
		
			[image: Cover.png]
		

	
		
			Mastering JavaScript Functional Programming

			Third Edition

			Write clean, robust, and maintainable web and server code using functional JavaScript and TypeScript

			Federico Kereki

			[image: ]

			BIRMINGHAM—MUMBAI

			Mastering JavaScript Functional Programming

			Third Edition

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Pavan Ramchandani

			Publishing Product Manager: Bhavya Rao

			Senior Editor: Mark D’Souza

			Technical Editor: Joseph Aloocaran

			Copy Editor: Safis Editing

			Project Coordinator: Sonam Pandey

			Proofreader: Safis Editing

			Indexer: Rekha Nair

			Production Designer: Shyam Sundar Korumilli

			Marketing Coordinators: Namita Velgekar, Nivedita Pandey, and Anamika Singh

			First published: November 2017

			Second edition: January 2020

			Third edition: May 2023

			Production reference: 1040423

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-80461-013-8

			www.packtpub.com

			Writing a book involves many people, and even if I cannot mention and name all of them, there are some who really deserve to be highlighted.

			At Packt Publishing, I want to thank Larissa Pinto, senior acquisition editor, for proposing the theme for this book and helping me get started with it. Thanks must also go to Mohammed Yusuf Imaratwale, content development editor, and Ralph Rosario, technical editor, for their help in giving shape to the book and making it clearer and better structured. I also want to send my appreciation to the reviewers, Gerónimo García Sgritta and Steve Perkins, who went through the initial draft, enhancing it with their comments.

			There are some other people who deserve extra consideration. This book was written under unusual circumstances, around 10,000 miles away from home! I had gone from Uruguay, where I live, to work on a project in India, and that’s where I wrote every single page of the text. This would not have been possible if I hadn’t had complete support from my family, who stayed in Montevideo, but who were constantly nearby, thanks to the internet and modern communication. In particular, I must single out my wife, Sylvia Tosar, not only for supporting and aiding me both with the project and the book but also for dealing with everything and the rest of the family on her own in Uruguay—this book wouldn’t have been possible otherwise, and she is the greatest reason the book could be written!

			For the second edition: Revisiting and expanding a book for a second edition was an interesting task. I had great support and must thank Aamir Ahmed, content development editor; Jane D’Souza, technical editor; and Crystian Bietti and Steve Perkins (again, for double merit!), the reviewers who helped produce a much better text.

			For the third edition: Expanding the book for a third edition was, once more, a challenging task. In this case, I had support from Bhavya Rao, publishing product manager; Mark D’Souza, senior editor; Joseph Aloocaran, technical editor; and Anu Nagan and Markandey Pathak, reviewers, all of whom greatly aided my work, aiming for an even higher quality final text.

			- Federico Kereki

			Contributors

			About the author

			Federico Kereki is a Uruguayan systems engineer, with a master’s degree in education, and over 30 years of experience as a consultant, system developer, and writer.

			He is currently a subject matter expert at Globant, where he gets to use a good mixture of development frameworks, programming tools, and operating systems. He is familiar with languages such as JavaScript and TypeScript; modern backend runtime environments such as Node.js and Deno; frontend frameworks such as React, Vue, and Angular; and services, microservices, and cloud components for systems architecture.

			He has taught several computer science courses at Universidad de la República, Universidad ORT Uruguay, and Universidad de la Empresa. He has also written texts for these courses.

			He has written articles and booklets on programming, web development, security, and open source topics for blogs, magazines, and websites. He has also written several books, including Modern JavaScript Web Development Cookbook and the upcoming Data Structures and Algorithms in JavaScript.

			Kereki has given talks on functional programming at public conferences (such as JSCONF 2016 and Development Week Santiago 2019) and has used functional programming techniques to develop internet systems for businesses in Uruguay and abroad.

			His current interests tend toward software quality and software engineering – with Agile methodologies topmost – while on the practical side, he works with diverse languages, tools, and frameworks, and Free/Libre Open Source Software (FLOSS) wherever possible!

			He resides, works, and teaches in Uruguay, but he wrote the first edition of this book while working in India, and the second edition during a sojourn in Mexico; the third edition was the first actually completed in his homeland!

			About the reviewers

			Markandey Pathak is an accomplished full-stack developer and software architect with over 11 years of experience. Currently, he works as an expert engineer and vice president with one of the biggest financial firms. He has also worked with top firms such as Deloitte, PwC, and Sapient in the past. In addition to his technical work, Markandey is also passionate about teaching coding to kids and playing with robots in his spare time. He is an avid traveler and enjoys spending time in nature and exploring new destinations with his wife and son whenever possible. Markandey’s diverse interests and impressive professional experience make him a well-rounded and highly respected member of the software engineering community.

			Anu Nagan G has worked in various corporate organizations, from a SaaS start-up (Gendeep) to a mid-size organization (GAVS) and a Fortune 500 company (DXC). He has held various positions such as technical product manager, full-stack product lead (Angular, Java, Python, and AWS), and delivery lead in his 9+ years of tenure. He has experience in leading advanced AI and analytics product Cortex AI (API automation), Salesforce CRM B2B automation, and mobile app development, and contributed to various AIOps products such as ZIF, Gcare, and Gavel in the past. Currently, he is leading parallel projects with Bounteous, which include data integration with the Braze marketing platform with a custom middleware and digital experience transformation for Fintech customers using AEM. He is an avid reader and cinephile who loves to play the guitar and make short films with his friends.

			I would like to thank my wife, Hema, and my daughter, Chekhov, for always giving me the freedom to pursue my interests.

		

	
		
			Table of Contents

			Preface

			1

			Becoming Functional – Several Questions

			What is functional programming?

			Theory versus practice

			A different way of thinking

			FP and other programming paradigms

			What FP is not

			Why use FP?

			What we need

			What we get

			Not all is gold

			Is JavaScript functional?

			JavaScript as a tool

			Going functional with JavaScript

			Key features of JavaScript

			How do we work with JavaScript?

			Using transpilers

			Working online

			A step further – TypeScript

			Testing

			Summary

			Questions

			2

			Thinking Functionally – A First Example

			Our problem – doing something only once

			Solution 1 – hoping for the best!

			Solution 2 – using a global flag

			Solution 3 – removing the handler

			Solution 4 – changing the handler

			Solution 5 – disabling the button

			Solution 6 – redefining the handler

			Solution 7 – using a local flag

			A functional solution to our problem

			A higher-order solution

			Testing the solution manually

			Testing the solution automatically

			Producing an even better solution

			Summary

			Questions

			3

			Starting Out with Functions – A Core Concept

			All about functions

			Of lambdas and functions

			Arrow functions – the modern way

			Functions as objects

			Using functions in FP ways

			Injection – sorting it out

			Callbacks and promises

			Continuation-passing style

			Polyfills

			Stubbing

			Immediate invocation (IIFE)

			Summary

			Questions

			4

			Behaving Properly – Pure Functions

			Pure functions

			Referential transparency

			Side effects

			Advantages of pure functions

			Impure functions

			Avoiding impure functions

			Is your function pure?

			Testing – pure versus impure

			Testing pure functions

			Testing purified functions

			Testing impure functions

			Summary

			Questions

			5

			Programming Declaratively – A Better Style

			Transformations

			Reducing an array to a value

			Applying an operation – map()

			Dealing with arrays of arrays

			More general looping

			Logical HOFs

			Filtering an array

			Searching an array

			Higher-level predicates – every() and some()

			Checking negatives – none()

			Working with async functions

			Some strange behaviors

			Async-ready looping

			Working with parallel functions

			Unresponsive pages

			A frontend worker

			A backend worker

			Workers, FP style

			Long-living pooled workers

			Summary

			Questions

			6

			Producing Functions – Higher-Order Functions

			Wrapping functions – keeping behavior

			Logging

			Timing functions

			Memoizing functions

			Altering a function’s behavior

			Doing things once, revisited

			Logically negating a function

			Inverting the results

			Arity changing

			Throttling and debouncing

			Changing functions in other ways

			Turning operations into functions

			Turning functions into promises

			Getting a property from an object

			Demethodizing – turning methods into functions

			Methodizing – turning functions into methods

			Finding the optimum

			Summary

			Questions

			7

			Transforming Functions – Currying and Partial Application

			A bit of theory

			Currying

			Dealing with many parameters

			Currying by hand

			Currying with bind()

			Partial application

			Partial application with arrow functions

			Partial application with closures

			Partial currying

			Partial currying with bind()

			Partial currying with closures

			Final thoughts

			Variable number of parameters

			Parameter order

			Being functional

			Summary

			Questions

			8

			Connecting Functions – Pipelining, Composition, and More

			Pipelining

			Piping in Unix/Linux

			Revisiting an example

			Creating pipelines

			Debugging pipelines

			Pointfree style

			Chaining and fluent interfaces

			An example of fluent APIs

			Chaining method calls

			Composing

			Some examples of composition

			Composing with higher-order functions

			Transducing

			Composing reducers

			Generalizing for all reducers

			Testing connected functions

			Testing pipelined functions

			Testing composed functions

			Testing chained functions

			Testing transduced functions

			Summary

			Questions

			9

			Designing Functions – Recursion

			Using recursion

			Thinking recursively

			Higher-order functions revisited

			Searching and backtracking

			Mutual recursion

			Odds and evens

			Doing arithmetic

			Recursion techniques

			Tail call optimization

			Continuation-passing style

			Trampolines and thunks

			Recursion elimination

			Summary

			Questions

			10

			Ensuring Purity – Immutability

			Going the straightforward JavaScript way

			Mutator functions

			Constants

			Freezing

			Cloning and mutating

			Getters and setters

			Lenses

			Prisms

			Creating persistent data structures

			Working with lists

			Updating objects

			A final caveat

			Summary

			Questions

			11

			Implementing Design Patterns – The Functional Way

			Understanding design patterns

			Design pattern categories

			Do we need design patterns?

			Object-oriented design patterns

			Facade and Adapter

			Decorator or Wrapper

			Strategy, Template, and Command

			Dependency Injection

			Observers and reactive programming

			Other patterns

			Functional design patterns

			Summary

			Questions

			12

			Building Better Containers – Functional Data Types

			Specifying data types

			Signatures for functions

			Other data type options

			Building containers

			Extending current data types

			Containers and functors

			Monads

			Functions as data structures

			Binary trees in Haskell

			Functions as binary trees

			Summary

			Questions

			Answers to Questions

			Chapter 1, Becoming Functional – Several Questions

			Chapter 2, Thinking Functionally – A First Example

			Chapter 3, Starting Out with Functions – A Core Concept

			Chapter 4, Behaving Properly – Pure Functions

			Chapter 5, Programming Declaratively – A Better Style

			Chapter 6, Producing Functions – Higher-Order Functions

			Chapter 7, Transforming Functions – Currying and Partial Application

			Chapter 8, Connecting Functions – Pipelining, Composition, and More

			Chapter 9, Designing Functions – Recursion

			Chapter 10, Ensuring Purity – Immutability

			Chapter 11, Implementing Design Patterns – The Functional Way

			Chapter 12, Building Better Containers – Functional Data Types

			Bibliography

			Index

			Other Books You May Enjoy

		

	


		
			Preface

			In computer programming, paradigms abound. Some examples include imperative programming, structured (goto-less) programming, object-oriented programming (OOP), aspect-oriented programming, and declarative programming. Lately, there has been renewed interest in a particular paradigm that can arguably be considered to be older than most (if not all) of the cited ones—functional programming (FP). FP emphasizes writing functions and connecting them in simple ways to produce more understandable and more easily tested code. Thus, given the increased complexity of today’s web applications, it’s logical that a safer, cleaner way of programming would be of interest.

			This interest in FP comes hand in hand with the evolution of JavaScript. Despite its somewhat hasty creation (reportedly achieved in only 10 days, in 1995, by Brendan Eich at Netscape), today, JavaScript is a standardized and quickly growing language, with features more advanced than most other similarly popular languages. The ubiquity of the language, which can now be found in browsers, servers, mobile phones, and whatnot, has also impelled interest in better development strategies. Also, even if JavaScript wasn’t conceived as a functional language, the fact is that it provides all the features you’d require to work in that fashion, which is another plus.

			That said, we must also comment on advances in the language and related tools. The benefits of data typing are generally acknowledged, and in recent years, TypeScript has gained wide adoption and has been used for both frontend and backend coding. It makes sense, then, to also include its usage in this book. This, we feel, will make the examples clearer, and also simplify the adoption of the presented code for “real-life” jobs.

			It must also be said that FP hasn’t been generally applied in industry, possibly because it has a certain aura of difficulty, and it is thought to be theoretical rather than practical, even mathematical, and possibly uses vocabulary and concepts that are foreign to developers—for example, functors, monads, folding, and category theory. While learning all this theory will certainly be of help, it can also be argued that even with zero knowledge of the previous terms, you can understand the tenets of FP, and see how to apply it to your own programming.

			FP is not something that you have to do on your own, without any help. There are many libraries and frameworks that incorporate, to greater or lesser degrees, the concepts of FP. Starting with jQuery (which does include some FP concepts), passing through Underscore and its close relative, Lodash, and other libraries such as Ramda, and getting to more complete web development tools such as React and Redux, Angular, and Elm (a 100% functional language, which compiles into JavaScript), the list of functional aids for your coding is ever growing.

			Learning how to use FP can be a worthwhile investment, and even though you may not get to use all of its methods and techniques, just starting to apply some of them will pay dividends in better code. You need not try to apply all the concepts of FP from the start, and you need not try to abandon every non-functional feature in JavaScript either. JavaScript assuredly has some bad features, but it also has several very good and powerful ones. The idea is not to throw away everything you’ve learned and use and adopt a 100% functional way; rather, the guiding idea is evolution, not revolution. In that sense, it can be said that what we’ll be doing is not FP, but rather Sorta Functional Programming (SFP), aiming for a fusion of paradigms.

			A final comment about the style of the code in this book—it is quite true that there are several very good libraries that provide you with FP tools: Underscore, Lodash, and Ramda are counted among them. However, I preferred to eschew their usage because I wanted to show how things really work. It’s easy to apply a given function from some package or the other, but by coding everything out (vanilla FP, if you wish), it’s my belief that you get to understand things more deeply. Also, as I will comment in some places, because of the power and clarity of arrow functions and other features, the pure JavaScript versions can be even simpler to understand!

			Who this book is for

			This book is geared toward programmers with a good working knowledge of JavaScript (or, better yet, TypeScript) working either on the client side (browsers) or the server side (Node.js), who are interested in applying techniques to be able to write better, testable, understandable, and maintainable code. Some background in computer science (including, for example, data structures) and good programming practices will also come in handy. In this book, we’ll cover FP in a practical way, though, at times, we will mention some theoretical points.

			What this book covers

			Chapter 1, Becoming Functional – Several Questions, discusses FP, gives reasons for its usage, and lists the tools that you’ll need to take advantage of the rest of the book.

			Chapter 2, Thinking Functionally – A First Example, will provide the first example of FP by considering a common web-related problem and going over several solutions, to finally focus on a functional solution.

			Chapter 3, Starting Out with Functions – A Core Concept, will go over the central concept of FP, that is, functions, and the different options available in JavaScript.

			Chapter 4, Behaving Properly – Pure Functions, will consider the concept of purity and pure functions, and demonstrate how it leads to simpler coding and easier testing.

			Chapter 5, Programming Declaratively – A Better Style, will use simple data structures to show how to produce results that work not in an imperative way, but in a declarative fashion.

			Chapter 6, Producing Functions – Higher-Order Functions, will deal with higher-order functions, which receive other functions as parameters and produce new functions as results.

			Chapter 7, Transforming Functions – Currying and Partial Application, will explore some methods for producing new and specialized functions from earlier ones.

			Chapter 8, Connecting Functions – Pipelining, Composition, and More, will show the key concepts regarding how to build new functions by joining previously defined ones.

			Chapter 9, Designing Functions – Recursion, will look at how a key concept in FP, recursion, can be applied to designing algorithms and functions.

			Chapter 10, Ensuring Purity – Immutability, will present some tools that can help you to work in a pure fashion by providing immutable objects and data structures.

			Chapter 11, Implementing Design Patterns – The Functional Way, will show how several popular OOP design patterns are implemented (or not needed!) when you program in FP ways.

			Chapter 12, Building Better Containers – Functional Data Types, will explore some more high-level functional patterns, introducing types, containers, functors, monads, and several other more advanced FP concepts.

			I have tried to keep the examples in this book simple and down to earth because I want to focus on the functional aspects and not on the intricacies of this or that problem. Some programming texts are geared toward learning, say, a given framework, and then working on a given problem, showing how to fully work it out with the chosen tools.

			In fact, in the very early stages of planning for this book, I entertained the idea of developing an application that would use all the FP things I had in mind, but there was no way to fit all of that within a single project. Exaggerating a bit, I felt like an MD trying to find a patient on whom to apply all of his medical knowledge and treatments! So, I opted to show plenty of individual techniques, which can be used in multiple situations. Rather than building a house, I want to show you how to put bricks together, how to wire things up, and so on, so that you will be able to apply whatever you need as you see fit.

			To get the most out of this book

			To understand the concepts and code in this book, you don’t need much more than a JavaScript environment and a text editor. To be honest, I even developed some of the examples working fully online, with tools such as JSFiddle (at jsfiddle.net) and the like, and absolutely nothing else.

			In this book, we’ll be using ES2022 and Node 19, and the code will run on any OS, such as Linux, macOS, or Windows.

			You will need some experience with the latest version of JavaScript because it includes several features that can help you write more concise and compact code. We will frequently include pointers to online documentation, such as the documentation available on the Mozilla Development Network (MDN) at developer.mozilla.org, to help you get more in-depth knowledge.

			We’ll also be using the latest version of TypeScript, to add data typing to our JavaScript code. For more on the language, the must-read reference is www.typescriptlang.org, where you’ll find documentation, tutorials, and even an online playground to directly test code there.

			Download the example code files

			You can download the example code files for this book from GitHub at github.com/PacktPublishing/Mastering-JavaScript-Functional-Programming-3E. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at github.com/PacktPublishing/. Check them out!

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://packt.link/UsFuE.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “There are several possible results: a single value with the reduce() operation, a new array with map(), or just about any kind of result with forEach().”

			A block of code is set as follows:

			
// reverse.ts
const reverseString = (str: string): string => {
  const arr = str.split("");
  arr.reverse();
  return arr.join("");
};
console.log(reverseString("MONTEVIDEO"));	// OEDIVETNOM

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
// continued...
const reverseString2 = (str: string): string =>
  str.split("").reduceRight((x, y) => x + y, "");
console.log(reverseString2("OEDIVETNOM")); // MONTEVIDEO

			Any command-line input or output is written as follows:

			
START MAP
2022-10-29T01:47:06.726Z [ 10, 20, 30, 40 ]
END MAP

			Bold: Indicates a new term, an important word, or words that you see onscreen.

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Mastering JavaScript Functional Programming - Third Edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application. 

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below[image: ]


			

			

			https://packt.link/free-ebook/9781804610138

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	


		
			1

			Becoming Functional – Several Questions

			Functional programming (or FP) has been around since the earliest days of computing and is going through a sort of revival because of its increased use with several frameworks and libraries, most particularly in JavaScript.

			In this chapter, we shall do the following:

			
					Introduce some concepts of FP to give a small taste of what it means

					Show the benefits (and problems) implied by the usage of FP and why we should use it

					Start thinking about why JavaScript can be considered an appropriate language for FP

					Go over the language features and tools that you should be aware of to fully take advantage of everything in this book

			

			By the end of this chapter, you’ll have the basic tools that we’ll be using throughout this book, so let’s get started by learning about FP.

			What is functional programming?

			If you go back in computer history, you’ll find that the second oldest programming language still in use, Lisp, is based on FP. Since then, there have been many more functional languages, and FP has been applied more widely. But even so, if you ask people what FP is, you’ll probably get two widely dissimilar answers.

			A bit of trivia

			For trivia or history buffs, the oldest programming language still in use is Fortran, which appeared in 1957, a year before Lisp. Quite shortly after Lisp came another long-lived language, COBOL, for business-oriented programming.

			Depending on whom you ask, you’ll either learn that it’s a modern, advanced, enlightened approach to programming that leaves every other paradigm behind or that it’s mainly a theoretical thing, with more complications than benefits, that’s practically impossible to implement in the real world. And, as usual, the real answer is not in the extremes, but somewhere in between. Let’s start by looking at the theory versus practice and see how we plan to use FP.

			Theory versus practice

			In this book, we won’t be going about FP in a theoretical way. Instead, our point is to show you how some of its techniques and tenets can be successfully applied to common, everyday JavaScript programming. But – and this is important – we won’t be going about this dogmatically, but in a very practical way. We won’t dismiss useful JavaScript constructs simply because they don’t happen to fulfill the academic expectations of FP. Similarly, we won’t avoid practical JavaScript features just to fit the FP paradigm. We could almost say that we’ll be doing Sorta Functional Programming (SFP) because our code will be a mixture of FP features, more classical imperative ones, and object-oriented programming (OOP).

			Be careful, though: what we just said doesn’t mean that we’ll be leaving all the theory by the side. We’ll be picky, and just touch the main theoretical points, learn some vocabulary and definitions, and explain core FP concepts, but we’ll always be keeping in sight the idea of producing actual, useful JavaScript code, rather than trying to meet some mystical, dogmatic FP criteria.

			OOP has been a way to solve the inherent complexity of writing large programs and systems, and developing clean, extensible, scalable application architectures; however, because of the scale of today’s web applications, the complexity of all code bases is continuously growing. Also, the newer features of JavaScript make it possible to develop applications that wouldn’t even have been possible just a few years ago; think of mobile (hybrid) apps that are made with Ionic, Apache Cordova, or React Native or desktop apps that are made with Electron, Tauri, or NW.js, for example. JavaScript has also migrated to the backend with Node.js or Deno, so today, the scope of usage for the language has grown in a serious way that deals with all the added complexity of modern designs.

			A different way of thinking

			FP is a different way of writing programs and can sometimes be difficult to learn. In most languages, programming is done imperatively: a program is a sequence of statements, executed in a prescribed fashion, and the desired result is achieved by creating objects and manipulating them, which usually means modifying the objects themselves. FP is based on producing the desired result by evaluating expressions built out of functions that are composed together. In FP, it’s common to pass functions around (such as passing parameters to other functions or returning functions as the result of a calculation), not use loops (opting for recursion instead), and skip side effects (such as modifying objects or global variables).

			In other words, FP focuses on what should be done, rather than on how it should be done. Instead of worrying about loops or arrays, you work at a higher level, considering what needs to be done. After becoming accustomed to this style, you’ll find that your code becomes simpler, shorter, and more elegant, and can be easily tested and debugged. However, don’t fall into the trap of considering FP as the goal! Think of FP only as a means to an end, as with all software tools. Functional code isn’t good just for being functional, and writing bad code is just as possible with FP as with any other technique!

			FP and other programming paradigms

			Programming paradigms classify programming languages according to their features. However, some languages may be classified into multiple paradigms – as is the case of JavaScript itself!

			A primary division is imperative versus declarative languages. In the former, developers must instruct the machine on how to do its work, step by step. Programming may be procedural (if instructions are grouped into procedures) or object-oriented (if instructions are grouped with a related state).

			In declarative languages, in opposition, developers just declare properties that the sought result must satisfy, but not how to calculate it. Declarative languages may be logic-based (based on logic rules and constraints), reactive (based on data and event streams), or functional (based on the application and combination of functions). In a sense, we could say that imperative languages focus on how, while declarative languages focus on what.

			JavaScript is multi-paradigm: it’s imperative (both procedural and object-oriented) but also allows declarative programming, both functional (like almost everything in this book! In particular, we will devote Chapter 5, Programming Declaratively, to this topic) and reactive (we’ll see reactive FP in Chapter 11, Implementing Design Patterns).

			Just to give you a basic example of the difference between imperative and declarative ways of solving a problem, let’s solve a simple problem: assume you have an array of personal data of people, as follows:

			
// imperative.js
const data = [
  { name: "John", age: 23, other: "xxx" },
  { name: "Paul", age: 18, other: "yyy" },
  { name: "George", age: 16, other: "zzz" },
  { name: "Ringo", age: 25, other: "ttt" },
];

			Imagine you want to extract the data for adults (at least 21 years old). Imperatively, you would do something like the following:

			
// continued...
const result1 = [];
for (let i = 0; i < data.length; i++) {
  if (data[i].age >= 21) {
    result1.push(data[i]);
  }
}

			You have to initialize the output array (result1) for the selected people. Then, you must specify a loop, saying how the index variable (i) is to be initialized, tested, and updated. On each pass of the loop, you check the corresponding person’s age, and if the person is an adult, you push the data to the output array. In other terms, you specify, step by step, everything that the code will have to do.

			Working declaratively, you’d rather write something like this:

			
// declarative.js
const isAdult = (person) => person.age >= 21;
const result2 = data.filter(isAdult);

			The first line declares how to test if a person is an adult; the second line says that the result is the result of filtering the data array, picking those elements that satisfy the given predicate. (For isAdult(), we’re using an arrow function; we’ll see more on that in the Arrow functions section, later in this chapter.) You don’t have to initialize the output array, specify how to loop, or ensure that your array index doesn’t go beyond the array’s length, and so on – all those details are taken care of by the language, so you don’t need to.

			Reading and understanding the imperative version requires knowledge of both the programming language and algorithms or techniques for looping; the declarative version is shorter to write, easier to maintain, and much more readable.

			What FP is not

			Since we’ve been talking quite a bit about what FP is, let’s also clear up some common misconceptions, and look at what FP is not:

			
					FP isn’t just an academic ivory tower thing: The lambda calculus upon which it is based was developed by Alonzo Church in 1936 as a tool to prove an important result in theoretical computer science (which preceded modern computer languages by more than 20 years!); however, FP languages are being used today for all kinds of systems.

					FP isn’t the opposite of OOP: It isn’t a case of choosing declarative or imperative ways of programming. You can mix and match as best suits you, and we’ll be doing this throughout this book, bringing together the best of all worlds.

					FP isn’t overly complex to learn: Some of the FP languages are rather different from JavaScript, but the differences are mostly syntactic. Once you learn the basic concepts, you’ll see that you can get the same results in JavaScript as with FP languages.

			

			It may also be relevant to mention that several modern frameworks, such as the React and Redux combination, include FP ideas.

			For example, in React, it’s said that the view (whatever the user gets to see at a given moment) is a function of the current state. You use a function to compute what HTML and CSS must be produced at each moment, thinking in a black-box fashion.

			Similarly, in Redux, you have the concept of actions that are processed by reducers. An action provides some data, and a reducer is a function that produces the new state for the application in a functional way out of the current state and the provided data.

			So, both because of the theoretical advantages (we’ll be getting to those in the following section) and the practical ones (such as getting to use the latest frameworks and libraries), it makes sense to consider FP coding. Let’s get on with it.

			Why use FP?

			Throughout the years, there have been many programming styles and fads. However, FP has proven quite resilient and is of great interest today. Why would you want to use FP? Rather, the first question to ask should be, what do you need? And only then, does FP get you that? We’ll answer these important questions in the following sections.

			What we need

			We can certainly agree that the following list of concerns is universal. Our code should have the following qualities:

			
					Modular: The functionality of your program should be divided into independent modules, each of which contains a part of the solution. Changes in a module or function shouldn’t affect the rest of the code.

					Understandable: A reader of your program should be able to discern its components, functions, and relationships without undue effort. This is closely linked with the maintainability of the code; your code will have to be maintained in the future, whether to be changed or to have new functionality added.

					Testable: Unit tests try out small parts of your program, verifying their behavior independently of the rest of the code. Your programming style should favor writing code that simplifies the job of writing unit tests. Unit tests are also like documentation in that they can help readers understand what the code is supposed to do.

					Extensible: It’s a fact that your program will someday require maintenance, possibly to add new functionality. Those changes should impact the structure and data flow of the original code only minimally (if at all). Small changes shouldn’t imply large, serious refactoring of your code.

					Reusable: Code reuse has the goal of saving resources, time, and money, and reducing redundancy by taking advantage of previously written code. Some characteristics help with this goal, such as modularity (which we already mentioned), high cohesion (all the pieces in a module belong together), low coupling (modules are independent of each other), separation of concerns (the parts of a program should overlap in functionality as little as possible), and information hiding (internal changes in a module shouldn’t affect the rest of the system).

			

			What we get

			So, does FP give you the five characteristics we just listed in the previous section?

			
					In FP, the goal is to write separate independent functions that are joined together to produce the final results.

					Programs that are written in a functional style usually tend to be cleaner, shorter, and easier to understand.

					Functions can be tested on their own, and FP code has advantages in achieving this.

					You can reuse functions in other programs because they stand on their own, not depending on the rest of the system. Most functional programs share common functions, several of which we’ll be considering in this book.

					Functional code is free from side effects, which means you can understand the objective of a function by studying it without having to consider the rest of the program.

			

			Finally, once you get used to the FP style of programming, code becomes more understandable and easier to extend. So, it seems that all five characteristics can be achieved with FP!

			Why use FP?

			For a well-balanced look at the reasons to use FP, I’d suggest reading Why Functional Programming Matters, by John Hughes; it’s available online at www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf. It’s not geared toward JavaScript, but the arguments are easily understandable.

			Not all is gold

			However, let’s strive for a bit of balance. Using FP isn’t a silver bullet that will automagically make your code better. Some FP solutions are tricky, and some developers greatly enjoy writing code and then asking, what does this do? If you aren’t careful, your code may become write-only and practically impossible to maintain; there goes understandable, extensible, and reusable out the door!

			Another disadvantage is that you may find it harder to find FP-savvy developers. (Quick question: how many FP-sought job ads have you ever seen?) The vast majority of today’s web code is written in imperative, non-functional ways, and most coders are used to that way of working. For some, having to switch gears and start writing programs differently may prove an unpassable barrier.

			Finally, if you try to go fully functional, you may find yourself at odds with JavaScript, and simple tasks may become hard to do. As we said at the beginning, we’ll opt for SFP, so we won’t be drastically rejecting any language features that aren’t 100% functional. After all, we want to use FP to simplify our coding, not to make it more complex!

			So, while I’ll strive to show you the advantages of going functional in your code, as with any change, there will always be some difficulties. However, I’m fully convinced that you’ll be able to surmount them and that your organization will develop better code by applying FP. Dare to change! So, given that you accept that FP may apply to your problems, let’s consider the other question: can we use JavaScript in a functional way and is it appropriate?

			Is JavaScript functional?

			At about this time, there is another important question that you should be asking: is JavaScript a functional language? Usually, when thinking about FP, the list of languages that are mentioned does not include JavaScript, but does include less common options, such as Clojure, Erlang, Haskell, and Scala; however, there is no precise definition for FP languages or a precise set of features that such languages should include. The main point is that you can consider a language to be functional if it supports the common programming style associated with FP. Let’s start by learning about why we would want to use JavaScript at all and how the language has evolved to its current version, and then see some of the key features that we’ll be using to work in a functional way.

			JavaScript as a tool

			What is JavaScript? If you consider popularity indices, such as the ones at www.tiobe.com/tiobe-index/ or pypl.github.io/PYPL.html, you’ll find that JavaScript is consistently in the top 10 most popular languages. From a more academic point of view, the language is sort of a mixture, borrowing features from several different languages. Several libraries helped the growth of the language by providing features that weren’t so easily available, such as classes and inheritance (today’s version of the language does support classes, but that was not the case not too long ago), that otherwise had to be achieved by doing some prototype tricks.

			What’s in a name?

			The name JavaScript was chosen to take advantage of the popularity of Java – just as a marketing ploy! Its first name was Mocha, then, LiveScript, and only then JavaScript.

			JavaScript has grown to be incredibly powerful. But, as with all power tools, it gives you a way to not only produce great solutions but also to do great harm. FP could be considered as a way to reduce or leave aside some of the worst parts of the language and focus on working in a safer, better way; however, due to the immense amount of existing JavaScript code, you cannot expect it to facilitate large reworkings of the language that would cause most sites to fail. You must learn to live with the good and the bad, and simply avoid the latter part.

			In addition, the language has a broad variety of available libraries that complete or extend the language in many ways. In this book, we’ll be focusing on using JavaScript on its own, but we will make references to existing, available code.

			If we ask whether JavaScript is functional, the answer will be, once again, “sorta”. It can be seen as functional because of several features, such as first-class functions, anonymous functions, recursion, and closures – we’ll get back to this later. On the other hand, it also has plenty of non-FP aspects, such as side effects (impurity), mutable objects, and practical limits to recursion. So, when programming in a functional way, we’ll be taking advantage of all the relevant, appropriate language features, and we’ll try to minimize the problems caused by the more conventional parts of the language. In this sense, JavaScript will or won’t be functional, depending on your programming style!

			If you want to use FP, you should decide which language to use; however, opting for fully functional languages may not be so wise. Today, developing code isn’t as simple as just using a language; you will surely require frameworks, libraries, and other sundry tools. If we can take advantage of all the provided tools but at the same time introduce FP ways of working in our code, we’ll be getting the best of both worlds, regardless of whether JavaScript is functional!

			Going functional with JavaScript

			JavaScript has evolved through the years, and the version we’ll be using is (informally) called JS13, and (formally) ECMAScript 2022, usually shortened to ES2022 or ES13; this version was finalized in June 2022. The previous versions were as follows:

			
					ECMAScript 1, June 1997

					ECMAScript 2, June 1998, which was the same as the previous version, ECMAScript 3, December 1999, with several new functionalities

					ECMAScript 5, December 2009 (and no, there never was an ECMAScript 4, because it was abandoned)

					ECMAScript 5.1, June 2011

					ECMAScript 6 (or ES6; later renamed ES2015), June 2015 ECMAScript 7 (also ES7, or ES2016), June 2016 ECMAScript 8 (ES8 or ES2017), June 2017

					ECMAScript 9 (ES9 or ES2018), June 2018

					ECMAScript 10 (ES10 or ES2019), June 2019

					ECMAScript 11 (ES11 or ES2020), June 2020

					ECMAScript 12 (ES12 or ES2021), June 2021

			

			What’s ECMA?

			ECMA originally stood for European Computer Manufacturers Association, but nowadays, the name isn’t considered an acronym anymore. The organization is responsible for standards other than JavaScript as well, including JSON, C#, Dart, and others. For more details, go to its site at www.ecma-international.org/.

			You can read the standard language specification at www.ecma-international.org/publications-and-standards/standards/ecma-262/. Whenever we refer to JavaScript in the text without further specification, ES13 (ES2022) is what is being referred to; however, in terms of the language features that are used in this book, if you were just to use ES2015, then you’d mostly have no problems with this book.

			No browsers fully implement ES13; most provide an older version, JavaScript 5 (from 2009), with an (always growing) smattering of features from ES6 up to ES13. This will prove to be a problem, but fortunately, a solvable one; we’ll get to this shortly. We’ll be using ES13 throughout this book.

			Differences, differences…

			There are only a few differences between ES2016 and ES2015, such as the Array.prototype.includes method and the exponentiation operator, **. There are more differences between ES2017 and ES2016 – such as async and await, some string padding functions, and more – but they won’t impact our code. We will also be looking at alternatives for even more modern additions, such as flatMap(), in later chapters.

			As we are going to work with JavaScript, let’s start by considering its most important features that pertain to our FP goals.

			Key features of JavaScript

			JavaScript isn’t a purely functional language, but it has all the features that we need for it to work as if it were. The main features of the language that we will be using are as follows:

			
					Functions as first-class objects

					Recursion

					Closures

					Arrow functions

					Spread

			

			Let’s see some examples of each one and find out why they will be useful to us. Keep in mind, though, that there are more features of JavaScript that we will be using; the upcoming sections just highlight the most important features in terms of what we will be using for FP.

			Functions as first-class objects

			Saying that functions are first-class objects (also called first-class entities or first-class citizens) means that you can do everything with functions that you can do with other objects. For example, you can store a function in a variable, you can pass it to a function, you can print it out, and so on. This is really the key to doing FP; we will often be passing functions as parameters (to other functions) or returning a function as the result of a function call.

			If you have been doing async Ajax calls, then you have already been using this feature: a callback is a function that will be called after the Ajax call finishes and is passed as a parameter. Using jQuery, you could write something like the following:

			
$.get("some/url", someData, function(result, status) {
  // check status, and do something
  // with the result
});

			The $.get() function receives a callback function as a parameter and calls it after the result is obtained.

			The way to go

			This is better solved, in a more modern way, by using promises or async/await, but for the sake of our example, the old way is enough. We’ll be getting back to promises, though, in Chapter 12, Building Better Containers, when we discuss monads; in particular, see the Unexpected monads – promises section.

			Since functions can be stored in variables, you could also write something like the following. Pay attention to how we use the doSomething variable in the $.get(...) call:

			
var doSomething = function(result, status) {
  // check status, and do something
  // with the result
};
$.get("some/url", someData, doSomething);

			We’ll be seeing more examples of this in Chapter 6, Producing Functions.

			Recursion

			Recursion is the most potent tool for developing algorithms and a great aid for solving large classes of problems. The idea is that a function can, at a certain point, call itself and, when that call is done, continue working with whatever result it has received. This is usually quite helpful for certain classes of problems or definitions. The most often quoted example is the factorial function (the factorial of n is written as n!), as defined for nonnegative integer values:

			
					If n is 0, then n! = 1

					If n is greater than 0, then n! = n * (n-1)!

			

			Arranging things

			The value of n! is the number of ways that you can arrange n different elements in a row. For example, if you want to place five books in line, you can pick any of the five for the first place, and then order the other four in every possible way, so 5! = 5*4!. To order those four, you can pick any of them for the first place, and then order the other three in every way, so 4! = 4*3!. If you continue to work on this example, you’ll end up with 5! = 5*4*3*2*1=120, and in general, n! is the product of all numbers up to n.

			This can be immediately turned into code:

			
// factorial.js
function fact(n) {
  if (n === 0) {
    return 1;
  } else {
    return n * fact(n - 1);
  }
}
console.log(fact(5)); // 120

			Recursion will be a great aid for designing algorithms. By using recursion, you could do without any while or for loops – not that we want to do that, but it’s interesting that we can! We’ll be devoting the entirety of Chapter 9, Designing Functions, to designing algorithms and writing functions recursively.

			Closures

			Closures are a way to implement data hiding (with private variables), which leads to modules and other nice features. The key concept of closures is that when you define a function, it can refer to not only its local variables but also to everything outside of the context of the function. We can write a counting function that will keep its count using a closure:

			
// closure.js
function newCounter() {
  let count = 0;
  return function () {
    count++;
    return count;
  };
}
const nc = newCounter();
console.log(nc()); // 1
console.log(nc()); // 2
console.log(nc()); // 3

			Even after newCounter() exits, the inner function still has access to count, but that variable is not accessible to any other parts of your code.

			This isn’t a very good example of FP – a function (nc(), in this case) isn’t expected to return different results when called with the same parameters!

			We’ll find several uses for closures, such as memoization (see Chapter 4, Behaving Properly, and Chapter 6, Producing Functions) and the module pattern (see Chapter 3, Starting Out with Functions, and Chapter 11, Implementing Design Patterns), among others.

			Arrow functions

			Arrow functions are just a shorter, more succinct way of creating an (unnamed) function. Arrow functions can be used almost everywhere a classical function can be used, except that they cannot be used as constructors. The syntax is either (parameter, anotherparameter, ...etc) => { statements } or (parameter, anotherparameter, ...etc) => expression. The first allows you to write as much code as you want, while the second is short for { return expression }. 

			We could rewrite our earlier Ajax example as follows:

			
$.get("some/url", data, (result, status) => {
// check status, and do something
// with the result
});

			A new version of the factorial code could be like the following code – the only difference is the usage of an arrow function:

			
// factorial.js, continued...
const fact2 = (n) => {
  if (n === 0) {
    return 1;
  } else {
    return n * fact2(n – 1);
  }
};

			Functions, anonymous

			Arrow functions are usually called anonymous functions because of their lack of a name. If you need to refer to an arrow function, you’ll have to assign it to a variable or object attribute, as we did here; otherwise, you won’t be able to use it. We’ll learn more about this in the Arrow functions – the modern way section of Chapter 3, Starting Out with Functions.

			You would probably write fact2() as a one-liner – can you see the equivalence to our earlier code? Using a ternary operator instead of if is quite common:

			
// continued...
const fact3 = (n) => (n === 0 ? 1 : n * fact3(n - 1));

			With this shorter form, you don’t have to write return – it’s implied.

			Functions – the lambda way

			In lambda calculus, a function such as x => 2*x would be represented as λx.2*x. Although there are syntactical differences, the definitions are analogous. Functions with more parameters are a bit more complicated; (x,y)=>x+y would be expressed as λx.λy.x+y. We’ll learn more about this in the Of lambdas and functions section of Chapter 3, Starting Out with Functions, and in the Currying section of Chapter 7, Transforming Functions.

			There’s one other small thing to bear in mind: when the arrow function has a single parameter, you can omit the parentheses around it. I usually prefer leaving them, but I’ve applied a JavaScript beautifier, Prettier, to the code, which removes them. It’s really up to you whether to include them or not! (For more on this tool, check out github.com/prettier/prettier.) By the way, my options for formatting were --print-width 75 -- tab-width 2 --no-bracket-spacing.

			Spread

			The spread ... operator (see developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Spread_operator) lets you expand an expression in places where you would otherwise require multiple arguments, elements, or variables. For example, you can replace arguments in a function call, as shown in the following code:

			
// sum3.js
function sum3(a, b, c) {
  return a + b + c;
}
const x  = [1, 2, 3];
const y = sum3(...x); // equivalent to sum3(1,2,3)

			You can also create or join arrays, as shown in the following code:

			
// continued...
const f = [1, 2, 3];
const g = [4, ...f, 5]; // [4,1,2,3,5]
const h = [...f, ...g]; // [1,2,3,4,1,2,3,5]

			It works with objects too:

			
// continued…
const p = { some: 3, data: 5 };
const q = { more: 8, ...p }; // { more:8, some:3, data:5 }

			You can also use it to work with functions that expect separate parameters instead of an array. Common examples of this would be Math.min() and Math.max():

			
// continued...
const numbers = [2, 2, 9, 6, 0, 1, 2, 4, 5, 6];
const minA = Math.min(...numbers); // 0
const maxArray = (arr) => Math.max(...arr);
const maxA = maxArray(numbers); // 9

			We are specifying that maxArray() shall receive an array of numbers as an argument.

			You can also write the following equality since the .apply() method requires an array of arguments, but .call() expects individual arguments, which you can get by spreading:

			
someFn.apply(thisArg, arr) === someFn.call(thisArg, ...arr)

			A mnemonic for arguments

			If you have problems remembering what arguments are required by .apply() and .call(), this mnemonic may help: A is for Array, and C is for Comma. See developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/apply and developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/call for more information.

			Using the spread operator helps with writing shorter, more concise code, and we will be taking advantage of it. We have seen all of the most important JavaScript features that we will be using. Let’s round off this chapter by looking at some tools that we’ll be working with.

			How do we work with JavaScript?

			This is all well and good, but as we mentioned before, it so happens that the JavaScript version available almost everywhere isn’t ES13, but rather the earlier JS5. An exception to this is Node.js. It is based on Chrome’s V8 high-performance JavaScript engine, which already has several ES13 features available. Nonetheless, at the time of writing, ES13 coverage isn’t 100% complete, and there are features that you will miss. (Check out nodejs.org/en/docs/es6/ for more on Node.js and v8.) This is surely changing since Internet Explorer is fading away (support for it ended in June 2022), having been replaced with Microsoft’s Edge browser, which shares Chrome’s engine. In any case, we must still deal with older, less powerful engines.

			If you want to be sure of your choices before using any given new feature, check out the compatibility table at kangax.github.io/compat-table/es6/ (see Figure 1.1):

			
				
					[image: Figure 1.1 – The latest JavaScript features may not be widely and fully supported, so you’ll have to check before using them]
				

			

			Figure 1.1 – The latest JavaScript features may not be widely and fully supported, so you’ll have to check before using them

			For Node.js specifically, check out node.green/, which takes its data from the Kangax table; see Figure 1.2:

			
				
					[image: Figure 1.2 – Compatibility table specifically for Node.js]
				

			

			Figure 1.2 – Compatibility table specifically for Node.js

			So, what can you do if you want to code using the latest version, but the available one is an earlier, poorer one? Or what happens if most of your users are using older browsers, which don’t support the fancy features you’re keen on using? Let’s see some solutions for this.

			Using transpilers

			To get out of this availability and compatibility problem, there are a couple of transpilers that you can use. Transpilers take your original ES13 code, which might use the most modern JavaScript features, and transforms it into equivalent JS5 code. It’s a source-to-source transformation, instead of source-to-object code that would be used in compilation. You can code using advanced ES13 features, but the user’s browsers will receive JS5 code. A transpiler will also let you keep up with upcoming versions of the language, despite the time needed by browsers to adopt new standards across desktop and mobile devices.

			On word origins

			If you wonder where the word transpiler came from, it is a portmanteau of translate and compiler. There are many such combinations in technological speak: email (electronic and mail), emoticon (emotion and icon), malware (malicious and software), alphanumeric (alphabetic and numeric), and many more.

			Currently, the most common transpiler for JavaScript is Babel (babeljs.io/); years ago, we also had Traceur (github.com/google/traceur-compiler), but that’s not maintained any longer. Two other possibilities are SWC (swc.rs/) and Sucrase (sucrase.io/); in particular, the latter boasts a much faster transpilation speed.

			With tools such as npm or webpack, it’s fairly easy to configure things so that your code will get automatically transpiled and provided to end users. You can also carry out transpilation online; see Figure 1.3 for an example of Babel’s online environment:

			
				
					[image: Figure 1.3 – The Babel transpiler converts ES13 code into compatible JS5 code]
				

			

			Figure 1.3 – The Babel transpiler converts ES13 code into compatible JS5 code

			There are specific ways of installing these tools for your programming environment, and usually, you won’t have to do it by hand; check out www.typescriptlang.org/download for more information.

			Working online

			There are some more online tools that you can use to test out your JavaScript code. Check out JSFiddle (jsfiddle.net/), CodePen (codepen.io/), and JSBin (jsbin.com/), among others. You can see an example of CodePen in Figure 1.4:

			
				
					[image: Figure 1.4 – CodePen lets you try out modern JavaScript code (plus HTML and CSS) without requiring any other tools]
				

			

			Figure 1.4 – CodePen lets you try out modern JavaScript code (plus HTML and CSS) without requiring any other tools

			Using these tools provides a very quick way to try out code or do small experiments – and I can truly vouch for this since I’ve tested much of the code in this book in this way!

			A step further – TypeScript

			In the previous editions of this book, we went with straight JavaScript. Still, in the years since, Microsoft’s TypeScript (www.typescriptlang.org/), a superset of the language that is itself compiled into JavaScript, has gained a lot of following, is now standard with many frameworks, and you can use both for frontend and backend code.

			The main advantage of TypeScript is the ability to add (optional) static type checks to JavaScript, which helps detect programming errors at compile time. But beware: as with Babel, not all of ES13 will be available. However, it’s entirely sufficient for our purposes, allowing us to be more careful with coding.

			Most statistics about programming language popularity rank TypeScript in the top 10; Figure 1.5 (from spectrum.ieee.org/top-programming-languages-2022) confirms this:

			
				
					[image: Figure 1.5 – Programming language popularity in 2022 according to IEEE Spectrum]
				

			

			Figure 1.5 – Programming language popularity in 2022 according to IEEE Spectrum

			Going to the source

			Despite using TypeScript, in the rest of this book, we’ll keep referring to JavaScript, which is, after all, the language that is executed.

			You can also perform type checks by using Facebook’s Flow (flow.org/). However, there’s more support for using external libraries with TypeScript than with Flow. Also, the tooling and installation for development are simpler for TypeScript.

			Ignoring types?

			There’s a proposal (that may go nowhere – be warned!) to allow JavaScript to process (by ignoring) types, so you would be able to run TypeScript directly, with no preprocessing or transpiling of any kind. For more on this, go to tc39.es/proposal-type-annotations/.

			It should be made clear that TypeScript is more than just a type checker; it’s a language on its own (OK, it's very similar to JavaScript, but still…). For example, it adds interfaces, decorators, enumerated types, and more to the language, so you can use such features that are typical in other languages. In any case, if you don’t care for TypeScript, you can just ignore the types-related syntax, and then you’ll have plain JavaScript.

			TypeScript is available via online tools, and you can also test it online on their playground (www.typescriptlang.org/play/). You can set options to be more or less strict with data type checks, and you can also run your code on the spot; see Figure 1.6 for more details:

			
				
					[image: Figure 1.6 – You can check and transpile your code online, on TypeScript’s website]
				

			

			Figure 1.6 – You can check and transpile your code online, on TypeScript’s website

			Later in this book, in the Specifying data types section of Chapter 12, Building Better Containers, we will consider a formal type system for FP languages (not just JavaScript) and we’ll find out that our TypeScript work has allayed most difficulties.

			A final admission: at times, TypeScript may seem more of a hindrance than a help when you have to deal with complex data typing expressions. (Updating all the code in this book to TypeScript sometimes led me to doubt my sanity in using it!) However, in the long run, code written in TypeScript is less prone to bugs, because its static type checks detect and avoid many common errors.

			Testing

			We will also touch on testing, which is, after all, one of FP’s main advantages. In previous editions of this book, we went with Jasmine (jasmine.github.io/), but now, we’ve changed to Facebook’s Jest (jestjs.io/) – which is built on top of Jasmine!

			Jest has grown in popularity due to its ease of use and broad applicability: you can test frontend and backend code equally well, with little configuration. (See jestjs.io/docs/getting-started for its installation and configuration.) We won’t be writing tests for every single piece of code in this book, but while following the ideas of test-driven development (TDD), we’ll often do so.

			Summary

			In this chapter, we have seen the basics of FP, a bit of its history, its advantages (and also some possible disadvantages, to be fair), why we can apply it in JavaScript (which isn’t usually considered a functional language), and what tools we’ll need to go through the rest of this book.

			In Chapter 2, Thinking Functionally, we’ll go over an example of a simple problem, look at it in common ways, and end by solving it in a functional manner and analyzing the advantages of our method.

			Questions

			1.1 TypeScript, please! Let’s keep our promise: convert the JavaScript examples provided in this chapter into TypeScript.

			1.2 Classes as first-class objects: We learned that functions are first-class objects, but did you know that classes also are? (Though, of course, speaking of classes as objects does sound weird.) Look at the following example and see what makes it tick! Be careful: there’s some purposefully weird code in it:

			
const makeSaluteClass = (term) =>
  class {
    constructor(x) {
      this.x = x;
    }
    salute(y) {
      console.log(`${this.x} says "${term}" to ${y}`);
    }
  };
const Spanish = makeSaluteClass("HOLA");
new Spanish("ALFA").salute("BETA");
// ALFA says "HOLA" to BETA
new (makeSaluteClass("HELLO"))("GAMMA").salute("DELTA");
// GAMMA says "HELLO" to DELTA
const fullSalute = (c, x, y) => new c(x).salute(y);
const French = makeSaluteClass("BON JOUR");
fullSalute(French, "EPSILON", "ZETA");
// EPSILON says "BON JOUR" to ZETA

			1.3 Climbing factorial: Our implementation of a factorial starts by multiplying by n, then by n-1, then n-2, and so on in what we could call a downward fashion. Can you write a new version of the factorial function that will loop upwards?

			1.4 Factorial errors: Factorials, as we defined them, should only be calculated for non-negative integers. However, the function that we wrote in the Recursion section doesn’t check whether its argument is valid. Can you add the necessary checks? Try to avoid repeated, redundant tests!

			1.5 Factorial testing: Write complete tests for the function in the previous question. Try to achieve 100% coverage.

			1.6 Code squeezing: Not that it’s a goal in itself, but by using arrow functions and some other JavaScript features, you can shorten newCounter() to half its length. Can you see how?

			1.7 What type is it?: What is the type of the newCounter() function?

		

	


		
			2

			Thinking Functionally – A First Example

			In Chapter 1, Becoming Functional, we went over what FP is, mentioned some advantages of applying it, and listed some tools we’d need in JavaScript. For now, let’s leave the theory behind and start by considering a simple problem and how to solve it in a functional way.

			In this chapter, we will do the following:

			
					Look at a simple, e-commerce-related problem

					Consider several usual ways to solve it (with their associated defects)

					Find a way to solve the problem by looking at it functionally

					Devise a higher-order solution that can be applied to other problems

					Work out how to carry out unit testing for functional solutions

			

			In future chapters, we’ll be returning to some of the topics listed here, so we won’t be going into too much detail. We’ll just show how FP can give a different outlook on our problem and leave further details for later.

			After working through this chapter, you will have had a first look at a common problem and at a way of solving it by thinking functionally, as a prelude for the rest of this book.

			Our problem – doing something only once

			Let’s consider a simple but common situation. You have developed an e-commerce site; the user can fill their shopping cart, and in the end, they must click on a Bill me button so that their credit card will be charged. However, the user shouldn’t click twice (or more), or they will be billed several times.

			The HTML part of your application might have something like this somewhere:

			
<button id="billButton"
    onclick="billTheUser(some, sales, data)">Bill me
      </button>

			And, among the scripts, you’d have something similar to the following code:

			
function billTheUser(some, sales, data) {
  window.alert("Billing the user...");
  // actually bill the user
}

			A bad example

			Assigning the events handler directly in HTML, the way I did it, isn’t recommended. Instead, unobtrusively, you should set the handler through code. So, do as I say, not as I do!

			This is a bare-bones explanation of the web page problem, but it’s enough for our purposes. Now, let’s get to thinking about ways of avoiding repeated clicks on that button. How can we manage to prevent the user from clicking more than once? That’s an interesting problem, with several possible solutions – let’s start by looking at bad ones!

			How many ways can you think of to solve our problem? Let’s go over several solutions and analyze their quality.

			Solution 1 – hoping for the best!

			How can we solve the problem? The first solution may seem like a joke: do nothing, tell the user not to click twice, and hope for the best! Your page might look like Figure 2.1:

			
				
					[image: Figure 2.1 – An actual screenshot of a page, just warning you against clicking more than once]
				

			

			Figure 2.1 – An actual screenshot of a page, just warning you against clicking more than once

			This is a way to weasel out of the problem; I’ve seen several websites that just warn the user about the risks of clicking more than once and do nothing to prevent the situation. So, the user got billed twice? We warned them... it’s their fault!

			Your solution might simply look like the following code:

			
<button
  id="billButton"
  onclick="billTheUser(some, sales, data)">Bill me
</button>
<b>WARNING: PRESS ONLY ONCE, DO NOT PRESS AGAIN!!</b>

			Okay, this isn’t an actual solution; let’s move on to more serious proposals.

			Solution 2 – using a global flag

			The solution most people would probably think of first is using some global variable to record whether the user has already clicked on the button. You define a flag named something like clicked, initialized with false. When the user clicks on the button, if clicked is false, you change it to true and execute the function; otherwise, you do nothing at all. This can be seen in the following code:

			
let clicked = false;
.
.
.
function billTheUser(some, sales, data) {
  if (!clicked) {
    clicked = true;
    window.alert("Billing the user...");
    // actually bill the user
  }
}

			This works, but it has several problems that must be addressed:

			
					You are using a global variable, and you could change its value by accident. Global variables aren’t a good idea, in JavaScript or other languages. You must also remember to re-initialize it to false when the user starts buying again. If you don’t, the user won’t be able to make a second purchase because paying will become impossible.

					You will have difficulties testing this code because it depends on external things (that is, the clicked variable).

			

			So, this isn’t a very good solution. Let’s keep thinking!

			Solution 3 – removing the handler

			We may go for a lateral kind of solution, and instead of having the function avoid repeated clicks, we might just remove the possibility of clicking altogether. The following code does just that; the first thing that billTheUser() does is remove the onclick handler from the button, so no further calls will be possible:

			
function billTheUser(some, sales, data) {
  document
    .getElementById("billButton")
    .onclick = null;
  window.alert("Billing the user...");
  // actually bill the user
}

			This solution also has some problems:

			
					The code is tightly coupled to the button, so you won’t be able to reuse it elsewhere

					You must remember to reset the handler; otherwise, the user won’t be able to make a second purchase

					Testing will also be more complex because you’ll have to provide some DOM elements

			

			We can enhance this solution a bit and avoid coupling the function to the button by providing the latter’s ID as an extra argument in the call. (This idea can also be applied to some of the further solutions that we’ll see.) The HTML part would be as follows; note the extra argument to billTheUser():

			
<button
  id="billButton"
  onclick="billTheUser('billButton', some, sales, data)"
>Bill me
</button>

			We also have to change the called function so that it will use the received buttonId value to access the corresponding button:

			
function billTheUser(buttonId, some, sales, data) {
  document.getElementById(buttonId).onclick = null;
  window.alert("Billing the user...");
  // actually bill the user
}

			This solution is somewhat better. But, in essence, we are still using a global element – not a variable, but the onclick value. So, despite the enhancement, this isn’t a very good solution either. Let’s move on.

			Solution 4 – changing the handler

			A variant to the previous solution would be not to remove the click function, but to assign a new one instead. We are using functions as first-class objects here when we assign the alreadyBilled() function to the click event. The function warning the user that they have already clicked could look something like this:

			
function alreadyBilled() {
  window.alert("Your billing process is running; don't
    click, please.");
}

			Our billTheUser() function would then be like the following code – note how instead of assigning null to the onclick handler as in the previous section, now, the alreadyBilled() function is assigned:

			
function billTheUser(some, sales, data) {
  document
    .getElementById("billButton")
    .onclick = alreadyBilled;
  window.alert("Billing the user...");
  // actually bill the user
}

			There’s a good point to this solution; if the user clicks a second time, they’ll get a warning not to do that, but they won’t be billed again. (From the point of view of user experience, it’s better.) However, this solution still has the very same objections as the previous one (code coupled to the button, needing to reset the handler, and harder testing), so we don’t consider it quite good anyway.

			Solution 5 – disabling the button

			A similar idea here is instead of removing the event handler, we can disable the button so the user won’t be able to click. You might have a function such as the one shown in the following code, which does exactly that by setting the disabled attribute of the button:

			
function billTheUser(some, sales, data) {
  document
    .getElementById("billButton")
    .setAttribute("disabled", "true");
  window.alert("Billing the user...");
  // actually bill the user
}

			This also works, but we still have objections as with the previous solutions (coupling the code to the button, needing to re-enable the button, and harder testing), so we don’t like this solution either.

			Solution 6 – redefining the handler

			Another idea: instead of changing anything in the button, let’s have the event handler change itself. The trick is in the second line of the following code; by assigning a new value to the billTheUser variable, we are dynamically changing what the function does! The first time you call the function, it will do its thing, but it will also change itself out of existence by giving its name to a new function:

			
function billTheUser(some, sales, data) {
  billTheUser = function() {};
  window.alert("Billing the user...");
  // actually bill the user
}

			There’s a special trick in the solution. Functions are global, so the billTheUser=... line changes the function’s inner workings. From that point on, billTheUser will be the new (null) function. This solution is still hard to test. Even worse, how would you restore the functionality of billTheUser, setting it back to its original objective?

			Solution 7 – using a local flag

			We can go back to the idea of using a flag, but instead of making it global (which was our main objection to the second solution), we can use an Immediately Invoked Function Expression (IIFE), which we’ll see more about in Chapter 3, Starting Out with Functions, and Chapter 11, Implementing Design Patterns. With this, we can use a closure, so clicked will be local to the function and not visible anywhere else:

			
var billTheUser = (clicked => {
  return (some, sales, data) => {
    if (!clicked) {
      clicked = true;
      window.alert("Billing the user...");
      // actually bill the user
    }
  };
})(false);

			This solution is along the lines of the global variable solution, but using a private, local variable is an enhancement. (Note how clicked gets its initial value from the call at the end.) The only drawback we could find is that we'll have to rework every function that needs to be called only once to work in this fashion (and, as we’ll see in the following section, our FP solution is similar to it in some ways). Okay, it’s not too hard to do, but don’t forget the Don’t Repeat Yourself (DRY), usual advice!

			We have now gone through multiple ways of solving our “do something only once” problem – but as we’ve seen, they were not very good! Let’s think about the problem functionally so that we get a more general solution.

			A functional solution to our problem

			Let’s try to be more general; after all, requiring that some function or other be executed only once isn’t that outlandish, and may be required elsewhere! Let’s lay down some principles:

			
					The original function (the one that may be called only once) should do whatever it is expected to do and nothing else

					We don’t want to modify the original function in any way

					We need a new function that will call the original one only once

					We want a general solution that we can apply to any number of original functions

			

			A SOLID base

			The first principle listed previously is the single responsibility principle (the S in the SOLID acronym), which states that every function should be responsible for a single functionality. For more on SOLID, check the article by Uncle Bob (Robert C. Martin, who wrote the five principles) at butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod.

			Can we do it? Yes, and we’ll write a higher-order function, which we’ll be able to apply to any function, to produce a new function that will work only once. Let’s see how! We will introduce higher-order functions in Chapter 6, Producing Functions. There, we’ll go about testing our functional solution, as well as making some enhancements to it.

			A higher-order solution

			If we don’t want to modify the original function, we can create a higher-order function, which we’ll (inspiredly!) name once(). This function will receive a function as a parameter and return a new function, which will work only once. (As we mentioned previously, we’ll be seeing more of higher-order functions later; in particular, see the Doing things once, revisited section of Chapter 6, Producing Functions).

			Many solutions

			Underscore and Lodash already have a similar function, invoked as _.once(). Ramda also provides R.once(), and most FP libraries include similar functionality, so you wouldn’t have to program it on your own.

			Our once() function may seem imposing at first, but as you get accustomed to working in an FP fashion, you’ll get used to this sort of code and find it to be quite understable:

			
// once.ts
const once = <FNType extends (...args: any[]) => any>(
  fn: FNType
) => {
  let done = false;
  return ((...args: Parameters<FNType>) => {
    if (!done) {
      done = true;
      return fn(...args);
    }
  }) as FNType;
};

			Let’s go over some of the finer points of this function:

			
					Our once() function receives a function (fn) as its parameter and returns a new function, of the same type. (We’ll discuss this typing in more detail shortly.)

					We define an internal, private done variable, by taking advantage of closure, as in Solution 7. We opted not to call it clicked (as we did previously) because you don’t necessarily need to click on a button to call the function; we went for a more general term. Each time you apply once() to some function, a new, distinct done variable will be created and will be accessible only from the returned function.

					The return statement shows that once() will return a function, with the same type of parameters as the original fn() one. We are using the spread syntax we saw in Chapter 1, Becoming Functional. With older versions of JavaScript, you’d have to work with the arguments object; see developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/arguments for more on that. The modern way is simpler and shorter!

					We assign done = true before calling fn(), just in case that function throws an exception. Of course, if you don’t want to disable the function unless it has successfully ended, you could move the assignment below the fn() call. (See Question 2.4 in the Questions section for another take on this.)

					After the setting is done, we finally call the original function. Note the use of the spread operator to pass along whatever parameters the original fn() had.

			

			Typing for once() may be obscure. We have to specify that the type of the input function and the type of once() are the same, and that’s the reason for defining FNType. Figure 2.2 shows that TypeScript correctly understands this (Check the answer to Question 1.7 at the end of this book for another example of this):

			
				
					[image: Figure 2.2 – Hovering shows that the type of once()’s output matches the type of its input]
				

			

			Figure 2.2 – Hovering shows that the type of once()’s output matches the type of its input

			If you’re not still used to TypeScript, let’s see the pure JavaScript equivalent, which is the same code but for typing:

			
// once_JS.js
const once = (fn) => {
  let done = false;
  return (...args) => {
    if (!done) {
      done = true;
      return fn(...args);
    }
  };
};

			So, how would we use it? We first create a new version of the billing function.

			
const billOnce = once(billTheUser);

			Then, we rewrite the onclick method as follows:

			
<button id="billButton"
  onclick="billOnce(some, sales, data)">Bill me
</button>;

			When the user clicks on the button, the function that gets called with the (some, sales, data) argument isn’t the original billTheUser() but rather the result of having applied once() to it. The result of that is a function that can be called only a single time.

			You can’t always get what you want!

			Note that our once() function uses functions such as first-class objects, arrow functions, closures, and the spread operator. Back in Chapter 1, Becoming Functional, we said we’d be needing those, so we’re keeping our word! All we are missing from that chapter is recursion, but as the Rolling Stones sang, You Can’t Always Get What You Want!

			We now have a functional way of getting a function to do its thing only once, but how would we test it? Let’s get into that topic now.

			Testing the solution manually

			We can run a simple test. Let’s write a squeak() function that will, appropriately, squeak when called! The code is simple:

			
// once.manual.ts
const squeak = a => console.log(a, " squeak!!");
squeak("original"); // "original squeak!!"
squeak("original"); // "original squeak!!"
squeak("original"); // "original squeak!!"

			If we apply once() to it, we get a new function that will squeak only once. See the highlighted line in the following code:

			
// continued...
const squeakOnce = once(squeak);
squeakOnce("only once"); // "only once squeak!!" squeakOnce("only once"); // no output
squeakOnce("only once"); // no output

			The previous steps showed us how we could test our once() function by hand, but our method is not exactly ideal. In the next section, we’ll see why and how to do better.

			Testing the solution automatically

			Running tests by hand isn’t suitable: it gets tiresome and boring, and it leads, after a while, to not running the tests any longer. Let’s do better and write some automatic tests with Jest:

			
// once.test.ts
import once } from "./once";
describe("once", () => {
  it("without 'once', a function always runs", () => {
    const myFn = jest.fn();
    myFn();
    myFn();
    myFn();
    expect(myFn).toHaveBeenCalledTimes(3);
  });
  it("with 'once', a function runs one time", () => {
    const myFn = jest.fn();
    const onceFn = jest.fn(once(myFn));
    onceFn();
    onceFn();
    onceFn();
    expect(onceFn).toHaveBeenCalledTimes(3);
    expect(myFn).toHaveBeenCalledTimes(1);
  });
});

			There are several points to note here:

			
					To spy on a function (for instance, to count how many times it was called), we need to pass it as an argument to jest.fn(); we can apply tests to the result, which works exactly like the original function, but can be spied on.

					When you spy on a function, Jest intercepts your calls and registers that the function was called, with which arguments, and how many times it was called.

					The first test only checks that if we call the function several times, it gets called that number of times. This is trivial, but we’d be doing something wrong if that didn’t happen!

					In the second test, we apply once() to a (dummy) myFn() function, and we call the result (onceFn()) several times. We then check that myFn() was called only once, though onceFn() was called three times.

			

			We can see the results in Figure 2.3:

			
				
					[image: Figure 2.3 – Running automatic tests on our function with Jest]
				

			

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		




















































	

OEBPS/Fonts/MinionPro-Bold.otf


OEBPS/image/Figure_1.6_B19301.jpg
TypeScript: TS Playground - Ar X | 4

4 b C QO & htps//mwww.typescriptlang.org/play?targe
TypeScript  Download Docs

Playground TS Config ~  Examples ~  What's New ~  Help ~ Settings
v484 - Run Export~ Share - JS DTS Erors Logs Plugins

1 class Greeter { "use strict";

2 greeting: string; ) var Greeter = /+* @class */ (function () {

3 consFructar(fessaga: string) { function Greeter(message) {

u | this.greeting = message; . .

b 3 this.greeting = message;

6 greet() { }

T | return ‘Hello, ${this.greeting}'; Greeter.prototype.greet = function () {

8 } return "Hello, ".concat(this.greeting);

% o Y

19 return Greeter;

11  let greeter = new Greeter("world"); ’

o 10

13 let button = document.createElement("button"); var greeter = new Greeter("world".

14 button.textContent = "Say hello"; var button = document . createElement("button”

15  button.onclick = () => alert(greeter.greet()); button. textContent = "Say hello";

16 N i

N . button.onclick = function () { return alert(greeter.greet()); };
i;’ SIS body .appendChil d button); docunent . body . appendChild(button);
4






OEBPS/image/Figure_2.3_B19301.jpg
JZES] codeForChapters/chapter@2/once. test . ts
‘once

7 without ‘once', a function always runs (2 ms)
/ with ‘once', a function runs one time (1 ms)

File | % Stmts | % Branch | % Funcs

e
% Lines | Uncovered Line #s

AU rites | 100 | 100 | 108
once.ts | 100 | 100 | 108

Test Suites: 1 passed, 1 total

Tests: 2 passed, 2 total
snapshots: 0 total
Time: 1.138 s, estimated 3 s

Ran all test suites matching /once.test.ts/i.





OEBPS/image/Figure_1.3_B19301.jpg
Z Babel - The compiler fornext = X = 4 v

0b%20118build=8buil.. | § # @ =

2011%2C%20n0t%20ie,

q C [ @& hupss/babeljs.io/repl#?browser

Donate Team GitHub

Docs ~ Setup Videos Blog Q Search

1 const 5 1 "use strict";

B Evaluate

2 if (n = 2
W LinoV E return 1; 3 var = function (n) {
B Prettify 4 }else { if ( = 0) {
W File Size 5 return n * fact2(n - 1); return 1;

® Time Trav

a
5

6 }else {
7 return n * fact2(n - 1);
8

&
st SN = 9k
©?1:n* fact3(n - 1)); 10
11 var function (n) {
R 12 returnn===07? 1 :n * fact3(n - 1);
W’
ie_mob 11 14

PRESETS

ENV PRESET

ASSUMPTIONS

PLUGINS





OEBPS/Fonts/MyriadPro-Semibold.otf


OEBPS/image/B19301_QR_Free_PDF.jpg





OEBPS/toc.xhtml


		

		Contents



			

						Mastering JavaScript Functional Programming



						Third Edition



						Contributors



						About the author



						About the reviewers



						Preface

					

								Who this book is for



								What this book covers



								To get the most out of this book



								Download the example code files



								Download the color images



								Conventions used



								Get in touch



								Share Your Thoughts



								Download a free PDF copy of this book



					



				



						Chapter 1: Becoming Functional – Several Questions

					

								What is functional programming?

							

										Theory versus practice



										A different way of thinking



										FP and other programming paradigms



										What FP is not



							



						



								Why use FP?

							

										What we need



										What we get



										Not all is gold



							



						



								Is JavaScript functional?

							

										JavaScript as a tool



										Going functional with JavaScript



										Key features of JavaScript



							



						



								How do we work with JavaScript?

							

										Using transpilers



										Working online



										A step further – TypeScript



										Testing



							



						



								Summary



								Questions



					



				



						Chapter 2: Thinking Functionally – A First Example

					

								Our problem – doing something only once

							

										Solution 1 – hoping for the best!



										Solution 2 – using a global flag



										Solution 3 – removing the handler



										Solution 4 – changing the handler



										Solution 5 – disabling the button



										Solution 6 – redefining the handler



										Solution 7 – using a local flag



							



						



								A functional solution to our problem

							

										A higher-order solution



										Testing the solution manually



										Testing the solution automatically



										Producing an even better solution



							



						



								Summary



								Questions



					



				



						Chapter 3: Starting Out with Functions – A Core Concept

					

								All about functions

							

										Of lambdas and functions



										Arrow functions – the modern way



										Functions as objects



							



						



								Using functions in FP ways

							

										Injection – sorting it out



										Callbacks and promises



										Continuation-passing style



										Polyfills



										Stubbing



										Immediate invocation (IIFE)



							



						



								Summary



								Questions



					



				



						Chapter 4: Behaving Properly – Pure Functions

					

								Pure functions

							

										Referential transparency



										Side effects



										Advantages of pure functions



							



						



								Impure functions

							

										Avoiding impure functions



										Is your function pure?



							



						



								Testing – pure versus impure

							

										Testing pure functions



										Testing purified functions



										Testing impure functions



							



						



								Summary



								Questions



					



				



						Chapter 5: Programming Declaratively – A Better Style

					

								Transformations

							

										Reducing an array to a value



										Applying an operation – map()



										Dealing with arrays of arrays



										More general looping



							



						



								Logical HOFs

							

										Filtering an array



										Searching an array



										Higher-level predicates – every() and some()



										Checking negatives – none()



							



						



								Working with async functions

							

										Some strange behaviors



										Async-ready looping



							



						



								Working with parallel functions

							

										Unresponsive pages



										A frontend worker



										A backend worker



										Workers, FP style



										Long-living pooled workers



							



						



								Summary



								Questions



					



				



						Chapter 6: Producing Functions – Higher-Order Functions

					

								Wrapping functions – keeping behavior

							

										Logging



										Timing functions



										Memoizing functions



							



						



								Altering a function’s behavior

							

										Doing things once, revisited



										Logically negating a function



										Inverting the results



										Arity changing



										Throttling and debouncing



							



						



								Changing functions in other ways

							

										Turning operations into functions



										Turning functions into promises



										Getting a property from an object



										Demethodizing – turning methods into functions



										Methodizing – turning functions into methods



										Finding the optimum



							



						



								Summary



								Questions



					



				



						Chapter 7: Transforming Functions – Currying and Partial Application

					

								A bit of theory



								Currying

							

										Dealing with many parameters



										Currying by hand



										Currying with bind()



							



						



								Partial application

							

										Partial application with arrow functions



										Partial application with closures



							



						



								Partial currying

							

										Partial currying with bind()



										Partial currying with closures



							



						



								Final thoughts

							

										Variable number of parameters



										Parameter order



										Being functional



							



						



								Summary



								Questions



					



				



						Chapter 8: Connecting Functions – Pipelining, Composition, and More

					

								Pipelining

							

										Piping in Unix/Linux



										Revisiting an example



										Creating pipelines



										Debugging pipelines



										Pointfree style



							



						



								Chaining and fluent interfaces

							

										An example of fluent APIs



										Chaining method calls



							



						



								Composing

							

										Some examples of composition



										Composing with higher-order functions



							



						



								Transducing

							

										Composing reducers



										Generalizing for all reducers



							



						



								Testing connected functions

							

										Testing pipelined functions



										Testing composed functions



										Testing chained functions



										Testing transduced functions



							



						



								Summary



								Questions



					



				



						Chapter 9: Designing Functions – Recursion

					

								Using recursion

							

										Thinking recursively



										Higher-order functions revisited



										Searching and backtracking



							



						



								Mutual recursion

							

										Odds and evens



										Doing arithmetic



							



						



								Recursion techniques

							

										Tail call optimization



										Continuation-passing style



										Trampolines and thunks



										Recursion elimination



							



						



								Summary



								Questions



					



				



						Chapter 10: Ensuring Purity – Immutability

					

								Going the straightforward JavaScript way

							

										Mutator functions



										Constants



										Freezing



										Cloning and mutating



										Getters and setters



										Lenses



										Prisms



							



						



								Creating persistent data structures

							

										Working with lists



										Updating objects



										A final caveat



							



						



								Summary



								Questions



					



				



						Chapter 11: Implementing Design Patterns – The Functional Way

					

								Understanding design patterns

							

										Design pattern categories



										Do we need design patterns?



							



						



								Object-oriented design patterns

							

										Facade and Adapter



										Decorator or Wrapper



										Strategy, Template, and Command



										Dependency Injection



										Observers and reactive programming



										Other patterns



							



						



								Functional design patterns



								Summary



								Questions



					



				



						Chapter 12: Building Better Containers – Functional Data Types

					

								Specifying data types

							

										Signatures for functions



										Other data type options



							



						



								Building containers

							

										Extending current data types



										Containers and functors



										Monads



							



						



								Functions as data structures

							

										Binary trees in Haskell



										Functions as binary trees



							



						



								Summary



								Questions



					



				



						Answers to Questions

					

								Chapter 1, Becoming Functional – Several Questions



								Chapter 2, Thinking Functionally – A First Example



								Chapter 3, Starting Out with Functions – A Core Concept



								Chapter 4, Behaving Properly – Pure Functions



								Chapter 5, Programming Declaratively – A Better Style



								Chapter 6, Producing Functions – Higher-Order Functions



								Chapter 7, Transforming Functions – Currying and Partial Application



								Chapter 8, Connecting Functions – Pipelining, Composition, and More



								Chapter 9, Designing Functions – Recursion



								Chapter 10, Ensuring Purity – Immutability



								Chapter 11, Implementing Design Patterns – The Functional Way



								Chapter 12, Building Better Containers – Functional Data Types



					



				



						Bibliography



						Index

					

								Why subscribe?



					



				



						Other Books You May Enjoy

					

								Packt is searching for authors like you



								Share Your Thoughts



								Download a free PDF copy of this book



					



				



			



		

		

		Landmarks



			

						Cover



						Table of Contents



						Index



			



		

	





OEBPS/Fonts/MinionPro-Regular.otf


OEBPS/Fonts/MinionPro-BoldIt.otf


OEBPS/Fonts/CourierStd-Bold.otf


OEBPS/Fonts/MinionPro-It.otf


OEBPS/Fonts/MyriadPro-Light.otf


OEBPS/Fonts/MyriadPro-Regular.otf


OEBPS/image/Figure_1.5_B19301.jpg
Python

JavaScript
R

HTHL
TypeScript
Go

PHP

Shell
Ruby
Scala
Matlab
SAS
Assenbly
Kotlin

Rust

=
S

88.58
86.99
70.22
47.37
490.48
18.92
17.97
16.99
13.06
12.86
10.12

9

&

™
N NN
B B Y e
= B
S

II Ii





OEBPS/image/Figure_1.4_B19301.jpg
New Tab @ Fibonacci numbers. x I

Q4 D C @ @& hupssicodepen.ioffkereki/pen/oNdayOEZeditors=1112 Q@ » > =
Fibonacci numbers # ,
Federico Kereki A\ 4 & Save v £3 Settings ) SV
@ HTML HE &cs HE o0 @&
const fib = (n) => {
if (n<2) {
return n;
} else {
return fib(n - 2) + fib(n - 1);
3
b
console. log("FIB(4 fib(4));
console. log("FIB(7)=' ‘ fib(7));
Console [ Clear | [ X
"FIB(4)=" 3
"FIB(7)=" 13
>
Console  Assets Comments  Shortcuts. LESS THAN A MINUTE AGO @ Delete AddtoCollection ~Fork Embed Export

Share





OEBPS/Fonts/MyriadPro-SemiboldIt.otf


OEBPS/image/Figure_2.1_B19301.jpg
Back send

CAUTION: please DO NOT click "Send" button twice, this may cause error on your order!






OEBPS/image/Figure_1.1_B19301.jpg
8 ECMAScript 2016+ compatibil X 4 v

N C [ A Notsecure | hitp://kangax.github.io/ct

mpat-table/es2016plus/ (7N )

Sort by[Enginetypes _~] Show obsolete platforms O Hvs SpiderMonkey JavaScriptCore M Chakra Other
Minor difference (1 point) » Small feature (2 points) & Medium feature (4 points)
Show unstable platforms O Large feature (8 points)
Compilers/polyfills Desktop browsers
8% % s0% S 5% T SE%  100%  100%  99%  99% B9 9% 96% 96K
Babel7 Type: FE
Current Closure ! et IE FE FE CH  Edge
Feature name = + Seript+ 102 SE15 SE15.2 SE154 SE16
browser ¥ o 202207 PSEWL shim 11| pf 04 105 06 105

2016 features

v

‘exponentiation (+*) operator K3

v
i

Array.prototype.includes K3
2016 misc

NEEN RN NN MR NN M2 M2 M N
20 0 I N I 7 7 I

generator functions can't be used with “new" K8

®

generator throw() caught by inner generator 21

(<]
strict fn w/ non:strict non-simple params i error[;;]
nested rest destructuring declarations K312~ ©
nested rest destructuring, parameters'3) °
Proxy, "enumerate" handler removed 1141 @ 2 2 2
Proxy internal calls, Array prototypeincludes @ |8 ? ? ?

2017 features

Object static methods

i

String padding

trailing commas in function syntax K

async functions @
shared memory and atomics
2017 misc

vYvovy

1217

RegEx

flag, case folding

i EIII V VHIHI / II

© 0

arguments caller removed
2017 annex b






OEBPS/image/Packt_Logo_New.png
<PACKD





OEBPS/Fonts/CourierStd.otf


OEBPS/image/Figure_2.2_B19301.jpg
File Edit Selection View Go Run Terminal Help
I oncess U X oum-

codeForChapters > chapter02 > I once.s > telonce
1 const once = <FNType extends ( ...args: any(]) = any>(

2 fn: | const once: <FNType extends ( ...args: any[]) = any>(fn: FNType)

3 ) =l 5 FNtype |
4 let

5

6 return (( ...args: Parameters<FNType>) = {

7 if (tdone) {

8 done = tru

9 return fn( i

10 }

11 }) as ENType






OEBPS/image/Cover.png
Mastering JavaScript
Functional Programming

Write clean, robust, and maintainable web and server
code using functional JavaScript and TypeScript

FEDERICO KEREKI





OEBPS/image/Figure_1.2_B19301.jpg
= Node.js ES2015/ES6, ES2016 = X 4 M

q cn a node.green Q@ » o =

optimisation

proper tail calls (tail call optimisation)

syntax

default function parameters

ic functionality

ults can re

rest parameters

basic functionalit;

gth' proj

spread syntax for iterable objects

with arrays, in funct

with arrays, ir

vith cnar






