
  
    [image: Cover of Unity 6 Shaders and Effects Cookbook - Fifth Edition by John P. Doran]
  

  
    Unity 6 Shaders and Effects Cookbook

    Fifth Edition

    Over 50 recipes for creating captivating visual effects in Unity and enhancing your game’s visual impact

    John P. Doran

    [image: ]

    

    Unity 6 Shaders and Effects Cookbook

    Fifth Edition

    Copyright © 2025 Packt Publishing

    All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

    Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

    Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

    Portfolio Director: Rohit Rajkumar

    Relationship Lead: Neha Pande

    Program Manager: Sandip Tadge

    Content Engineer: Shreya Sarkar

    Technical Editor: Tejas Mhasvekar

    Copy Editor: Safis Editing

    Indexer: Manju Arasan

    Proofreader: Shreya Sarkar

    Production Designer: Aparna Bhagat

    Growth Lead: Lee Booth

    Marketing Owner: Nivedita Pandey

    First published: June 2013

    Second edition: February 2016

    Third edition: June 2018

    Fourth edition: October 2021

    Fifth edition: July 2025

    Production reference: 1020725

    Published by Packt Publishing Ltd.

    Grosvenor House

    11 St Paul’s Square

    Birmingham 

    B3 1RB, UK.

    ISBN 978-1-83546-857-9

    www.packtpub.com

    For Johanna, my little game designer in the making, and to my wonderful wife, Hannah, my co-op partner in this great adventure. May our lives always be filled with love, learning, and the joy of creating together. 

    – John P. Doran

    

    Contributors

    About the author

    John P. Doran is a passionate and seasoned technical game designer, software engineer, and author who is based in Songdo, South Korea. His passion for game development began at an early age. He graduated from DigiPen Institute of Technology with a Bachelor of Science in Game Design and a Master of Science in Computer Science from Bradley University.

    For over a decade, John has gained extensive hands-on expertise in game development, working in various roles ranging from game designer to lead UI programmer in teams ranging from just himself to over 70 people in student, mod, and professional game projects, including working at LucasArts on Star Wars: 1313. Additionally, John has worked in game development education teaching in Singapore, South Korea, and the United States. To date, he has authored over 10 books pertaining to game development.

    John is currently an Instructor at George Mason University Korea. Prior to his present ventures, he was an award-winning videographer.

    This book would not have been possible without the unwavering support of my wife, Hannah, and my daughter, Johanna. Your love, patience, and encouragement mean everything to me.

    A special thanks to everyone at Packt, especially Neha, Shreya, Arul, and Mark, for your patience, guidance, and invaluable feedback throughout this journey. Balancing a full-time job, a PhD, and writing this book has been no small feat, and I deeply appreciate your flexibility and support in making this project a reality.

    

    About the reviewers

    Alejandro Diaz is a seasoned game programmer with extensive experience in remote and international environments. Specializing in mobile game development, he excels in mechanics, systems, UI design, and optimization. Alejandro’s career includes significant contributions to renowned projects such as Roller Coaster Tycoon Touch. His strong foundation in Unity development and interest in shaders and effects make him a valuable contributor to projects exploring these technical areas. With proficiency in creating tools for game designers and managing complex development systems, Alejandro continues to shape the future of interactive experiences.

    Shailja Shrivastava is a game developer and software engineer with extensive experience in Unity, Unreal Engine, and multiplayer game architecture. With a background in backend development, networking, and rendering optimizations, she has contributed to various game projects across mobile, web, and console platforms. She has worked with multiple publishers worldwide and has experience developing API backends, CI/CD pipelines, and AR applications. Her expertise also includes shader programming, gameplay mechanics, game optimization, and server-side development.

    Obinna Akpen is a senior Unity developer with over 6 years of experience, specializing in Unity, C# scripting, and shader development. He has worked on multiple successful titles, including Who Dies First, a globally acclaimed mobile game with millions of downloads and top chart rankings. Obinna is known for his strong grasp of game mechanics, delivering immersive gameplay and polished experiences. A former e-sports champion, he thrives under pressure, adapts quickly to challenges, and actively mentors aspiring developers, fostering growth in the game development community.

  


  
    Contents

    
      	Preface
        

      	Part I: Foundations of Shading and Rendering in Unity

      	Using Post-Processing with URP
        
          	Technical requirements

          	Setting up post-processing
            
              	Getting ready

              	How to do it...

              	How it works…

            

          

          	Achieving a filmic look using grain, vignetting, and depth of field
            
              	Getting ready

              	How to do it...

              	How it works…

            

          

          	Simulating realistic effects with bloom and motion blur
            
              	Getting ready

              	How to do it...

              	How it works...

            

          

          	Enhancing the atmosphere with color grading
            
              	Getting ready

              	How to do it...

              	How it works…

            

          

          	Creating a horror game look with fog
            
              	Getting ready

              	How to do it...

              	How it works...

            

          

        

      

      	Creating Your First Shader with Shader Graph
        
          	Technical requirements

          	Implementing a simple Shader Graph
            
              	Getting ready

              	How to do it...

              	How it works…

            

          

          	Adding properties to a shader
            
              	Getting ready

              	How to do it…

              	How it works…

            

          

          	Using properties in a Surface Shader
            
              	Getting ready

              	How to do it…

              	How it works…

            

          

        

      

      	Working with Surfaces
        
          	Technical requirements

          	Implementing diffuse shading
            
              	Getting ready

              	How to do it...

              	How it works…

            

          

          	Accessing and modifying packed arrays
            
              	How to do it…

              	How it works…

              	There’s more…

            

          

          	Creating a shader with normal mapping
            
              	Getting ready

              	How to do it…

              	How it works…

              	There’s more…

            

          

          	Creating a holographic shader
            
              	Getting ready

              	How to do it…

              	How it works…

              	There’s more…

            

          

        

      

      	Working with Texture Mapping
        
          	Technical requirements

          	Adding a texture to a shader
            
              	Getting ready

              	How to do it…

              	How it works…

              	There’s more…

              	See also

            

          

          	Scrolling textures by modifying UV values
            
              	Getting ready

              	How to do it…

              	How it works…

            

          

          	Creating a transparent material
            
              	Getting ready

              	How to do it…

              	How it works…

              	There’s more…

            

          

          	Packing and blending textures
            
              	Getting ready

              	How to do it…

              	How it works…

            

          

          	Creating a circle around your terrain
            
              	Getting ready

              	How to do it...

              	How it works…

              	There’s more…

            

          

        

      

      	Enhancing Realism: Unity Muse and Physically Based Rendering
        
          	Technical requirements

          	Utilizing generative AI for texture creation
            
              	Getting ready

              	How to do it...

              	How it works…

            

          

          	Utilizing the Refinements menu on Muse materials
            
              	Getting ready

              	How to do it…

              	How it works…

            

          

          	Understanding the metallic setup
            
              	Getting ready

              	How to do it…

              	How it works…

              	See also

            

          

          	Adding transparency to PBR
            
              	Getting ready

              	How to do it…
                
                  	Using semi-transparent materials

                  	Creating fading objects

                  	Creating solid geometries with holes

                

              

            

          

          	Creating mirrors and reflective surfaces
            
              	Getting ready

              	How to do it…

              	How it works…

              	See also

            

          

          	Baking lights into your scene
            
              	Getting ready

              	How to do it...
                
                  	Configuring the static geometry

                  	Configuring the light probes

                  	Baking the lights

                

              

              	How it works…

              	See also

            

          

          	Join our community on Discord 

        

      

      	Part II: Advanced Shader Effects and Geometry Manipulation

      	Using Vertex Functions
        
          	Technical requirements

          	Accessing a vertex color in a Shader Graph
            
              	Getting ready

              	How to do it…

              	How it works…

              	There’s more…

            

          

          	Animating vertices in a Shader Graph
            
              	Getting ready

              	How to do it…

              	How it works…

            

          

          	Extruding your models
            
              	Getting ready

              	How to do it…

              	How it works…

              	There’s more…

            

          

          	Implementing a snow shader
            
              	Getting ready

              	How to do it…

              	How it works…
                
                  	Coloring the surface

                  	Altering the geometry

                

              

            

          

          	Implementing a volumetric explosion
            
              	Getting ready

              	How to do it…

              	How it works…

              	There’s more…

            

          

        

      

      	Using Grab Passes
        
          	Technical requirements

          	Using grab passes to draw behind objects
            
              	Getting ready

              	How to do it…

              	How it works…

              	There’s more…

            

          

          	Implementing a glass shader
            
              	Getting ready

              	How to do it…

              	How it works…
                
                  	Distortion magnitude

                  	Combining the effects

                

              

              	There’s more…

            

          

          	Implementing a water shader for 2D games
            
              	Getting ready

              	How to do it…

              	How it works…

            

          

        

      

      	Part III: Performance Optimization and Fullscreen Effects

      	Optimizing Shaders
        
          	Technical requirements

          	Techniques to make shaders more efficient
            
              	Getting ready

              	How to do it...

              	How it works…

              	There’s more…

            

          

          	Profiling your shaders
            
              	Getting ready

              	How to do it…

              	How it works…

              	There’s more…

            

          

          	Modifying our shaders for mobile
            
              	Getting ready

              	How to do it…

              	How it works…

            

          

        

      

      	Creating Screen Effects with Fullscreen Shaders
        
          	Technical requirements

          	Creating a simple fullscreen shader
            
              	Getting ready

              	How to do it…

              	How it works…

            

          

          	Creating a custom fullscreen camera depth effect
            
              	Getting ready

              	How to do it…

              	How it works…

            

          

          	Customizing brightness, saturation, and contrast with a fullscreen shader
            
              	Getting ready

              	How to do it…

              	How it works…

            

          

          	Making Photoshop-like Blend modes with a fullscreen shader
            
              	Getting ready

              	How to do it…

              	How it works…

              	There’s more…

            

          

          	Enabling and disabling render features with script
            
              	Getting ready

              	How to do it…

              	How it works…

            

          

        

      

      	Gameplay and Screen Effects
        
          	Technical requirements

          	Creating an old movie screen effect
            
              	Getting ready

              	How to do it...

              	How it works…

            

          

          	Creating a night vision screen effect
            
              	Getting ready

              	How to do it…

              	How it works…

            

          

        

      

      	Part IV: Section Custom Lighting and Advanced Shader Programming

      	Understanding Lighting Models
        
          	Technical requirements

          	Creating a custom diffuse lighting model
            
              	Getting ready

              	How to do it...

              	How it works…

            

          

          	Creating a toon shader
            
              	Getting ready

              	How to do it…

              	How it works…

              	There’s more…

            

          

          	Adding shadows with custom functions
            
              	Getting ready

              	How to do it…

              	How it works…

              	There’s more…

            

          

          	Adding support for multiple lights and a Blinn-Phong specular
            
              	Getting ready

              	How to do it…

              	How it works…

              	See also

            

          

          	Creating an anisotropic specular type
            
              	Getting ready

              	How to do it…

              	How it works…

            

          

        

      

      	Developing Advanced Shading Techniques
        
          	Technical requirements

          	Using the Universal Render Pipeline’s shader library files
            
              	Getting ready

              	How to do it...

              	How it works…
                
                  	Shader code structures

                  	Shader code functions

                

              

              	There’s more...

            

          

          	Making your shader modular with HLSL include files
            
              	Getting ready

              	How to do it...

              	How it works…

            

          

          	Implementing a Fur shader
            
              	Getting ready

              	How to do it...
                
                  	Expanding the Fur shader with a fur layer generator

                

              

              	How it works…

              	There’s more…

              	See also

            

          

          	Implementing heatmaps with arrays
            
              	Getting ready

              	How to do it…

              	How it works…
                
                  	Note on SetVectorArray

                  	Calculating heatmap contributions

                

              

            

          

        

      

      	Utilizing the HDRP
        
          	Technical requirements

          	Implementing a glowing highlight system
            
              	Getting ready

              	How to do it...

              	How it works…
                
                  	Introduction to interfaces

                  	Unity’s Event System

                  	Putting it all together

                

              

            

          

          	Using Portal Shaders in Unity
            
              	Getting ready

              	How to do it...

              	How it works…

            

          

        

      

      	Other Books You May Enjoy
      

      	Index

    

  
  
    Landmarks

    
      	
        Cover
      

      	
        Index
      

    

  


  
    Preface

    Unity 6 Shaders and Effects Cookbook is your guide to mastering shader creation and post-processing effects in Unity 6. With Unity 6 making the Universal Render Pipeline (URP) the default render pipeline used, this edition of the book has been rewritten with a focus on URP and Shader Graph, ensuring that you are equipped to create shaders using Unity’s latest rendering technology.

    You will start your journey by exploring URP’s built-in post-processing features, learning how to enhance your game’s visuals without writing custom scripts. From there, you will dive into Shader Graph, creating your first shaders and learning how surfaces interact with light. As you progress, you will explore texture mapping, vertex functions, and advanced transparency effects using grab passes, all of which help bring your game world to life.

    This edition introduces Unity Muse, a generative AI tool that simplifies texture creation, alongside deeper coverage of physically based rendering (PBR), lighting models, and fullscreen shaders. You’ll learn how to optimize shaders for performance, implement dynamic screen effects such as night vision and old film filters, and use HLSL and ShaderLab to create fully customized shading techniques. The final chapter explores high-end rendering with HDRP, helping you create shaders suited for AAA-quality visuals.

    Each chapter is designed to build your skills step by step, but you can also jump into specific topics to quickly learn a new technique. Whether you’re a game programmer, technical artist, or an experienced Unity developer looking to deepen your shader expertise, this book will give you the knowledge and practical recipes to create stunning effects in Unity 6. So, let’s get started!

    Who this book is for

    Unity 6 Shaders and Effects Cookbook is designed for game developers who want to create shaders from scratch or enhance their projects with custom visual effects in Unity 6. It is especially useful for game programmers, technical artists, and aspiring developers who already have a solid understanding of Unity and are looking to deepen their skills in shader creation with Shader Graph, ShaderLab, and HLSL. This book assumes familiarity with Unity’s interface and basic workflows, and is best suited for those at an intermediate level or higher in their Unity development journey.

    What this book covers

    Chapter 1, Using Post-Processing with URP, explores how screen shaders in URP can refine a game’s style while introducing key shader concepts.

    You will learn how to enable and configure post-processing, apply grain, vignetting, and depth of field for a filmic look, use bloom and motion blur for dynamic effects, and adjust scene tone through color grading. The chapter concludes with using fog to create immersive atmospheres, ideal for horror games.

    Chapter 2, Creating Your First Shader with Shader Graph, introduces common diffusion techniques in modern shading pipelines, focusing on how light interacts with surfaces to enhance realism in 3D graphics.

    You will be introduced to Shader Graph in Unity, a visual tool that enables shader creation without writing code. By the end of the chapter, you’ll be able to create basic shaders, define adjustable properties, and use Shader Graph to execute fundamental visual operations in Unity.

    Chapter 3, Working with Surfaces, takes a deeper dive into surface materials in Shader Graph. Mastering surface materials is essential for creating visually compelling and optimized shaders in Unity.

    This chapter begins with a simple matte material and progresses to more advanced effects, including holographic projections.

    Chapter 4, Working with Texture Mapping, teaches you how to apply and manipulate textures in shaders to enhance visual quality and create dynamic effects. The chapter covers UV manipulation for scrolling textures, blending multiple textures for richer materials, and implementing transparency for realistic surfaces. By the end of the chapter, you will be able to animate textures and modify shader properties at runtime using C#.

    Chapter 5, Enhancing Realism: Unity Muse and Physically Based Rendering, explores PBR and how Unity Muse, a generative AI tool, simplifies the creation of realistic materials and textures.

    The chapter covers how light interacts with surfaces, the role of PBR in achieving realism, and how to fine-tune materials using Muse’s refinements menu. By the end, you will be able to apply PBR principles, create reflective surfaces, add transparency, and bake lighting for optimized visual fidelity.

    Chapter 6, Using Vertex Functions, explains vertex functions and how shaders can be used not only to define an object’s appearance but also to modify its geometry in real time. The chapter covers accessing vertex data, animating vertices, and using shaders to create deformations without altering the underlying mesh. By the end, you will have hands-on experience with extruding models, implementing a snow shader, and simulating volumetric explosions.

    Chapter 7, Using Grab Passes, delves into grab passes, a powerful technique for capturing and manipulating the background scene within shaders to create advanced transparency effects. Unlike simple transparency, which only reveals what’s behind an object, grab passes allow for refraction, distortion, and dynamic interactions with the background.

    The chapter covers using grab passes to draw behind objects, implementing a glass shader with stained-glass effects, and creating a water shader for 2D games to simulate animated distortions.

    Chapter 8, Optimizing Shaders, explores shader optimization techniques to ensure performance-friendly rendering across different platforms. We will break down key elements that impact shader performance, including reducing memory overhead, optimizing calculations, and how to best leverage Unity’s built-in variables.

    You will learn how to profile shaders, adjust precision types (fixed, half, or float) for better memory management, and refine lighting calculations to suit lower-end hardware.

    Chapter 9, Creating Screen Effects with Fullscreen Shaders, teaches you how to create fullscreen shaders to apply effects directly within Unity, gaining full control over real-time rendering. Unlike Unity’s built-in post-processing stack, fullscreen shaders allow developers to craft custom visual effects such as depth-based effects and color correction from scratch.

    This chapter explores the depth buffer, demonstrates how to create Photoshop-like blend modes, and teaches you how to adjust brightness, saturation, and contrast dynamically.

    Chapter 10, Gameplay and Screen Effects, builds on concepts from Chapter 9, Creating Screen Effects with Fullscreen Shaders, focusing on creating specific screen effects that completely change how a game feels. You will learn how to create an old movie screen effect, complete with film grain, scratches, and sepia tones, and implement a night vision effect, commonly used in FPS games, while also learning about using sub-graphs to break up complex effects and the Custom Function node, which will allow us to write High-Level Shader Language (HLSL) code directly within Shader Graph.

    Chapter 11, Understanding Lighting Models, explores how lighting models determine the way light interacts with surfaces in shaders. You will learn how to create custom lighting models, including diffuse shading, toon shading, and Blinn-Phong specular reflections, while also adding shadows and multiple light support. By the end, you will understand how to control light reflection and shading effects, enabling you to create both realistic and stylized materials.

    Chapter 12, Developing Advanced Shading Techniques, delves into advanced shader development by writing .shader files, combining ShaderLab and HLSL for greater control over rendering effects.

    You will learn how ShaderLab structures shaders, handling rendering properties, passes, and tags, while HLSL is used to define the vertex and fragment shader logic. By leveraging both, developers can push the boundaries of graphical effects, crafting unique materials that go beyond Shader Graph’s capabilities.

    Chapter 13, Utilizing the HDRP, introduces the High-Definition Render Pipeline (HDRP). Unlike URP, which prioritizes efficiency, HDRP is designed for powerful hardware such as modern consoles and high-performance PCs. This chapter will guide you through Shader Graph techniques in HDRP, focusing on implementing a glowing highlight system and portal shaders to create dynamic visual effects.

    To get the most out of this book

    To get the most out of this book, you should have experience working with Unity and some scripting knowledge (C# is fine). While no prior experience with shaders is required, familiarity with Unity’s rendering system will help you grasp the concepts more easily.

    This book is written using Unity Editor version 6 Preview 6000.0.7f1, but the techniques covered should work with future versions of Unity with only minor adjustments.

    
      
        
          	
            Software/hardware covered in the book

          
          	
            OS requirements

          
        

        
          	
            Unity 6000.0.7f1

          
          	
            Windows, macOS, or Linux (any)

          
        

      
    

    If you need to access older versions of Unity for compatibility reasons, you can download them from the Unity download archive: https://unity.com/releases/editor/archive.

    If you are using the digital version of this book, we advise you to type the code yourself or access the code via the GitHub repository (link available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

    Note that the author acknowledges the use of cutting-edge AI, such as ChatGPT, with the sole aim of enhancing the language and clarity within the book, thereby ensuring a smooth reading experience for readers. It’s important to note that the content itself has been crafted by the author and edited by a professional publishing team.

    Download the example code and asset files

    You can download the example code and asset files for this book from GitHub at https://github.com/PacktPublishing/Unity-6-Shaders-and-Effects-Cookbook. In case there’s an update to the code or assets, it will be updated on the existing GitHub repository.

    We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

    Download the color images

    We also provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/gbp/9781835468579.

    Conventions used

    There are a number of text conventions used throughout this book.

    CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Above the frag function, add the CalculateAlphaFade function to handle edge fading.”

    A block of code is set as follows:

    GameObject explosion = Instantiate(explosionPrefab) as GameObject;
Renderer = explosion.GetComponent<Renderer>();
Material = new Material(renderer.sharedMaterial);
renderer.material = material;


    When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

    struct appdata
{
    float4 vertex : POSITION;
    float2 uv : TEXCOORD0;
    float3 normal : NORMAL;
};


    Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, words in menus or dialog boxes appear in the text like this. For example: “Drag and drop Global Color Tint onto the graph. Below it, create a Vertex Color node to access the vertex color data from the model.”

    
       Warnings or important notes appear like this.

    

    
       Tips and tricks appear like this.

    

    Sections

    In this book, you will find several headings that appear frequently (Getting ready, How to do it..., How it works..., There’s more..., and See also).

    To give clear instructions on how to complete a recipe, use these sections as follows:

    Getting ready

    This section tells you what to expect in the recipe and describes how to set up any software or any preliminary settings required for the recipe.

    How to do it…

    This section contains the steps required to follow the recipe.

    How it works…

    This section usually consists of a detailed explanation of what happened in the previous section.

    There’s more…

    This section consists of additional information about the recipe in order to make you more knowledgeable about the recipe.

    See also

    This section provides helpful links to other useful information for the recipe.

    Get in touch

    Feedback from our readers is always welcome.

    General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

    Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

    Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

    If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com/.



    Join our community on Discord

    Join our community’s Discord space for discussions with the authors and other readers:

    https://packt.link/gamedevelopment

    [image: ]

  

  
    Share Your Thoughts

    Once you’ve read Unity 6 Shaders and Effects Cookbook, Fifth edition, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

    Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

  

  
    Download a free PDF copy of this book

    Thanks for purchasing this book!

    Do you like to read on the go but are unable to carry your print books everywhere?

    Is your eBook purchase not compatible with the device of your choice?

    Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

    Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application. 

    The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

    Follow these simple steps to get the benefits:

    
      	Scan the QR code or visit the link below

    

    [image: Qr code  Description automatically generated]
    https://packt.link/free-ebook/9781835468579

    
      	Submit your proof of purchase

      	That’s it! We’ll send your free PDF and other benefits to your email directly

    

  



  
    Part 1

    Foundations of Shading and Rendering in Unity

    The world of real-time rendering is built on shaders — specialized programs that define how objects appear in a game. Unity 6 has shifted its default render pipeline to Universal Render Pipeline (URP), making Shader Graph a key tool for developers looking to create stunning visual effects. This part introduces the fundamental building blocks of shaders, helping you establish a strong foundation in shader development.

    We will begin with post-processing effects in URP, exploring how Unity’s built-in screen shaders can be used to refine a game’s style. Without writing custom shaders, you will learn how to apply grain, vignetting, depth of field, bloom, motion blur, color grading, and atmospheric fog to achieve cinematic visuals. From there, we will introduce Shader Graph, a visual tool that allows developers to create shaders without needing to write HLSL code.

    Once you understand the basics, we will dive into surface materials and texture mapping, where you’ll learn how to define material properties such as diffuse color, transparency, and reflectivity. We will explore UV mapping, blending multiple textures, and animating texture properties using C# to create dynamic visual effects. The part concludes with Physically Based Rendering (PBR), where we will explore how light interacts with surfaces in a realistic way and how Unity Muse, a generative AI tool, can assist in rapid material creation and refinement.

    By the end of this part, you will have a solid grasp of Shader Graph fundamentals, texture mapping techniques, and PBR principles, equipping you with the knowledge needed to move into advanced shader effects and real-time geometry manipulation.

    This part has the following chapters:

    
      	Chapter 1, Using Post-Processing with URP 

      	Chapter 2, Creating Your First Shader with Shader Graph 

      	Chapter 3, Working with Surfaces

      	Chapter 4, Working with Texture Mapping

      	Chapter 5, Enhancing Realism: Unity Muse and Physically Based Rendering 

    

  



  
    1

    Using Post-Processing with URP

    Custom shaders allow you to fine-tune visuals, achieving a unique look for your project. This book focuses on writing shaders and effects, but it’s worth noting that Unity’s Universal Render Pipeline (URP) provides built-in solutions for common visual enhancements. Prebuilt shaders like the Standard Shader and configurable lighting and shadows offer a solid foundation.

    For quick and effective visual improvements, URP’s integrated post-processing features provide effects such as bloom, depth of field, color grading, ambient occlusion, and motion blur. These can enhance your game’s aesthetics without requiring additional coding while offering insight into how shaders work. URP applies these effects via screen shaders, which not only save development time but also introduce key shader concepts.

    This chapter covers enabling and configuring post-processing in URP, using grain, vignetting, and depth of field for a filmic look, applying bloom and motion blur for dynamic visuals, and exploring color grading to adjust scene tone. We conclude by using fog to create immersive atmospheres, ideal for horror games.

    By leveraging URP’s post-processing tools, you can refine your game’s style, experiment with effects, and gain a deeper understanding of professional-quality rendering. In this chapter, we will be covering the following recipes:

    
      	Setting up post-processing

      	Achieving a filmic look with grain, vignetting, and depth of field

      	Simulating realistic effects with bloom and motion blur

      	Enhancing the atmosphere with color grading

      	Creating a horror game look with fog

    

    Technical requirements

    For this chapter, you’ll need Unity Editor version 6 Preview 6000.0.4f1. The instructions should remain mostly applicable in future URP-based projects. The sample project was created using the Universal 3D Core template, which includes URP preconfigured but is otherwise minimal, requiring additional content.

    [image: Figure 1.1 – Universal 3D Core template]
    Figure 1.1 – Universal 3D Core template

    The provided code files for the book on GitHub include a Unity package named Chapter1_StartingPoint.unitypackage, located in the Unity Packages folder (https://github.com/PacktPublishing/Unity-6-Shaders-and-Effects-Cookbook/tree/main/Unity%20Packages). This package contains a basic scene and assets necessary to experiment with post-processing techniques. All recipes in this chapter rely on this environment to demonstrate their effects.

    Setting up post-processing

    In this recipe, you’ll learn how to set up a Unity project and enable post-processing effects in a URP project. Once enabled, you’ll gain greater control over your game’s visual style.

    Earlier editions of this book used the Built-in Render Pipeline, requiring the post-processing stack from the Package Manager. However, URP includes post-processing by default, simplifying setup and allowing you to apply effects quickly.

    Getting ready

    To begin, launch Unity and create a 3D template project. This chapter requires an environment to observe post-processing effects. If you prefer to use the scene on its own within your own project rather than working directly from the example code, you can import the Chapter1_StartingPoint.unitypackage (found in the Unity Packages folder) which includes a basic scene and supporting assets.

    For those using the example code, open Chapter 1/Starting Point from Assets/Chapter 01/Scenes folder from the Project window. If all goes well, you should see something like this in the Scene view:

    [image: Figure 1.2 – Starting Point scene]
    Figure 1.2 – Starting Point scene

    This is a simple environment that will allow us to easily see how changes that have been made with post-processing effects can modify how things are drawn on the screen.

    
      Note

      If you are interested in learning how to create the environment we are going to be using here, you can check out one of my previous books, Unity 5.x Game Development Blueprints, (2016) also available from Packt Publishing.

    

    How to do it...

    To get started, follow these steps:

    
      	Select the object in your scene with a camera. In this case, go to the Hierarchy window and expand the FPSController object. From there, select the FirstPersonCharacter object.

    

    [image: Figure 1.3 – Selecting the FirstPersonCharacter object]
    Figure 1.3 – Selecting the FirstPersonCharacter object

    
      	Next, go to the Inspector window. From there, scroll down to the Camera component and check the Post Processing option.

    

    [image: Figure 1.4 – Enabling Post Processing]
    Figure 1.4 – Enabling Post Processing

    
      	From the top bar, select GameObject | Volume | Global Volume. This will add a new object to the Hierarchy window.

    

    How it works…

    Enabling Post Processing on a camera activates post-processing effects for that camera. If your project has multiple cameras, ensure this option is enabled for each one.

    Unity’s URP uses the Volume framework for post-processing, allowing effects to be applied globally or within specific areas. A Volume defines a space in the scene where post-processing settings take effect. Global Volumes apply to the entire scene, while Local Volumes affect only designated areas.

    To set up post-processing, create an empty GameObject and add a Volume component. When Post Processing is enabled on a camera, it will use the settings inside the assigned volume. Since we are using a Post Processing, its Mode is set to Global, meaning it has no boundaries and affects all cameras in the scene.

    At runtime, URP evaluates all active Volume components, using the camera’s position and volume properties to determine their impact on the final scene rendering.

    Achieving a filmic look using grain, vignetting, and depth of field

    Now that we have finished setting up our project to utilize post-processing, we can create our first Post Processing Volume Profile. A volume profile is an asset that contains the settings URP uses to render a scene.

    One of the most common appearances people like their projects to have is that of a film. This is used quite frequently in titles such as Red Dead Redemption 2 (2018) and The Last of Us Part II (2020). It’s also used quite effectively in Resident Evil Village (2021), as its creators aimed to emulate the cinematic horror atmosphere that the game is based on.

    [image: Figure 1.5 – Final result of the fil﻿mic look]
    Figure 1.5 – Final result of the filmic look

    Getting ready

    Make sure you have completed the Setting up post-processing recipe before starting this one.

    How to do it...

    Follow these steps to get a filmic look using grain, vignetting, and depth of field:

    
      	First, we must create a new volume profile by going to the Project window. From there, right-click within the Assets/Chapter 01 folder and then select Create | Rendering | Volume Profile.

    

    [image: Figure 1.6 – Creating a volume profile]
    Figure 1.6 – Creating a volume profile

    
      	Once selected, we can rename the item. Go ahead and set the name to FilmicProfile.

    

    
      Note

      If you don’t enter a name correctly, you can rename an item from the Project window by clicking on the name and then clicking it again. Alternatively, you can right-click on the item and select Rename or hit F2 on your keyboard with an item selected.

    

    
      	Then, from the Hierarchy window, select the Global Volume object and drag and drop the FilmicProfile object into the Volume Profile section of the Inspector window by dragging and dropping it from the Project window over the property and then letting go.

    

    [image: Figure 1.7 – Assigning the filmic profile]
    Figure 1.7 – Assigning the filmic profile

    
      Note

      Alternatively, you can also click on the New button, which will automatically create an object for you with the name of the scene. This method works well if you only want to have one profile. However, since we are going to be using several profiles over the course of this chapter, I wanted to ensure that you know the entire process by doing it manually.

    

    
      	Once the profile has been added, we should see an Add Override button appear. Click it and select Post-processing | Film Grain.

    

    [image: Figure 1.8 – Adding the Film Grain effect to post-process volume]
    Figure 1.8 – Adding the Film Grain effect to post-process volume

    By default, all options will appear grayed out. To activate any of the options, you need to click the checkbox on the left side of each option. You can also quickly enable or disable all options at once by clicking the All or None options, respectively, located at the top-left side of the override that we just added.

    
      	To view the changes in a way that resembles the finished game, switch to the Game view by selecting the Game tab. Next, check the Intensity option and set it to 1.0. Then, check the Type property and set it to Medium 1. Afterward, hit the Play button to see a representation of what the tweaks have done:

    

    [image: Figure 1.9 – Result of the Film Grain effect﻿]
    Figure 1.9 – Result of the Film Grain effect

    You will notice that the screen has become much fuzzier than before.

    
      	We want to have a more subtle effect here, so we will decrease Intensity to 0.2 and set Type to Thin 2:

    

    [image: Figure 1.10 – Altering the Film Grain effect]
    Figure 1.10 – Altering the Film Grain effect

    This will alter the grain effect so that it looks like this:

    [image: Figure 1.11 – Altered result]
    Figure 1.11 – Altered result

    
       Note

      Unlike how users typically work in Unity, due to Post Processing Profiles being asset files, you can modify them while playing your game and, upon stopping the game, the values are still saved. This can be useful for tweaking values to achieve the exact look that you’re after.

    

    The next property we want to tweak is the Vignette property, which will add blackened edges around the screen.

    
      	Click on Add Override and select Post-processing | Vignette. Open the properties, enable the Intensity property, and set it to 0.5. Afterward, enable and set Smoothness to 0.35:

    

    [image: Figure 1.12 – Creating a vignette effect]
    Figure 1.12 – Creating a vignette effect

    Adding this effect will make the screen look like this:

    [image: Figure 1.13 – Visual of vignette effect]
    Figure 1.13 – Visual of vignette effect

    
      	Next, select Add Override again and, this time, select Post-processing | Depth of Field. Check the Mode property and change it to Gaussian. Then set the Start property to 20:

    

    [image: Figure 1.14 – Setting Depth Of Field values]
    Figure 1.14 – Setting Depth Of Field values

    Afterward, if you look at the Scene view, you should notice that while things in front of the player are perfectly visible, as things get further away, they are now blurred:

    [image: Figure 1.15 – Result of depth o﻿f field eff﻿ect]
    Figure 1.15 – Result of depth of field effect

    Now, if we go into the game itself and move around, we should see our filmic look in action:

    [image: Figure 1.16 – Final result of the filmic look]
    Figure 1.16 – Final result of the filmic look

    And with that, we now have a scene that looks much more like a film than what we had to begin with!

    How it works…

    Each time we add an effect to a post-processing volume, we are overriding what would normally be put onto the screen.

    If you’ve been to a movie theater that still uses film, you may have noticed how there were little specks in the filmstock while the film was playing. The Film Grain effect simulates this film grain, causing the effect to become more pronounced the more the movie is played. This is often used in horror games to obscure the player’s vision.

    
      Note

      For more information about the Film Grain effect, check out https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@7.1/manual/Post-Processing-Film-Grain.html.

    

    In the film world, vignetting can be an unintended effect of using the wrong type of lens for the type of shot you are trying to achieve or the aspect ratio that you are shooting for. In game development, we typically use vignetting for dramatic effect or to have players focus on the center of the screen by darkening and/or desaturating the edges of the screen compared to the center.

    
      Note

      For more information about the Vignette effect, check out https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/post-processing-vignette.html.

    

    The Depth Of Field setting determines what is blurry and what isn’t. The idea is to have items of importance in focus while items in the background are not. In this version, we are using Gaussian, which is the fastest and best mode of the depth of field effect to use for lower-end platforms.

    
      Note

      For more information about the Depth of Field effect, check out https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/post-processing-depth-of-field.html.

    

    Simulating realistic effects with bloom and motion blur

    The bloom optical effect aims to mimic the imaging effects of real-world cameras. In real life, when a camera captures bright lights, the light can bleed over into adjacent areas, creating a glow around the edges of bright objects. This effect can make scenes look more vivid and dynamic, as it simulates the way cameras and the human eye perceive intense light sources. The bloom effect is very distinctive and is often used in games to create a magical or ethereal atmosphere. You’ve likely seen it employed in areas of a game that are magical, heaven-like, or otherworldly. Popular titles such as Cyberpunk 2077 (2020) and Final Fantasy XV (2016) make extensive use of bloom to enhance their visual storytelling and immerse players in their fantastical worlds.

    Motion blur is another effect used to mimic real-life camera behavior. It simulates the blurring that occurs when objects move quickly within the frame, replicating the effect seen in both cinematography and real life. This effect can make fast movements appear smoother and more realistic, enhancing the sense of speed and motion. Motion blur is commonly used in action-packed games to provide a more immersive experience and to visually communicate the intensity of fast-paced sequences. Recent games such as Marvel’s Spider-Man 2 (2023), developed by Insomniac Games, and Forza Horizon 5 (2021), developed by Playground Games, use motion blur to great effect, making their high-speed action sequences more dynamic and engaging.

    By combining bloom and motion blur, developers can create visually stunning and more lifelike scenes, enhancing the overall gaming experience.

    [image: Figure 1.17 – The final result of using bloom and motion blur]
    Figure 1.17 – The final result of using bloom and motion blur

    Getting ready

    Make sure you have completed the Setting up post-processing recipe before starting this one.

    How to do it...

    To add the bloom and anti-aliasing effect, follow these steps:

    
      	First, we must create a new volume profile by going to the Project window. From there, right-click within the Assets/Chapter 01 folder and then select Create | Rendering | Volume Profile.

      	Once selected, set the name to RadiantProfile.

      	From the Hierarchy window, select the Global Volume object. In the Inspector window, locate the Volume component and assign the profile property to our newly created profile.

      	Afterward, select the Game tab (if it hasn’t been selected already) to see the results of the changes we are about to make.

      	In the Inspector window, go to Volume, select the Add Override button, and select Post-processing | Bloom. Check the Intensity property and set it to 12. Afterward, check and set Threshold to 0.5:

    

    [image: Figure 1.18 – Adding a Bloom effect]
    Figure 1.18 – Adding a Bloom effect

    This will give us the following effect:

    [image: Figure 1.19 – Visual of the bloom effect]
    Figure 1.19 – Visual of the bloom effect

    
      	In the Inspector window, go to Volume, select the Add Override button, and select Post-processing | Motion Blur. Check the Intensity property and set it to 0.5. Afterward, check and set Clamp to 0.2:

    

    [image: Figure 1.20 – Adjusting the Intensity and Clamp values of Motion Blur]
    Figure 1.20 – Adjusting the Intensity and Clamp values of Motion Blur

    
      	Afterward, save your scene and hit the Play button to check out your project:

    

    [image: Figure 1.21 – The final result of using bloom and motion blur]
    Figure 1.21 – The final result of using bloom and motion blur

    You should notice that whenever you turn the camera, there will be a subtle blur effect.

    How it works...

    As we mentioned previously, the bloom filter will make bright things even brighter while adding a glow to lighter areas. In this recipe, you may have noticed that the path is much lighter than it was previously. We can do this to ensure that players will follow the path to get to the next section of gameplay.

    
      Note

      For more information about Bloom, check out https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/post-processing-bloom.html.

    

    Motion blur attempts to simulate the effect of motion in real life, where objects moving quickly within the frame appear blurred. This effect occurs because the camera (or the human eye) cannot capture the fast-moving objects in sharp detail, resulting in a smeared appearance. Motion blur can make fast movements appear smoother and more natural, enhancing the overall realism and immersion in a game.

    When a game character or object moves rapidly, the display may struggle to render each frame with perfect clarity, especially at lower frame rates. Motion blur helps mitigate this by blending frames together, creating a trail of blur that mimics the natural way our eyes perceive motion. This can be particularly effective in action-packed sequences, racing games, or any scenario involving high-speed movement.

    However, it’s important to use motion blur judiciously. While it can enhance realism, excessive use can lead to a loss of visual clarity, making the game appear overly blurred and reducing the sharpness of the scene.

    
       Note

      For more information about Motion Blur and what each property means, check out https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/Post-Processing-Motion-Blur.html.

    

    Enhancing the atmosphere with color grading

    One of the best ways to easily change the mood of a scene is by changing the colors a scene uses. One of the best examples of this can be seen in The Matrix series of films, where the real world is always blue-tinted, while the computer-generated world is always tinted green. We can emulate this in our games by using color grading:

    [image: Figure 1.22 – The final result of using color grading]
    Figure 1.22 – The final result of using color grading

    Getting ready

    Make sure you have completed the Setting up post-processing recipe before starting this one.

    How to do it...

    To add color grading, follow these steps:

    
      	First, we must create a new volume profile by going to the Project window. From there, right-click within the Assets/Chapter 01 folder and then select Create | Rendering | Volume Profile.

      	Once selected, we can rename the item. Go ahead and set the name to ColorGradingProfile.

      	From the Hierarchy window, select the Global Volume object. In the Inspector window, locate the Volume component and assign the profile property to our newly created profile.

      	Afterward, select the Game tab (if it hasn’t been selected already) to see the results of the changes to be made.

      	Select the Add Override button and select Post-processing | White Balance. Check the Temperature property and set it to 30. Afterward, check and set Threshold to 0.5.

      	Select the Add Override button and select Post-processing | Color Grading. Check the Hue Shift property and set it to -20 and the Saturation property to 15.

    

    [image: Figure 1.23 – Adjusting the properties of Color Grading]
    Figure 1.23 – Adjusting the properties of Color Grading

    From the Scene view, you may see some changes; but to get a better feel dive into the game and move around to see what it looks like when playing it:

     [image: Figure 1.24 – The final result of using color grading]
    Figure 1.24 – The final result of using color grading

    Notice how the previously very green environment is now much warmer and more yellow than before. Using techniques like this, environments can simulate different times of the year, such as fall, with minimal effort when it comes to creating new art assets.

    How it works…

    White balance attempts to correct the color cast in your scene so that objects that appear white in real life also appear white in your game. This adjustment compensates for the color temperature of the light source, which can range from the warm tones of incandescent lighting to the cool tones of daylight. In our case, we are shifting the temperature to make the game have warmer tones than it would normally.

    
       Note

      For more information about the White Balance effect, check out https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/Post-Processing-White-Balance.html.

    

    Color adjustments modify the hue, saturation, and brightness of the colors in your scene. These adjustments are vital for correcting any color discrepancies and achieving the desired look and feel for your game. You can enhance the vibrancy of certain colors, tone down others, or completely shift the color palette to fit a particular mood or theme. In our case, we shifted the hue to move all colors slightly toward the opposite side of the color wheel. We also increased the saturation, which made the colors more vibrant.

    
       Note

      For more information about the Color Adjustments effect, check out https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@17.0/manual/Post-Processing-Color-Adjustments.html.

    

    Creating a horror game look with fog

    One of the genres of games that best utilizes the features of the post-processing stack is the horror genre. Using things such as depth of field to hide scary objects, as well as static to make the screen more menacing, can help set your game firmly in the right place and provide the mood you are going for.

    [image: Figure 1.25 – The final result of our horror look]
    Figure 1.25 – The final result of our horror look

    Getting ready

    Make sure you have completed the Setting up post-processing recipe before starting this one.

    How to do it...

    To add color grading, follow these steps:

    
      	First, we must create a new volume profile by going to the Project window. From there, right-click within the Assets/Chapter 01 folder and then select Create | Rendering | Volume Profile.

      	Once selected, we can rename the item. Go ahead and set the name to HorrorProfile.

      	From the Hierarchy window, select the Global Volume object. In the Inspector window, locate the Volume component and assign the profile property to our newly created profile.

      	Unlike the previous settings, though, the fog settings are located in the Lighting window, which can be accessed by going to Window | Rendering | Lighting Settings.

    

    
      Tip

      You may see the Lighting window open as a separate window on your screen. If you would like, you can drag and drop the top tab into another section of the Unity Editor to dock it to another section. I place it next to the Inspector window so that I can easily switch between the various options.

    

    
      	From there, select the Environment option at the top. Scroll to the bottom until you reach the Other Settings option. Once there, check Fog and set the Color property to a value that is close to the skybox to help the fog fade into the background of the environment. I used the following settings:

    

    [image: Figure 1.26 – The Color menu]
    Figure 1.26 – The Color menu

    
       Note

      If you know the hex values of the color from your graphic editing software, such as Photoshop, you can just type it in the Hexadecimal property of the Color window, but I just clicked on the eye dropper and then clicked on the skybox.

    

    
      	Next, confirm that Mode is set to Exponential Squared and set Density to 0.03:

    

    [image: Figure 1.27 – Enabling Fog in our scene]
    Figure 1.27 – Enabling Fog in our scene

    As you can see, it’s already much more spooky than it was previously, but there are still more options that we can change:

    [image: Figure 1.28 – Visual of fog in our scene]
    Figure 1.28 – Visual of fog in our scene

    
      	Go to the Project window, and select the Assets\Settings folder. From there, select the PC_Renderer object. From the Inspector window, go to the Screen Space Ambient Occlusion component. Afterward, change Intensity to 2 and Radius to 20:

    

    [image: Figure 1.29 – Adjusting the Screen Space Ambient Occlusion effect]
    Figure 1.29 – Adjusting the Screen Space Ambient Occlusion effect

    This will provide us with the following visual change:

    [image: Figure 1.30 – Viewing the Screen Space Ambient Occlusion effect]
    Figure 1.30 – Viewing the Screen Space Ambient Occlusion effect

    
      	Lighting often has a big effect on the theme of a scene as well. If you are using the example map, select the Directional Light object in the Hierarchy tab and, from the Inspector tab, under the Light component, change Intensity to 0.5 and adjust Color to something darker. (I used the same color that I used in step 5, with a HEX of 5C7290.)

      	Open HorrorProfile again by selecting it from the Project window and then go to the Assets\Chapter 01 folder and then the Inspector window. Click the Add Override button and select Post-processing | Depth of Field. Check the Mode property and select Gaussian.

    

    [image: Figure 1.31 – Viewing the depth of field effect]
    Figure 1.31 – Viewing the depth of field effect

    
      	Click the Add Override button and select Post-processing | Shadows Midtones Highlights. Check the Shadows property and drag the trackball on the slider at the bottom section to the left until the values are at 0.63:

    

    [image: Figure 1.32 – Adjusting Shadow lightness]
    Figure 1.32 – Adjusting Shadow lightness

    
      	Save your game and then start it to see the effect of all of these changes:

    

    [image: Figure 1.33 – The final result of our horror look]
    Figure 1.33 – The final result of our horror look

    How it works...

    Ambient occlusion is a shading and rendering technique that’s used to calculate how exposed each point in a scene is to ambient lighting. In this instance, the Ambient Occlusion option will calculate areas that should have additional shadows. Since our scene is filled with trees, this will make the undersides much darker than they were previously.

    
    
    
    
    
    
    
  





















































OEBPS/Images/Discord_QR.png





OEBPS/Images/B22460_01_07.png
| © nspector |
@, Govavoume
Tog Uniagged = Layer Defaut

st

S Transtorm o=

Rotaton 0 Yo 2o

Scaie X % zh
~ Voume O

.

woignt
Prty






OEBPS/Images/blockquote-top.png





OEBPS/Images/tip.png





OEBPS/Images/B22460_01_08.png
¥~ Volume

Mode Global
Weight B —
Priority 0

@ @ FilmicProfile (Volume Profile)

¥ - Film Grain

AL
Type Thin 1 v
Intensity ° o
Response o 0.8

Adad Override






OEBPS/Images/B22460_01_13.jpg





OEBPS/Images/B22460_01_21.jpg





OEBPS/Images/blockquote-bottom.png





OEBPS/Images/B22460_01_09.jpg





OEBPS/Images/B22460_01_18.png
¥ < Volume

Mode Global
‘Weight —_—e 1
Priority 0

i ® RadiantProfile (Volume Profile)

¥ ~ Bloom
ALL NONE

Bloom

| Threshold 0.5
! Intensity 12
Scatter
Tint
Clamp 65472
High Quality Filtering

Lens Dirt
Dirt Texture None (Texture)
Dirt Intensity 0

0.7

Add Override






OEBPS/Images/B22460_01_23.png
¥ Volume

Mode Global -
Weight ——
Priority [

i @ ColorGradingProfile (Volume Profile)

¥~ White Balance o :
ALL NONE

/| Temperature — 30
Tint o 0
¥ ~ Color Adjustments o :
ALL NONE
Post Exposure 0
Contrast o
Color Filter /

' Hue Shift — = [-20

| Saturation —_—

Add Override






OEBPS/Images/B22460_01_10.png
¥ Film Grain
ALL NONE

< Type

| Intensity

Response

Thin 2
B 0.2
@ 0.8





OEBPS/Images/Cover.png
Unity 6 Shaders and
Effects Cookbook

Over 50 recipes for creating captivating
visual effects in Unity and enhancing
your game’s visual impact

Fifth Edition

John P. Doran (paCkb





OEBPS/Images/B22460_01_33.jpg





OEBPS/Images/New_Packt_Logo.png
<PACKD





OEBPS/Images/B22460_01_28.jpg





OEBPS/Images/B22460_01_06.png
Folder

Thow  Etora
Open. MonoBehaviour Script
Ockte » > Al Navigat

e Animation > v Surfaces

Audio Chaw On
‘Materal

Materil

Copy Path AtscilsC

Scene.
Scipting

Uightmap Parameters

Import New Asset Search > Lighting Settings |
—— ,
Import Pcas Shoder S ——
Epoijecans ‘Shader Graph > Render Texture.
Testing > Custom Render Texture 3
Find References In Project Terrain. > Legacy Cubemap. I¢
‘Select Dependencies Text Core. > I Volume Profile '(
. T ,
5= E3 Tire > Lens Flare (SRP). |
Reimport oo g
oot S ORD At ith 20 e
§ e e I
Physics Mot URP Renderer st |
Updote ML Schema Gusin URP 2 R I
Open o ot CusomFont R Uivesal Rnderer
iewin et ActityWindow oot Actons URP Post procesing Efect(RandrerFstr it Volame)
Poperies A URP Post procss ot

Environment Library (Look Dev)





OEBPS/Images/B22460_01_02.jpg
cene | @mGame

‘Al Navigatior
Surfaces

Show Only Selected
Show NavMesh
Show HeightMesh

Agents.
Show Path Polygons
Show Path Query Nodes
Show Neighbours

Show Walls

Show Av

Obsta
Show Carve Hull






OEBPS/Images/B22460_01_15.jpg





OEBPS/Images/B22460_01_24.jpg





OEBPS/Images/B22460_01_03.png
ierarchy =0
i~ i)
P Chapter 1 - Starting Point*
v (@) FPSController

(D FirstPersonCharacter






OEBPS/Images/B22460_01_29.png
© Inspector | @ Lighting E

© PC_Renderer (Universal Renderer Data) 9:
Open

itering
Opaque Layer Mask  Everything v
Transparent Layer Mask Everything >

Rendering

Rendering Path Forward+ =
Depth Priming Mode  Disabled =
Depth Texture Mode  After Opaques -
Depth Attachment Forma Default =
Depth Texture Format  Default -

Shadows:

Transparent Receive Sha

Post-processing

Enabled v
Data G PostProcessData (Post Process Data)
Overrides
Stencil
Compatibility
Intermediate Texture  Auto -

Renderer Features

¥ ~ Screen Space Ambient Occlusion o :
Method Blue Noise -
Intensity 2
Radius. 20
Falloff Distance 100
Direct Lighting Strength  ————— @ 0.25

» Quality

Add Renderer Feature





OEBPS/Images/B22460_01_16.jpg





OEBPS/Images/B22460_01_20.png
¥~ Motion Blur

ALL NONE
Mode Camera Only
Quality Lex
 Intensity - =&
~ Clamp R 0.2

Add Override






OEBPS/Images/B22460_01_04.png
© Inspector

@ ' FirstPersonCharacter Static
" Tag MainCamera ~  Layer Default

v A Transform o
Position X 0 Y 08 Z 0
Rotation X 0 Y 0 Z 0
Scale ® X1 Y1 z 1

v W v Camera o
Render Type Base

¥ Projection
Projection Perspective

Field of View Axis Vertical

Field of View —_—— 60

Clipping Planes ~ Near 0.3
Far 1000

Physical Camera

¥ Rendering
Renderer

Enable this to make this camera render post-
processing effects.

Default Renderer (PC_Renderer)

o






OEBPS/Images/B22460_01_31.jpg





OEBPS/Images/B22460_01_25.jpg





OEBPS/Images/B22460_01_12.png
 Film Grain

I Type
 Intensity

ReGaTE:

~ Vignette

 Intensity
I Smoothness

Thin 2.

Add Override






OEBPS/Images/B22460_01_22.jpg





OEBPS/Images/B22460_01_30.jpg





OEBPS/Images/B22460_01_17.jpg





OEBPS/Images/info.png





OEBPS/Images/B22460_01_27.png
© Inspector @ Lighting | H

Scene | Adaptive Probe Volumes o
Realtime Lightmaps | Baked Lightmaps
¥ Environment
Skybox Material Q Default-Skybox ®
Sun Source 4:Directional Light (Light) ®

Realtime Shadow Color IE—

Environment Lighting
Source
Intensity Multiplier

Skybox -
-—————— 05

Environment Reflections

Source

Resolution
Compression
Intensity Multiplier
Bounces

Skybox v
128 v
Auto v

-_—e 1
e

v Other Settings
Fog
Color
Mode
Density

Halo Texture
Halo Strength
Flare Fade Speed
Flare Strength
Spot Cookie

v
V]
Exponential Squared v
[0.03 ]
None (Texture 2D) ]





OEBPS/Images/B22460_01_14.png
¥ ~ Depth Of Field e :
ALL NONE

~ Mode Gaussian
~ Start
End 30
" Max Radius —_—— 1

High Quality Sampling






OEBPS/Images/B22460_01_26.png
Color

Hexadecimal 5C7290

¥ Swatches
LIl

to add new preset





OEBPS/Images/B22460_01_05.jpg





OEBPS/Images/B22460_QR_Free_PDF.png





OEBPS/Images/B22460_01_19.jpg





OEBPS/Images/B22460_01_01.png
Unity Hub 380 - o0 x

New project
Editor Version: 6000.0.411 <

E=) EREE

Altemplates Q Searenaltemplates
° Universal 2D
& Sample L
‘ = Learing
Universal 30
@ oo
‘ Universal 3
This template incudes the settings and.
@ HionDefinition 3D assets you need to sart creating with the
Core. Universal Render Pipeline (URP).
| —
niversal 30
@ Universal 3D sample o
Sample PROJECT SETTINGS
Projctname
. High Definton 30 sample - Unity6.ShadersCookbook






OEBPS/Images/B22460_01_32.png
© Inspector

‘ Horror Profile (Volume Profile)

¥~ Depth Of Field o i
ALL NONE
- Mode Gaussian -
Start 10
" End 30
Max Radius o
1 High Quality Sampling
¥ | Shadows Midtones Highlights o :
ALL NONE
L o °
063 063 063 00 00 0 00
 Shadows | Midtones
Shadow Limits.
" Start 0
End 0.3
Highlight Limits.
Start 0.55
" End 1

Add Override






OEBPS/Images/B22460_01_11.jpg





