

 [image: B05542_Vulkan Cookbook]

 Title Page

Vulkan Cookbook

Work through recipes to unlock the full potential of the next generation graphics API—Vulkan

Pawel Lapinski

BIRMINGHAM - MUMBAI

 Copyright

Vulkan Cookbook

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2017

Production reference: 1260417

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-815-4

www.packtpub.com

 Credits

	

	
Author

Pawel Lapinski

	
Copy Editor

Safis Editing

	
Reviewer

Chris Forbes

	
Project Coordinator

Ritika Manoj

	
Commissioning Editor

Ashwin Nair

	
Proofreader

Safis Editing

	
Acquisition Editor

Nitin Dasan

	
Indexer

Tejal Daruwale Soni

	
Content Development Editor

Aditi Gour

	
Production Coordinator

Arvindkumar Gupta

	
Technical Editor

Murtaza Tinwala

	
Graphics

Jason Monteiro

 About the Author

Pawel Lapinski is a graphics software engineer at Intel Corporation. His professional career started 10 years ago when he and his friends were hired to develop a 3D training/simulation application using C++, OpenGL, and Cg, which was later improved with added head-mounted display support and stereoscopic image generation.

Since his studies, Pawel has been interested in 3D graphics and especially in the open multiplatform OpenGL library. He wrote a diploma about the “Effective usage of vertex and fragment shaders.” Since then, he has continued to pursue opportunities to work with 3D graphics and expand his knowledge in the field. He had the opportunity to join a team that was developing one of the biggest CAVE‑like installations at the Polish Gdansk University of Technology. His responsibility was to prepare 3D visualizations using Unity3D engine and add stereoscopic image generation and support for motion tracking.

Pawel's whole career has involved working with computer graphics, the OpenGL library, and shaders. However, some time ago, already as a programmer at Intel, he had the opportunity to start working with the Vulkan API when he prepared validation tests for the Vulkan graphics driver. He also prepared a series of tutorials teaching people how to use Vulkan and now he wants to share more of his knowledge in the form of a Vulkan Cookbook.

 Acknowledgments

This is my first published book and it is a very important moment of my life. That’s why I’d like to include quite many people in this “special thanks” list.

First and foremost, I want to thank my wife, Agata, my children, and the whole family for all their love, patience, and continuous support.

I wouldn’t have written this book if Mr. Jacek Kuffel hadn't been my language teacher in my primary school. He taught me how important our language is and he also taught me how to express myself with written words. I learned all my love of writing from him.

My affection for 3D graphics programming started during my studies. It started growing thanks to my thesis supervisor Mariusz Szwoch, Ph.D., and my 3D graphics teacher Jacek Lebiedz, Ph.D. I’d like to thank them for their support and help. Without them I would not have started learning OpenGL and, as the next step, the Vulkan API.

Kind regards and a huge thank you to my team here at Intel Poland. I couldn’t have joined a better team or started working with better people. They are not only specialists at what they do, but they are all kind, sincere and warmhearted friends. I’d like to thank them for patiently answering my many questions, for sharing their knowledge. And for the great atmosphere that they create every day. Special thanks are required to Slawek, Boguslaw, Adam, Jacek, and to my manager Jan.

And last but not least – the Packt team. I’ve always dreamt about writing a book and they not only allowed me to do it, but they helped me realize my dreams, showing their support at every step from the very beginning. Aditi, Murtaza, Nitin, Sachin – You are great. It was much easier to write this book with you on my side.

 About the Reviewer

Chris Forbes works as a software developer for Google, working on Vulkan validation support and other ecosystem components. Previously he has been involved in implementing OpenGL 3 and 4 support in open source graphics drivers for Linux [www.mesa3d.org], as well as rebuilding classic strategy games to run on modern systems [www.openra.net]. He also served as a technical reviewer on Packt's previous Vulkan title, Learning Vulkan.

 www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.

Why subscribe?

	Fully searchable across every book published by Packt

	Copy and paste, print, and bookmark content

	On demand and accessible via a web browser

 Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help us improve, please leave us an honest review on this book's Amazon page at h t t p s ://w w w . a m a z o n . c o m /V u l k a n - C o o k b o o k - P a w e l - L a p i n s k i /d p /1786468158.

If you'd like to join our team of regular reviewers, you can e-mail us at customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be relentless in improving our products!

 Table of Contents

	 Preface
	 What this book covers
 	 What you need for this book
 	 Who this book is for
 	 Sections
	 Getting ready
 	 How to do it…
 	 How it works—
 	 There's more—
 	 See also

 	 Conventions
 	 Reader feedback
 	 Customer support
	 Downloading the example code
 	 Downloading the color images of this book
 	 Errata
 	 Piracy
 	 Questions

 	 Instance and Devices
	 Introduction
 	 Downloading Vulkan's SDK
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Enabling validation layers
	 How to do it...
 	 How it works...
 	 See also

 	 Connecting with a Vulkan Loader library
	 How to do it...
 	 How it works...
 	 See also

 	 Preparing for loading Vulkan API functions
	 How to do it...
 	 How it works...
 	 See also

 	 Loading functions exported from a Vulkan Loader library
	 How to do it...
 	 How it works...
 	 See also

 	 Loading global-level functions
	 How to do it...
 	 How it works...
 	 See also

 	 Checking available Instance extensions
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a Vulkan Instance
	 How to do it...
 	 How it works...
 	 See also

 	 Loading instance-level functions
	 How to do it...
 	 How it works...
 	 See also

 	 Enumerating available physical devices
	 How to do it...
 	 How it works...
 	 See also

 	 Checking available device extensions
	 How to do it...
 	 How it works...
 	 See also

 	 Getting features and properties of a physical device
	 How to do it...
 	 How it works...
 	 See also

 	 Checking available queue families and their properties
	 How to do it...
 	 How it works...
 	 See also

 	 Selecting the index of a queue family with the desired capabilities
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a logical device
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Loading device-level functions
	 How to do it...
 	 How it works...
 	 See also

 	 Getting a device queue
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a logical device with geometry shaders, graphics, and compute queues
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a logical device
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a Vulkan Instance
	 How to do it...
 	 How it works...
 	 See also

 	 Releasing a Vulkan Loader library
	 How to do it...
 	 How it works...
 	 See also

 	 Image Presentation
	 Introduction
 	 Creating a Vulkan Instance with WSI extensions enabled
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a presentation surface
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Selecting a queue family that supports presentation to a given surface
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a logical device with WSI extensions enabled
	 How to do it...
 	 How it works...
 	 See also

 	 Selecting a desired presentation mode
	 How to do it...
 	 How it works...
 	 See also

 	 Getting the capabilities of a presentation surface
	 How to do it...
 	 How it works...
 	 See also

 	 Selecting a number of swapchain images
	 How to do it...
 	 How it works...
 	 See also

 	 Choosing a size of swapchain images
	 How to do it...
 	 How it works...
 	 See also

 	 Selecting desired usage scenarios of swapchain images
	 How to do it...
 	 How it works...
 	 See also

 	 Selecting a transformation of swapchain images
	 How to do it...
 	 How it works...
 	 See also

 	 Selecting a format of swapchain images
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Creating a swapchain
	 How to do it...
 	 How it works...
 	 See also

 	 Getting handles of swapchain images
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a swapchain with R8G8B8A8 format and a mailbox present mode
	 How to do it...
 	 How it works...
 	 See also

 	 Acquiring a swapchain image
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Presenting an image
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a swapchain
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a presentation surface
	 How to do it...
 	 How it works...
 	 See also

 	 Command Buffers and Synchronization
	 Introduction
 	 Creating a command pool
	 How to do it...
 	 How it works...
 	 See also

 	 Allocating command buffers
	 How to do it...
 	 How it works...
 	 See also

 	 Beginning a command buffer recording operation
	 How to do it...
 	 How it works...
 	 See also

 	 Ending a command buffer recording operation
	 How to do it...
 	 How it works...
 	 See also

 	 Resetting a command buffer
	 How to do it...
 	 How it works...
 	 See also

 	 Resetting a command pool
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a semaphore
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a fence
	 How to do it...
 	 How it works...
 	 See also

 	 Waiting for fences
	 How to do it...
 	 How it works...
 	 See also

 	 Resetting fences
	 How to do it...
 	 How it works...
 	 See also

 	 Submitting command buffers to a queue
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Synchronizing two command buffers
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Checking if processing of a submitted command buffer has finished
	 How to do it...
 	 How it works...
 	 See also

 	 Waiting until all commands submitted to a queue are finished
	 How to do it...
 	 How it works...
 	 See also

 	 Waiting for all submitted commands to be finished
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a fence
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a semaphore
	 How to do it...
 	 How it works...
 	 See also

 	 Freeing command buffers
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a command pool
	 How to do it...
 	 How it works...
 	 See also

 	 Resources and Memory
	 Introduction
 	 Creating a buffer
	 How to do it...
 	 How it works...
 	 See also

 	 Allocating and binding a memory object for a buffer
	 How to do it...
 	 How it works...
 	 There's more...
 	 See also

 	 Setting a buffer memory barrier
	 Getting ready
 	 How to do it...
 	 How it works...
 	 There's more...
 	 See also

 	 Creating a buffer view
	 How to do it...
 	 How it works...
 	 See also

 	 Creating an image
	 How to do it...
 	 How it works...
 	 See also

 	 Allocating and binding a memory object to an image
	 How to do it...
 	 How it works...
 	 There's more...
 	 See also

 	 Setting an image memory barrier
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Creating an image view
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a 2D image and view
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a layered 2D image with a CUBEMAP view
	 How to do it...
 	 How it works...
 	 See also

 	 Mapping, updating and unmapping host-visible memory
	 How to do it...
 	 How it works...
 	 See also

 	 Copying data between buffers
	 How to do it...
 	 How it works...
 	 See also

 	 Copying data from a buffer to an image
	 How to do it...
 	 How it works...
 	 See also

 	 Copying data from an image to a buffer
	 How to do it...
 	 How it works...
 	 See also

 	 Using a staging buffer to update a buffer with a device-local memory bound
	 How to do it...
 	 How it works...
 	 See also

 	 Using a staging buffer to update an image with a device-local memory bound
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying an image view
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying an image
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a buffer view
	 How to do it...
 	 How it works...
 	 See also

 	 Freeing a memory object
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a buffer
	 How to do it...
 	 How it works...
 	 See also

 	 Descriptor Sets
	 Introduction
 	 Creating a sampler
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a sampled image
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a combined image sampler
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a storage image
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a uniform texel buffer
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a storage texel buffer
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a uniform buffer
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a storage buffer
	 How to do it...
 	 How it works...
 	 See also

 	 Creating an input attachment
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a descriptor set layout
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a descriptor pool
	 How to do it...
 	 How it works...
 	 See also

 	 Allocating descriptor sets
	 How to do it...
 	 How it works...
 	 See also

 	 Updating descriptor sets
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Binding descriptor sets
	 How to do it...
 	 How it works...
 	 See also

 	 Creating descriptors with a texture and a uniform buffer
	 How to do it...
 	 How it works...
 	 See also

 	 Freeing descriptor sets
	 How to do it...
 	 How it works...
 	 See also

 	 Resetting a descriptor pool
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a descriptor pool
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a descriptor set layout
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a sampler
	 How to do it...
 	 How it works...
 	 See also

 	 Render Passes and Framebuffers
	 Introduction
 	 Specifying attachments descriptions
	 How to do it...
 	 How it works...
 	 See also

 	 Specifying subpass descriptions
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Specifying dependencies between subpasses
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a render pass
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Creating a framebuffer
	 How to do it...
 	 How it works...
 	 See also

 	 Preparing a render pass for geometry rendering and postprocess subpasses
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Preparing a render pass and a framebuffer with color and depth attachments
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Beginning a render pass
	 How to do it...
 	 How it works...
 	 See also

 	 Progressing to the next subpass
	 How to do it...
 	 How it works...
 	 See also

 	 Ending a render pass
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a framebuffer
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a render pass
	 How to do it...
 	 How it works...
 	 See also

 	 Shaders
	 Introduction
 	 Converting GLSL shaders to SPIR-V assemblies
	 How to do it...
 	 How it works...
 	 See also

 	 Writing vertex shaders
	 How to do it...
 	 How it works...
 	 See also

 	 Writing tessellation control shaders
	 How to do it...
 	 How it works...
 	 See also

 	 Writing tessellation evaluation shaders
	 How to do it...
 	 How it works...
 	 See also

 	 Writing geometry shaders
	 How to do it...
 	 How it works...
 	 See also

 	 Writing fragment shaders
	 How to do it...
 	 How it works...
 	 See also

 	 Writing compute shaders
	 How to do it...
 	 How it works...
 	 See also

 	 Writing a vertex shader that multiplies vertex position by a projection matrix
	 How to do it...
 	 How it works...
 	 See also

 	 Using push constants in shaders
	 How to do it...
 	 How it works...
 	 See also

 	 Writing texturing vertex and fragment shaders
	 How to do it...
 	 How it works...
 	 See also

 	 Displaying polygon normals with a geometry shader
	 How to do it...
 	 How it works...
 	 See also

 	 Graphics and Compute Pipelines
	 Introduction
 	 Creating a shader module
	 How to do it...
 	 How it works...
 	 See also

 	 Specifying pipeline shader stages
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Specifying a pipeline vertex binding description, attribute description, and input state
	 How to do it...
 	 How it works...
 	 See also

 	 Specifying a pipeline input assembly state
	 How to do it...
 	 How it works...
 	 See also

 	 Specifying a pipeline tessellation state
	 How to do it...
 	 How it works...
 	 See also

 	 Specifying a pipeline viewport and scissor test state
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Specifying a pipeline rasterization state
	 How to do it...
 	 How it works...
 	 See also

 	 Specifying a pipeline multisample state
	 How to do it...
 	 How it works...
 	 See also

 	 Specifying a pipeline depth and stencil state
	 How to do it...
 	 How it works...
 	 See also

 	 Specifying a pipeline blend state
	 How to do it...
 	 How it works...
 	 See also

 	 Specifying pipeline dynamic states
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a pipeline layout
	 How to do it...
 	 How it works...
 	 See also

 	 Specifying graphics pipeline creation parameters
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a pipeline cache object
	 How to do it...
 	 How it works...
 	 See also

 	 Retrieving data from a pipeline cache
	 How to do it...
 	 How it works...
 	 See also

 	 Merging multiple pipeline cache objects
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a graphics pipeline
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a compute pipeline
	 How to do it...
 	 How it works...
 	 See also

 	 Binding a pipeline object
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a pipeline layout with a combined image sampler, a buffer, and push constant ranges
	 How to do it...
 	 How it works...
 	 See also

 	 Creating a graphics pipeline with vertex and fragment shaders, depth test enabled, and with dynamic viewport and scissor tests
	 How to do it...
 	 How it works...
 	 See also

 	 Creating multiple graphics pipelines on multiple threads
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a pipeline
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a pipeline cache
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a pipeline layout
	 How to do it...
 	 How it works...
 	 See also

 	 Destroying a shader module
	 How to do it...
 	 How it works...
 	 See also

 	 Command Recording and Drawing
	 Introduction
 	 Clearing a color image
	 How to do it...
 	 How it works...
 	 See also

 	 Clearing a depth-stencil image
	 How to do it...
 	 How it works...
 	 See also

 	 Clearing render pass attachments
	 How to do it...
 	 How it works...
 	 See also

 	 Binding vertex buffers
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Binding an index buffer
	 How to do it...
 	 How it works...
 	 See also

 	 Providing data to shaders through push constants
	 How to do it...
 	 How it works...
 	 See also

 	 Setting viewport states dynamically
	 How to do it...
 	 How it works...
 	 See also

 	 Setting scissor states dynamically
	 How to do it...
 	 How it works...
 	 See also

 	 Setting line width states dynamically
	 How to do it...
 	 How it works...
 	 See also

 	 Setting depth bias states dynamically
	 How to do it...
 	 How it works...
 	 See also

 	 Setting blend constants states dynamically
	 How to do it...
 	 How it works...
 	 See also

 	 Drawing a geometry
	 How to do it...
 	 How it works...
 	 See also

 	 Drawing an indexed geometry
	 How to do it...
 	 How it works...
 	 See also

 	 Dispatching compute work
	 How to do it...
 	 How it works...
 	 See also

 	 Executing a secondary command buffer inside a primary command buffer
	 How to do it...
 	 How it works...
 	 See also

 	 Recording a command buffer that draws a geometry with dynamic viewport and scissor states
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Recording command buffers on multiple threads
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Preparing a single frame of animation
	 How to do it...
 	 How it works...
 	 See also

 	 Increasing the performance through increasing the number of separately rendered frames
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Helper Recipes
	 Introduction
 	 Preparing a translation matrix
	 How to do it...
 	 How it works...
 	 See also

 	 Preparing a rotation matrix
	 How to do it...
 	 How it works...
 	 See also

 	 Preparing a scaling matrix
	 How to do it...
 	 How it works...
 	 See also

 	 Preparing a perspective projection matrix
	 How to do it...
 	 How it works...
 	 See also

 	 Preparing an orthographic projection matrix
	 How to do it...
 	 How it works...
 	 See also

 	 Loading texture data from a file
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Loading a 3D model from an OBJ file
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Lighting
	 Introduction
 	 Rendering a geometry with a vertex diffuse lighting
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Rendering a geometry with a fragment specular lighting
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Rendering a normal mapped geometry
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Drawing a reflective and refractive geometry using cubemaps
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Adding shadows to the scene
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Advanced Rendering Techniques
	 Introduction
 	 Drawing a skybox
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Drawing billboards using geometry shaders
	 How to do it...
 	 How it works...
 	 See also

 	 Drawing particles using compute and graphics pipelines
	 How to do it...
 	 How it works...
 	 See also

 	 Rendering a tessellated terrain
	 Getting ready
 	 How to do it...
 	 How it works...
 	 See also

 	 Rendering a full-screen quad for post-processing
	 How to do it...
 	 How it works...
 	 See also

 	 Using input attachments for a color correction post-process effect
	 How to do it...
 	 How it works...
 	 See also

 Preface

Computer graphics have a very long and interesting history. Many APIs or custom approaches to the generation of 2D or 3D images have come and gone. A landmark in this history was the invention of OpenGL, one of the first graphics libraries, which allowed us to create real‑time, high-performance 3D graphics, and which was available for everyone on multiple operating systems. It is still developed and widely used even today. And this year we can celebrate its 25th birthday!

But many things have changed since OpenGL was created. The graphics hardware industry is evolving very quickly. And recently, to accommodate these changes, a new approach to 3D graphics rendering was presented. It took the form of a low‑level access to the graphics hardware. OpenGL was designed as a high-level API, which allows users to easily render images on screen. But this high‑level approach, convenient for users, is difficult for graphics drivers to handle. This is one of the main reasons for restricting the hardware to show its full potential. The new approach tries to overcome these struggles–it gives users much more control over the hardware, but also many more responsibilities. This way application developers can release the full potential of the graphics hardware, because the drivers no longer block them. Low‑level access allows drivers to be much smaller, much thinner. But these benefits come at the expense of much more work that needs to done by the developers.

The first evangelist of the new approach to graphics rendering was a Mantle API designed by AMD. When it proved that low‑level access can give considerable performance benefits, other companies started working on their own graphics libraries. One of the most notable representatives of the new trend were Metal API, designed by Apple, and DirectX 12, developed by Microsoft.

But all of the above libraries were developed with specific operating systems and/or hardware in mind. There was no open and multiplatform standard such as OpenGL. Until last year. Year 2016 saw the release of the Vulkan API, developed by Khronos consortium, which maintains the OpenGL library. Vulkan also represents the new approach, a low‑level access to the graphics hardware, but unlike the other libraries it is available for everyone on multiple operating systems and hardware platforms–from high‑performance desktop computers with Windows or Linux operating systems, to mobile devices with Android OS. And as it is still being very new, there are few resources teaching developers how to use it. This book tries to fill this gap.

 What this book covers

Chapter 1, Instance and Devices, shows how to get started with the Vulkan API. This chapter explains where to download the Vulkan SDK from, how to connect with the Vulkan Loader library, how to select the physical device on which operations will be performed, and how to prepare and create a logical device.

Chapter 2, Image Presentation, describes how to display Vulkan‑generated images on screen. It explains what a swapchain is and what parameters are required to create it, so we can use it for rendering and see the results of our work.

Chapter 3, Command Buffers and Synchronization, is about recording various operations into command buffers and submitting them to queues, where they are processed by the hardware. Also, various synchronization mechanisms are presented in this chapter.

Chapter 4, Resources and Memory, presents two basic and most important resource types, images and buffers, which allow us to store data. We explain how to create them, how to prepare memory for these resources, and, also, how to upload data to them from our application (CPU).

Chapter 5, Descriptor Sets, explains how to provide created resource to shaders. We explain how to prepare resources so they can be used inside shaders and how to set up descriptor sets, which form the interface between the application and the shaders.

Chapter 6, Render Passes and Framebuffers, shows how to organize drawing operations into sets of separate steps called subpasses, which are organized into render passes. In this chapter we also show how to prepare descriptions of attachments (render targets) used during drawing and how to create framebuffers, which bind specific resources according to these descriptions.

Chapter 7, Shaders, describes the specifics of programming all available graphics and compute shader stages. This chapter presents how to implement shader programs using GLSL programming language and how to convert them into SPIR‑V assemblies – the only form core Vulkan API accepts.

Chapter 8, Graphics and Compute Pipelines, presents the process of creating two available pipeline types. They are used to set up all the parameters graphics hardware needs to properly process drawing commands or computational work.

Chapter 9, Command Recording and Drawing, is about recording all the operations needed to successfully draw 3D models or dispatch computational work. Also, various optimization techniques are presented in this chapter, which can help increase the performance of the application.

Chapter 10, Helper Recipes, shows convenient set of tools no 3D rendering application can do without. It is shown how to load textures and 3D models from files and how to manipulate the geometry inside shaders.

Chapter 11, Lighting, presents commonly used lighting techniques from simple diffuse and specular lighting calculations to normal mapping and shadow mapping techniques.

Chapter 12, Advanced Rendering Techniques, explains how to implement impressive graphics techniques, which can be found in many popular 3D applications such as games and benchmarks.

 What you need for this book

This book explains various aspects of the Vulkan graphics API, which is open and multiplatform. It is available on Microsoft Windows (version 7 and newer) or Linux (preferably Ubuntu 16.04 or newer) systems. (Vulkan is also supported on Android devices with the 7.0+ / Nougat version of the operating system, but the code samples available with this book weren’t designed to be executed on the Android OS.)

To execute sample programs or to develop our own applications, apart from Windows 7+ or Linux operating systems, graphics hardware and drivers that support Vulkan API are also required. Refer to 3D graphics vendors’ sites and/or support to check which hardware is capable of running Vulkan‑enabled software.

When using the Windows operating system, code samples can be compiled using the Visual Studio Community 2015 IDE (or newer), which is free and available for everyone. To generate a solution for the Visual Studio IDE the CMAKE 3.0 or newer is required.

On Linux systems, compilation is performed using a combination of the CMAKE 3.0 and the make tool. But the samples can also be compiled using other tools such as QtCreator.

 Who this book is for

This book is ideal for developers who know C/C++ languages, have some basic familiarity with graphics programming, and now want to take advantage of the new Vulkan API in the process of building next generation computer graphics. Some basic familiarity with Vulkan would be useful to follow the recipes. OpenGL developers who want to take advantage of the Vulkan API will also find this book useful.

 Sections

In this book, you will find several headings that appear frequently (Getting ready, How to do it, How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

 Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software or any preliminary settings required for the recipe.

 How to do it…

This section contains the steps required to follow the recipe.

 How it works…

This section usually consists of a detailed explanation of what happened in the previous section.

 There's more…

This section consists of additional information about the recipe in order to make the reader more knowledgeable about the recipe.

 See also

This section provides helpful links to other useful information for the recipe.

 Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Just assign the names of the layers you want to activate to the VK_INSTANCE_LAYERS environment variable"

A block of code is set as follows:

{
 if((result != VK_SUCCESS) ||
 (extensions_count == 0)) {
 std::cout << "Could not enumerate device extensions." << std::endl;
 return false;
}

Any command-line input or output is written as follows:

setx VK_INSTANCE_LAYERS VK_LAYER_LUNARG_api_dump;VK_LAYER_LUNARG_core_validation

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Select System info from the Administration panel."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

 Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors .

 Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

 Downloading the example code

You can download the example code files for this book from your account at h t t p ://w w w . p a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

	Log in or register to our website using your e-mail address and password.

	Hover the mouse pointer on the SUPPORT tab at the top.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box.

	Select the book for which you're looking to download the code files.

	Choose from the drop-down menu where you purchased this book from.

	Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's webpage at the Packt Publishing website. This page can be accessed by entering the book's name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR / 7-Zip for Windows

	Zipeg / iZip / UnRarX for Mac

	7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /V u l k a n - C o o k b o o k . We also have other code bundles from our rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

 Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book. The color images will help you better understand the changes in the output. You can download this file from h t t p s ://w w w . p a c k t p u b . c o m /s i t e s /d e f a u l t /f i l e s /d o w n l o a d s /V u l k a n C o o k b o o k _ C o l o r I m a g e s . p d f.

 Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n t /s u p p o r t and enter the name of the book in the search field. The required information will appear under the Errata section.

 Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

 Questions

If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and we will do our best to address the problem.

 Instance and Devices

In this chapter, we will cover the following recipes:

	Downloading Vulkan SDK

	Enabling validation layers

	Connecting with a Vulkan Loader library

	Preparing for loading Vulkan API functions

	Loading function exported from a Vulkan Loader library

	Loading global-level functions

	Checking available Instance extensions

	Creating a Vulkan Instance

	Loading instance-level functions

	Enumerating available physical devices

	Checking available device extensions

	Getting features and properties of a physical device

	Checking available queue families and their properties

	Selecting the index of a queue family with the desired capabilities

	Creating a logical device

	Loading device-level functions

	Getting a device queue

	Creating a logical device with geometry shaders and graphics and compute queues

	Destroying a logical device

	Destroying a Vulkan Instance

	Releasing a Vulkan Loader library

 Introduction

Vulkan is a new graphics API developed by the Khronos Consortium. It is perceived as a successor to the OpenGL: it is open source and cross-platform. However, as it is possible to use Vulkan on different types of devices and operating systems, there are some differences in the basic setup code we need to create in order to use Vulkan in our application.

In this chapter, we will cover topics that are specific to using Vulkan on Microsoft Windows and Ubuntu Linux operating systems. We will learn Vulkan basics such as downloading the Software Development Kit (SDK) and setting validation layers, which enable us to debug the applications that use the Vulkan API. We will start using the Vulkan Loader library, load all the Vulkan API functions, create a Vulkan Instance, and select the device our work will be executed on.

 Downloading Vulkan's SDK

To start developing applications using the Vulkan API, we need to download a SDK and use some of its resources in our application.

Vulkan's SDK can be found at https://vulkan.lunarg.com.

 Getting ready

Before we can execute any application that uses the Vulkan API, we also need to install a graphics drivers that supports the Vulkan API. These can be found on a graphics hardware vendor's site.

 How to do it...

On the Windows operating system family:

	Go to https://vulkan.lunarg.com.

	Scroll to the bottom of the page and choose WINDOWS operating system.

	Download and save the SDK installer file.

	Run the installer and select the destination at which you want to install the SDK. By default, it is installed to a C:\VulkanSDK\<version>\ folder.

	When the installation is finished, open the folder in which the Vulkan SDK was installed and then open the RunTimeInstaller sub-folder. Execute VulkanRT-<version>-Installer file. This will install the latest version of the Vulkan Loader.

	Once again, go to the folder in which the SDK was installed and open the Include\vulkan sub-folder. Copy the vk_platform.h and vulkan.h header files to the project folder of the application you want to develop. We will call these two files Vulkan header files.

On the Linux operating system family:

	Update system packages by running the following commands:

 sudo apt-get update
 sudo apt-get dist-upgrade

	To be able to build and execute Vulkan samples from the SDK, install additional development packages by running the following command:

 sudo apt-get install libglm-dev graphviz libxcb-dri3-0
 libxcb-present0 libpciaccess0 cmake libpng-dev libxcb-dri3-
 dev libx11-dev

	Go to https://vulkan.lunarg.com.

	Scroll to the bottom of the page and choose LINUX operating system.

	Download the Linux package for the SDK and save it in the desired folder.

	Open Terminal and change the current directory to the folder to which the SDK package was downloaded.

	Change the access permissions to the downloaded file by executing the following command:

 chmod ugo+x vulkansdk-linux-x86_64-<version>.run

	Run the downloaded SDK package installer file with the following command:

 ./vulkansdk-linux-x86_64-<version>.run

	Change the current directory to the VulkanSDK/<version> folder that was created by the SDK package installer.

	Set up environment variables by executing the following command:

 sudo su
 VULKAN_SDK=$PWD/x86_64
 echo export PATH=$PATH:$VULKAN_SDK/bin >> /etc/environment
 echo export VK_LAYER_PATH=$VULKAN_SDK/etc/explicit_layer.d >>
 /etc/environment
 echo $VULKAN_SDK/lib >> /etc/ld.so.conf.d/vulkan.conf
 ldconfig

	Change the current directory to the x86_64/include/vulkan folder.

	Copy vk_platform.h and vulkan.h header files to the project folder of the application you want to develop. We will call these two files Vulkan header files.

	Restart the computer for the changes to take effect.

 How it works...

The SDK contains resources needed to create applications using the Vulkan API. Vulkan header files (the vk_platform.h and vulkan.h files) need to be included in the source code of our application so we can use the Vulkan API functions, structures, enumerations, and so on, inside the code.

The Vulkan Loader (vulkan-1.dll file on Windows, libvulkan.so.1 file on Linux systems) is a dynamic library responsible for exposing Vulkan API functions and forwarding them to the graphics driver. We connect with it in our application and load Vulkan API functions from it.

 See also

The following recipes in this chapter:

	Enabling validation layers

	Connecting with a Vulkan Loader library

	Releasing a Vulkan Loader library

 Enabling validation layers

The Vulkan API was designed with performance in mind. One way to increase its performance is to lower state and error checking performed by the driver. This is one of the reasons Vulkan is called a "thin API" or "thin driver," it is a minimal abstraction of the hardware, which is required for the API to be portable across multiple hardware vendors and device types (high-performance desktop computers, mobile phones, and integrated and low-power embedded systems).

However, this approach makes creating applications with the Vulkan API much more difficult, compared to the traditional high-level APIs such as OpenGL. It's because very little feedback is given to developers by the driver, as it expects that programmers will correctly use the API and abide by rules defined in the Vulkan specification.

To mitigate this problem, Vulkan was also designed to be a layered API. The lowest layer, the core, is the Vulkan API itself, which communicates with the Driver, allowing us to program the Hardware (as seen in the preceding diagram). On top of it (between the Application and the Vulkan API), developers can enable additional layers, to ease the debugging process.

 How to do it...

On the Windows operating system family:

	Go to the folder in which the SDK was installed and then open the Config sub-directory.

	Copy the vk_layer_settings.txt file into the directory of the executable you want to debug (into a folder of an application you want to execute).

	Create an environment variable named VK_INSTANCE_LAYERS:

	Open the command-line console (Command Prompt/cmd.exe).

	Type the following:

 setx VK_INSTANCE_LAYERS
 VK_LAYER_LUNARG_standard_validation

 3. Close the console.

	Re-open the command prompt once again.

	Change the current directory to the folder of the application you want to execute.

	Run the application; potential warnings or errors will be displayed in the standard output of the command prompt.

On the Linux operating system family:

	Go to the folder in which the SDK was installed and then open the Config sub-directory.

	Copy the vk_layer_settings.txt file into the directory of the executable you want to debug (into a folder of an application you want to execute).

	Create an environment variable named VK_INSTANCE_LAYERS:

	Open the Terminal window.

	Type the following:

 export
 VK_INSTANCE_LAYERS=VK_LAYER_LUNARG_standard_validation

	Run the application; potential warnings or errors will be displayed in the standard output of the Terminal window.

 How it works...

Vulkan validation layers contain a set of libraries which help find potential problems in created applications. Their debugging capabilities include, but are not limited to, validating parameters passed to Vulkan functions, validating texture and render target formats, tracking Vulkan objects and their lifetime and usage, and checking for potential memory leaks or dumping (displaying/printing) Vulkan API function calls. These functionalities are enabled by different validation layers, but most of them are gathered into a single layer called VK_LAYER_LUNARG_standard_validation which is enabled in this recipe. Examples of names of other layers include VK_LAYER_LUNARG_swapchain, VK_LAYER_LUNARG_object_tracker, VK_LAYER_GOOGLE_threading, or VK_LAYER_LUNARG_api_dump, among others. Multiple layers can be enabled at the same time, in a similar way as presented here in the recipe. Just assign the names of the layers you want to activate to the VK_INSTANCE_LAYERS environment variable. If you are a Windows OS user, remember to separate them with a semicolon, as in the example:

setx VK_INSTANCE_LAYERS VK_LAYER_LUNARG_api_dump;VK_LAYER_LUNARG_core_validation

If you are a Linux OS user, separate them with a colon. Here is an example:

export VK_INSTANCE_LAYERS=VK_LAYER_LUNARG_api_dump:VK_LAYER_LUNARG _core_validation

The environment variable named VK_INSTANCE_LAYERS can be also set with other OS specific ways such as, advanced operating system settings on Windows or /etc/environment on Linux.

The preceding examples enable validation layers globally, for all applications, but they can also be enabled only for our own application, in its source code during Instance creation. However, this approach requires us to recompile the whole program every time we want to enable or disable different layers. So, it is easier to enable them using the preceding recipe. This way, we also won't forget to disable them when we want to ship the final version of our application. To disable validation layers, we just have to delete VK_INSTANCE_LAYERS environment variable.

Validation layers should not be enabled in the released (shipped) version of the applications as they may drastically decrease performance.

For a full list of available validation layers, please refer to the documentation, which can be found in the Documentation sub-folder of the directory in which the Vulkan SDK was installed.

 See also

The following recipes in this chapter:

	Downloading Vulkan's SDK

	Connecting with a Vulkan Loader library

	Releasing a Vulkan Loader library

 Connecting with a Vulkan Loader library

Support for the Vulkan API is implemented by the graphics-hardware vendor and provided through graphics drivers. Each vendor can implement it in any dynamic library they choose, and can even change it with the driver update.

That's why, along with the drivers, Vulkan Loader is also installed. We can also install it from the folder in which the SDK was installed. It allows developers to access Vulkan API entry points, through a vulkan-1.dll library on Windows OS or libvulkan.so.1 library on Linux OS, no matter what driver, from what vendor, is installed.

Vulkan Loader is responsible for transmitting Vulkan API calls to an appropriate graphics driver. On a given computer, there may be more hardware components that support Vulkan, but with Vulkan Loader, we don't need to wonder which driver we should use, or which library we should connect with to be able to use Vulkan. Developers just need to know the name of a Vulkan library: vulkan-1.dll on Windows or libvulkan.so.1 on Linux. When we want to use Vulkan in our application, we just need to connect with it in our code (load it).

On Windows OS, Vulkan Loader library is called vulkan-1.dll.

On Linux OS, Vulkan Loader library is called libvulkan.so.1.

 How to do it...

On the Windows operating system family:

	Prepare a variable of type HMODULE named vulkan_library.

	Call LoadLibrary("vulkan-1.dll") and store the result of this operation in a vulkan_library variable.

	Confirm that this operation has been successful by checking if a value of a vulkan_library variable is different than nullptr.

On the Linux operating system family:

	Prepare a variable of type void* named vulkan_library.

	Call dlopen("libvulkan.so.1", RTLD_NOW) and store the result of this operation in a vulkan_library variable.

	Confirm that this operation has been successful by checking if a value of a vulkan_library variable is different than nullptr.

 How it works...

LoadLibrary() is a function available on Windows operating systems. dlopen() is a function available on Linux operating systems. They both load (open) a specified dynamic-link library into a memory space of our application. This way we can load (acquire pointers of) functions implemented and exported from a given library and use them in our application.

In the case of a function exported from a Vulkan API, in which we are, of course, most interested, we load a vulkan-1.dll library on Windows or libvulkan.so.1 library on Linux as follows:

#if defined _WIN32
vulkan_library = LoadLibrary("vulkan-1.dll");
#elif defined __linux
vulkan_library = dlopen("libvulkan.so.1", RTLD_NOW);
#endif

if(vulkan_library == nullptr) {
 std::cout << "Could not connect with a Vulkan Runtime library." << std::endl;
 return false;
}
return true;

After a successful call, we can load a Vulkan-specific function for acquiring the addresses of all other Vulkan API procedures.

 See also

The following recipes in this chapter:

	Downloading Vulkan SDK

	Enabling validation layers

	Releasing a Vulkan Loader library

 Preparing for loading Vulkan API functions

When we want to use Vulkan API in our application, we need to acquire procedures specified in the Vulkan documentation. In order to do that, we can add a dependency to the Vulkan Loader library, statically link with it in our project, and use function prototypes defined in the vulkan.h header file. The second approach is to disable the function prototypes defined in the vulkan.h header file and load function pointers dynamically in our application.

The first approach is little bit easier, but it uses functions defined directly in the Vulkan Loader library. When we perform operations on a given device, Vulkan Loader needs to redirect function calls to the proper implementation based on the handle of the device we provide as an argument. This redirection takes some time, and thus impacts performance.

The second option requires more work on the application side, but allows us to skip the preceding redirection (jump) and save some performance. It is performed by loading functions directly from the device we want to use. This way, we can also choose only the subset of Vulkan functions if we don't need them all.

In this book, the second approach is presented, as this gives developers more control over the things that are going in their applications. To dynamically load functions from a Vulkan Loader library, it is convenient to wrap the names of all Vulkan API functions into a set of simple macros and divide declarations, definitions and function loading into multiple files.

 How to do it...

	Define the VK_NO_PROTOTYPES preprocessor definition in the project: do this in the project properties (when using development environments such as Microsoft Visual Studio or Qt Creator), or by using the #define VK_NO_PROTOTYPES preprocessor directive just before the vulkan.h file is included in the source code of our application.

	Create a new file, named ListOfVulkanFunctions.inl.

	Type the following contents into the file:

 #ifndef EXPORTED_VULKAN_FUNCTION
 #define EXPORTED_VULKAN_FUNCTION(function)
 #endif

 #undef EXPORTED_VULKAN_FUNCTION
 //
 #ifndef GLOBAL_LEVEL_VULKAN_FUNCTION
 #define GLOBAL_LEVEL_VULKAN_FUNCTION(function)
 #endif

 #undef GLOBAL_LEVEL_VULKAN_FUNCTION
 //
 #ifndef INSTANCE_LEVEL_VULKAN_FUNCTION
 #define INSTANCE_LEVEL_VULKAN_FUNCTION(function)
 #endif

 #undef INSTANCE_LEVEL_VULKAN_FUNCTION
 //
 #ifndef INSTANCE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION
 #define INSTANCE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION(function, extension)
 #endif

 #undef INSTANCE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION
 //
 #ifndef DEVICE_LEVEL_VULKAN_FUNCTION
 #define DEVICE_LEVEL_VULKAN_FUNCTION(function)
 #endif

 #undef DEVICE_LEVEL_VULKAN_FUNCTION
 //
 #ifndef DEVICE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION
 #define DEVICE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION(function,
 extension)
 #endif

 #undef DEVICE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION

	Create a new header file, named VulkanFunctions.h.

	Insert the following contents into the file:

 #include "vulkan.h"

 namespace VulkanCookbook {

 #define EXPORTED_VULKAN_FUNCTION(name) extern PFN_##name name;
 #define GLOBAL_LEVEL_VULKAN_FUNCTION(name) extern PFN_##name
 name;
 #define INSTANCE_LEVEL_VULKAN_FUNCTION(name) extern PFN_##name
 name;
 #define INSTANCE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION(name,
 extension) extern PFN_##name name;
 #define DEVICE_LEVEL_VULKAN_FUNCTION(name) extern PFN_##name
 name;
 #define DEVICE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION(name,
 extension) extern PFN_##name name;

 #include "ListOfVulkanFunctions.inl"

 } // namespace VulkanCookbook

	Create a new file with a source code named VulkanFunctions.cpp.

	Insert the following contents into the file:

 #include "VulkanFunctions.h"

 namespace VulkanCookbook {

 #define EXPORTED_VULKAN_FUNCTION(name) PFN_##name name;
 #define GLOBAL_LEVEL_VULKAN_FUNCTION(name) PFN_##name name;
 #define INSTANCE_LEVEL_VULKAN_FUNCTION(name) PFN_##name name;
 #define INSTANCE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION(name,
 extension) PFN_##name name;
 #define DEVICE_LEVEL_VULKAN_FUNCTION(name) PFN_##name name;
 #define DEVICE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION(name,
 extension) PFN_##name name;

 #include "ListOfVulkanFunctions.inl"

 } // namespace VulkanCookbook

 How it works...

The preceding set of files may seem unnecessary, or even overwhelming, at first. VulkanFunctions.h and VulkanFunctions.cpp files are used to declare and define variables in which we will store pointers to Vulkan API functions. Declarations and definitions are done through a convenient macro definition and an inclusion of a ListOfVulkanFunctions.inl file. We will update this file and add the names of many Vulkan functions, from various levels. This way, we don't need to repeat the names of functions multiple times, in multiple places, which helps us avoid making mistakes and typos. We can just write the required names of Vulkan functions only once, in the ListOfVulkanFunctions.inl file, and include it when it's needed.

How do we know the types of variables for storing pointers to Vulkan API functions? It's quite simple. The type of each function's prototype is derived directly from the function's name. When a function is named <name>, its type is PFN_<name>. For example, a function that creates an image is called vkCreateImage(), so the type of this function is PFN_vkCreateImage. That's why macros defined in the presented set of files have just one parameter for function name, from which the type can be easily derived.

Last, but not least, remember that declarations and definitions of variables, in which we will store addresses of the Vulkan functions, should be placed inside a namespace, a class, or a structure. This is because, if they are made global, this could lead to problems on some operating systems. It's better to remember about namespaces and increase the portability of our code.

Place declarations and definitions of variables containing Vulkan API function pointers inside a structure, class, or namespace.

Now that we are prepared, we can start loading Vulkan functions.

 See also

The following recipes in this chapter:

	Loading function exported from a Vulkan Loader library

	Loading global-level functions

	Loading instance-level functions

	Loading device-level functions

 Loading functions exported from a Vulkan Loader library

When we load (connect with) a Vulkan Loader library, we need to load its functions to be able to use the Vulkan API in our application. Unfortunately, different operating systems have different ways of acquiring the addresses of functions exported from dynamic libraries (.dll files on Windows or .so files on Linux). However, the Vulkan API strives to be portable across many operating systems. So, to allow developers to load all functions available in the API, no matter what operating system they are targeting, Vulkan introduced a function which can be used to load all other Vulkan API functions. However, this one single function can only be loaded in an OS specific way.

 How to do it...

On the Windows operating system family:

	Create a variable of type PFN_vkGetInstanceProcAddr named vkGetInstanceProcAddr.

	Call GetProcAddress(vulkan_library, "vkGetInstanceProcAddr"), cast the result of this operation onto a PFN_vkGetInstanceProcAddr type, and store it in the vkGetInstanceProcAddr variable.

	Confirm that this operation succeeded by checking if a value of the vkGetInstanceProcAddr variable does not equal to nullptr.

On the Linux operating system family:

	Create a variable of type PFN_vkGetInstanceProcAddr named vkGetInstanceProcAddr.

	Call dlsym(vulkan_library, "vkGetInstanceProcAddr"), cast the result of this operation onto a PFN_vkGetInstanceProcAddr type, and store it in the vkGetInstanceProcAddr variable.

	Confirm that this operation succeeded by checking if a value of the vkGetInstanceProcAddr variable does not equal to nullptr.

 How it works...

GetProcAddress() is a function available on Windows operating systems. dlsym() is a function available on Linux operating systems. They both acquire an address of a specified function from an already loaded dynamic-link library. The only function that must be publicly exported from all Vulkan implementations is called vkGetInstanceProcAddr(). It allows us to load any other Vulkan function in a way that is independent of the operating system we are working on.

To ease and automate the process of loading multiple Vulkan functions, and to lower the probability of making mistakes, we should wrap the processes of declaring, defining, and loading functions into a set of convenient macro definitions, as described in the Preparing for loading Vulkan API functions recipe. This way, we can keep all Vulkan API functions in just one file which contains a list of macro-wrapped names of all Vulkan functions. We can then include this single file in multiple places and get use of the C/C++ preprocessor. By redefining macros, we can declare and define the variables in which we will store function pointers, and we can also load all of them.

Here is the updated fragment of the ListOfVulkanFunctions.inl file:

#ifndef EXPORTED_VULKAN_FUNCTION
#define EXPORTED_VULKAN_FUNCTION(function)
#endif

EXPORTED_VULKAN_FUNCTION(vkGetInstanceProcAddr)

#undef EXPORTED_VULKAN_FUNCTION

The rest of the files (VulkanFunctions.h and VulkanFunctions.h) remain unchanged. Declarations and definitions are automatically performed with preprocessor macros. However, we still need to load functions exported from the Vulkan Loader library. The implementation of the preceding recipe may look as follows:

#if defined _WIN32
#define LoadFunction GetProcAddress
#elif defined __linux
#define LoadFunction dlsym
#endif

#define EXPORTED_VULKAN_FUNCTION(name) \
name = (PFN_##name)LoadFunction(vulkan_library, #name); \
if(name == nullptr) { \
 std::cout << "Could not load exported Vulkan function named: " \
 #name << std::endl; \
 return false; \
}

#include "ListOfVulkanFunctions.inl"

return true;

First we define a macro that is responsible for acquiring an address of a vkGetInstanceProcAddr() function. It gets it from the library represented by the vulkan_library variable, casts the result of this operation onto a PFN_kGetInstanceProcAddr type, and stores it in a variable named vkGetInstanceProcAddr. After that, the macro checks whether the operation succeeded, and displays the proper message on screen in the case of a failure.

All the preprocessor "magic" is done when the ListOfVulkanFunctions.inl file is included and the preceding operations are performed for each function defined in this file. In this case, it is performed for only the vkGetInstanceProcAddr() function, but the same behavior is achieved for functions from other levels.

Now, when we have a function loading function, we can acquire pointers to other Vulkan procedures in an OS-independent way.

 See also

The following recipes in this chapter:

	Connecting with a Vulkan Loader library

	Preparing for loading Vulkan API functions

	Loading global-level functions

	Loading instance-level functions

	Loading device-level functions

 Loading global-level functions

We have acquired a vkGetInstanceProcAddr() function, through which we can load all other Vulkan API entry points in an OS-independent way.

Vulkan functions can be divided into three levels, which are global, instance, and device. Device-level functions are used to perform typical operations such as drawing, shader-modules creation, image creation, or data copying. Instance-level functions allow us to create logical devices. To do all this, and to load device and instance-level functions, we need to create an Instance. This operation is performed with global-level functions, which we need to load first.

 How to do it...

	Create a variable of type PFN_vkEnumerateInstanceExtensionProperties named vkEnumerateInstanceExtensionProperties.

	Create a variable of type PFN_vkEnumerateInstanceLayerProperties named vkEnumerateInstanceLayerProperties.

	Create a variable of type PFN_vkCreateInstance named vkCreateInstance.

	Call vkGetInstanceProcAddr(nullptr, "vkEnumerateInstanceExtensionProperties"), cast the result of this operation onto the PFN_vkEnumerateInstanceExtensionProperties type, and store it in a vkEnumerateInstanceExtensionProperties variable.

	Call vkGetInstanceProcAddr(nullptr, "vkEnumerateInstanceLayerProperties"), cast the result of this operation onto the PFN_vkEnumerateInstanceLayerProperties type, and store it in a vkEnumerateInstanceLayerProperties variable.

	Call vkGetInstanceProcAddr(nullptr, "vkCreateInstance"), cast the result of this operation onto a PFN_vkCreateInstance type, and store it in the vkCreateInstance variable.

	Confirm that the operation succeeded by checking whether, values of all the preceding variables are not equal to nullptr.

 How it works...

In Vulkan, there are only three global-level functions: vkEnumerateInstanceExtensionProperties(), vkEnumerateInstanceLayerProperties(), and vkCreateInstance(). They are used during Instance creation to check, what instance-level extensions and layers are available and to create the Instance itself.

The process of acquiring global-level functions is similar to the loading function exported from the Vulkan Loader. That's why the most convenient way is to add the names of global-level functions to the ListOfVulkanFunctions.inl file as follows:

#ifndef GLOBAL_LEVEL_VULKAN_FUNCTION
#define GLOBAL_LEVEL_VULKAN_FUNCTION(function)
#endif

GLOBAL_LEVEL_VULKAN_FUNCTION(vkEnumerateInstanceExtensionProperties)
GLOBAL_LEVEL_VULKAN_FUNCTION(vkEnumerateInstanceLayerProperties)
GLOBAL_LEVEL_VULKAN_FUNCTION(vkCreateInstance)

#undef GLOBAL_LEVEL_VULKAN_FUNCTION

We don't need to change the VulkanFunctions.h and VulkanFunctions.h files, but we still need to implement the preceding recipe and load global-level functions as follows:

#define GLOBAL_LEVEL_VULKAN_FUNCTION(name) \
name = (PFN_##name)vkGetInstanceProcAddr(nullptr, #name); \
if(name == nullptr) { \
 std::cout << "Could not load global-level function named: " \
 #name << std::endl; \
 return false; \
}

#include "ListOfVulkanFunctions.inl"

return true;

A custom GLOBAL_LEVEL_VULKAN_FUNCTION macro takes the function name and provides it to a vkGetInstanceProcAddr() function. It tries to load the given function and, in the case of a failure, returns nullptr. Any result returned by the vkGetInstanceProcAddr() function is cast onto a PFN_<name> type and stored in a proper variable.

In the case of a failure, a message is displayed so the user knows which function couldn't be loaded.

 See also

The following recipes in this chapter:

	Preparing for loading Vulkan API functions

	Loading function exported from a Vulkan Loader library

	Loading instance-level functions

	Loading device-level functions

 Checking available Instance extensions

Vulkan Instance gathers per application state and allows us to create a logical device on which almost all operations are performed. Before we can create an Instance object, we should think about the instance-level extensions we want to enable. An example of one of the most important instance-level extensions are swapchain related extensions, which are used to display images on screen.

Extensions in Vulkan, as opposed to OpenGL, are enabled explicitly. We can't create a Vulkan Instance and request extensions that are not supported, because the Instance creation operation will fail. That's why we need to check which extensions are supported on a given hardware platform.

 How to do it...

	Prepare a variable of type uint32_t named extensions_count.

	Call vkEnumerateInstanceExtensionProperties(nullptr, &extensions_count, nullptr). All parameters should be set to nullptr, except for the second parameter, which should point to the extensions_count variable.

	If a function call is successful, the total number of available instance-level extensions will be stored in the extensions_count variable.

	Prepare a storage for the list of extension properties. It must contain elements of type VkExtensionProperties. The best solution is to use a std::vector container. Call it available_extensions.

	Resize the vector to be able to hold at least the extensions_count elements.

	Call vkEnumerateInstanceExtensionProperties(nullptr, &extensions_count, &available_extensions[0]). The first parameter is once again set to nullptr; the second parameter should point to the extensions_count variable; the third parameter must point to an array of at least extensions_count elements of type VkExtensionProperties. Here, in the third parameter, provide an address of the first element of the available_extensions vector.

	If the function returns successfully, the available_extensions vector variable will contain a list of all extensions supported on a given hardware platform.

 How it works...

Code that acquires instance-level extensions can be divided into two stages. First we get the total number of available extensions as follows:

uint32_t extensions_count = 0;
VkResult result = VK_SUCCESS;

result = vkEnumerateInstanceExtensionProperties(nullptr, &extensions_count, nullptr);
if((result != VK_SUCCESS) ||
 (extensions_count == 0)) {
 std::cout << "Could not get the number of Instance extensions." << std::endl;
 return false;
}

When called with the last parameter set to nullptr, the vkEnumerateInstanceExtensionProperties() function stores the number of available extensions in the variable pointed to in the second parameter. This way, we know how many extensions are on a given platform and how much space we need to be able to store parameters for all of them.

When we are ready to acquire extensions' properties, we can call the same function once again. This time the last parameter should point to the prepared space (an array of VkExtensionProperties elements, or a vector, in our case) in which these properties will be stored:

available_extensions.resize(extensions_count);
result = vkEnumerateInstanceExtensionProperties(nullptr, &extensions_count, &available_extensions[0]);
if((result != VK_SUCCESS) ||
 (extensions_count == 0)) {
 std::cout << "Could not enumerate Instance extensions." << std::endl;
 return false;
}

return true;

The pattern of calling the same function twice is common in Vulkan. There are multiple functions, which store the number of elements returned in the query when their last argument is set to nullptr. When their last element points to an appropriate variable, they return the data itself.

Now that we have the list, we can look through it and check whether the extensions we would like to enable are available on a given platform.

 See also

	The following recipes in this chapter:

	Checking available device extensions

	The following recipe in Chapter 2, Image Presentation:

	Creating a Vulkan Instance with WSI extensions enabled

 Creating a Vulkan Instance

A Vulkan Instance is an object that gathers the state of an application. It encloses information such as an application name, name and version of an engine used to create an application, or enabled instance-level extensions and layers.

Through the Instance, we can also enumerate available physical devices and create logical devices on which typical operations such as image creation or drawing are performed. So, before we proceed with using the Vulkan API, we need to create a new Instance object.

 How to do it...

	Prepare a variable of type std::vector<char const *> named desired_extensions. Store the names of all extensions you want to enable in the desired_extensions variable.

	Create a variable of type std::vector<VkExtensionProperties> named available_extensions. Acquire the list of all available extensions and store it in the available_extensions variable (refer to the Checking available Instance extensions recipe).

	Make sure that the name of each extension from the desired_extensions variable is also present in the available_extensions variable.

	Prepare a variable of type VkApplicationInfo named application_info. Assign the following values for members of the application_info variable:

	VK_STRUCTURE_TYPE_APPLICATION_INFO value for sType.

	nullptr value for pNext.

	Name of your application for pApplicationName.

	Version of your application for the applicationVersion structure member; do that by using VK_MAKE_VERSION macro and specifying major, minor, and patch values in it.

	Name of the engine used to create an application for pEngineName.

	Version of the engine used to create an application for engineVersion; do that by using VK_MAKE_VERSION macro.

	VK_MAKE_VERSION(1, 0, 0) for apiVersion.

	Create a variable of type VkInstanceCreateInfo named instance_create_info. Assign the following values for members of the instance_create_info variable:

	VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO value for sType.

	nullptr value for pNext.

	0 value for flags.

	Pointer to the application_info variable in pApplicationInfo.

	0 value for enabledLayerCount.

	nullptr value for ppEnabledLayerNames.

	Number of elements of the desired_extensions vector for enabledExtensionCount.

	Pointer to the first element of the desired_extensions vector (or nullptr if is empty) for ppEnabledExtensionNames.

	Create a variable of type VkInstance named instance.

	Call the vkCreateInstance(&instance_create_info, nullptr, &instance) function. Provide a pointer to the instance_create_info variable in the first parameter, a nullptr value in the second, and a pointer to the instance variable in the third parameter.

	Make sure the operation was successful by checking whether the value returned by the vkCreateInstance() function call is equal to VK_SUCCESS.

 How it works...

To create an Instance, we need to prepare some information. First, we need to create an array of names of instance-level extensions that we would like to enable. Next, we need to check if they are supported on a given hardware. This is done by acquiring the list of all available instance-level extensions and checking if it contains the names of all the extensions we want to enable:

std::vector<VkExtensionProperties> available_extensions;
if(!CheckAvailableInstanceExtensions(available_extensions)) {
 return false;
}

for(auto & extension : desired_extensions) {
 if(!IsExtensionSupported(available_extensions, extension)) {
 std::cout << "Extension named '" << extension << "' is not supported." << std::endl;
 return false;
 }
}

Next, we need to create a variable in which we will provide information about our application, such as its name and version, the name and version of an engine used to create an application, and the version of a Vulkan API we want to use (right now only the first version is supported by the API):

VkApplicationInfo application_info = {
 VK_STRUCTURE_TYPE_APPLICATION_INFO,
 nullptr,
 application_name,
 VK_MAKE_VERSION(1, 0, 0),
 "Vulkan Cookbook",
 VK_MAKE_VERSION(1, 0, 0),
 VK_MAKE_VERSION(1, 0, 0)
};

The pointer to the application_info variable in the preceding code sample is provided in a second variable with the actual parameters used to create an Instance. In it, apart from the previously mentioned pointer, we provide information about the number and names of extensions we want to enable, and also the number and names of layers we want to enable. Neither extensions nor layers are required to create a valid Instance object and we can skip them. However, there are very important extensions, without which it will be hard to create a fully functional application, so it is recommended to use them. Layers may be safely omitted. Following is the sample code preparing a variable used to define Instance parameters:

VkInstanceCreateInfo instance_create_info = {
 VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
 nullptr,
 0,
 &application_info,
 0,
 nullptr,
 static_cast<uint32_t>(desired_extensions.size()),
 desired_extensions.size() > 0 ? &desired_extensions[0] : nullptr
};

Finally, when we have prepared the preceding data, we can create an Instance object. This is done with the vkCreateInstance() function. Its first parameter must point to the variable of type VkInstanceCreateInfo. The third parameter must point to a variable of type VkInstance. The created Instance handle will be stored in it. The second parameter is very rarely used: It may point to a variable of type VkAllocationCallbacks, in which allocator callback functions are defined. These functions control the way host memory is allocated and are mainly used for debugging purposes. Most of the time, the second parameter defining allocation callbacks can be set to nullptr:

VkResult result = vkCreateInstance(&instance_create_info, nullptr, &instance);
if((result != VK_SUCCESS) ||
 (instance == VK_NULL_HANDLE)) {
 std::cout << "Could not create Vulkan Instance." << std::endl;
 return false;
}

return true;

 See also

	The following recipes in this chapter:

	Checking available Instance extensions

	Destroying a Vulkan Instance

	The following recipe in Chapter 2, Image Presentation:

	Creating a Vulkan Instance with WSI extensions enabled

 Loading instance-level functions

We have created a Vulkan Instance object. The next step is to enumerate physical devices, choose one of them, and create a logical device from it. These operations are performed with instance-level functions, of which we need to acquire the addresses.

 How to do it...

	Take the handle of a created Vulkan Instance. Provide it in a variable of type VkInstance named instance.

	Choose the name (denoted as <function name>) of an instance-level function you want to load.

	Create a variable of type PFN_<function name> named <function name>.

	Call vkGetInstanceProcAddr(instance, "<function name>"). Provide a handle for the created Instance in the first parameter and a function name in the second. Cast the result of this operation onto a PFN_<function name> type and store it in a <function name> variable.

	Confirm that this operation succeeded by checking if a value of a <function name> variable is not equal to nullptr.

 How it works...

Instance-level functions are used mainly for operations on physical devices. There are multiple instance-level functions, with vkEnumeratePhysicalDevices(), vkGetPhysicalDeviceProperties(), vkGetPhysicalDeviceFeatures(), vkGetPhysicalDeviceQueueFamilyProperties(), vkCreateDevice(), vkGetDeviceProcAddr(), vkDestroyInstance() or vkEnumerateDeviceExtensionProperties() among them. However, this list doesn't include all instance-level functions.

How can we tell if a function is instance- or device-level? All device-level functions have their first parameter of type VkDevice, VkQueue, or VkCommandBuffer. So, if a function doesn't have such a parameter and is not from the global level, it is from an instance level. As mentioned previously, instance-level functions are used for manipulating with physical devices, checking their properties, abilities and, creating logical devices.

Remember that extensions can also introduce new functions. You need to add their functions to the function loading code in order to be able to use the extension in the application. However, you shouldn't load functions introduced by a given extension without enabling the extension first during Instance creation. If these functions are not supported on a given platform, loading them will fail (it will return a null pointer).

So, in order to load instance-level functions, we should update the ListOfVulkanFunctions.inl file as follows:

#ifndef INSTANCE_LEVEL_VULKAN_FUNCTION
#define INSTANCE_LEVEL_VULKAN_FUNCTION(function)
#endif

INSTANCE_LEVEL_VULKAN_FUNCTION(vkEnumeratePhysicalDevices)
INSTANCE_LEVEL_VULKAN_FUNCTION(vkGetPhysicalDeviceProperties)
INSTANCE_LEVEL_VULKAN_FUNCTION(vkGetPhysicalDeviceFeatures)
INSTANCE_LEVEL_VULKAN_FUNCTION(vkCreateDevice)
INSTANCE_LEVEL_VULKAN_FUNCTION(vkGetDeviceProcAddr)
//...

#undef INSTANCE_LEVEL_VULKAN_FUNCTION

//

#ifndef INSTANCE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION
#define INSTANCE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION(function, extension)
#endif

INSTANCE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION(vkGetPhysicalDeviceSurfaceSupportKHR, VK_KHR_SURFACE_EXTENSION_NAME)
INSTANCE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION(vkGetPhysicalDeviceSurfaceCapabilitiesKHR, VK_KHR_SURFACE_EXTENSION_NAME)
INSTANCE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION(vkGetPhysicalDeviceSurfaceFormatsKHR, VK_KHR_SURFACE_EXTENSION_NAME)

#ifdef VK_USE_PLATFORM_WIN32_KHR
INSTANCE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION(vkCreateWin32SurfaceKHR, VK_KHR_WIN32_SURFACE_EXTENSION_NAME)
#elif defined VK_USE_PLATFORM_XCB_KHR
INSTANCE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION(vkCreateXcbSurfaceKHR, VK_KHR_XLIB_SURFACE_EXTENSION_NAME)
#elif defined VK_USE_PLATFORM_XLIB_KHR
INSTANCE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION(vkCreateXlibSurfaceKHR, VK_KHR_XCB_SURFACE_EXTENSION_NAME)
#endif

#undef INSTANCE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION

In the preceding code, we added the names of several (but not all) instance-level functions. Each of them is wrapped into an INSTANCE_LEVEL_VULKAN_FUNCTION or an INSTANCE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION macro, and is placed between #ifndef and the #undef preprocessor definitions.

To implement the instance-level functions loading recipe using the preceding macros, we should write the following code:

#define INSTANCE_LEVEL_VULKAN_FUNCTION(name) \
name = (PFN_##name)vkGetInstanceProcAddr(instance, #name); \
if(name == nullptr) { \
 std::cout << "Could not load instance-level Vulkan function named: "\
 #name << std::endl; \
 return false; \
}

#include "ListOfVulkanFunctions.inl"

return true;

The preceding macro calls a vkGetInstanceProcAddr() function. It's the same function used to load global-level functions, but this time, the handle of a Vulkan Instance is provided in the first parameter. This way, we can load functions that can work properly only when an Instance object is created.

This function returns a pointer to the function whose name is provided in the second parameter. The returned value is of type void*, which is why it is then cast onto a type appropriate for a function we acquire the address of.

The type of a given function's prototype is defined based on its name, with a PFN_ before it. So, in the example, the type of the vkEnumeratePhysicalDevices() function's prototype will be defined as PFN_vkEnumeratePhysicalDevices.

If the vkGetInstanceProcAddr() function cannot find an address of the requested procedure, it returns nullptr. That's why we should perform a check and log the appropriate message in case of any problems.

The next step is to load functions that are introduced by extensions. Our function loading code acquires pointers of all functions that are specified with a proper macro in the ListOfVulkanFunctions.inl file, but we can't provide extension-specific functions in the same way, because they can be loaded only when appropriate extensions are enabled. When we don't enable any extension, only the core Vulkan API functions can be loaded. That's why we need to distinguish core API functions from extension-specific functions. We also need to know which extensions are enabled and which function comes from which extension. That's why a separate macro is used for functions introduced by extensions. Such a macro specifies a function name, but also the name of an extension in which a given function is specified. To load such functions, we can use the following code:

#define INSTANCE_LEVEL_VULKAN_FUNCTION_FROM_EXTENSION(name, extension) \
for(auto & enabled_extension : enabled_extensions) { \
 if(std::string(enabled_extension) == std::string(extension))
{ \
 name = (PFN_##name)vkGetInstanceProcAddr(instance, #name); \
 if(name == nullptr) { \
 std::cout << "Could not load instance-level Vulkan function named: " \
 #name << std::endl; \
 return false; \
 } \
 } \
}

#include "ListOfVulkanFunctions.inl"

return true;

enabled_extensions is a variable of type std::vector<char const *>, which contains the names of all enabled instance-level extensions. We iterate over all its elements and check whether the name of a given extension matches the name of an extension that introduces the provided function. If it does, we load the function in the same way as a normal core API function. Otherwise, we skip the pointer-loading code. If we don't enable the given extension, we can't load functions introduced by it.

 See also

The following recipes in this chapter:

	Preparing for loading Vulkan API functions

	Loading function exported from a Vulkan Loader library

	Loading global-level functions

	Loading device-level functions

 Enumerating available physical devices

Almost all the work in Vulkan is performed on logical devices: we create resources on them, manage their memory, record command buffers created from them, and submit commands for processing to their queues. In our application, logical devices represent physical devices for which a set of features and extensions were enabled. To create a logical device, we need to select one of the physical devices available on a given hardware platform. How do we know how many and what physical devices are available on a given computer? We need to enumerate them.

 How to do it...

	Take the handle of a created Vulkan Instance. Provide it through a variable of type VkInstance named instance.

	Prepare a variable of type uint32_t named devices_count.

	Call vkEnumeratePhysicalDevices(instance, &devices_count, nullptr). In the first parameter, provide a handle of the Vulkan Instance; in second, provide a pointer to the devices_count variable, and leave the third parameter set to nullptr right now.

	If a function call is successful, the devices_count variable will contain the total number of available physical devices.

	Prepare storage for the list of physical devices. The best solution is to use a variable of type std::vector with elements of type VkPhysicalDevice. Call it available_devices.

	Resize the vector to be able to hold at least the devices_count elements.

	Call vkEnumeratePhysicalDevices(instance, &devices_count, &available_devices[0]). Again, the first parameter should be set to the handle of a Vulkan Instance object, the second parameter should still point to the extensions_count variable, and the third parameter must point to an array of at least devices_count elements of type VkPhysicalDevice. Here, in the third parameter, provide an address of the first element of an available_devices vector.

	If the function returns successfully, the available_devices vector will contain a list of all physical devices installed on a given hardware platform that supports a Vulkan API.

 How it works...

Enumerating the available physical devices operation is divided into two stages: First, we check how many physical devices are available on any given hardware. This is done by calling the vkEnumeratePhysicalDevices() function with the last parameter set to nullptr, as follows:

uint32_t devices_count = 0;
VkResult result = VK_SUCCESS;

result = vkEnumeratePhysicalDevices(instance, &devices_count, nullptr);
if((result != VK_SUCCESS) ||
 (devices_count == 0)) {
 std::cout << "Could not get the number of available physical devices." << std::endl;
 return false;
}

This way, we know how many devices are supporting Vulkan and how much storage we need to prepare for their handles. When we are ready and have prepared enough space, we can go to the second stage and get the actual handles of physical devices. This is done with the call of the same vkEnumeratePhysicalDevices() function, but this time, the last parameter must point to an array of VkPhysicalDevice elements:

available_devices.resize(devices_count);
result = vkEnumeratePhysicalDevices(instance, &devices_count, &available_devices[0]);
if((result != VK_SUCCESS) ||
 (devices_count == 0)) {
 std::cout << "Could not enumerate physical devices." << std::endl;
 return false;
}

return true;

When the call is successful, the prepared storage is filled with the handles of physical devices installed on any computer on which our application is executed.

Now that we have the list of devices, we can look through it and check the properties of each device, check operations we can perform on it, and see what extensions are supported by it.

 See also

The following recipes in this chapter:

	Loading instance-level functions

	Checking available device extensions

	Checking available queue families and their properties

	Creating a logical device

 Checking available device extensions

Some Vulkan features we would like to use, require us to explicitly enable certain extensions (contrary to OpenGL, in which extensions were automatically/implicitly enabled). There are two kinds, or two levels, of extensions: Instance-level and device-level. Like Instance extensions, device extensions are enabled during logical device creation. We can't ask for a device extension if it is not supported by a given physical device or we won't be able to create a logical device for it. So, before we start creating a logical device, we need to make sure that all requested extensions are supported by a given physical device, or we need to search for another device that supports them all.

 How to do it...

	Take one of the physical device handles returned by the vkEnumeratePhysicalDevices() function and store it in a variable of type VkPhysicalDevice called physical_device.

	Prepare a variable of type uint32_t named extensions_count.

	Call vkEnumerateDeviceExtensionProperties(physical_device, nullptr, &extensions_count, nullptr). In the first parameter, provide the handle of a physical device available on a given hardware platform: the physical_device variable; the second and last parameters should be set to nullptr, and the third parameter should point to the extensions_count variable.

	If a function call is successful, the extensions_count variable will contain the total number of available device-level extensions.

	Prepare the storage for the list of extension properties. The best solution is to use a variable of type std::vector with elements of type VkExtensionProperties. Call it available_extensions.

	Resize the vector to be able to hold at least the extensions_count elements.

	Call vkEnumerateDeviceExtensionProperties(physical_device, nullptr, &extensions_count, &available_extensions[0]). However, this time, replace the last parameter with a pointer to the first element of an array with elements of type VkExtensionProperties. This array must have enough space to contain at least extensions_count elements. Here, provide a pointer to the first element of the available_extensions variable.

	If the function returns successfully, the available_extensions vector will contain a list of all extensions supported by a given physical device.

 How it works...

The process of acquiring the list of supported device-level extensions can be divided into two stages: Firstly, we check how many extensions are supported by a given physical device. This is done by calling a function named vkEnumerateDeviceExtensionProperties() and setting its last parameter to nullptr as follows:

uint32_t extensions_count = 0;
VkResult result = VK_SUCCESS;

result = vkEnumerateDeviceExtensionProperties(physical_device, nullptr, &extensions_count, nullptr);
if((result != VK_SUCCESS) ||
 (extensions_count == 0)) {
 std::cout << "Could not get the number of device extensions." << std::endl;
 return false;
}

Secondly, we need to prepare an array that will be able to store enough elements of type VkExtensionProperties. In the example, we create a vector variable and resize it so it has the extensions_count number of elements. In the second vkEnumerateDeviceExtensionProperties() function call, we provide an address of the first element of the available_extensions variable. When the call is successful, the variable will be filled with properties (names and versions) of all extensions supported by a given physical device.

available_extensions.resize(extensions_count);
result = vkEnumerateDeviceExtensionProperties(physical_device, nullptr, &extensions_count, &available_extensions[0]);
if((result != VK_SUCCESS) ||
 (extensions_count == 0)) {
 std::cout << "Could not enumerate device extensions." << std::endl;
 return false;
}

return true;

Once again, we can see the pattern of calling the same function twice: The first call (with the last parameter set to nullptr) informs us of the number of elements returned by the second call. The second call (with the last parameter pointing to an array of VkExtensionProperties elements) returns the requested data, in this case device extensions, which we can iterate over and check whether the extensions we are interested in are available on a given physical device.

 See also

	The following recipes in this chapter:

	Checking available Instance extensions

	Enumerating available physical devices

	The following recipe in Chapter 2, Image Presentation:

	Creating a logical device with WSI extensions enabled

 Getting features and properties of a physical device

When we create a Vulkan-enabled application, it can be executed on many different devices. It may be a desktop computer, a notebook, or a mobile phone. Each such device may have a different configuration, and may contain different graphics hardware that provide different performance, or, more importantly, different capabilities. A given computer may have more than one graphics card installed. So, in order to find a device that suits our needs, and is able to perform operations we want to implement in our code, we should check not only how many devices there are, but also, to be able to properly choose one of them, we need to check what the capabilities of each device are.

 How to do it...

	Prepare the handle of the physical device returned by the vkEnumeratePhysicalDevices() function. Store it in a variable of type VkPhysicalDevice named physical_device.

	Create a variable of type VkPhysicalDeviceFeatures named device_features.

	Create a second variable of type VkPhysicalDeviceProperties named device_properties.

	To get the list of features supported by a given device ,call vkGetPhysicalDeviceFeatures(physical_device, &device_features). Set the handle of the physical device returned by the

vkEnumeratePhysicalDevices() function for the first parameter. The second parameter must point to the device_features variable.

	To acquire the properties of a given physical device call the vkGetPhysicalDeviceProperties(physical_device, &device_properties) function. Provide the handle of the physical device in the first argument. This handle must have been returned by the vkEnumeratePhysicalDevices() function. The second parameter must be a pointer to a device_properties variable.

 How it works...

Here you can find an implementation of the preceding recipe:

vkGetPhysicalDeviceFeatures(physical_device, &device_features);

vkGetPhysicalDeviceProperties(physical_device, &device_properties);

This code, while short and simple, gives us much information about the graphics hardware on which we can perform operations using the Vulkan API.

The VkPhysicalDeviceProperties structure contains general information about a given physical device. Through it, we can check the name of the device, the version of a driver, and a supported version of a Vulkan API. We can also check the type of a device: Whether it is an integrated device (built into a main processor) or a discrete (dedicated) graphics card, or maybe even a CPU itself. We can also read the limitations (limits) of a given hardware, for example, how big images (textures) can be created on it, how many buffers can be used in shaders, or we can check the upper limit of vertex attributes used during drawing operations.

The VkPhysicalDeviceFeatures structure lists additional features that may be supported by the given hardware, but are not required by the core Vulkan specification. Features include items such as geometry and tessellation shaders, depth clamp and bias, multiple viewports, or wide lines. You may wonder why geometry and tessellation shaders are on the list. Graphics hardware has supported these features for many years now. However, don't forget that the Vulkan API is portable and can be supported on many different hardware platforms, not only high-end PCs, but also mobile phones or even dedicated, portable devices, which should be as power efficient as possible. That's why these performance-hungry features are not in the core specification. This allows for some driver flexibility and, more importantly, power efficiency and lower memory consumption.

There is one additional thing you should know about the physical device features. Like extensions, they are not enabled by default and can't be used just like that. They must be implicitly enabled during the logical device creation. We can't request all features during this operation, because if there is any feature that is not supported, the logical device creation process will fail. If we are interested in a specific feature, we need to check if it is available and specify it during the creation of a logical device. If the feature is not supported, we can't use such a feature on this device and we need to look for another device that supports it.

If we want to enable all features supported by a given physical device, we just need to query for the available features and provide the acquired data during logical device creation.

OEBPS/assets/tip-small.png

OEBPS/assets/image_01_001.png
o
Y]
o
=

Appli

o

Validation
Layers

vt
Vulkan API

vt
Driver

Hardware

OEBPS/assets/info-small.png

OEBPS/assets/Packt-Logo-beacon.png
Packh

OEBPS/assets/Mapt_logo.jpg

OEBPS/assets/cover.png
Vulkan

Work through recipes to unlock the full potential
of the next generation graphics API-Vulkan

+ o Packt

www.packt.com

By Pawel Lapinski

