll make your app highly available and fault-tolerant. The result is a better user experience for your end users.

			Important Note

			Please note that Kubernetes can run both on the cloud and on-premises. Kubernetes is very versatile, and you can even run it on a Raspberry Pi. However, you'll discover that it's better to run it on a cloud due to the benefits they provide. Kubernetes and the public cloud are a good match, but you are not required or forced to run it on the cloud.

			Now that we have explained what the cloud brought, let's move on to software architecture, as over the years, a few things have also changed there.

			Essentially, software architecture consists of design paradigms that you can choose when developing software. In the 2020s, we can name two architectures:

			
					Monolithic architecture

					Microservices architecture

			

			Exploring the monolithic architecture

			In the past, applications were mostly composed as monoliths. A typical monolith application consists of a simple process, a single binary, or a single package.

			This unique component is responsible for the entire implementation of the business logic, to which the software must respond. Monoliths are a good choice if you want to develop fairly simple applications that might not necessarily be updated frequently in production. Why? Well, because monoliths have one major drawback. If your monolith becomes unstable or crashes for some reason, your entire application will become unavailable:

			
				
					[image: Figure 1.1 – A monolith application consists of one big component that contains all your software

]
				

			

			Figure 1.1 – A monolith application consists of one big component that contains all your software

			The monolithic architecture can allow you to gain a lot of time during your development and that's perhaps the only benefit you'll find by choosing this architecture. However, it also has many disadvantages. Here are a few of them:

			
					A failed deployment to production can break your whole application.

					Scaling activities become difficult to achieve; if you fail to scale, all your applications might become unavailable.

					A failure of any kind on a monolith can lead to the complete outage of your app.

			

			In the 2010s, these drawbacks started to cause real problems. With the increase in the frequency of deployments, it became necessary to think of a new architecture that would be capable of supporting frequent deployments and closer update cycles, while reducing the risk or general unavailability of the application. This is why the microservices architecture was designed.

			Exploring the microservices architecture

			The microservices architecture consists of developing your software application as a suite of independent micro-applications. Each of these applications, which is called a microservice, has its own versioning, life cycle, environment, and dependencies. Additionally, it can have its own deployment life cycle. Each of your microservices must only be responsible for a limited number of business rules, and all of your microservices, when used together, make up the application. Think of a microservice as real full-featured software on its own, with its own life cycle and versioning process.

			Since microservices are only supposed to hold a subset of all the features that the entire application has, they have to be accessible to expose their functions. You have to get data from a microservice, but you might also want to push data into it. You can make your microservice accessible through widely supported protocols such as HTTP or AMQP, and they need to be able to communicate with each other if needed.

			That's why microservices are generally built as web services that are accessible through HTTP REST APIs. This is something that greatly differs from the monolithic architecture:

			
				
					[image: Figure 1.2 – A microservice architecture where different microservices communicate with the HTTP protocol

]
				

			

			Figure 1.2 – A microservice architecture where different microservices communicate with the HTTP protocol

			Another key aspect of the microservice architecture is that microservices need to be decoupled: if a microservice becomes unavailable or unstable, it must not affect the other microservices nor the entire application's stability. You must be able to provision, scale, start, update, or stop each microservice independently without affecting anything else. If your microservices need to work with a database engine, bear in mind that even the database must be decoupled. Each microservice should have its own SQL database and so on. So, if the database of microservice A crashes, it won't affect microservice B:

			
				
					[image: Figure 1.3 – A microservice architecture where different microservices communicate with the HTTP protocol and also with a dedicated SQL server; this way, the microservices are isolated and have no common dependencies

]
				

			

			Figure 1.3 – A microservice architecture where different microservices communicate with the HTTP protocol and also with a dedicated SQL server; this way, the microservices are isolated and have no common dependencies

			The key rule is to decouple as much as possible so that your microservices are fully independent. Because they are meant to be independent, microservices can also have completely different technical environments and be implemented in different languages. You can have one microservice implemented in Go, another one in Java, and another one in PHP, and all together they form one application. In the context of a microservice architecture, this is not a problem. Because HTTP is a standard, they will be able to communicate with each other even if their underlying technologies are different.

			Microservices must be decoupled from other microservices, but they must also be decoupled from the operating system running them. Microservices should not operate at the host system level but at the upper level. You should be able to provision them, at will, on different machines without needing to rely on a strong dependency with the host system; that's why microservice architectures and containers are a good combination.

			If you need to release a new feature in production, you simply deploy the microservices that are impacted by the new feature version. The others can remain the same.

			As you can imagine, the microservice architecture has tremendous advantages in the context of modern application development:

			
					It is easier to enforce recurring production deliveries with minimal impact on the stability of the whole application.

					You can only upgrade to a specific microservice each time, not the whole application.

					Scaling activities are smoother since you might only need to scale specific services.

			

			However, on the other hand, the microservice architecture has a few disadvantages, too:

			
					The architecture requires more planning and is considered to be hard to develop.

					There are problems in managing each microservice's dependencies.

			

			Indeed, microservice applications are considered hard to develop, and it is easy to just do it incorrectly. This approach might be hard to understand, especially for junior developers. On the other hand, dependency management also becomes complex since all microservices can potentially have different dependencies.

			Choosing between monolithic and microservices architectures

			Presented in this way, you might think that microservices are the better of the two architectures. However, this is not always the case.

			Although the monolithic architecture is older than microservice architecture, monolithic applications are not dead yet, and they can still be a good choice in certain situations. Microservices are not necessarily the ideal answer to all projects. If your application is simple, if there are only a few developers on your team working on your project, or if you can tolerate outages when you deploy a new version in production, then you can still opt for an application architecture that is a monolith.

			On the other hand, if your application is more complex, if there are many developers with different skills on your team, or if you have a high level of requirements in terms of operational quality in production, scalability, and availability, then you should opt for a microservice architecture.

			The problem is that microservices are slightly more complex to develop and manage in production since managing microservices essentially consists of managing multiple applications that each have their own dependencies and life cycles. Thankfully, the rise of Docker has enabled a lot of developers to adopt the microservice architecture.

			Understanding containers and Docker

			Following this comparison between monolithic and microservice architectures, you should have understood that the architecture that best combines with agility and DevOps is the microservice architecture. It is this architecture that we will discuss throughout the book because this is the architecture that Kubernetes manages well.

			Now, we will move on to discuss how Docker, which is a container engine for Linux, is a good option in which to manage microservices. If you already know a lot about Docker, you can skip this section. Otherwise, I suggest that you read through it carefully.

			Understanding why Docker is good for microservices

			Recall the two important aspects of the microservice architecture:

			
					Each microservice can have its own technical environment and dependency.

					At the same time, it must be decoupled from the operating system it's running on.

			

			Let's put the latter point aside for the moment and discuss the first one: two microservices of the same app can be developed in two different languages or be written in the same language but as two different versions. Now, let's say that you want to deploy these two microservices inside the same Linux machine. That would be a nightmare.

			The reason for this is that you'll have to install all the multiple versions of the different runtimes, as well as the dependencies, and there might also be different versions or overlaps between the two microservices. Additionally, all of this will be on the same host operating system. Now, let's imagine you want to remove one of these two microservices from the machine to deploy it on another server and clean the former machine of all the dependencies used by that microservice. Of course, if you are a talented Linux engineer, you'll succeed in doing this. However, for most people, the risk of conflict between the dependencies is huge, and in the end, you might just make your app unavailable while running such a nightmarish infrastructure.

			There is a solution to this: you could build a machine image for each microservice and then put each microservice on a dedicated virtual machine. In other words, you refrain from deploying multiple microservices on the same machine. However, in this example, you will need as many machines as you have microservices. Of course, with the help of AWS or GCP, it's going to be easy to bootstrap tons of servers, each of them tasked to run one and only one microservice, but it would be a huge waste of money to not mutualize the computing power offered by the host.

			That's why the second requirement exists: microservices should be decoupled from the microservice they are running on. To achieve this, we use Docker containers.

			Understanding the benefit of Docker container isolation

			Docker allows you to manage containers that are, in fact, isolated Linux namespaces. Docker's job is to expose a user-friendly API to manage containers, which are like small virtual machines that run on top of the Linux kernel, not at the hypervisor level. By installing Docker on top of your Linux system, you, therefore, add an additional layer of virtualization on top of your host machine. Your microservices are going to be launched on top of this layer, not directly on the host system, whose sole role will be to run Docker.

			Since containers are isolated, you can run as many containers as you want and have them run applications written in different languages without any conflict. Microservice relocation becomes as easy as stopping a running container and launching another one from the same image on another machine.

			The usage of Docker with microservices offers three main benefits:

			
					It reduces the footprint on the host system.

					It mutualizes the host system without the conflict between different microservices.

					It removes coupling between the microservice and the host system.

			

			Once a microservice has been containerized, you can eliminate its coupling with the host operating system. The microservice will only depend on the container in which it will operate. Since a container is much lighter than a real full-featured Linux operating system, it will be easy to share and deploy on many different machines. Therefore, the container and your microservice will work on any machine that is running Docker.

			The following diagram shows a microservice architecture where each microservice is actually wrapped by a Docker container:

			
				
					[image: Figure 1.4 – A microservice application where all microservices are wrapped by a Docker container; the life cycle of the app becomes tied to the container, and it is easy to deploy it on any machine that is running Docker

]
				

			

			Figure 1.4 – A microservice application where all microservices are wrapped by a Docker container; the life cycle of the app becomes tied to the container, and it is easy to deploy it on any machine that is running Docker

			Docker fits well with the DevOps methodology, too. By developing locally in a Docker container, which would be later be built and deployed in production, you ensure you develop in the same environment as the one that will eventually run the application.

			Docker is not only capable of managing the life cycle of a container, it is actually an entire ecosystem around containers. It can manage networks, the intercommunication between different containers, and all of these features respond particularly well to the properties of the microservice architecture that we mentioned earlier.

			By using the cloud and Docker together, you can build a very strong infrastructure to host your microservice. The cloud will give you as many machines as you want. You simply need to install Docker on each of them, and you'll be able to deploy multiple containerized microservices on each of these machines.

			Docker is a very nice tool on its own. However, you'll discover that it's hard to run it in production alone, just as it is. The reason is that Docker was built in order to be an ecosystem around Linux containers, not a production platform. When it comes to production, everything is particular, because it is the concrete environment where everything happens for real. This environment deserves special treatment, and deploying Docker on it is risky. This is because Docker cannot alone address the particular needs that are related to production.

			There are a number of questions, such as how to relaunch a container that failed automatically and how to autoscale my container based on its CPU utilization, that Docker alone cannot answer. This is the reason why some people were afraid to run Docker-based workloads in production a few years ago.

			To answer these questions, we will need a container orchestrator, such as the one discussed in this book: Kubernetes.

			How can Kubernetes help you to manage your Docker containers?

			Now, we will focus a little bit more on Kubernetes, which is the purpose of this book. Here, we're going to discover that Kubernetes was meant to use container runtimes in production, by answering operational needs mandatory for production.

			Understanding that Kubernetes is meant to use Docker in production

			If you open the official Kubernetes website (at https://kubernetes.io), the title you will see is Production-Grade Container Orchestration:

			
				
					[image: Figure 1.5 – The Kubernetes home page showing the header and introducing Kubernetes as a production container orchestration platform

]
				

			

			Figure 1.5 – The Kubernetes home page showing the header and introducing Kubernetes as a production container orchestration platform

			These four words perfectly sum up what Kubernetes is: it is a container orchestration platform for production. Kubernetes does not aim to replace Docker nor any of the features of Docker; rather, it aims to help us to manage clusters of machines running Docker. When working with Kubernetes, you use both Kubernetes and the full-featured standard installations of Docker.

			The title refers to production. Indeed, the concept of production is absolutely central to Kubernetes: it was thought and designed to answer modern production needs. Managing production workloads is different today compared to what it was in the 2000s. Back in the 2000s, your production workload would consist of just a few bare metal servers, if not a single one on-premises. These servers mostly ran monoliths directly installed on the host Linux system. However, today, thanks to public cloud platforms such as Amazon Web Services (AWS) or Google Cloud Platform (GCP), anyone can now get hundreds or even thousands of machines in the form of instances or virtual machines with just a few clicks. Even better, we no longer deploy our applications on the host system but as containerized microservices on top of the Docker engine instead, thereby reducing the footprint of the host system.

			A problem will arise when you have to manage Docker installations on each of these virtual machines on the cloud. Let's imagine that you have 10 (or 100 or 1,000) machines launched on your preferred cloud and you want to achieve a very simple task: deploy a containerized Docker app on each of these machines.

			You could do this by running the docker run command on each of your machines. It would work, but of course, there is a better way to do it. And that's by using a container orchestrator such as Kubernetes. To give you an extremely simplified vision of Kubernetes, it is actually a REST API that keeps a registry of your machines executing a Docker daemon.

			Again, this is an extremely simplified definition of Kubernetes. In fact, it's not made of a single centralized REST API, because as you might have gathered, Kubernetes itself was built as a suite of microservices.

			Exploring the problems that Kubernetes solves

			You can imagine that launching containers on your local machine or a development environment is not going to require the same level of planning as launching these same containers on remote machines, which could face millions of users. Problems specific to production will arise, and Kubernetes is a top solution with which to address these problems when using containers in production:

			
					Ensuring high availability

					Handling release management and container deployments

					Autoscaling containers

			

			Ensuring high availability

			High availability is the central principle of production. This means that your application should always remain accessible and should never be down. Of course, it's utopian. Even the biggest companies such as Google or Amazon are experiencing outages. However, you should always bear in mind that this is your goal. Microservice architecture is a way to mitigate the risk of a total outage in the event of a failure. Using microservices, the failure of a single microservice will not affect the overall stability of the application. Kubernetes includes a whole battery of functionality to make your Docker containers highly available by replicating them on several host machines and monitoring their health on a regular and frequent basis.

			When you deploy Docker containers, the accessibility of your application will directly depend on the health of your containers. Let's imagine that for some reason, a container containing one of your microservice becomes inaccessible; how can you automatically guarantee that the container is terminated and recreated using only Docker without Kubernetes? This is impossible because, by default, Docker cannot do it alone. With Kubernetes, it becomes possible. Kubernetes will help you design applications that can automatically repair themselves by performing automating tasks such as health checking and container replacement.

			If one machine in your cluster were to fail, all of the containers running on it would disappear. Kubernetes would immediately notice that and reschedule all of the containers on another machine. In this way, your applications will become highly available and fault-tolerant as well.

			Release management and container deployment

			Deployment management is another of these production-specific problems that Kubernetes answers. The process of deployment consists of updating your application in production in order to replace an old version of a given microservice with a new version.

			Deployments in production are always complex because you have to update the containers that are responding to requests from end users. If you miss them, the consequences can be great for your application because it could become unstable or inaccessible, which is why you should always be able to quickly revert to the previous version of your application by running a rollback. The challenge of deployment is that it needs to be performed in the least visible way to the end user, with as little friction as possible.

			When using Docker, each release is preceded by a build process. Indeed, before releasing a new container, you have to build a new Docker image containing the new version. A Docker image is a kind of template used by Docker to launch containers. A container can be considered a running instance of a Docker image.

			Important Note

			The Docker build process has absolutely nothing to do with Kubernetes: it's pure Docker. Kubernetes will come into play later when you'll have to deploy new containers based on a newly built image.

			Triggering a build is straightforward. Perform the following steps:

			
					You just need to run the docker build command:$ docker build .

					Docker reads build instructions from the Dockerfile file inside the . directory and starts the build process.

					The build completes.

					The resulting image is stored on the local machine where the build ran.

					Then, you push the new image to a Docker repository with a specific tag to identify the software version included in the new image.

			

			Once the push has been completed, another process starts, that is, the deployment. To deploy a containerized Docker app, you simply need to pull the image from the machine where you want to run it and then run a docker run command.

			This is what you'll need to do to release a new version of your containerized software, and this is exactly where things can become hard if you don't use an orchestrator such as Kubernetes.

			The next step to achieve the release is to delete the existing container and replace it with new containers created from this new image.

			Without Kubernetes, you'll have to run a docker run command on the machine where you want to deploy a new version of the container and destroy the container containing the old version of the application. Then, you will have to repeat this operation on each server that runs a copy of the container. It should work, but it is extremely tedious since it is not automated. And guess what? Kubernetes can automate this for you.

			Kubernetes has features that allow it to manage deployments and rollbacks of Docker containers, and this will make your life a lot easier when responding to this problem. With a single command, you can ask Kubernetes to update your containers on all of your machines. Here is the command, which we'll learn later, that allows you to do that:

			$ kubectl set image deploy/myapp myapp_container=myapp:1.0.0

			# Meaning of the command

			# kubectl set image <deployment_name> <container_name>=<docker_image>:<docker_tag>

			On a real Kubernetes cluster, this command will update the container called myapp_container, which is running as part of the application called myapp, on every single machine where myapp_container runs to the 1.0.0 tag.

			Whether it has to update one container running on one machine or millions over multiple data centers, this command works the same. Even better, it ensures high availability.

			Remember that the goal is always to meet the requirement of high availability; a deployment should not cause your application to crash or cause a service disruption. Kubernetes is natively capable of managing deployment strategies such as rolling updates aimed at avoiding service interruptions.

			Additionally, Kubernetes keeps in memory all the revisions of a specific deployment and allows you to revert to a previous version with just one command. It's an incredibly powerful tool that allows you to update a cluster of Docker containers with just one command.

			Autoscaling containers

			Scaling is another production-specific problem that has been widely democratized through the use of public clouds such as Amazon Web Services (AWS) and Google Cloud Platform (GCP). Scaling is the ability to adapt your computing power to the load you are facing – again to meet the requirement of high availability. Never forget that the goal is to avoid outages and downtime.

			When your production machines are facing a traffic spike and one of your containers is no longer able to cope with the load, you need to find a way in which to identify the failing container. Decide whether you wish to scale it vertically or horizontally; otherwise, if you don't act and the load doesn't decrease, your container or even the host machine will eventually fail, and your application might become inaccessible:

			
					Vertical scaling: This allows your container to use more computing power offered by the host machine.

					Horizontal scaling: You can duplicate your container to another machine, and you can load balance the traffic between the two containers.

			

			Again, Docker is not able to respond to this problem alone; however, when you manage your Docker with Kubernetes, it becomes possible. Kubernetes is capable of managing both vertical and horizontal scaling automatically. It does this by letting your containers consume more computing power from the host or by creating additional containers that can be deployed on another node on the cluster. And if your Kubernetes cluster is not capable of handling more containers because all your nodes are full, Kubernetes will even be able to launch new virtual machines by interfacing with your cloud provider in a fully automated and transparent manner by using a component called a Cluster Autoscaler.

			Important Note

			The Cluster Autoscaler only works if the Kubernetes cluster is deployed on a cloud provider.

			These goals cannot be achieved without using a container orchestrator. The reason for this is simple. You can't afford to do these tasks; you need to think about DevOps' culture and agility and seek to automate these tasks so that your applications can repair themselves, be fault-tolerant, and be highly available.

			Contrary to scaling out your containers or cluster, you must also be able to decrease the number of containers if the load starts to decrease in order to adapt your resources to the load, whether it is rising or falling. Again, Kubernetes can do this, too.

			When and where is Kubernetes not the solution?

			Kubernetes has undeniable benefits; however, it is not always advisable to use it as a solution. Here, we have listed several cases where another solution might be more appropriate:

			
					Container-less architecture: If you do not use a container at all, Kubernetes won't be of any use to you.

					Monolithic architecture: While you can use Kubernetes to deploy containerized monoliths, Kubernetes shows all of its potential when it has to manage a high number of containers. A monolithic application, when containerized, often consists of a very small number of containers. Kubernetes won't have much to manage, and you'll find a better solution for your use case.

					A very small number of microservices or applications: Kubernetes stands out when it has to manage a large number of containers. If your app consists of two to three microservices, a simpler orchestrator might be a better fit.

					No cluster: Are you only running one machine and only one Docker installation? Kubernetes is good at managing a cluster of computers that executes a Docker daemon. If you do not plan to manage a real cluster, then Kubernetes is not for you.

			

			Understanding the history of Kubernetes

			To finish this chapter, let's discuss the history of the Kubernetes project. It will be really useful for you to understand the context in which the Kubernetes project started and the people who are keeping this project alive.

			Understanding how and where Kubernetes started

			Kubernetes started as an internal project at Google. Since its founding in 1998, Google gained huge experience in managing high-demanding workloads at scale, especially container-based workloads. Today, in addition to Google, Amazon and Microsoft are also releasing a lot of open source and commercial software to allow smaller companies to benefit from their experience of managing cloud-native applications. Kubernetes is one example of this open source software that has been released by Google.

			At Google, everything has been developed as Linux containers since the mid-2000s. The company understood the benefit of using containers long before Docker made them simple to use for the general public. Essentially, everything at Google runs as a container. And they are undoubtedly the first to have felt the need to develop an orchestrator that would allow them to manage their container-based resources along with the machines that launch them. This project is called Borg, and you can consider it to be the ancestor of Kubernetes. Another container orchestrator project, called Omega, was then started by Google in order to improve the architecture of Borg to make it easier to extend and become more robust. Many of the improvements brought by Omega were later merged into Borg.

			Important Note

			Borg is actually not the ancestor of Kubernetes because the project is not dead and is still in use at Google. It would be more appropriate to say that a lot of ideas from Borg were actually reused to make Kubernetes. Bear in mind that Kubernetes is not Borg nor Omega. Borg was built in C++ and Kubernetes in Go. In fact, they are two entirely different projects, but one is heavily inspired by the other. This is important to understand: Borg and Omega are two internal Google projects. They were not built for the public.

			As the interest in containers became greater during the early 2010s, Google decided to develop and release a third container orchestrator. This time, it was meant to be an open source one that was built for the public. Therefore, Kubernetes was born and would eventually be released in 2014.

			Kubernetes was developed with the experience gained by Google to manage containers in production. Most importantly, it inherited Borg and Omega's ideas, concepts, and architectures. Here is a brief list of ideas and concepts taken from Borg and Omega, which have now been implemented in Kubernetes:

			
					The concept of pods to manage your containers: Kubernetes uses a logical object, called a pod, to create, update, and delete your containers.

					Each pod has its own IP address in the cluster.

					There are distributed components that all watch the central Kubernetes API in order to retrieve the cluster state.

					There is internal load balancing between pods and services.

					Labels and selectors are two metadata used together to build interaction between Kubernetes

			

			That's why Kubernetes is so powerful when it comes to managing containers in production at scale: in fact, the concepts you'll learn in Kubernetes are older than Kubernetes itself. They have existed for more than a decade, running Google's entire infrastructure as part of Borg and Omega. So, although Kubernetes is a young project, it was built on solid foundations.

			Who manages Kubernetes today?

			Kubernetes is no longer maintained by Google. They gave Kubernetes to an organization called Cloud Native Computing Foundation (CNCF), which is a big consortium whose goal is to promote the usage of container technologies. This happened in 2018.

			Google is a founding member of CNCF along with companies such as Cisco, Red Hat, and Intel. The Kubernetes source code itself is hosted on GitHub and is an extremely active project on the platform. The code is under License Apache version 2.0, which is a permissive open source license. You won't have to pay in order to use Kubernetes, as the software is available for free, and if you are good at coding with Go, you can even contribute to the code.

			Where is Kubernetes today?

			Kubernetes has a lot of competitors, and some of them are open source, too. Others are bound to a specific cloud provider. We can name a few, as follows:

			
					Apache Mesos

					Hashicorp Nomad

					Docker Swarm

					Amazon ECS

			

			These container orchestrators all have their pros and cons, but it's fair to say that Kubernetes is, by far, the most popular of them all.

			Kubernetes has won the fight of popularity and adoption and is really about to become the de facto standard way of deploying container-based workloads in production. As its immense growth made it one of the hottest topics in IT industry, it has become crucial for cloud providers to come up with a Kubernetes offering as part of their services. Therefore, Kubernetes is supported almost everywhere now.

			The following Kubernetes-based services can help you to get a Kubernetes cluster up and running with just a few clicks:

			
					Google GKE

					Amazon EKS

					Microsoft Azure AKS

					Alibaba ACK

			

			It's not just about the cloud offerings. It's also about the Platform-as-a-Service market. Recently, Red Hat OpenShift decided to rewrite their entire platform to rebuild it on Kubernetes. Now they are offering a complete set of enterprise tools to build, deploy, and manage Docker containers entirely on top of Kubernetes. In addition to this, other projects such as Rancher were built as Kubernetes distributions to offer a complete set of tools around the Kubernetes orchestrator, whereas projects such as Knative offers to manage serverless workloads with the Kubernetes orchestrator.

			Important Note

			AWS is an exception because it has two container orchestrator services. The first one is Amazon ECS, which is entirely made by AWS and is a competitor to Kubernetes. The second one is Amazon EKS, which was released later than the first one and is a complete Kubernetes offering on AWS. These services are not the same, so do not be misguided by their similar names.

			Learning Kubernetes today is one of the smartest decisions you can take if you are into managing cloud-native applications in production. Kubernetes is evolving rapidly, and there is no reason to think why its growth would stop.

			By mastering this wonderful tool, you'll get one of the hottest skills being searched for in the IT industry today. I hope you are now convinced!

			Summary

			This first chapter gave us room for a big introduction. We covered a lot of subjects, such as monoliths, microservices, Docker containers, cloud computing, and Kubernetes. We also discussed how this project came to life. You should now have a global vision of how Kubernetes can be used to manage your containers in production.

			In the next chapter, we will discuss the process Kubernetes follows to launch a Docker container. You will discover that you can issue commands to Kubernetes, and these commands will be interpreted by Kubernetes as instructions to run containers. We will list and explain each component of Kubernetes and its role in the whole cluster. There are a lot of components that make up a Kubernetes cluster, and we will discover all of them. We will explain how Kubernetes was technically built with a focus on the distinction between master nodes, worker nodes, and control plane components.

		

	
		
			Chapter 2: Kubernetes Architecture – From Docker Images to Running Pods

			In the previous chapter, we laid the groundwork regarding what Kubernetes is from a functional point of view. You should now have a better idea of how Kubernetes can help you to manage clusters of machines running containerized microservices. Now, let's go a little deeper into the technical details. In this chapter, we will examine how Kubernetes enables you to manage containers that are distributed on different machines. Following this chapter, you should have a better understanding of the anatomy of a Kubernetes cluster; in particular, you will have a better understanding of Kubernetes components and know the responsibility of each of them in the execution of your containers.

			Kubernetes is made up of several distributed components, each of which plays a specific role in the execution of Docker containers. To understand the role of each Kubernetes component, we will follow the life cycle of a Docker container as it is created and managed by Kubernetes: that is, from the moment you execute the command to create the container to the point when it is actually executed on a machine that is part of your Kubernetes cluster.

			In this chapter, we're going to cover the following main topics:

			
					Understanding the difference between the master and worker nodes

					The kube-apiserver component

					The kubectl command-line tool and YAML syntax

					The Etcd datastore

					The kubelet and worker node components

					The kube-scheduler component

					The kube-controller-manager component

					How to make Kubernetes highly available

			

			Understanding the difference between the master and worker nodes

			To run Kubernetes, you will require Linux machines, which are called nodes in Kubernetes. A node could be a physical machine or a virtual machine on a cloud provider, such as an EC2 instance. There are two types of nodes in Kubernetes:

			
					Master nodes

					Worker nodes

			

			Master nodes are responsible for maintaining the state of the Kubernetes cluster, whereas worker nodes are responsible for executing your Docker containers.

			While using Linux, you will have probably used commands such as apt-get install or yum install to get a new, fully functional software preconfigured that just works out of the box. With Kubernetes, things are a slightly more complex.

			The good news is that you can also use Windows-based nodes to launch Windows-based containers in your Kubernetes cluster. The thing to know is that you can mix Linux and Windows machines on your cluster and it will work the same, but you cannot launch a Windows container on a Linux worker node and vice versa.

			By nature, Kubernetes is a distributed application. What we call Kubernetes is not a single monolithic app released as a single build that you would install on a dedicated machine. What we mean by Kubernetes is a collection of small projects. Each project is written in Go and forms part of the overall project that is Kubernetes.

			To get a fully functional Kubernetes cluster, you need to set up each of these components by installing and configuring them separately and have them communicate with each other. When these two requirements are met, you can start running your containers using the Kubernetes orchestrator.

			For development or local testing, it is fine to install all of the Kubernetes components on the same machine; however, in production, these components should be spread across different hosts. This will help you to make your Kubernetes cluster highly available. By spreading the different components across multiple machines, you gain two benefits:

			
					You make your cluster highly available and fault-tolerant.

					You make your cluster a lot more scalable. Components have their own lifecycle, they can be scaled without impacting others.

			

			In this way, having one of your servers down will not break the entire cluster but just a small part of it, and adding more machines to your servers becomes easy.

			Each Kubernetes component has its own clearly defined responsibility. It is important for you to understand each component's responsibility and how it articulates with the other components to understand how Kubernetes works overall.

			Depending on its role, a component will have to be deployed on a master node or a worker node. While some components are responsible for maintaining the state of a whole cluster and operating the cluster itself, others are responsible for running our application containers by interacting with Docker daemons directly. Therefore, the components of Kubernetes can be grouped into two families:

			
					Components belonging to the Control Plane:These components are responsible for maintaining the state of the cluster. They should be installed on a master node. These are the components that will keep the list of containers executed by your Kubernetes cluster or the number of machines that are part of the cluster. As an administrator, when you interact with Kubernetes, you actually interact with the control plane components.

					Components belonging to the Worker Nodes:These components are responsible for interacting with the Docker daemon in order to launch containers according to the instructions they receive from the control plane components. Worker node components must be installed on a Linux machine running a Docker daemon. You are not supposed to interact with these components directly. It's possible to have hundreds or thousands of worker nodes in a Kubernetes cluster.

			

			Clustering technologies use this architecture a lot. They define two types of nodes: masters and workers. The master(s) nodes are responsible for the management of the cluster and all operational tasks according to the instructions received from the administrator. The worker(s) nodes are responsible for the execution of the actual workload based on instructions received from the master(s).

			Kubernetes works in relatively the same way. You are not supposed to launch your Docker containers by yourself, and therefore, you do not interact directly with the worker nodes. Instead, you send your instructions to the control plane. Then, it will delegate the actual container creation and maintenance to the worker node on your behalf. You never run a docker command directly:

			
				
					[image: Figure 2.1 – A typical Kubernetes workflow. The client interacts with the master node/control plane components, which delegate container creation to a worker node. There is no communication between the client and the worker node]
				

			

			Figure 2.1 – A typical Kubernetes workflow. The client interacts with the master node/control plane components, which delegate container creation to a worker node. There is no communication between the client and the worker node

			When using Kubernetes you'll notice here and there the concepts of control plane and the master node. They're almost the same: both expressions are meant to designate the Kubernetes components responsible of cluster administration, and by extension, the machines (or nodes) on which these components have been installed. In Kubernetes, we generally try to avoid talking about master nodes. Instead, we talk about the control plane.

			The reason is because saying "master node" supposes the components allowing the management of the cluster are installed on the same machine and have a strong coupling with the machine that is running them. However, due to the distributed nature of Kubernetes, its master node components can actually be spread across multiple machines. This is quite tricky, but there are, in fact, two ways in which to set up the control plane components:

			
					You run all of them on the same machine, and you have a master node.

					You run them on different machines, and you no longer have a master node.

			

			Master node terminology tends to imply that all control plane components are running on the same machine, but not the case. To achieve maximum fault tolerance, it's a good idea to spread them across different machines. Kubernetes is so distributed that even its master node can be broken into multiple machines, where each of them has the responsibility to execute a single component that allows the management of the cluster.

			The idea is that control plane components must be able to communicate with each other, and this can be achieved by installing them onto different hosts. In fact, later, you'll discover that the control plane components can even be launched as Docker containers on worker node machines. This is a very advanced topic, but it's possible. That's why the master node terminology is not that accurate to Kubernetes, and we prefer the control plane terminology instead.

			However, for the sake of simplicity, I'll consider, in this chapter, and also for a huge part of this book, that we are using dedicated master node machines to execute all of the control plane components in the same place. Throughout the different examples listed here, control plane components will be tightly coupled with the machine that is executing them. This will help you to understand the role of each component. Later, we will explore the advanced techniques related to the management of control plane components, such as launching them as Docker containers and more.

			That being said, things are simpler when it comes to worker nodes: you start from a standard machine running Docker, and you install the worker node components next to the Docker runtime. These components will interface with the local container engine that is installed on the said machine and execute containers based on the instructions you send to the control plane components. You can control all the aspects of Docker from Kubernetes thanks to this worker nodes mechanics: container creation, network management, scaling containers, and so on. Adding more computing power to your cluster is easy; you just need to add more worker nodes and have them join the cluster to make room for more containers.

			Important Note

			By splitting the control plane and worker node components of different machines, you are making your cluster highly available and scalable. Kubernetes was built with all of the cloud-native concerns in mind; its components are stateless, easy to scale, and built to be distributed across different hosts. The whole idea is to avoid having a single point of failure by grouping all of the components onto the same host.

			Here is a simplified diagram of a full-featured Kubernetes cluster with all the components listed. In this chapter, we're going to explain all of the components listed on this diagram, their roles, and their responsibilities. Here, all of the control plane components are installed on a single master node machine:

			
				
					[image: Figure 2.2 – A full-featured Kubernetes cluster with one master node and three worker nodes]
				

			

			Figure 2.2 – A full-featured Kubernetes cluster with one master node and three worker nodes

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/image/B14719_02_01.jpg
Send instruction
to

Client (you)

Kubernetes
master node

Delegate container
creation to a
worker node

Kubernetes
worker node

Docker

OEBPS/image/B14719_01_04.jpg
Docker container 1 Docker container 2

microservice microservice
1 2
A
% a
% E
I
Docker container 3
microservice .| microservice
Ll
3 HTTP 4

Docker container 4

OEBPS/image/B14719_01_01.jpg
Monolith app

Binary / Package / Process

OEBPS/image/B14719_01_03.jpg
microservice
A

HTTP

sQL
server

A

\ 4

microservice
B

SoL
server

OEBPS/image/B14719_Preface_Table_01.jpg
Software/hardware covered in the book

OS requirements

Kubernetes >=1.17

Windows, macOS X, and Linux (any)

Kubectl >=1.17

Windows, macOS X, and Linux (any)

OEBPS/toc.xhtml

		
		Contents

			
						THE KUBERNETES BIBLE

						Contributors

						About the authors

						About the reviewer

						Preface
					
								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Download the color images

								Conventions used

								Get in touch

								Share Your Thoughts

					

				

						Section 1: Introducing Kubernetes

						Chapter 1: Kubernetes Fundamentals
					
								Understanding monoliths and microservices
							
										Understanding the growth of the internet since the late 1990s

										Understanding the need for more frequent software releases

										Understanding the organizational shift to agile methodologies

										Understanding the shift from on-premises to the cloud

										Understanding why the cloud is well suited for scalability

										Exploring the monolithic architecture

										Exploring the microservices architecture

										Choosing between monolithic and microservices architectures

							

						

								Understanding containers and Docker
							
										Understanding why Docker is good for microservices

										Understanding the benefit of Docker container isolation

							

						

								How can Kubernetes help you to manage your Docker containers?
							
										Understanding that Kubernetes is meant to use Docker in production

							

						

								Exploring the problems that Kubernetes solves
							
										Ensuring high availability

										Release management and container deployment

										Autoscaling containers

										When and where is Kubernetes not the solution?

							

						

								Understanding the history of Kubernetes
							
										Understanding how and where Kubernetes started

										Who manages Kubernetes today?

										Where is Kubernetes today?

							

						

								Summary

					

				

						Chapter 2: Kubernetes Architecture – From Docker Images to Running Pods
					
								Understanding the difference between the master and worker nodes

								The kube-apiserver component
							
										The role of kube-apiserver

										How do you install kube-apiserver?

										Where do you install kube-apiserver?

							

						

								Exploring the kubectl command-line tool and YAML syntax
							
										The role of kubectl

										How does kubectl work?

										The YAML syntax

										kubectl should be installed on any machine that needs to interact with the cluster

							

						

								The Etcd datastore
							
										The role of the Etcd datastore

										Where do you install Etcd?

							

						

								The Kubelet and worker node components
							
										The Kubelet agent

										The kube-proxy component

							

						

								The kube-scheduler component
							
										The role of the kube-scheduler component

										Where do you install kube-scheduler?

							

						

								The kube-controller-manager component
							
										The role of the kube-controller-manager component

										Where do you install kube-controller-manager?

							

						

								How to make Kubernetes highly available
							
										The single-node cluster

										The single-master cluster

										The multi-master multi-node cluster

							

						

								Summary

					

				

						Chapter 3: Installing Your First Kubernetes Cluster
					
								Technical requirements

								Installing a single-node cluster with Minikube
							
										Launching a single-node Kubernetes cluster using Minikube

										Stopping and deleting the local Minikube cluster

							

						

								Launching a multi-node Kubernetes cluster with Kind
							
										Installing Kind onto your local system

										Stopping and deleting the local Kind cluster

							

						

								Installing a Kubernetes cluster using Google GKE
							
										Launching a multi-node Kubernetes cluster on Google GKE

										Stopping and deleting a Kubernetes cluster on Google GKE

							

						

								Installing a Kubernetes cluster using Amazon EKS
							
										Launching a multi-node Kubernetes cluster on Amazon EKS

										Deleting the Kubernetes cluster on Amazon EKS

							

						

								Installing a Kubernetes cluster using Azure AKS
							
										Launching a multi-node Kubernetes cluster on Azure AKS

										Stopping and deleting a Kubernetes cluster on Azure AKS

							

						

								Summary

					

				

						Section 2: Diving into Kubernetes Core Concepts

						Chapter 4: Running Your Docker Containers
					
								Technical requirements

								Let's explain the notion of Pods
							
										Each Pod gets an IP address

										How you should design your Pods

							

						

								Launching your first Pods
							
										Creating a Pod with imperative syntax

										Creating a Pod with declarative syntax

										Reading the Pod's information and metadata

										Listing the objects in JSON or YAML

										Backing up your resource using the list operation

										Getting more information from the list operation

										Accessing a Pod from the outside world

										Entering a container inside a Pod

										Deleting a Pod

							

						

								Labeling and annotating the Pods
							
										What are labels and why do we need them?

										What are annotations and how do they differ from labels?

										Adding a label

										Listing labels attached to a Pod

										Adding or updating a label to/of a running Pod

										Deleting a label attached to a running Pod

										Adding an annotation

							

						

								Launching your first job
							
										What are jobs?

										Creating a job with restartPolicy

										Understanding the job's backoffLimit

										Running a task multiple times using completions

										Running a task multiple times in parallel

										Terminating a job after a specific amount of time

										What happens if a job succeeds?

										Deleting a job

							

						

								Launching your first Cronjob
							
										What are Cronjobs?

										Creating your first Cronjob

										Understanding the schedule

										Understanding the role of the jobTemplate section

										Controlling the Cronjob execution deadline

										Managing the history limits of jobs

										Creating a Cronjob

										Deleting a Cronjob

							

						

								Summary

					

				

						Chapter 5: Using Multi-Container Pods and Design Patterns
					
								Technical requirements

								Understanding what multi-container Pods are
							
										Concrete scenarios where you need multi-container Pods

										When not to create a multi-container Pod

										Creating a Pod made up of two containers

										What happens when Kubernetes fails to launch one container in a Pod?

										Deleting a multi-container Pod

										Understanding the Pod deletion grace period

										Accessing a specific container inside a multi-container Pod

										Running commands in containers

										Overriding the default commands run by your containers

										Introducing initContainers

										Accessing the logs of a specific container

							

						

								Sharing volumes between containers in the same Pod
							
										What are Kubernetes volumes?

										Creating and mounting an emptyDir volume

										Creating and mounting a hostPath volume

							

						

								The ambassador design pattern
							
										What is the ambassador design pattern?

										A simple example of an ambassador multi-container Pod

							

						

								The sidecar design pattern
							
										What is the sidecar design pattern?

										A simple example of a sidecar multi-container Pod

							

						

								The adapter design pattern
							
										What is the adapter design pattern?

										A simple example of an adapter multi-container Pod

							

						

								Summary

					

				

						Chapter 6: Configuring Your Pods Using ConfigMaps and Secrets
					
								Technical requirements

								Understanding what ConfigMaps and Secrets are
							
										Decoupling your application and your configuration

										Understanding how Pods consume ConfigMaps and Secrets

							

						

								Configuring your Pods using ConfigMaps
							
										Listing ConfigMaps

										Creating a ConfigMap

										Creating a ConfigMap from literal values

										Storing entire configuration files in a ConfigMap

										Creating a ConfigMap from an env file

										Reading values inside a ConfigMap

										Linking ConfigMaps as environment variables

										Mounting a ConfigMap as a volume mount

										Deleting a ConfigMap

										Updating a ConfigMap

							

						

								Managing sensitive configuration with the Secret object
							
										Listing Secrets

										Creating a Secret imperatively with --from-literal

										Creating a Secret declaratively with a YAML file

										Creating a Secret with content from a file

										Reading a Secret

										Consuming a Secret as an environment variable

										Consuming a Secret as a volume mount

										Deleting a Secret

										Updating a Secret

							

						

								Summary

					

				

						Chapter 7: Exposing Your Pods with Services
					
								Technical requirements

								Why would you want to expose your Pods?
							
										Understanding Pod IP assignment

										Understanding Pod IP assignment is dynamic

										Never hardcode a pod's IP addresses in your application code

										Understanding how services route traffic to Pods

										Understanding round-robin load balancing in Kubernetes

										Understanding how to call a service in Kubernetes

										Understanding how DNS names are generated for services

										How services get a list of the Pods they service traffic to

										Using the dnsutils Docker image to debug your services

										Why you shouldn't use the --expose flag

										Understanding how DNS names are generated for services

										Understanding the different types of services

							

						

								The NodePort service
							
										Why do you need NodePort services?

										Creating two containous/whoami Pods

										Understanding NodePort YAML definition

										Making sure NodePort works as expected

										Is this setup production-ready?

										Listing NodePort services

										Adding more Pods to NodePort services

										Describing NodePort services

										Deleting NodePort services

										NodePort or kubectl port-forward?

							

						

								The ClusterIP service
							
										Why do you need ClusterIP services?

										How do I know if I need NodePort or ClusterIP services to expose my Pods?

										Listing ClusterIP services

										Creating ClusterIP services using the imperative way

										Describing ClusterIP services

										Creating ClusterIP services using the declarative way

										Deleting ClusterIP services

										Understanding headless services

							

						

								The LoadBalancer service
							
										Explaining the LoadBalancer services

										Should I use the LoadBalancer service type?

							

						

								Implementing ReadinessProbe
							
										Why do you need ReadinessProbe?

										Implementing ReadinessProbe

										What is LivenessProbe and why do you need it?

										Implementing LivenessProbe

										Using ReadinessProbe and LivenessProbe together

							

						

								Securing your Pods using the NetworkPolicy object
							
										Why do you need NetworkPolicy?

										Understanding Pods are not isolated by default

										Configuring NetworkPolicy with labels and selectors

							

						

								Summary

					

				

						Chapter 8: Managing Namespaces in Kubernetes
					
								Technical requirements

								Introduction to Kubernetes namespaces
							
										Why do you need namespaces?

										How namespaces are used to split resources into chunks

										Understanding default namespaces

							

						

								How namespaces impact your resources and services
							
										Listing namespaces inside your cluster

										Retrieving the data of a specific namespace

										Creating a namespace using imperative syntax

										Creating a namespace using declarative syntax

										Deleting a namespace

										Creating a resource inside a namespace with the -n option

										Listing resources inside a specific namespace

										Listing all the resources inside a specific namespace

										Understanding that names are scoped to a namespace

										Understanding that not all resources are in a namespace

										Resolving a service using namespaces

										Switching between namespaces with kubectl

										Displaying the current namespace with kubectl

							

						

								Configuring ResourceQuota and Limit at the namespace level
							
										Understanding why you should set ResourceQuota

										Understanding how Pods consume these resources

										Understanding how Pods can require computing resources

										Understanding how you can limit resource consumption

										Understanding why you need ResourceQuota

										Creating a ResourceQuota

							

						

								Listing ResourceQuota

								Deleting ResourceQuota

								Introducing LimitRange

								Listing LimitRange

								Deleting LimitRange

								Summary

					

				

						Chapter 9: Persistent Storage in Kubernetes
					
								Technical requirements

								Why you would want to use PersistentVolume
							
										Introducing PersistentVolumes

										Introducing PersistentVolume types

										The benefits brought by PersistentVolume

										Introducing access modes

										Understanding that not all access modes are available to all PersistentVolume types

										Creating our first PersistentVolume

										How does Kubernetes PersistentVolumes handle cloud-based storage?

										Amazon EBS PersistentVolume YAML

										GCE PersistentDisk PersistentVolume YAML

										NFS PersistentVolume YAML

										Can Kubernetes handle the provisioning or creation of the resource itself?

							

						

								Understanding how to mount a PersistentVolume to your Pod claims
							
										Introducing PersistentVolumeClaim

										Splitting storage creation and storage consumption

										The summarized PersistentVolume workflow

										Creating a Pod with a PersistentVolumeClaim object

							

						

								Understanding the life cycle of a PersistentVolume object in Kubernetes
							
										Understanding that PersistentVolume objects are not bound to namespaces

										Reclaiming a PersistentVolume object

										Updating a reclaim policy

										Understanding PersistentVolume and PersistentVolumeClaims statuses

							

						

								Static and dynamic PersistentVolume provisioning
							
										Static versus dynamic provisioning

										Introducing dynamic provisioning

										Introducing StorageClasses

										Understanding the role of PersistentVolumeClaim for dynamic storage provisioning

							

						

								Summary

					

				

						Section 3: Using Managed Pods with Controllers

						Chapter 10: Running Production-Grade Kubernetes Workloads
					
								Technical requirements

								Ensuring HA and FT on Kubernetes
							
										High Availability

										Fault Tolerance

										HA and FT for Kubernetes applications

							

						

								What is ReplicationController?
							
										Creating a ReplicationController object

										Testing the behavior of ReplicationController

										Scaling ReplicationController

										Deleting ReplicationController

							

						

								What is ReplicaSet and how does it differ from ReplicationController?
							
										Creating a ReplicaSet object

										Testing the behavior of ReplicaSet

										Scaling ReplicaSet

										Using Pod liveness probes together with ReplicaSet

										Deleting a ReplicaSet object

							

						

								Summary

								Further reading

					

				

						Chapter 11: Deployment – Deploying Stateless Applications
					
								Technical requirements

								Introducing the Deployment object
							
										Creating a Deployment object

										Exposing Deployment Pods using Service objects

										Scaling a Deployment object

										Deleting a Deployment object

							

						

								How does a Deployment object manage revisions and version rollout?
							
										Updating a Deployment object

										Rolling back a Deployment object

							

						

								Deployment object best practices
							
										Use declarative object management for Deployments

										Do not use the Recreate strategy for production workloads

										Do not create Pods that match an existing Deployment label selector

										Carefully set up your container probes

										Use meaningful and semantic image tags

										Migrating from older versions of Kubernetes

							

						

								Summary

								Further reading

					

				

						Chapter 12: StatefulSet – Deploying Stateful Applications
					
								Technical requirements

								Introducing the StatefulSet object
							
										Managing state in containers

										Managing state in Kubernetes Pods

										StatefulSet and how it differs from a Deployment object

							

						

								Managing StatefulSet
							
										Creating a StatefulSet

										Using the headless Service and stable network identities

										State persistence

										Scaling StatefulSet

										Deleting a StatefulSet

							

						

								Releasing a new version of an app deployed as a StatefulSet
							
										Updating StatefulSet

										Rolling back StatefulSet

							

						

								StatefulSet best practices
							
										Use declarative object management for StatefulSets

										Do not use the TerminationGracePeriodSeconds Pod with a 0 value for StatefulSets

										Scale down StatefulSets before deleting

										Ensure state compatibility during StatefulSet rollbacks

										Do not create Pods that match an existing StatefulSet label selector

							

						

								Summary

								Further reading

					

				

						Chapter 13: DaemonSet – Maintaining Pod Singletons on Nodes
					
								Technical requirements

								Introducing the DaemonSet object

								Creating and managing DaemonSets
							
										Creating a DaemonSet

										Modifying a DaemonSet

										Deleting a DaemonSet

							

						

								Common use cases for DaemonSets

								Alternatives to DaemonSets

								Summary

								Further reading

					

				

						Section 4: Deploying Kubernetes on the Cloud

						Chapter 14: Kubernetes Clusters on Google Kubernetes Engine
					
								Technical requirements

								What are GCP and GKE?
							
										Google Cloud Platform

										Google Kubernetes Engine

							

						

								Preparing your environment
							
										Signing up for a GCP account

										Creating a project

										Installing the GCP command-line interface

							

						

								Launching your first GKE cluster

								Deploying a workload and interacting with your cluster
							
										Configuring your local client

										Launching an example workload

										Exploring Google Cloud Console

										Deleting your cluster

							

						

								More about cluster nodes

								Summary

								Further reading

					

				

						Chapter 15: Launching a Kubernetes Cluster on Amazon Web Services with Amazon Elastic Kubernetes Service
					
								Technical requirements

								What are AWS and Amazon EKS?
							
										AWS

										Amazon EKS

							

						

								Preparing your local environment
							
										Signing up for an AWS account

										Installing the AWS command-line interface

										Installing eksctl, the official CLI for Amazon EKS

							

						

								Launching your Amazon EKS cluster

								Deploying a workload and interacting with your cluster
							
										Deploying the workload

										Exploring the AWS console

							

						

								Deleting your Amazon EKS cluster

								Summary

								Further reading

					

				

						Chapter 16: Kubernetes Clusters on Microsoft Azure with Azure Kubernetes Service
					
								Technical requirements

								What are Microsoft Azure and AKS?
							
										Microsoft Azure

										AKS

							

						

								Preparing your local environment
							
										The Azure CLI

							

						

								Launching your AKS cluster

								Deploying a workload and interacting with your cluster
							
										Launching the workload

										Exploring the Azure portal

							

						

								Deleting your AKS cluster

								Summary

								Further reading

					

				

						Section 5: Advanced Kubernetes

						Chapter 17: Working with Helm Charts
					
								Technical requirements

								Understanding Helm

								Releasing software to Kubernetes using Helm
							
										Installing Helm on Ubuntu

										Installing Helm on Windows

										Installing Helm on macOS

										Deploying an example chart

							

						

								Helm chart anatomy

								Installing popular solutions using Helm charts
							
										Kubernetes Dashboard

										Elasticsearch with Kibana

										Prometheus with Grafana

							

						

								Summary

								Further reading

					

				

						Chapter 18: Authentication and Authorization on Kubernetes
					
								Technical requirements

								Authentication and user management
							
										Static token files

										ServiceAccount tokens

										X.509 client certificates

										OpenID Connect tokens

										Other methods

							

						

								Authorization and introduction to RBAC
							
										RBAC mode in Kubernetes

							

						

								Azure Kubernetes Service and Azure Active Directory integration
							
										Prerequisites

										Deploying a managed AKS cluster with AAD and Azure RBAC integration

										Accessing the AKS cluster with AAD integration enabled

										Using Azure RBAC for an AKS cluster

							

						

								Summary

								Further reading

					

				

						Chapter 19: Advanced Techniques for Scheduling Pods
					
								Technical requirements

								Refresher – What is kube-scheduler?

								Managing Node affinity
							
										Pod Node name

										Pod Node selector

										Node affinity configuration for Pods

							

						

								Using Node taints and tolerations

								Scheduling policies

								Summary

								Further reading

					

				

						Chapter 20: Autoscaling Kubernetes Pods and Nodes
					
								Technical requirements

								Pod resource requests and limits

								Autoscaling Pods vertically using a Vertical Pod Autoscaler
							
										Enabling a VPA in GKE

										Enabling a VPA for other Kubernetes clusters

										Using a VPA

							

						

								Autoscaling Pods horizontally using a Horizontal Pod Autoscaler
							
										Using an HPA

							

						

								Autoscaling Kubernetes Nodes using a Cluster Autoscaler
							
										Enabling the cluster autoscaler in GKE

										Enabling the cluster autoscaler in the Amazon Elastic Kubernetes Service

										Enabling the cluster autoscaler in the Azure Kubernetes Service

										Using the cluster autoscaler

							

						

								Summary

								Further reading

					

				

						Chapter 21: Advanced Traffic Routing with Ingress
					
								Technical requirements

								Refresher: Kubernetes services
							
										The ClusterIP Service

										NodePort service

										The LoadBalancer service

							

						

								Introducing the Ingress object

								Using nginx as an Ingress Controller

								Azure Application Gateway Ingress Controller for AKS

								Summary

								Further reading

								Why subscribe?

					

				

						Other Books You May Enjoy
					
								Packt is searching for authors like you

								Share Your Thoughts

					

				

			

		
		
		Landmarks

			
						Cover

						Table of Contents

			

		
	

OEBPS/image/B14719_01_05.jpg
@ kubernetes

Documentation Kubernetes Blog Training Partners Community Case Studies Versions ~ English ~

Production-Grade Container Orchestration

Automated container deployment, scaling, and management

OEBPS/image/B14719_01_02.jpg
microservice microservice
1 2
A
¢/ o
7 E
T
microservice microservice
—>
3 4

OEBPS/image/B14719_02_02.jpg
Client
(you)

_ | Kubernetes |

Cluster

Kubernetes
master node

y

Kubernetes Kubernetes Kubernetes
worker worker worker
node 1 node 2 node 3
Docker Docker Docker

OEBPS/image/cover.png
Nassim Kebbani | Piotr Tylenda | Russ McKendrick

THE
KUBERNETES

BIBLE

The definitive guide to deploying and managing
Kubernetes across major cloud platforms

Packt>

OEBPS/image/Image85479.png
Packt)

