

 [image:]

 Inhaltsverzeichnis

 Impressum

 Vorwort zur 5. Auflage

 Über den Autor

 Teil I: Grundlagen

 Kapitel 1: Einführung in das Thema Datenbanken

 1.1 Warum ist Datenbankdesign wichtig?

 1.2 Dateisystem und Datenbanken

 1.2.1 Historische Wurzeln

 1.2.2 Probleme bei der Datenhaltung im Dateisystem

 1.2.3 Datenredundanzen und Anomalien

 1.3 Das Fallbeispiel

 1.4 Zusammenfassung

 1.5 Aufgaben

 1.5.1 Wiederholung

 1.5.2 Zum Weiterdenken

 Kapitel 2: Datenbanksysteme, Datenbankanwendungen und Middleware

 2.1 Datenbanksysteme

 2.2 Verschiedene Arten von Datenbanksystemen

 2.3 DBMS-Funktionen

 2.4 Datenbankmodelle

 2.4.1 Hierarchische Datenbanken

 2.4.2 Netzwerk-Datenbanken

 2.4.3 Relationale Datenbanken

 2.4.4 ER-Datenbankmodelle

 2.4.5 Objektorientierte Datenbanken

 2.5 Datenbankanwendungen

 2.5.1 Einschichtige Datenbankanwendungen

 2.5.2 Zweischichtige Datenbankanwendungen​

 2.5.3 N-schichtige Datenbankanwendungen​

 2.6 Middleware

 2.6.1 ODBC

 2.6.2 ADO

 2.6.3 ADO.NET

 2.7 Zusammenfassung

 2.8 Aufgaben

 2.8.1 Wiederholung

 2.8.2 Zum Weiterdenken

 Kapitel 3: Das relationale Datenbankmodell

 3.1 Entitäten und Attribute

 3.2 Tabellen

 3.3 Schlüssel

 3.4 Relationale Operatoren

 3.4.1 DIFFERENCE

 3.4.2 DIVIDE

 3.4.3 INTERSECT

 3.4.4 JOIN

 3.4.5 PRODUCT

 3.4.6 PROJECT

 3.4.7 SELECT

 3.4.8 UNION

 3.5 Beziehungen innerhalb der Datenbank

 3.5.1 1:1-Beziehung

 3.5.2 1:N-Beziehung

 3.5.3 M:N-Beziehung

 3.5.4 Optionale und nicht-optionale Beziehungen

 3.5.5 Primär-/Fremdschlüssel und Datenredundanzen

 3.6 Metadaten

 3.7 Indizes

 3.8 Zusammenfassung

 3.9 Aufgaben

 3.9.1 Wiederholung

 3.9.2 Zum Weiterdenken

 Teil II: Datenbankdesign und Implementierung

 Kapitel 4: ER-Datenbankmodellierung

 4.1 Datenmodelle und Abstraktion

 4.1.1 Das konzeptionelle Modell

 4.1.2 Das interne Modell

 4.1.3 Das externe Modell

 4.1.4 Das physikalische Modell

 4.2 Das Entity-Relationship-Modell

 4.2.1 Entitäten

 4.2.2 Attribute

 4.2.3 Primärschlüssel

 4.2.4 Beziehungen

 4.3 Erstellen eines ER-Diagramms

 4.4 Zusammenfassung

 4.5 Aufgaben

 4.5.1 Wiederholung

 4.5.2 Zum Weiterdenken

 Kapitel 5: Normalisierung

 5.1 Warum Normalisierung?

 5.1.1 Das Normalisierungsbeispiel

 5.1.2 Erste Normalform​

 5.1.3 Zweite Normalform​

 5.1.4 Dritte Normalform​

 5.1.5 Boyce-Codd-Normalform (BCNF)

 5.1.6 Höhere Normalformen

 5.2 Normalisierung und Datenbankdesign

 5.3 Denormalisierung​

 5.4 Zusammenfassung

 5.5 Aufgaben

 5.5.1 Wiederholung

 5.5.2 Zum Weiterdenken

 Kapitel 6: SQL-Grundlagen

 6.1 Einführung

 6.1.1 Historischer Überblick

 6.1.2 Datentypen

 6.1.3 Die SQL-Komponenten

 6.1.4 Logische Verknüpfungen​​

 6.2 Daten mit SQL abfragen

 6.2.1 Einfache Abfragen

 6.2.2 Tabellen verknüpfen mit Joins​

 6.2.3 Verschachtelte Abfragen

 6.2.4 Sichten​

 6.3 Daten mit SQL verändern

 6.3.1 INSERT​

 6.3.2 UPDATE​

 6.3.3 DELETE​

 6.4 Weitere wichtige SQL-Befehle

 6.4.1 Mengenfunktionen

 6.4.2 Stringfunktionen

 6.4.3 Numerische Funktionen

 6.4.4 Datetime-Funktionen

 6.5 Zusammenfassung

 6.6 Aufgaben

 6.6.1 Wiederholung

 6.6.2 Zum Weiterdenken

 Teil III: Weiterführende Themen

 Kapitel 7: Projektablauf bei der Erstellung einer Datenbank

 7.1 Der System Development Life Cycle

 7.1.1 Planung​

 7.1.2 Analyse​

 7.1.3 System-Design

 7.1.4 Implementierung​

 7.1.5 Wartung​

 7.2 Der Datenbank-Lebenszyklus

 7.2.1 Grundlegende Analyse

 7.2.2 Datenbankdesign​

 7.2.3 Implementierung und Datenimport

 7.2.4 Test und Evaluierung

 7.2.5 Betrieb

 7.2.6 Wartung und Evolution

 7.3 Zusammenfassung

 7.4 Aufgaben

 7.4.1 Wiederholung

 Kapitel 8: Transaktionen und konkurrierende Zugriffe

 8.1 Was ist eine Transaktion?

 8.1.1 Eigenschaften einer Transaktion

 8.1.2 Transaktionsverwaltung mit SQL

 8.1.3 Das Transaktionsprotokoll

 8.2 Konkurrierende Zugriffe

 8.2.1 Lost Updates​

 8.2.2 Dirty Read​

 8.2.3 Nonrepeatable Read​

 8.2.4 Phantome

 8.3 Sperrmechanismen (Locks)

 8.3.1 Granularität

 8.3.2 Sperrtypen

 8.3.3 Zwei-Phasen-Locking

 8.3.4 Deadlocks

 8.4 Zusammenfassung

 8.5 Aufgaben

 8.5.1 Wiederholung

 8.5.2 Zum Weiterdenken

 Kapitel 9: Die Client-Server-Architektur

 9.1 Was ist Client-Server?

 9.1.1 Geschichte von Client-Server

 9.1.2 Vorteile von Client-Server

 9.2 Client-Server-Architektur

 9.2.1 Client-Komponenten

 9.2.2 Server-Komponenten

 9.2.3 Middleware​

 9.2.4 Netzwerk-Protokolle

 9.3 Zusammenfassung

 9.4 Aufgaben

 9.4.1 Wiederholung

 Kapitel 10: Verteilte Datenbanksysteme

 10.1 Vor- und Nachteile verteilter Datenbanksysteme

 10.2 Verteilte Datenverarbeitung vs. verteilte Datenbanken

 10.3 Komponenten eines verteilten Datenbanksystems

 10.4 Transparenz beim Datenzugriff

 10.4.1 Transparente Datenverteilung

 10.4.2 Transparentes Transaktionsmanagement

 10.5 Datenfragmentierung

 10.6 Replikation

 10.7 Zusammenfassung

 10.8 Aufgaben

 10.8.1 Wiederholung

 Kapitel 11: Data Warehouses

 11.1 Die Notwendigkeit der Datenanalyse

 11.2 Decision-Support-Systeme

 11.2.1 Der Unterschied zwischen operationalen Daten und DSS-Daten

 11.2.2 Anforderungen an eine DSS-Datenbank

 11.3 Das Data Warehouse

 11.3.1 Data-Marts

 11.3.2 Zwölf Eigenschaften, an denen man ein Data Warehouse erkennen kann

 11.4 OLAP (Online Analytical Processing)

 11.4.1 OLAP-Architekturen

 11.4.2 Relationales OLAP (ROLAP)

 11.4.3 Multidimensionales OLAP (MOLAP)

 11.5 Das Sternschema

 11.5.1 Fakten

 11.5.2 Dimensionen

 11.5.3 Attribute

 11.5.4 Attribut-Hierarchien

 11.5.5 Sternschemata in der Praxis

 11.5.6 Techniken zur Erhöhung der Performance

 11.6 Das Snowflake-Schema

 11.7 Slowly changing Dimensions

 11.7.1 Typ 1

 11.7.2 Typ 2

 11.7.3 Typ 3

 11.7.4 Typ 4

 11.7.5 Typ 6/Hybrid

 11.8 Zusammenfassung

 11.9 Aufgaben

 11.9.1 Wiederholung

 Kapitel 12: Data-Mining

 12.1 Der Data-Mining-Prozess

 12.1.1 Das Problem definieren

 12.1.2 Daten vorbereiten

 12.1.3 Die Daten sichten

 12.1.4 Ein Data-Mining-Modell definieren

 12.1.5 Data-Mining betreiben

 12.1.6 Die Ergebnisse zur Verfügung stellen

 12.2 Zusammenfassung

 12.3 Aufgaben

 12.3.1 Wiederholung

 Kapitel 13: LINQ

 13.1 Unverträglichkeit zwischen Relationen und Objekten

 13.1.1 Das Problem, Objekt​e auf Tabellen abzubilden

 13.1.2 Wem gehört das Schema​?

 13.1.3 Das Doppel-Schema-Problem​​

 13.1.4 Identitätsproblem​e bei Entitäten

 13.1.5 Rückgewinnung der Daten

 13.2 Die Architektur von LINQ​

 13.3 Spracherweiterungen, die LINQ ermöglichen, am Beispiel von C#

 13.3.1 Anonyme Typen​

 13.3.2 Objekt-Initialisierer​

 13.3.3 Collection-Initialisierer​

 13.3.4 Partielle Methoden​

 13.3.5 Implizit deklarierte lokale Variablen

 13.3.6 Erweiterungsmethode​n

 13.3.7 Lambda-Ausdrücke​

 13.3.8 Abfrage-Ausdrücke​

 13.4 Aufgaben

 13.4.1 Wiederholung

 Kapitel 14: Big Data

 14.1 Strukturierte, semistrukturierte und unstrukturierte Daten

 14.2 Die Evolution der Datenverarbeitung

 14.2.1 Datenstrukturen erstellen

 14.2.2 Data Warehouses, Datamarts und BLOBs

 14.2.3 Content-Management-Systeme

 14.2.4 Die dritte Stufe der Evolution

 14.3 Was genau ist eigentlich Big Data?

 14.4 Der Big-Data-Projektzyklus

 14.5 Die Architektur eines Big-Data-Projekts

 14.6 Map Reduce

 14.7 Big Table

 14.8 Hadoop

 14.9 Aufgaben

 14.9.1 Wiederholung

 Anhang A: Lösungen zu den Wiederholungsaufgaben

 A.1 Kapitel 1

 A.2 Kapitel 2

 A.3 Kapitel 3

 A.4 Kapitel 4

 A.5 Kapitel 5

 A.6 Kapitel 6

 A.7 Kapitel 7

 A.8 Kapitel 8

 A.9 Kapitel 9

 A.10 Kapitel 10

 A.11 Kapitel 11

 A.12 Kapitel 12

 A.13 Kapitel 13

 A.14 Kapitel 14

 Datenbanken

 Grundlagen und Design

 Frank Geisler

 [image:]

 Impressum

 Bibliografische Information der Deutschen Nationalbibliothek

 Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.d-nb.de> abrufbar.

 ISBN 978-3-8266-8720-4

 5., aktualisierte und erweiterte Auflage 2014

 www.mitp.de

 E-Mail: kundenbetreuung@hjr-verlag.de

 Telefon: +49 6221 / 489 -555

 Telefax: +49 6221 / 489 -410

 © 2014 mitp, eine Marke der Verlagsgruppe Hüthig Jehle Rehm GmbH Heidelberg, München, Landsberg, Frechen, Hamburg

 Dieses Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

 Lektorat: Sabine Schulz

 Sprachkorrektorat: Petra Heubach-Erdmann

 Coverbild: © Sebastian Kaulitzki

 electronic publication: III-satz, Husby, www.drei-satz.de

 Dieses Ebook verwendet das ePub-Format und ist optimiert für die Nutzung mit dem iBooks-reader auf dem iPad von Apple. Bei der Verwendung anderer Reader kann es zu Darstellungsproblemen kommen.

 Der Verlag räumt Ihnen mit dem Kauf des ebooks das Recht ein, die Inhalte im Rahmen des geltenden Urheberrechts zu nutzen. Dieses Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheherrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und Einspeicherung und Verarbeitung in elektronischen Systemen.

 Der Verlag schützt seine ebooks vor Missbrauch des Urheberrechts durch ein digitales Rechtemanagement. Bei Kauf im Webshop des Verlages werden die ebooks mit einem nicht sichtbaren digitalen Wasserzeichen individuell pro Nutzer signiert.

 Bei Kauf in anderen ebook-Webshops erfolgt die Signatur durch die Shopbetreiber. Angaben zu diesem DRM finden Sie auf den Seiten der jeweiligen Anbieter.

 In Liebe für Aurelia.

 Vorwort zur 5. Auflage

 Und schon wieder sind seit dem Erscheinen der 4. Auflage drei Jahre ins Land gegangen. Neu in dieser Auflage ist das Kapitel 14 Big Data, das sich mit den neuesten Entwicklungen in diesem Bereich beschäftigt. Dieses Thema ist in jüngster Zeit besonders durch den NSA-Datenskandal in das Bewusstsein der Öffentlichkeit geraten.

 Wie in jedem Buch möchte ich mich hier natürlich bei allen Menschen bedanken, die dieses Werk erst möglich gemacht haben. Zuallererst ist da meine Freundin bzw. Verlobte Aurelia zu nennen. Vielen Dank für Dein Verständnis und Deine stetige Unterstützung bei allem, was ich so mache. Ich weiß, dass das nicht selbstverständlich ist, und möchte das an dieser Stelle auf jeden Fall noch einmal unterstreichen. Außerdem möchte ich mich bei meinen Mitarbeitern für ihre gute Arbeit bedanken. Danke an Frau Izabela Lemke dafür, dass sie es geschafft hat, aus einem Chaos einen vernünftigen Bürobetrieb zu schaffen, und auch vielen Dank an Karsten Himmel für seine unermüdliche Arbeit in unserer Infrastruktur. Eure Arbeit hält mir den Rücken für Projekte wie dieses hier frei. Besonderer Dank geht auch an Volker Hinz von Microsoft, der mich immer mit Neuigkeiten im Bereich SQL Server versorgt, und an Klaus Höltgen, der mir hilft, die PASS Regionalgruppe Ruhrgebiet zu leiten. Vielen Dank auch an die Kollegen von der oh22, ganz besonders an Oliver Engels, Tillmann Eitelberg und Kostja Klein (nicht oh22) (ihr wisst schon wofür [image:]).

 Natürlich möchte ich auch Sabine Schulz von mitp für die gute Zusammenarbeit danken; ohne dich wäre das Projekt sicherlich nicht denkbar. Zum Schluss geht noch ein Gruß an Kika, Alex, Helen, mein Patenkind Greta, Sylvia, Damian und Simon. Natürlich möchte ich mich auch bei Ihnen, werte Leser, bedanken – Sie sorgen mit Ihren Käufen dafür, dass ein solches Projekt überhaupt umgesetzt werden kann.

 Frank Geisler

 Lüdinghausen, im April 2014

 Über den Autor

 [image:]Frank Geisler hat an der University of Liverpool Information Technology studiert und den Studiengang mit dem Titel Master Of Science in IT abgeschlossen – er beschäftigt sich seit 1995 mit den unterschiedlichsten Datenbank- und Business-Intelligence-Lösungen.

 Frank Geisler ist geschäftsführender Gesellschafter der Geisler Datensysteme GmbH & Co. KG, eines der führenden Microsoft-IT-Beratungshäuser im Ruhrgebiet. Er ist für die technische Ausrichtung des Unternehmens verantwortlich und führt, zusammen mit seinem Team, viele erfolgreiche BI-Projekte für namhafte Kunden durch. Seine Expertise hat er durch zahlreiche Microsoft-Zertifizierungen unter Beweis gestellt und hat einen Titel als Microsoft-Trainer.

 Neben seiner Haupttätigkeit hat Frank Geisler schon zahlreiche Bücher geschrieben, Artikel in bekannten Fachzeitschriften veröffentlicht und ist Gründungsmitglied der PASS e.V. Deutschland – der deutschen User Community für Microsoft SQL Server. Dort zeichnet er als Regionalgruppenleiter für das Ruhrgebiet verantwortlich. Des Weiteren ist Frank Geisler oft als Sprecher auf nationalen oder internationalen IT-Konferenzen mit seinen Vorträgen zu Gast.

 Teil I: Grundlagen

 In diesem Teil:

 	
 Kapitel 1

 Einführung in das Thema Datenbanken

 	
 Kapitel 2

 Datenbanksysteme, Datenbankanwendungen und Middleware

 	
 Kapitel 3

 Das relationale Datenbankmodell

 Kapitel 1: Einführung in das Thema Datenbanken

 Die Umwelt, in der wir leben, wird immer komplexer und vielfältiger. Oft wird der Begriff des Information-Overkills​ bemüht, wenn es darum geht, die Informationsflut zu beschreiben, die aus den unterschiedlichsten Quellen Tag für Tag auf uns einprasselt. Um gute und richtige Entscheidungen treffen zu können, müssen immer mehr Informationen bedacht, ausgewertet und in Korrelation zueinander gestellt werden. Bei dieser schwierigen Aufgabe, die für uns relevanten Informationen aus dem Datenwust herauszufiltern und zum richtigen Zeitpunkt zur Verfügung zu stellen, sind wir auf die Hilfe von computergestützten Systemen angewiesen.

 Bevor ich mich näher mit der Thematik Datenbanken an sich beschäftige, sollten Sie einen Blick auf das werfen, was Sie verwalten möchten, die Daten. Daten​ selbst repräsentieren Fakten. Ein mögliches Datum ist z.B. die Rechnungsnummer 32532, die eine Rechnung trägt, die ich zugestellt bekommen habe. Damit aus Daten Informationen​ werden, müssen die Daten in einen Zusammenhang gebracht werden. Stellen Sie sich vor, dass Sie einen Mitarbeiter des Unternehmens treffen, das mir die oben genannte Rechnung geschickt hat. Wenn Sie diesen Zeitgenossen außerhalb seines Büros antreffen (abgenabelt von all seinen famosen Computersystemen) und ihn mit der Rechnungsnummer 32532 konfrontieren, wird dies ziemlich wahrscheinlich mit einem Stirnrunzeln beantwortet, da sich der gute Mann unter Rechnungsnummer 32532 nichts vorstellen kann. Die Rechnungsnummer ist einfach ein Datum, das ein Faktum darstellt. Aus dem Zusammenhang gerissen hat dieses Datum für sich alleine keine Bedeutung (der Servicemitarbeiter kann noch nicht einmal sagen, ob es überhaupt eine Rechnung mit Rechnungsnummer 32532 gibt). Damit aus der Rechnungsnummer 32532 eine sinnvolle Information wird, muss diese in einen Zusammenhang gebracht werden. Das Datum muss verarbeitet werden.

 Hat der Servicemitarbeiter wieder Zugriff auf seinen Computer, so kann er die genannte Rechnungsnummer dort eingeben (Sie werden es sicherlich schon erraten haben – hier läuft irgendwo im Hintergrund eine Datenbank) und in Windeseile erhält er weitere Daten bzw. Fakten, die in direktem Zusammenhang mit der Rechnungsnummer 32532 stehen. Weitere Daten, die in Verbindung mit der Rechnungsnummer stehen, sind z.B., dass der Kunde, auf den diese Rechnung ausgestellt ist, »Frank Geisler« heißt, dass der Rechnungsbetrag 145,42 € ist und dass diese Rechnung bisher noch nicht bezahlt wurde. Durch die Verknüpfung von einzelnen Daten entstehen Informationen, die wiederum Entscheidungen beeinflussen können oder Handlungen auslösen. In diesem Beispiel veranlasst die Information, dass Frank Geisler die Rechnung 32532, die einen Betrag von 145,42 € aufweist, noch nicht bezahlt hat, dass mir eine Mahnung zugestellt wird. Wir können dieses Beispiel noch ein wenig weiter spinnen. Da der Computer alle von mir getätigten Bestellungen bei der Firma kennt, kann er ohne weiteres Daten über alle von mir getätigten Bestellungen abrufen. Aus diesen Daten ergibt sich die Information, dass ich meine Rechnungen insgesamt nicht so regelmäßig bezahle und dass des Öfteren Mahnungen verschickt worden sind. Das Management dieser Beispielfirma kann nun aufgrund der aus den Daten enthaltenen Informationen Entscheidungen treffen. Eine mögliche Entscheidung ist z.B. die, dass ich bei dieser Firma keine Waren mehr auf Rechnung kaufen darf, sondern dass ich Vorkasse leisten muss, wenn ich etwas kaufen möchte. Verlassen wir das Beispiel an dieser Stelle, bevor es peinlich für mich wird...

 An dem Beispiel wird nicht nur deutlich, dass erst die Informationen, die aus den Daten gewonnen werden können, das eigentlich Wertvolle und Wichtige sind, sondern dass dieselben Daten, in einen anderen Zusammenhang gebracht, andere Informationen ergeben können. Das Datum, wann eine Rechnung bezahlt wurde, ergibt, bezogen auf eine einzelne Rechnung, die Information, ob diese bereits bezahlt wurde oder nicht. Fügt man das Datum in einen anderen Zusammenhang ein, indem man z.B. alle Zahlungseingänge eines bestimmten Kunden betrachtet, so lassen sich mit denselben Daten Informationen über das Zahlungsverhalten des Kunden, ja sogar ein Zahlungsprofil erstellen.

 Die Information über das Zahlungsprofil kann zu weiter reichenden Entscheidungen führen. So ist es z.B. möglich, treuen, gut zahlenden Kunden einen bestimmten Rabatt einzuräumen, wohingegen sich die Zahlungsmodalitäten von notorischen Spätzahlern verschlechtern können.

 Lassen Sie uns nun noch einmal die grundlegenden Aussagen der vorherigen Abschnitte zusammenfassen:

 	
 Informationen setzen sich aus Daten zusammen.

 	
 Durch Datenverarbeitung​ werden aus Daten Informationen.

 	
 Gute Daten, die zeitnah vorliegen, helfen uns, gute Entscheidungen zu treffen.

 	
 Der Informationsgehalt​ von Daten hängt vom Zusammenhang ab.

 Damit aus Daten gute Informationen gewonnen werden können, müssen diese Daten sorgfältig erfasst und in einem Format vorgehalten werden, auf das man leicht zugreifen und das einfach verarbeitet werden kann. Da Daten der Ausgangspunkt aller weiteren Aktivitäten sind, ist es wichtig, dass mit den Daten sehr sorgfältig umgegangen wird. Datenfehler pflanzen sich durch das ganze System fort und führen zu fehlerhaften Informationen, die wiederum zu falschen Entscheidungen führen können. Der Umgang mit Daten wird als Datenmanagement​ bezeichnet. Aufgaben des Datenmanagements sind die Erzeugung, Speicherung und Wiedergabe der Daten. Da Daten eine zentrale Rolle bei der Erzeugung von Informationen spielen, ist es nicht verwunderlich, dass das Datenmanagement in vielen Firmen eine zentrale Rolle spielt.

 Datenmanagement ist keine Erfindung des IT-Zeitalters. Daten wurden seit jeher in irgendeiner Form verwaltet. Sei es, dass die Daten in Stein geritzt wurden oder meterlange Aktenschränke mit Papier füllten. Die Neuerung, die das IT-Zeitalter gebracht hat, ist die Darstellung von Daten in elektronischer Form, was das Datenmanagement wesentlich vereinfacht und effizienter macht. Eine zentrale Rolle des elektronischen Datenmanagements spielt die Datenbank​. Es gibt mindestens so viele Definitionen des Begriffs Datenbank, wie es Programmierer und Datenbankspezialisten gibt. Ich habe einmal zwei Definitionen herausgenommen, die mir am eingängigsten erscheinen und die verdeutlichen, wie der Begriff Datenbank verwendet wird:

 Wichtig

 	
 Eine Datenbank ist ein verteiltes, integriertes Computersystem, das Nutzdaten und Metadaten enthält. Nutzdaten sind die Daten, die Benutzer in der Datenbank anlegen und aus denen die Informationen gewonnen werden. Metadaten werden oft auch als Daten über Daten bezeichnet und helfen, die Nutzdaten der Datenbank zu strukturieren.

 	
 Eine Datenbank ist eine geordnete, selbstbeschreibende Sammlung von Daten, die miteinander in Beziehung stehen.

 Wichtig

 Während die erste Definition eher den technischen Aspekt heraushebt und auf die Realisierung einer Datenbank als Computersystem abhebt, stellt die zweite Definition den theoretischen Aspekt in den Vordergrund und ist daher universeller verwendbar als die erste Definition.

 Lassen Sie uns die zweite Definition noch einmal näher am Beispiel eines Adressbuchs betrachten, das einfach in Form einer Tabelle angelegt ist:

 	
 Name

 	
 Telefonnummer

 	
 Anschrift

 	
 Ort

 	
 Max Mustermann

 	
 0123 / 456789

 	
 Musterstraße 3

 	
 Musterhausen

 	
 Susi Sorglos

 	
 0987 / 654321

 	
 Sorglosgasse 7

 	
 Schlumpfhausen

 Im dargestellten Adressbuch befindet sich zunächst eine Sammlung von Daten, nämlich die Adressen. Diese sind nach dem Alphabet geordnet. Obwohl es sich bei jeder Adresse um einen Kontakt handelt, stehen diese nicht in einer Beziehung zueinander. Es handelt sich lediglich um Instanzen des Objekts »Leute, die so interessant sind, dass sie in ein Adressbuch eingetragen wurden«. Der Ausdruck »die miteinander in Beziehung stehen« der Definition bezieht sich auf verschiedene Tabellen, die untereinander in Beziehung stehen können. Zu diesem Thema erfahren Sie im weiteren Verlauf des Buches mehr. Eine Selbstbeschreibung​ des Adressbuchs erfolgt durch die Tabellenüberschriften. Die Überschriften erklären, was der Inhalt der jeweiligen Spalte bedeutet. Diese Beschreibungen der Daten werden, wie bereits aus der ersten Definition des Begriffs Datenbank bekannt, als Metadaten bezeichnet. Offensichtlich ist nach der zweiten Definition ein simples Adressbuch in Form einer Tabelle eine (wenn auch nicht digitale) Datenbank. Die Metadaten werde im Datenbanksystem im so genannten Katalog​ (auch Data Dictionary​) gespeichert. Der Katalog stellt den Teil der Datenbank dar, in dem die Metainformationen abgelegt werden.

 Um eine Datenbank auf einem Computer zu verwalten, wird in der Regel ein so genanntes Datenbankmanagement-System​ (DBMS) verwendet, das sich um die Organisation der Daten kümmert und das den Zugriff auf die Daten regelt. Das Datenbankmanagement-System kann entweder aus einem einzelnen Programm bestehen, wie es oft bei Desktop-Datenbanksystemen wie z.B. Microsoft Access der Fall ist, oder es kann aus vielen Programmen bestehen, die zusammenarbeiten und so die Funktionalität eines DBMS bereitstellen. Diese Variante wird oft bei servergestützten Datenbanksystemen verwendet. In Abbildung 1.1 ist das Zusammenspiel zwischen DBMS und Datenbank zu sehen. Ein Anwender formuliert eine Abfrage an die Datenbank, die die benötigten Daten zurückliefern soll. Die Abfrage wird an das DBMS weitergereicht, das die Daten aus der eigentlichen Datenbank heraussucht und diese an den Anwender zurückliefert. Ferner kann man in Abbildung 1.1 sehen, dass in der Datenbank sowohl Metainformationen als auch Nutzdaten vorhanden sind. Die Nutzdaten bestehen im Beispiel aus den Daten in den Tabellen Kunden, Berater und Projekte.

 [image:]

 Abb. 1.1: Das DBMS verwaltet den Zugriff auf die Datenbank.

 Hinweis

 Aus Bequemlichkeit wird in der Praxis oft der Begriff Datenbank anstatt Datenbankmanagement-System verwendet. Anwendungen wie z.B. Access oder Oracle werden oft als Datenbanken bezeichnet, obwohl sie in Wirklichkeit Datenbankmanagement-Systeme sind. Wenn Sie also auf den Begriff Datenbank stoßen, so müssen Sie versuchen, aus dem Kontext zu erschließen, was denn nun eigentlich gemeint ist. Geht es um das Datenbankmanagement-System, die technische Ausführung eines Datenbanksystems (also Hard- und Software) oder um das logische Konzept der Datenbank?

 Datenbankmanagement-Systeme sind aus unserem modernen Leben nicht mehr wegzudenken und bilden sozusagen das Rückgrat der Informationsgesellschaft. Daten, aus denen Informationen gewonnen werden können, sind zu einem wichtigen Rohstoff geworden, der natürlich auch entsprechend behandelt werden muss. Daher stellen moderne Datenbankmanagement-Systeme viele Funktionen zur Verfügung, die für die Pflege und das Auslesen der Daten wichtig sind und den Umgang mit Daten vereinfachen. Ein wichtiger Bestandteil moderner Datenbanksysteme ist die integrierte Abfragesprache, mit der man einfach so genannte Ad-hoc-Abfragen​ an die Datenbank absetzen kann. Eine Ad-hoc-Abfrage dient dazu, Informationen abzufragen, die eine bestimmte, aktuelle Fragestellung beantworten sollen. Um auf das Beispiel des Servicemitarbeiters vom Anfang des Kapitels zurückzukommen, könnte dieser, nachdem er sich vom Schock erholt hat, einfach auf der Straße auf die Rechnung mit der Nummer 32532 angesprochen worden zu sein, und in sein Büro zurückgekehrt ist, eine Ad-hoc-Abfrage starten, die die mit der Rechnungsnummer 32532 verknüpften Daten zurückliefert und ihm Informationen zu der durch Rechnungsnummer 32532 identifizierten Rechnung gibt.

 Mit Hilfe von Datenbankmanagement-Systemen wird eine Umgebung geschaffen, in der Daten besser organisiert werden können, als dies vor der Entwicklung von Datenbankmanagement-Systemen möglich war. Daten können leicht zur Datenbank hinzugefügt, geändert und gelöscht werden und es werden durch das DBMS leistungsfähige Suchfunktionen zur Verfügung gestellt, so dass bestimmte Daten schnell wieder gefunden werden können. Der Erfolg der DBMS ist so groß, dass Microsoft momentan überlegt, den nächsten Windows-Versionen (Codename Longhorn), anstelle eines normalen Dateisystems ein DBMS mitzugeben, das dann die Dateien auf der Festplatte verwaltet. Den Vorteil sieht Microsoft darin, dass nicht nur, wie bisher, Dateien, sondern auch jede andere Art von Daten (z.B. Adressen) im Dateisystem gespeichert, mit anderen Objekten (wie z.B. Dateien) in Zusammenhang gebracht und abgefragt werden kann.

 Durch den schnellen Zugriff, den Datenbanksysteme auf Daten erlauben, und unter Verwendung von Tools, die die Daten in sinnvolle Informationen umwandeln, ist es dem Nutzer einer Datenbank möglich, sich schnell an die sich ändernden Anforderungen anzupassen und aufgrund guter Daten schnelle und fundierte Entscheidungen zu treffen, was einen großen Wettbewerbsvorteil ausmacht. Eine gut organisierte Datenbank schafft Transparenz und kann einem Unternehmen so zu mehr Leistungsfähigkeit verhelfen.

 1.1 Warum ist Datenbankdesign wichtig?

 Stellen Sie sich einmal vor, dass Sie ein Haus bauen möchten. Was ist der erste Schritt, nachdem Sie die Finanzierung für Ihr Bauvorhaben unter Dach und Fach gebracht haben? Natürlich – Sie suchen sich einen fähigen Architekten, der sich zunächst einmal nach Ihren Wünschen erkundigt (wie viele Zimmer, mit oder ohne Swimmingpool, wo kommt das Arbeitszimmer hin usw.) und dann auf Basis dieser Wünsche einen Bauplan für Ihr Tramhaus entwickelt.

 Komischerweise scheinen immer noch viele Menschen zu denken, dass das alles für Software-Projekte nicht gelten soll. Ich habe schon einige Projekte gesehen, in denen ein motivierter Mitarbeiter einfach sein Datenbankprogramm gestartet und angefangen hat. In unserem Architekten-Beispiel wäre das genau so, als ob der Architekt Ihrer Wahl, nachdem er erfahren hat, dass Sie ein Haus planen, sagt, »Klasse – ich fahr dann mal eben zum Baumarkt, hol ein paar Ziegelsteine und dann können wir auch schon direkt loslegen!« Ich denke, in diesem Fall werden Sie sich schnell nach einem anderen Architekten umsehen.

 Genau wie für ein stabiles Haus, das allen Widrigkeiten seiner Umgebung trotzen soll, ein guter Plan vonnöten ist, der von einem Statiker abgenommen wurde, ist es für eine Datenbank wichtig, dass der eigentlichen Implementierung ein gutes Datenbankdesign vorausgegangen ist. In der Tat sollte der eigentliche Datenbankdesign-Prozess mindestens 80 bis 90% der Datenbankentwicklung ausmachen. Hierbei meine ich die reine Entwicklungszeit der Datenbank, d.h. Struktur der Tabellen, Beziehungen, Einschränkungen etc. Was in dieser Entwicklungszeit nicht berücksichtigt ist, ist die Entwicklungszeit für die Benutzeroberfläche einer Datenbankanwendung (z.B. in einer Hochsprache). Durch cleveres Datenbankdesign (das auch schon im Hinblick auf die zu entwickelnde Anwendung erstellt wurde) lässt sich aber auch die Entwicklungszeit der Datenbankanwendung drastisch verkürzen.

 Ist erst einmal ein gutes Datenbankdesign vorhanden, so kann dieses leicht in einem der marktüblichen Datenbanksysteme implementiert werden. Es gibt sogar Programme, wie z.B. Microsoft Visio (um Datenbank Re- und Forward-Engineering mit Visio machen zu können, benötigen Sie die Enterprise-Architect-Version, die bei Visual Studio.NET dabei ist) oder Powerbuilder von Sybase, die es ermöglichen, das Design der Datenbank direkt am Rechner durchzuführen. Nachdem Sie auf diese Art und Weise ein Modell Ihrer Datenbank entwickelt haben, erzeugen diese Programme die Implementierung Ihres Modells (z.B. als SQL-Script) automatisch.

 [image:]

 Abb. 1.2: Visio beim Datenbankdesign

 Weil das gute Design einer Datenbank einer der zentralen Punkte bei der Erstellung einer Datenbankanwendung ist, beschäftigt sich der größere Teil dieses Buches mit dem Design von Datenbankanwendungen. Das tollste DBMS nützt nichts, wenn Ihr Datenbankdesign schlecht ist.

 Weiter oben haben Sie festgestellt, dass Daten für Unternehmen eine wichtige Ressource darstellen, da aus Daten Informationen gewonnen werden können, die wiederum zu Entscheidungen führen. Da die Qualität der Entscheidungen von der Qualität der zugrunde liegenden Informationen und diese wiederum von der Qualität der zugrunde liegenden Daten abhängt, kann nur eine gut entworfene Datenbank die Qualität der in ihr gespeicherten Daten gewährleisten.

 Ist das Datenbankdesign schlecht, so können in Ihrer Datenbank redundante Daten​ auftreten. Unter redundanten Daten versteht man Daten, die unnötigerweise mehrfach in der Datenbank vorkommen. Um zu verdeutlichen, warum das zu einem Problem werden kann, stellen Sie sich folgende Situation in dem Beispiel mit der Rechnung vor: Stellen Sie sich vor, dass die Kundendaten in jedem Datensatz der Tabelle gespeichert werden, in dem auch die Rechnungen gespeichert werden (und zwar nur dort). Um im Beispiel zu bleiben, überlegen wir nun, was passiert, wenn ich umziehe. Da meine Kontaktinformationen in jedem Rechnungsdatensatz gespeichert sind, müssen sie auch in jedem Rechnungsdatensatz geändert werden. Da ich ein guter Kunde bin und schon viel bei der Firma gekauft habe, müssen viele Datensätze geändert werden. Bei der Änderung dieser Datensätze macht der zuständige Mitarbeiter einen Fehler und übersieht einen oder mehrere Datensätze. Arbeitet nun ein anderer Mitarbeiter mit den Daten der Datenbank, wird ihm mit Sicherheit auffallen, dass meine Rechnungen an zwei verschiedene Adressen ausgestellt sind. Da der erste Mitarbeiter (wie üblicherweise in solchen Fällen) nicht verfügbar ist, kann der zweite Mitarbeiter nicht direkt entscheiden, welche der beiden möglichen Adressen die gültige ist. Es beginnt ein aufwändiger Fehlersuchprozess, um meine aktuelle Adresse zu ermitteln.

 Wichtig

 Man spricht von redundanten Daten, wenn Daten über ein und dieselbe Entität (eine Entität​ ist ein Objekt der realen Welt, das in der Datenbank verwaltet werden soll, also z.B. eine Person oder eine Rechnung) mehrfach in der Datenbank gespeichert sind. Solche unerwünschten Redundanzen sind das Ergebnis eines schlechten Datenbankdesigns.

 Es gibt allerdings auch Fälle, in denen innerhalb von Datenbanken bewusst Datenredundanzen erzeugt werden. Dies ist z.B. bei Data-Warehouse-Anwendungen der Fall. Hier wird zusätzliche Geschwindigkeit durch Bereitstellung von redundanten Daten erzeugt. An dieser Stelle ist aber eine unbeabsichtigte Datenredundanz gemeint – und die ist immer schlecht.

 Da das Datenbankdesign so wichtig für eine stabile, robuste Datenbank ist, die erweiterbar ist und so auch zukünftigen Anforderungen noch genügt, beschäftigt sich dieses Buch ausführlich mit diesem wichtigen Thema. Wenn Sie in die Tiefen der Implementierung von Datenbankmanagement-Systemen eintauchen möchten, so ist dieses Buch mit Sicherheit nicht das richtige. Für diesen Fall empfehle ich Ihnen die Bücher von Heuer und Saake, die auch im mitp-Verlag erschienen sind.

 Um den nötigen Praxisbezug herzustellen und die in diesem Buch vorgestellten Konzepte zu verdeutlichen, wird der logische Entwurf eines kompletten Beispiels mittlerer Komplexität durchgeführt. Nähere Informationen zu dem Fallbeispiel finden Sie weiter unten im Kapitel unter Abschnitt 1.3.

 1.2 Dateisystem und Datenbanken

 Damit Sie die großen Vereinfachungen und Vorteile verstehen können, die Datenbanksysteme gegenüber einfachen Dateien haben, die im Dateisystem abgespeichert sind, müssen Sie sich zunächst ein wenig mit der Vergangenheit beschäftigen, und sich ansehen, welche Probleme es damals gab.

 Die Vorteile einer Datenbank gegenüber dem Dateisystem sind in der Tat so groß, dass immer mehr Unternehmen auch Dateien in Datenbanken speichern. Systeme, die die Speicherung von Dateien innerhalb einer Datenbank ermöglichen, werden als Content-Management-Systeme bezeichnet. Üblicherweise können zu den eigentlichen binären Daten, die eine Datei ausmachen, weitere Informationen, die so genannten Metainformationen, gespeichert werden.

 Erst wenn Sie diese Vorteile verstanden haben, werden Sie sehen, warum die Entwicklung zu den Datenbanksystemen geführt hat, die wir heute kennen und schätzen gelernt haben. Die Informationen, die Sie in diesem Abschnitt erhalten, sind auch wichtig, wenn Sie planen, eine bestehende Anwendung, die ihre Daten im Dateisystem ablegt, in eine Anwendung zu transformieren, die die Daten in einer Datenbank speichert.

 1.2.1 Historische Wurzeln

 Die Ablage von Dateien in einem Dateisystem ist sehr ähnlich zu der Art, wie wir Daten aufbewahren würden, wenn es gar keine Computer gäbe. Stellen Sie sich vor, dass Sie einen gewaltigen Berg an Schriftstücken haben, die geordnet und sortiert werden müssen, damit man ein bestimmtes Schriftstück, das man gerade benötigt, schnell wieder finden kann. Eine mögliche Art, dem unausweichlichen Chaos Paroli zu bieten, das bei der Ablage all dieser Schriftstücke auf Ihrem Schreibtisch entstünde, ist es, sich einen Schrank mit einer Hängeregistratur zu kaufen. Sie können die verschiedenen Schubladen des Schrankes unterschiedlich beschriften, z.B. »Rechnungen« und »Schriftverkehr«. In die »Rechnungen«-Schublade können Sie dann einfach Hängeordner hängen, die mit den Namen Ihrer Kunden beschriftet sind. In diesen Hängeordnern befinden sich dann alle Rechnungen zum jeweiligen Kunden. Suchen Sie nun eine bestimmte Rechnung zu einem bestimmten Kunden, so müssen Sie lediglich die Schublade aufziehen, in der die Hängeordner mit Rechnungen hängen, die Akte des gewünschten Kunden heraussuchen und dann innerhalb der Akte nach der gewünschten Rechnung suchen. Das ist recht einfach. Komplizierter wird es, wenn Sie nun alle Rechnungen heraussuchen möchten, die ein bestimmter Sachbearbeiter verfasst hat. Die Namen der Sachbearbeiter stehen zwar jeweils auf den einzelnen Rechnungen, da es aber kein Ordnungskriterium gibt, das die Rechungen den Sachbearbeitern zuweist, bleibt Ihnen in diesem Fall nichts anderes übrig, als alle Rechnungen aus der Hängeregistratur zu nehmen und einzeln daraufhin zu untersuchen, welcher Sachbearbeiter sich mit der Rechnung befasst hat. Dann müssen Sie die Rechungen, die der gewünschte Sachbearbeiter bearbeitet hat, an die Seite legen. Eine ziemlich mühsame Aufgabe, wenn Sie mich fragen.

 Die Organisation von Dateien im Dateisystem eines Rechners ist diesem Beispiel aus der realen Welt ziemlich stark nachempfunden. Hier werden einzelne, elektronische Dateien in Verzeichnissen gespeichert, die selbst wiederum in anderen Verzeichnissen gespeichert sein können. Einer der auffälligsten Unterschiede zur klassischen Hängeregistratur besteht darin, dass die Schachtelungstiefe der Verzeichnisse beliebig ist.

 Hinweis

 In der Realität ist die Schachtelungstiefe von Verzeichnissen nicht unbedingt beliebig – das hängt vom Betriebssystem des Rechners ab bzw. vom verwendeten Dateisystem. Gängige Dateisysteme haben im direkten Vergleich zu einer Hängeregistratur allerdings eine so tiefe Schachtelungstiefe, dass man getrost von einer beliebigen Schachtelungstiefe sprechen kann.

 Die Speicherung von Daten in einer derartigen hierarchischen Struktur im Dateisystem ist legitim, so lange die Anzahl der zu verwaltenden Daten gering ist. Sobald allerdings die Datenmengen und die Anforderungen an die Verknüpfung der Daten untereinander steigen, ist die Ablage von Daten in einem hierarchischen Dateisystem ineffizient.

 1.2.2 Probleme bei der Datenhaltung im Dateisystem

 Zunächst haben Computer, die für wirtschaftliche Zwecke eingesetzt wurden, Daten, die z.B. finanzmathematische Programme benötigten, in einzelnen Dateien abgespeichert. Jedes Programm hatte seine eigenen Dateien, es gab allerdings Überschneidungen in den abgespeicherten Daten, da für verschiedene Zwecke dieselben Informationen benötigt werden. Sehen Sie sich hierzu Abbildung 1.3 an.

 [image:]

 Abb. 1.3: Unterschiedliche Programme greifen auf unterschiedliche Dateien zu.

 Stellen Sie sich vor, dass Sie in einer Beratungsfirma arbeiten, die dafür bezahlt wird, dass die angestellten Berater Firmenkunden in verschiedenen Bereichen des Geschäftslebens beraten (dieses Beispiel greift schon auf das Fallbeispiel vor). Die Beratungsfirma besitzt zwei Programme, einerseits ein Kundenverwaltungsprogramm (in Neu-Deutsch heißt das Customer-Relationship-Management oder kurz CRM), das Kontakte der Berater zu den Kunden verwaltet, auf der anderen Seite ein Lohnabrechnungsprogramm, das berechnet, wie viel Lohn der jeweilige Berater für seine Leistungen bekommt. Wie Sie sich sicherlich schon selbst überlegt haben, werden in beiden Dateien, sowohl in der Datei für das Kundenverwaltungsprogramm als auch in der Lohnabrechnungsdatei, zumindest die Namen der Berater doppelt vorkommen. Einerseits möchte man mit dem Kundenverwaltungsprogramm festhalten, welcher Berater welchen Kunden beraten hat, andererseits möchte man mit der Lohnabrechnung die Löhne der Berater berechnen, daher braucht man in beiden Programmen wenigstens die Namen der Berater. Wenn nun ein Berater seinen Namen ändert (z.B. durch Heirat), so muss diese Namensänderung im Beispiel an zwei Stellen durchgeführt werden. (Unser Beispiel ist natürlich sehr vereinfacht. Ein großes Beratungsunternehmen besitzt sicherlich mehr als zwei Programme, mit denen die Aktivitäten des Unternehmens und auch der für das Unternehmen tätigen Berater festgehalten werden. Sie können also davon ausgehen, dass ein Beraternamen an vielen Stellen geändert werden muss.) Dies kann besonders dann problematisch sein, wenn die beiden Programme unter der Hoheit zweier verschiedener Abteilungen stehen. Es müssen zwei Sachbearbeiter davon in Kenntnis gesetzt werden, dass sich der Name geändert hat, und diese beiden Sachbearbeiter müssen die Änderung dann auch in die jeweiligen Programme einpflegen. In der Hektik des Tagesgeschäfts kann so eine kleine Änderung schon mal schnell übersehen werden, so dass für eine Person plötzlich zwei verschiedene Namen existieren. Die Situation wird besonders dann bedenklich, wenn die Änderung schon etwas länger zurückliegt und sich niemand daran erinnern kann, wie denn nun der richtige Name des Mitarbeiters ist. In diesem Fall muss ein umständlicher und unter Umständen auch teurer Fehlerbereinigungsprozess durchgeführt werden.

 In unserem Beispiel ist es natürlich einfach, den Fehler zu eliminieren. Man muss lediglich den Berater fragen, wie sein richtiger Name denn nun lautet. Viel kritischer und schwieriger wird die Fehlerbereinigung dann, wenn festgestellt wird, dass z.B. zwei oder drei von Millionen von Messwerten, die aufgezeichnet wurden, in den beiden Programmen, die sie verarbeiten, nicht übereinstimmen. Hier wird es richtig schwierig, den richtigen Messwert im Nachhinein zu ermitteln.

 Es lassen sich sicherlich noch weitere Überschneidungen finden. Was passiert zum Beispiel, wenn die Berater auf Stundenbasis bezahlt werden? Im schlechtesten Fall (da keines der beiden Programme auf die Datei des anderen Programms zugreifen kann) muss ein Sachbearbeiter zuerst die in einem Monat angefallenen Stunden mit dem Kundenverwaltungsprogramm ausdrucken, um sie dann in das Lohnabrechnungsprogramm per Hand wieder einzugeben. Dies ist ein mühsamer und fehleranfälliger Prozess.

 Bevor Sie sich weiter mit den Problemen beschäftigen, die die Datenhaltung in proprietären Dateien so mit sich bringt, lassen Sie uns einfach einmal einen Blick in eine solche proprietäre Datei​ werfen und anhand dieser Datei im Vorfeld schon einige wichtige Begriffe klären, die in Zusammenhang mit der Datenhaltung im Allgemeinen stehen. Diese Begriffe werden in Kapitel 3 wieder aufgegriffen und ausführlich am Konzept der relationalen Datenbank erklärt. Die Datei, die dem Kundenverwaltungsprogramm zugrunde liegt, könnte z.B. so aussehen, wie in Abbildung 1.4 gezeigt.

 [image:]

 Abb. 1.4: Inhalt der Datei des Kundenverwaltungsprogramms

 Als Daten​ bezeichnen wir alle Fakten, die in dieser Datei gespeichert sind. Beispiele für Daten sind z.B. bestimmte Telefonnummern oder Postleitzahlen. Daten selbst besitzen einen geringen Informationsgehalt. Damit Sie aus den Daten sinnvolle Informationen gewinnen können, müssen Sie sie in einen Zusammenhang bringen.

 Wenn Sie sich die Tabellendarstellung der Datei des Kundenverwaltungsprogramms in Abbildung 1.4 genau ansehen, so stellen Sie fest, dass in einer Spalte stets dieselben Informationen zu finden sind. In der Spalte KUNDE_TELEFON z.B. befinden sich die Telefonnummern der einzelnen Kunden. Eine benannte Einheit, die immer dieselben Daten aufnimmt, wird im Datenbankjargon als Feld bezeichnet. Im Prinzip kann man sagen, dass ein Feld eine Eigenschaft einer Entität darstellt, die in der Datenbank verwaltet wird. Beispiele für Felder in Abbildung 1.4 sind KUNDE, KUNDE_TELEFON, KUNDE_ADRESSE usw.

 Unter einem Datensatz​ versteht man eine Sammlung von verknüpften Feldern, die Daten über ein Ding des täglichen Lebens, wie z.B. eine Person oder einen Gegenstand, enthalten. In unserem Beispiel enthält ein Datensatz Daten über einen bestimmten Kundenkontakt und ist aus den Feldern KUNDE, KUNDE_TELEFON, KUNDE_ADRESSE, KUNDE_PLZ, BERATER, KONTAKTDATUM, DAUER, STDSATZ und BERATER_KNOWHOW aufgebaut. In der tabellarischen Darstellung in Abbildung 1.4 entspricht ein Datensatz einer Zeile.

 Als Datei​ bezeichnet man eine Menge von Datensätzen, die zusammengehören. In unserem Beispiel bilden alle Datensätze in Abbildung 1.4 die Datei für das Kundenverwaltungsprogramm. Bitte beachten Sie, dass verschiedene Dateien nicht unbedingt unterschiedlich aufgebaut sein müssen. Es ist durchaus erlaubt (und auch üblich), dass verschiedene Dateien denselben Aufbau besitzen. So ist es auch denkbar, dass man die Dateien des Kundenverwaltungsprogramms nach Beratern unterteilen kann. In diesem Fall hätten Sie zwei Dateien desselben Aufbaus, wobei die eine Datei nur Datensätze enthält, die Ingo Fuchs zugeordnet sind, und die andere Datei enthält nur Datensätze, die Helena Meier zugeordnet sind.

 Eine Datei, wie sie in Abbildung 1.4 zu sehen ist, wird auch oft als flache Datei​ bezeichnet, da sie ein Minimum an Struktur besitzt. Ich habe die Tabellenform der Abbildung 1.4 lediglich aus Gründen der Übersichtlichkeit gewählt. Eine beliebte Form, in der flache Dateien gespeichert werden, ist das CSV-Format​ (Comma Separated File). Hierbei werden die Felder entweder, wie in Listing 1.1 zu sehen ist, mit Hilfe eines Trennzeichens (in diesem Fall das Semikolon) getrennt, oder es wird für jedes Feld eine bestimmte Zahl an Zeichen definiert. Jeder Datensatz beginnt in einer neuen Zeile.

 Emil Schmidt;0231-1020449;Kaiserstrasse 5, Musterhausen;12345;Helena Meier;...
Hans Müller;0221-2415932;Am Weiher 3, Musterhausen;12345;Ingo Fuchs;...
Johanna Schulze;0410-1241221;Alte Poststr. 5, Musterhausen;12345;Helena Meier;...
Markus Schulte;04514-123414;Goethestr. 7, Musterburg;12354;Ingo Fuchs;...
Hans Müller;0221-2415932;Am Weiher 3, Musterhausen;12345;Helena Meier;...
Johanna Schulze;0410-1241221;Alte Poststr. 5, Musterhausen;12345;Helena Meier;... Hans Müller;0221-2415932;Am Weiher 3, Musterhausen;12345;Ingo Fuchs;...

 Listing 1.1: Beispiel für eine flache Datei

 Wie Sie sehen können, enthält die in Listing 1.1 dargestellte flache Datei wirklich ein Minimum an Metainformationen. Die einzigen enthaltenen Metainformationen sind die Semikola, die die Daten der einzelnen Felder trennen. Es ist weder eine Information darüber vorhanden, welches Feld welche Bedeutung hat, noch welcher Datentyp verwendet wird. Wenn Ihnen allein diese Datei und die Information vorliegen, dass die Datei Kundenkontakte zu Beratern Ihres Beratungsunternehmens enthält, können Sie aufgrund dieser Darstellung nicht entscheiden, ob z.B. in der ersten Zeile Emil Schmidt oder Helena Meier der Berater ist (es sei denn, Sie kennen Ihre Kollegen).

 Eine Datei, wie sie in Listing 1.1 zu sehen ist, bringt viele Probleme mit sich, obwohl in der Anfangszeit des Informationszeitalters 20 Jahre lang mit solchen Dateien gearbeitet worden ist.

 Wenn Sie auf eine solche Datei mit Hilfe einer Hochsprache, wie z.B. C++, Basic oder Pascal zugreifen möchten, müssen Sie komplexe Funktionen und Prozeduren schreiben, die die Daten von der Festplatte laden, ändern und speichern können. Da Sie in diesem Fall in der Hochsprache nicht nur definieren müssen, welche Daten von der Festplatte geladen werden sollen, sondern auch, wie das geschehen soll, kann die Verwaltung flacher Dateien (insbesondere in einem komplexen System, das viele flache Dateien besitzt) sehr komplex werden. Da die Struktur der verschiedenen Dateien unterschiedlich ist – die Datei des Kundenverwaltungsprogramms ist mit Sicherheit anders als die Datei des Lohnabrechnungsprogramms –, muss für jede Datei eine eigene Dateiverwaltung programmiert werden, die folgende Aufgaben erfüllen kann:

 	
 Datei anlegen

 	
 Daten zur Datei hinzufügen

 	
 Daten aus der Datei löschen

 	
 Daten in der Datei ändern

 	
 Daten aus der Datei laden

 Aufgrund der Abhängigkeit der Dateiverwaltung von der Struktur der zugrunde liegenden Dateien ist es in einem solchen System nicht möglich, Ad-hoc-Abfragen durchzuführen, daher mussten Programme geschrieben werden, die bestimmte Berichtsanforderungen erfüllen konnten. Das Schreiben dieser Programme war natürlich auch aufwändig. Je nach Anforderungen konnte es sein, dass es eine Woche oder einen Monat dauerte, bevor ein Programm erstellt war, das einen Bericht ausgeben konnte, der einen bestimmten Sachverhalt dargestellt hat. Ganz am Anfang dieses Kapitels habe ich erwähnt, dass man, um gute Entscheidungen treffen zu können, gute Informationen benötigt. Diese guten Informationen benötigt man natürlich auch zeitnah, da die Entscheidungen natürlich ziemlich schnell getroffen werden müssen. Wenn es aber eine Woche oder einen Monat lang dauert, die notwendigen Informationen zu besorgen, so ist das Datenbanksystem äußerst ineffizient, da sich die Situation, für die die Informationen benötigt wurden, unter Umständen schon wieder verändert hat, so dass die gelieferten Informationen keinen Wert mehr besitzen, weil sie viel zu spät zur Verfügung stehen. Je mehr Daten in flachen Dateien verwaltet werden und je größer der Bedarf an bestimmten Berichten oder Auswertungen ist, desto komplexer und schwieriger wird es, ein auf flachen Dateien basierendes System zu verwalten und zu steuern. Dass die Fehleranfälligkeit eines solchen Systems mit der Komplexität steigt, versteht sich von selbst.

 Ein anderer wichtiger Punkt, den Sie bei der Betrachtung der flachen Dateien nicht aus den Augen lassen dürfen, ist das Verhalten eines auf flachen Dateien basierenden Systems bei Änderungen an der Struktur der Dateien. Sehen Sie sich bitte noch einmal die Struktur der Datei unseres Kundenverwaltungsprogramms an (siehe Abbildung 1.5).

 [image:]

 Abb. 1.5: Struktur der Kundenverwaltungsdatei

 Wenn Sie sich das Feld KUNDE_ADRESSE ansehen, sehen Sie, dass hier zwei Informationen enthalten sind, die Straße, in der der Kunde wohnt, und die Stadt. Da Sie gerne eine Auswertung der Daten bezogen auf die Stadt hätten, wäre es sinnvoll, die Straße und den Ort in verschiedenen Feldern zu speichern. Natürlich könnten Sie die Postleitzahl als Kriterium verwenden, da diese in einem Feld gespeichert ist. Das ist aber gerade bei größeren Städten problematisch, da diese über mehrere Postleitzahlen verfügen. Würden Sie die Postleitzahl als Kriterium nehmen, so könnten Sie die Kunden nach Postleitzahlen auswerten, was aber der ursprünglichen Frage, der Auswertung nach Städten, nicht hundertprozentig entspricht. In diesem Fall müssen Sie die Struktur Ihrer flachen Datei ändern, was zu Problemen führen kann, da sämtliche Programme, die auf diese Datei zugreifen, auch geändert werden müssen.

 Lassen Sie uns einmal untersuchen, was alles gemacht werden muss, um die angesprochene simple Änderung des Feldes KUNDE_ADRESSE durchzuführen. Zunächst einmal müssten wir ein Programm schreiben, das die Daten aus der alten Form in die neue Form konvertieren kann. Dieses Programm müsste die neue Dateistruktur auf Festplatte anlegen, Datensatz für Datensatz aus der alten Dateistruktur lesen, die Daten in die neue Dateistruktur transformieren (in unserem Fall das Feld KUNDEN_ADRESSE beim Komma auftrennen, den ersten Teil in das neue Feld STRASSE und den Rest in das neue Feld ORT schreiben) und die neuen Datensätze dann in die neue Dateistruktur auf Festplatte schreiben. Auch wenn diese Arbeit recht aufwändig ist, ist sie sicherlich machbar. Was allerdings problematischer ist, ist der zweite Teil der Datenumstellung. Nachdem wir die Daten von der alten in die neue Struktur transformiert haben, müssen wir nun alle Programme, die mit der Datei arbeiten (also sowohl Benutzerprogramme, mit denen neue Daten zur Datei hinzugefügt oder bestehende Daten verändert werden können, als auch sämtliche Berichtsprogramme), aufspüren und umprogrammieren, so dass sie mit der neuen Dateistruktur arbeiten können. In einem großen Unternehmen kann dies zu einem sehr zeitaufwändigen und mühsamen Prozess werden. Bedenken Sie bitte, dass dieser Prozess für jede noch so kleine Änderung an der Datenstruktur durchgeführt werden muss. Anwendungsprogramme, die eine solche Abhängigkeit von der Struktur der zugrunde liegenden Dateien aufweisen, nennt man auch strukturell abhängig​ – der Zugriff auf eine Datei hängt von ihrer Struktur ab.

 Eine andere wichtige Abhängigkeit, die Anwendungsprogramme aufweisen, ist die Datenabhängigkeit​. Unter Datenabhängigkeit versteht man die Abhängigkeit einer Anwendung von der physikalischen Darstellung eines bestimmten Feldes. Stellen Sie sich z.B. vor, dass Sie eine bestimmte Information als Integer-Wert (also als Ganzzahl ohne Nachkommastellen) abgespeichert haben. Wenn Sie mit Ihrem Programm auf diese Information zugreifen möchten, müssen Sie stets den vorgegebenen Datentyp und das physikalische Format, in dem die Daten gespeichert sind, beachten und können auf den Integer-Wert immer nur als Integer zugreifen. Nach einiger Zeit stellen Sie fest, dass die in diesem Feld gespeicherten Daten auch Nachkommastellen haben können. Sie müssen die physikalische Darstellung der Zahl ändern, so dass auch Nachkommastellen gespeichert werden können. In diesem Fall müssen Sie alle Anwendungsprogramme umprogrammieren, damit sie mit dem neuen Datentyp umgehen können.

 Sie werden mir jetzt sicherlich entgegnen wollen, dass die oben geschilderte Datenabhängigkeit für Daten, die in einer Textdatei, wie wir sie bisher betrachtet haben, gespeichert sind, wohl nicht zutreffend sein kann, da sämtliche Daten als Text (also im Prinzip als Strings) gespeichert sind und dass diese nach dem Einlesen ohnehin in den notwendigen Datentyp, also z.B. eine Zahl, umgewandelt werden müssen. Ich stimme Ihnen voll und ganz zu. Dies ist sicherlich im Fall einer Textdatei richtig, aber denken Sie nun einmal daran, wie Dateien in einer Binär-Datei gespeichert werden können. Es gibt verschiedene Formate, in denen man z.B. Zahlen darstellen kann (Festkomma-Darstellung oder mit Hilfe von Exponent und Matisse). Man unterscheidet hier zwischen dem logischen Format​ der Daten, also dem Format, in dem Menschen die Daten verstehen, und dem physikalischen Format der Daten, das ist das Format, in dem die Daten vom Computer gespeichert werden. Hierbei ist zu beachten, dass ein logisches Format, z.B. Zahlen, mehrere physikalische Darstellungen haben kann und dass diese unter Umständen auch vom verwendeten Computer bzw. vom verwendeten Betriebssystem abhängen können.

 Ein weiteres wichtiges Problem, das Systeme, die auf flachen Dateien aufbauen, nur unzureichend lösen, ist die Implementierung eines sicheren Zugriffs auf die Daten. Da flache Dateien oft nichts anderes als CSV-Dateien, also im Prinzip Textdateien, sind, ist es recht einfach, Sicherheitsmechanismen auszuhebeln, die möglicherweise in den Datenbankanwendungen implementiert sind. Eine Textdatei können Sie einfach in einen Text-Editor laden und schon haben Sie Zugriff auf alle Daten, die in der jeweiligen Datei gespeichert sind.

 Der Datei-Charakter und die fehlenden Sicherheitsmaßnahmen führen dazu, dass Daten im Unternehmen nicht zentral zur Verfügung stehen, sondern dass die verschiedenen Abteilungen eines Unternehmens damit beginnen, eigene Datenbestände aufzubauen. Da diese Datenbestände voneinander isoliert gehalten werden, spricht man in diesem Zusammenhang auch von Dateninseln​ oder Informationsinseln​. In einem solchen Szenario ist es unwahrscheinlich, dass bei Änderungen sämtliche Instanzen der Daten geändert werden. Daher kommt es hier oft vor, dass es verschiedene Versionen derselben Daten gibt, wie z.B. in unserem Beispiel oben, in dem sich ein Name geändert hat. Sie können sich sicherlich vorstellen, wie eine solche Struktur in einem größeren Unternehmen leicht außer Kontrolle geraten kann.

 1.2.3 Datenredundanzen und Anomalien

 Sie haben im vorherigen Abschnitt gesehen, dass die Verwaltung von Daten in Dateien dazu führt, dass es zur Bildung von Dateninseln kommt und dass dieselben Daten an verschiedenen Orten abgespeichert werden. Wenn Daten, die dieselbe Information über eine Person oder einen Gegenstand speichern, an verschiedenen Orten gehalten werden, spricht man von Datenredundanz​. Datenredundanz führt zu verschiedenen Problemen, die ich in diesem Abschnitt näher beleuchten werde.

 Eines der größten Probleme, das durch Datenredundanz verursacht wird und auf das Sie im Verlauf dieses Kapitels schon des Öfteren gestoßen sind, ist die Dateninkonsistenz​. Man spricht von Dateninkonsistenz, wenn verschiedene Versionen derselben Daten existieren und diese verschiedenen Versionen im Konflikt miteinander stehen, das heißt, es ist nicht ohne weiteres möglich, anhand der Daten zu entscheiden, welches die aktuellste bzw. gültige Version der Daten ist. Stellen Sie sich vor, dass Sie in der Kundenverwaltungsdatei die Telefonnummer der Kundin Johanna Schulz ändern. In der Beispieldatei ist diese Telefonnummer in zwei Datensätzen vorhanden, Sie ändern diese aber lediglich in einem Datensatz, so wie in Abbildung 1.6 zu sehen ist.

 [image:]

 Abb. 1.6: Datenredundanz verursacht Dateninkonsistenzen.

 Fragen Sie nun Datensätze aus der Datei ab, erhalten Sie unterschiedliche Informationen über die Telefonnummer der Kundin Johanna Schulz, je nachdem, ob Sie den dritten oder den sechsten Datensatz abfragen. Ihren Daten fehlt Datenintegrität​.

 Dateninkonsistenzen treten nicht nur bei der Änderung von Daten auf, es kann auch vorkommen, dass Dateninkonsistenzen bei der Erfassung von Daten auftreten. Stellen Sie sich einmal vor, was passiert, wenn eine überlastete Sekretärin komplexe Daten (z.B. lange Telefonnummern) in mehreren verschiedenen Dateien erfassen muss, da jedes der verwendeten Programme seinen eigenen Datenbestand besitzt. Fehler bei der Eingabe sind hier unvermeidbar.

 Dateninkonsistenzen sind insbesondere dann problematisch, wenn sie nach außen getragen werden und das Unternehmen verlassen. So kann es z.B. sein, dass Sie einem neuen Berater die Telefonnummer der Kundin Johanna Schulze geben (die natürlich falsch ist) und dieser die Kundin nicht erreichen kann.

 Die durch Dateninkonsistenzen auftretenden Fehler nennt man auch Datenanomalien​. Ändert sich der Wert eines Feldes, so sollte diese Änderung an einer einzigen Stelle durchgeführt werden. Sie haben in dem Beispiel oben schon gesehen, was passieren kann, wenn Daten mehrfach, also redundant gespeichert werden. Datenanomalien unterscheidet man in drei verschiedene Kategorien:

 	
 Änderungs-Anomalie​ (Update-Anomalie​)

 Die Änderungs-Anomalie haben Sie ja bereits kennen gelernt. Werden dieselben Daten an verschiedenen Stellen gespeichert, so muss gewährleistet sein, dass die Daten an allen Stellen, an denen sie gespeichert werden, auch geändert werden. In unserem Beispiel, in dem sich die Telefonnummer der Kundin Johanna Schulze ändert, muss diese Änderung nicht nur im dritten, sondern auch im sechsten Datensatz durchgeführt werden. Stellen Sie sich das Computersystem eines großen Unternehmens vor, das auf Dateien aufgebaut ist. Hier kann es vorkommen, dass dieselben Daten an über hundert verschiedenen Orten gespeichert sind. In diesem Fall ist es sehr leicht möglich, dass bei der Änderung der Daten eine Stelle übersehen wird.

 	
 Einfüge-Anomalie​ (Insert-Anomalie​)

 Eine Einfüge-Anomalie liegt dann vor, wenn man bestimmte Daten nicht erfassen kann, ohne andere Daten gleichzeitig erfassen zu müssen. In unserer Beispiel-Datei ist es z.B. nicht möglich, einen Kunden zu erfassen, ohne diesem direkt einen Berater zuzuweisen. Selbst wenn Sie die Entscheidung, welcher Berater welchen Kunden berät, erst später treffen möchten, müssen Sie trotz allem einen Berater zuweisen. Werden viele Kunden erfasst, ist auch hier wieder die Gefahr groß, dass Dateninkonsistenzen entstehen.

 	
 Lösch-Anomalie​ (Delete-Anomalie​)

 Eine Lösch-Anomalie tritt dann auf, wenn das Löschen bestimmter Daten verursacht, dass andere Daten, die eigentlich nicht gelöscht werden sollten, durch diesen Löschvorgang auch gelöscht werden. In der Beispiel-Datei zeigt sich dieses Problem, wenn Sie alle Datensätze löschen, in denen der Kunde Hans Müller vorkommt (also den zweiten, fünften und siebten Datensatz). Diesem Kunden ist der Berater Ingo Fuchs zugeordnet. Wenn Sie davon ausgehen, dass die Daten über Ingo Fuchs einzig und allein in dieser Datei stehen, so wird durch das Löschen aller Datensätze von Hans Müller automatisch jede Information über den Berater Ingo Fuchs gelöscht.

 Datenanomalien treten nicht nur bei der dateibasierten Datenhaltung auf. Sie können auch in schlecht entworfenen Datenbanksystemen auftreten. Wie oben beschrieben, sind Datenanomalien das Ergebnis von Datenredundanz. Das Ziel beim Entwurf von Datenbanksystemen sollte es also sein, Datenredundanzen zu vermeiden und so das Auftreten von Datenanomalien zu verhindern.

 1.3 Das Fallbeispiel

 Im gesamten Buch wird ein durchgängiges Fallbeispiel verwendet, um die Prinzipien des Datenbankdesigns vorzustellen. Beim Fallbeispiel geht es darum, die im Verlauf des Buches erarbeiteten theoretischen Inhalte an einem greifbaren Beispiel aus der Praxis zu verdeutlichen. Sie sollen so in die Lage versetzt werden, die vermittelten Inhalte schnell in der Praxis anwenden zu können.

 Lassen Sie uns nun einen Blick auf das Fallbeispiel werfen, das Unternehmen Alana Business Consult (ABC). Das Hauptgeschäft des Unternehmens Alana Business Consult ist es, anderen Firmen Berater zur Verfügung zu stellen. Diese Berater kommen aus verschiedenen Branchen und besitzen die unterschiedlichsten Qualifikationen. Die zu beratenden Firmen auf der anderen Seite haben individuelle Anforderungen, Probleme und Fragestellungen, die von den Beratern gelöst werden sollen. Wie Sie sich sicherlich vorstellen können, ist es immer eine herausfordernde Aufgabe, Berater und Firmen zusammenzubringen. Je nach Komplexität der Fragestellung werden einzelne Berater oder individuell zusammengestellte Beraterteams eingesetzt, um die in der jeweiligen Firma vorhandenen Schwierigkeiten zu lösen. Alle Berater sind fest bei Alana Business Consult eingestellt. Da niemand alles wissen kann und manche Fragestellungen über das Wissen einzelner Berater und sogar das kollektive Wissen des Unternehmens hinausgehen, arbeitet Alana Business Consult zusätzlich mit so genannten Experten zusammen. Diese Experten sind nicht fest bei ABC angestellt, es handelt sich vielmehr um freie Mitarbeiter oder Angestellte anderer Firmen, die bei besonders kniffligen Problemstellungen hinzugezogen werden können. Ist die Aufgabenstellung gelöst, die das Hinzuziehen eines Experten nötig machte, übernehmen wieder der oder die von ABC zugewiesenen Berater. Neben diesen beiden beratend tätigen Gruppen gibt es auch noch Mitarbeiter, die alle Aktivitäten von ABC verwalten und koordinieren. Jedem Kundenunternehmen ist einer dieser Mitarbeiter zugeordnet und dient dem Kunden als Ansprechpartner. Aufgabe dieser Mitarbeiter ist es, zu entscheiden, welcher Firma welcher Berater zugewiesen wird, ob eine Anfrage im Haus beantwortet werden kann oder ob ein Experte hinzugezogen werden muss und ob gegebenenfalls ein Beraterteam zusammengestellt werden muss.

 Bisher wurden interne Abläufe und Prozesse bei Alana Business Consult einerseits mit Papier und Bleistift, andererseits auch mit Office-Programmen wie z.B. Microsoft Word und Excel verwaltet. Der Nachteil diese Methode liegt auf der Hand: Die Daten werden nicht strukturiert abgelegt. Mitarbeiter lassen ihre eigenen Gewohnheiten in die Daten einfließen. Es gibt unzählige Möglichkeiten, eine Telefonnummer abzuspeichern. Mögliche Darstellungsformen sind z.B.

 +49 (1234) 123456

 01234/123456

 (01234) 123456

 0049 (0)1234 / 123456

 Diese verschiedenen Darstellungsformen machen es sehr schwierig, konsolidierte Datenbestände zu erzeugen. Durch die verteilte Datenhaltung in verschiedenen Formaten ist es bei Alana Business Consult leider notwendig geworden, redundante Datenbestände anzulegen und zu pflegen. Diese Pflege ist mit der Zeit und der größer werdenden Anzahl der betreuten Kunden zunehmend komplexer und zeitaufwändiger geworden. Hierdurch sind die Prozesse bei Alana Business Consult fehleranfällig geworden. Briefe mit falschen Adressen werden abgesendet oder wichtige Kundeninformationen sind nicht verfügbar. Neben diesen Problemen, die im täglichen Geschäft auftreten, ist es sehr aufwändig, auf dem verteilten Datenbestand Analysen und Auswertungen durchzuführen.

 Aufgrund dieser Probleme häufen sich die Beschwerden der Kunden in letzter Zeit und auch die Mitarbeiter sind zunehmend unzufrieden mit der aktuellen Situation. Daher hat die Geschäftsführung entschieden, dass die Zeit zum Handeln gekommen ist, und ist an Sie als Datenbankentwickler herangetreten, um die unhaltbare Situation zu entschärfen. Sie sollen eine zentrale Datenbank entwickeln, die als globale (und einzige) Datenbasis für das Unternehmen dienen soll.

 Aufgrund des bisher in den vorherigen Abschnitten gewonnenen Wissens entscheiden Sie sich dafür, eine Datenbankanwendung basierend auf einer relationalen Datenbank zu erstellen. Wie Sie nun, ausgehend von der geschilderten Situation und der ersten Idee, zu einer funktionsfähigen Datenbank gelangen, erfahren Sie in diesem Buch.

 1.4 Zusammenfassung

 	
 Ad-hoc-Abfragen

 Unter einer Ad-hoc-Abfrage versteht man eine spontane Abfrage an eine Datenbank. Möchte man spontan eine bestimmte Information haben, so stellt man eine Ad-hoc-Abfrage an die Datenbank. Ein modernes Datenbanksystem muss Ad-hoc-Abfragen unterstützen.

 	
 Änderungs-Anomalie

 Werden dieselben Daten an verschiedenen Stellen gespeichert, so muss gewährleistet sein, dass die Daten an allen Stellen, an denen sie gespeichert werden, auch geändert werden. Geschieht dies nicht, so spricht man von einer Änderungs-Anomalie.

 	
 Datei

 Als Datei bezeichnet man eine Menge von Datensätzen, die zusammengehören.

 	
 Daten

 Als Daten bezeichnen wir alle Fakten, die in einer Datei oder einer Datenbank gespeichert sind. Daten selbst besitzen einen geringen Informationsgehalt. Damit Sie aus den Daten sinnvolle Informationen gewinnen können, müssen Sie sie in einen Zusammenhang bringen. Der Informationsgehalt von Daten hängt vom Zusammenhang ab.

 	
 Datenabhängigkeit

 Unter Datenabhängigkeit versteht man die Abhängigkeit einer Anwendung von der physikalischen Darstellung eines bestimmten Feldes. Ist eine Anwendung abhängig von der physikalischen Darstellung der Daten eines Feldes, so muss die Anwendung umprogrammiert werden, sobald sich die physikalische Darstellung der Daten ändert.

 	
 Datenanomalien

 Die durch Dateninkonsistenzen auftretenden Fehler nennt man auch Datenanomalien.

 	
 Datenbank

 Es gibt zwei Definitionen des Begriffs Datenbank, die erste ist, dass eine Datenbank ein verteiltes, integriertes Computersystem ist, das Nutzdaten und Metadaten enthält. Die zweite Definition besagt, dass eine Datenbank eine geordnete, selbstbeschreibende Sammlung von Daten ist, die miteinander in Beziehung stehen.

 	
 Datenbankdesign

 Das gute Design einer Datenbank ist einer der zentralen Punkte bei der Erstellung einer Datenbankanwendung. Ist erst einmal ein gutes Datenbankdesign vorhanden, so kann dieses leicht in einem der marktüblichen Datenbanksysteme implementiert werden.

 	
 Datenbankmanagement-System (DBMS)

 Um eine Datenbank auf einem Computer zu verwalten, wird in der Regel ein so genanntes Datenbankmanagement-System (DBMS) verwendet, das sich um die Organisation der Daten kümmert und das den Zugriff auf die Daten regelt. Das Datenbankmanagement-System kann entweder aus einem einzelnen Programm bestehen oder es kann aus vielen Programmen bestehen, die zusammenarbeiten und so die Funktionalität eines DBMS bereitstellen.

 	
 Dateninkonsistenz

 Unter Dateninkonsistenz versteht man den Zustand, wenn verschiedene Versionen derselben Daten existieren und diese verschiedenen Versionen im Konflikt miteinander stehen. Anhand der Daten ist es nicht möglich zu entscheiden, welches die aktuellste bzw. gültige Version der Daten ist.

 	
 Datenintegrität

 Unter Datenintegrität versteht man, dass sich in der gespeicherten Datenbank Daten in einem konsistenten, widerspruchsfreien Zustand befinden.

 	
 Datenmanagement

 Der Umgang mit Daten wird als Datenmanagement bezeichnet. Aufgaben des Datenmanagements sind die Erzeugung, Speicherung und Wiedergabe der Daten.

 	
 Datensatz

 Unter einem Datensatz versteht man eine Sammlung von verknüpften Feldern, die Daten über ein Ding des täglichen Lebens, wie z.B. eine Person oder einen Gegenstand enthalten.

 	
 Einfüge-Anomalie

 Eine Einfüge-Anomalie liegt dann vor, wenn man bestimmte Daten nicht erfassen kann, ohne andere Daten gleichzeitig erfassen zu müssen.

 	
 Entität

 Eine Entität ist ein Objekt der realen Welt, das in der Datenbank verwaltet werden soll, also z.B. eine Person oder ein Gegenstand.

 	
 Feld

 Ein Feld stellt eine Eigenschaft einer Entität dar, die in der Datenbank verwaltet wird.

 	
 Informationen

 Informationen werden aus Daten durch Datenverarbeitung gewonnen und helfen dabei, gute Entscheidungen zu treffen. Damit anhand von Informationen gute Entscheidungen getroffen werden können, müssen Informationen zeitnah vorliegen.

 	
 Informationsinseln

 Beginnen verschiedene Abteilungen eines Unternehmens damit, eigene Datenbestände aufzubauen, die voneinander isoliert gehalten werden, so spricht man in diesem Zusammenhang von Informationsinseln oder Dateninseln.

 	
 Informations-Overkill

 Die ständig auf uns einprasselnde Flut von unterschiedlichsten Informationen wird als Informations-Overkill bezeichnet.

 	
 Logisches Format der Daten

 Das logische Format der Daten ist das Format, in dem Menschen die Daten verstehen können.

 	
 Lösch-Anomalie

 Eine Lösch-Anomalie tritt dann auf, wenn das Löschen bestimmter Daten verursacht, dass andere Daten, die eigentlich nicht gelöscht werden sollten, durch diesen Löschvorgang auch gelöscht werden.

 	
 Metadaten

 Metadaten werde oft auch als Daten über Daten bezeichnet und helfen, die Nutzdaten der Datenbank zu strukturieren.

 	
 Nutzdaten

 Nutzdaten sind die Daten, die Benutzer in der Datenbank anlegen und aus denen die Informationen gewonnen werden.

 	
 Physikalisches Format der Daten

 Das physikalische Format der Daten ist das Format, in dem der Computer die Daten abspeichert.

 	
 Strukturelle Abhängigkeit

 Ist eine Anwendung von der Struktur der zugrunde liegenden Daten abhängig, so bezeichnet man dies als strukturelle Abhängigkeit – der Zugriff auf eine Datei hängt von ihrer Struktur ab.

 1.5 Aufgaben

 Hier finden Sie Wiederholungsfragen, mit denen Sie Gelegenheit haben, sich noch einmal Gedanken über den Stoff des Kapitels zu machen. Die Lösungen zu diesen Aufgaben finden Sie in Anhang A.1. Außerdem finden Sie im Abschnitt Zum Weiterdenken Probleme und Aufgaben, auf die Sie Ihr frisch gewonnenes Wissen anwenden können. Hierfür werden keine Lösungen bereitgestellt, siehe Anhang A.

 1.5.1 Wiederholung

 	
 Beschreiben Sie die Begriffe Daten, Feld, Datensatz und Datei!

 	
 Was ist ein DBMS und welche Funktion hat es?

 	
 Was bezeichnet man als Datenredundanz? Welche Probleme bringt die Datenredundanz mit sich?

 	
 Beschreiben Sie, wie es in einem Unternehmen, das seine Daten im Dateisystem verwaltet, zu Problemen kommen kann.

 	
 Was genau ist der Unterschied zwischen Daten und Informationen?

 	
 Warum brauchen wir Datenbanksysteme?

 	
 Warum besitzen Dateien keine Datenunabhängigkeit?

 	
 Warum ist Datenbankdesign wichtig?

 	
 Welche Arten von Datenbanksystemen gibt es? Wo liegen die Unterschiede?

 	
 Welche Datenanomalien kennen Sie und wie wirken sich diese aus? Geben Sie Beispiele an!

 1.5.2 Zum Weiterdenken

 Die nächsten Aufgaben beziehen sich auf die folgende Tabelle:

 [image:]

 Abb. 1.7: Tabelle für die Aufgaben

 	
 Welche Datenredundanzen gibt es in der in Abbildung 1.7 dargestellten Tabelle? Welche Auswirkungen haben diese Redundanzen?

 	
 Wie viele Datensätze besitzt die in Abbildung 1.7 dargestellte Tabelle und wie viele Felder besitzt ein Datensatz?

 	
 Welche Entitäten können Sie in der Tabelle in Abbildung 1.7 erkennen? Welche Attribute besitzen diese Entitäten?

 	
 In welcher Beziehung stehen die in der vorherigen Aufgabe identifizierten Entitäten zueinander?

 	
 Was passiert, wenn Sie in der Tabelle in Abbildung 1.7 den zweiten, den vierten und den siebten Datensatz löschen?

 Kapitel 2: Datenbanksysteme, Datenbankanwendungen und Middleware

 2.1 Datenbanksysteme

 Die im vorherigen Kapitel vorgestellten Probleme, die sich aus der Datenhaltung ergeben (Datenanomalien, Daten- und Strukturabhängigkeiten oder andere Inkonsistenzen) erfordern es, Daten in Computersystemen auf eine andere Art und Weise zu speichern. Im Gegensatz zu Dateien im Dateisystem, die mehr oder weniger ohne Zusammenhang zueinander abgelegt werden, stehen die Daten in einer Datenbank in Beziehung zueinander. Natürlich können Sie versuchen, die Dateien z.B. durch die Verwendung einer hierarchischen Ordnerstruktur zu gruppieren und zusammenzufassen. Leider wird diese Struktur nicht automatisch vom Rechner überwacht und es können sich leicht Fehler einschleichen. Dies ist umso wahrscheinlicher, je mehr Personen mit der hierarchischen Ordnerstruktur arbeiten. Außerdem geben Sie durch die Ordnerstruktur die Gruppierung der Dateien schon vor. Möchten Sie die Dateien anders gruppieren, wird es schwierig – Sie müssen eine neue Ordnerstruktur erstellen und die Dateien dann in diese neue Struktur umkopieren.

 Moderne Datenbanksysteme ermöglichen es sogar, diese Beziehungen zwischen den einzelnen Datensätzen in der Datenbank zu überwachen – so ist es z.B. unmöglich, Datensätze aus der Datenbank zu löschen, von denen andere Datensätze abhängig sind.

 Komplette Datenbanksysteme (oder kurz Datenbanken) bestehen nicht nur aus dem DBMS, sondern es gibt zahlreiche andere Komponenten, die in eine vollständige Beschreibung des Datenbanksystems mit einbezogen und auch untersucht werden müssen.

 [image:]

 Abb. 2.1: Das Datenbanksystem

 Wie in Abbildung 2.1 zu sehen ist, besteht ein Datenbanksystem aus vier Schichten:

 	
 Hardware​

 Die Schicht, die zuunterst dargestellt ist und auf der das ganze System basiert, ist die Hardware. Unter Hardware verstehen wir in diesem Zusammenhang alle physikalischen Geräte, aus denen das System aufgebaut ist. Hierzu zählt natürlich der Datenbankserver, auf dem das DBMS ausgeführt wird und der die Daten des Systems speichert. Des Weiteren zählen (auch wenn sie nicht in der Abbildung aufgezeichnet sind) die Clientrechner, über die sich die Benutzer des Datenbanksystems mit der Datenbank verbinden wie auch die Kabel, Hubs, Router, Bridges, Firewalls usw., die Clientrechner und Server verbinden, zur Hardware. Auch Peripheriegeräte, wie z.B. Drucker, auf denen die Daten ausgegeben werden können, oder Magnetbänder, DVDs oder CD-ROMs, auf denen Sicherheitskopien der Daten gespeichert werden, zählen wir zur Hardware. Im Prinzip zählt alles zur Hardware des Systems, was man anfassen kann (bis auf die Personen – da manche Personen sich beleidigt fühlen, wenn wir sie einfach zur Hardware zählen, haben wir eine Extra-Schicht, nur für Personen, angelegt [image:]).

 	
 Daten​

 Die Daten sind natürlich der zentrale Punkt in unserem Datenbanksystem, um den sich alles dreht. Sie sind der Grund, warum wir den ganzen Aufwand überhaupt treiben. Wir möchten Daten mit unserem Datenbanksystem verwalten. In diesem Zusammenhang verstehen wir unter Daten die Fakten, die im Datenbanksystem gespeichert werden. Da die Daten die »Rohstoffe« für die daraus generierten Informationen darstellen, müssen wir dafür sorgen, dass die Daten so gut wie möglich geschützt werden. Wie Sie in Abbildung 2.1 unschwer erkennen können, ist die einzige Komponente, die überhaupt auf die Daten zugreift, das Datenbankmanagement-System. Keine andere Komponente (noch nicht einmal das Betriebssystem) besitzt Zugriff auf die Daten.

 Na ja, so ganz richtig ist das natürlich nicht. Üblicherweise verwaltet das Betriebssystem den Speicherplatz, der den Datendateien der Datenbank auf der Festplatte zugewiesen worden ist, ganz normal wie bei jeder anderen Datei auch. Es ist allerdings richtig, dass das Betriebssystem (genau wie bei anderen Dateien auch) nicht »weiß«, was in der Datendatei vor sich geht. Bei großen, kommerziellen Lösungen, wie z.B. Oracle, ist es sogar möglich, die komplette Verwaltung der Datenspeicherung auf das DBMS umzulagern. Hierbei arbeitet die Datenbank mit so genannten RAW-Partitionen​. Auf einer RAW-Partition befindet sich kein übliches Dateisystem (wie z.B. FAT oder NTFS), sondern die komplette Partition wird vom Datenbankmanagement-System direkt verwaltet.

 	
 Software​

 Eine weitere wichtige Komponente eines funktionsfähigen Datenbanksystems stellt natürlich die Software dar, die die Funktionen des Datenbanksystems implementiert. Als Software-Herzstück des ganzen Systems dient natürlich das Datenbankmanagement-System (DBMS), das die Verwaltung der Daten übernimmt. Neben dieser sehr offensichtlichen Software gibt es aber noch weitere Programme, die aus einem modernen Datenbanksystem nicht mehr wegzudenken sind. Die Software, mit der die Anwender der Datenbank am meisten in Kontakt kommen, ist natürlich ein oder bei größeren Datenbanksystemen auch mehrere Anwendungsprogramme. Datenbankanwendungsprogramme können als übliche Windows-Anwendungen implementiert sein, es gibt aber auch Anwendungsprogramme, die beispielsweise als Webanwendung ausgeführt sind und im Internet-Browser dargestellt werden. Neben den eigentlichen Anwendungsprogrammen, mit denen man sozusagen die Nutzarbeit des Datenbanksystems erledigen kann, gibt es eine weitere Klasse von Datenbankprogrammen, die Dienstprogramme, die auch als Tool​s oder Utilities​ bezeichnet werden. Diese Dienstprogramme sollen dabei helfen, Wartungsarbeiten am Datenbanksystem, wie z.B. die Datensicherung oder die Überprüfung der Datenbank durchzuführen. Im Gegensatz zu den Anwendungsprogrammen, die von den Datenbankbenutzern verwendet werden, werden die Dienstprogramme nur von den Datenbankadministratoren, Datenbankdesignern und Programmierern verwendet, die einen reibungslosen Betrieb der Datenbank gewährleisten oder die die Datenbank erweitern sollen. Eine Betrachtung der Software eines Datenbanksystems wäre natürlich ohne Erwähnung des Betriebssystems unvollständig. Ein Datenbanksystem umfasst nicht nur das Betriebssystem des Servers, sondern auch die auf den Clientrechnern verwendeten Betriebssysteme. Aus diesem Grund kann ein einziges Datenbanksystem mehrere Betriebssysteme beinhalten. Läuft die Datenbankanwendung beispielsweise in einem Webbrowser und ist vielleicht sogar noch öffentlich im Internet erreichbar, so können wir alle Betriebssysteme, auf denen ein Webbrowser ausgeführt werden kann, der die Datenbankanwendung korrekt darstellt, zu unserem Datenbanksystem zählen. In der Regel liefert das Betriebssystem die Basis, auf der sowohl Datenbankanwendungen (clientseitig) als auch das Datenbankmanagement-System (serverseitig) aufbauen. So stellt das Betriebssystem Funktionen bereit, über die z.B. Fenster implementiert werden können, oder die Dateien auf der Festplatte verwalten. Bei Hochleistungsdatenbanksystemen ist es allerdings üblich, dass die Betriebssystemfunktionen, die einen Zugriff auf die Speichermedien ermöglichen, umgangen werden und dass stattdessen das Datenbanksystem seine eigenen Ein-/Ausgabefunktionen implementiert, um über speziell auf das Datenbanksystem angepasste Funktionen noch mehr Geschwindigkeit zu erreichen.

 	
 Personen​

 Eine weitere wichtige »Schicht« in einem Datenbanksystem stellen natürlich die Personen dar, die mit dem Datenbanksystem arbeiten. Generell ist es so, dass die Menge aller Personen, die mit einem Datenbanksystem arbeiten, in funktionale Gruppen unterteilt werden kann. Zum einen gibt es die reinen Anwender, die nur die Anwendungsprogramme verwenden und mit diesen Daten erfassen und auswerten. Eine weitere wichtige Gruppe stellen die Datenbankadministratoren dar, die das Datenbanksystem verwalten und dafür sorgen, dass das System fehlerfrei und zuverlässig funktioniert. Typische Aufgaben, die ein Datenbankadministrator erledigen muss, sind zum Beispiel, dafür zu sorgen, dass genügend Speicherplatz für die Daten zur Verfügung steht, neue Benutzer anzulegen, Berechtigungen zu vergeben und natürlich auch Datensicherungen der Datenbestände durchzuführen. Eine weitere wichtige Gruppe stellen die Datenbankdesigner und Programmierer dar, die Strukturen in der Datenbank anlegen und dafür Sorge tragen, dass diese Strukturen robust sind und dass die Anwender auf komfortable Art und Weise auf die Strukturen zugreifen können. Meist finden sich die hier angesprochenen funktionalen Gruppen in der Datenbank als Berechtigungsgruppen oder so genannte Rollen wieder, die festlegen, welche Aktionen mit der Datenbank ausgeführt werden dürfen. Benutzer werden dann diesen Rollen zugeordnet, was die Verwaltung von Berechtigungen in einem Datenbanksystem erheblich vereinfacht. Weitere Informationen zu diesem Themenkomplex erhalten Sie im weiteren Verlauf des Buches.

 2.2 Verschiedene Arten von Datenbanksystemen

 Da es inzwischen eine schier unüberschaubare Anzahl von sowohl kommerziellen als auch nicht-kommerziellen Datenbanksystemen gibt, gibt es natürlich auch verschiedene Möglichkeiten, diese Datenbanksysteme zu klassifizieren.

 Eine dieser Möglichkeiten besteht darin, zwischen Einzelbenutzer​- (oder auch Einzelplatz-) Datenbank und Mehrbenutzer-Datenbank​ zu unterscheiden. Das Unterscheidungskriterium ist hier ziemlich trivial. Arbeitet nur ein einzelner Benutzer gleichzeitig mit dem Datenbanksystem, so handelt es sich um eine Einzelbenutzer-Datenbank, während eine Mehrbenutzer-Datenbank den gleichzeitigen Zugriff mehrerer Benutzer unterstützt. Der Ausdruck »Benutzer« steht in diesem Zusammenhang für Datenbankbenutzer. Auch eine Einzelbenutzer-Datenbank kann natürlich von mehreren Personen (die sogar alle ihr eigenes Datenbankbenutzerkonto besitzen dürfen) verwendet werden. Die Einschränkung, die die Einzelbenutzer-Datenbank gegenüber der Mehrbenutzer-Datenbank hat, ist einfach die, dass nur ein einziger Benutzer gleichzeitig mit der Datenbank arbeiten darf.

 Ein weiteres Unterscheidungsmerkmal verschiedener Datenbanksysteme stellt die technische Realisierung dar. Befindet sich das Datenbanksystem auf dem Arbeitsplatzrechner des Anwenders (wie es z.B. bei Access der Fall ist), so spricht man auch von einer Desktop-Datenbank​, während ein Datenbankmanagement, das auf einem Server ausgeführt wird, üblicherweise als Server-Datenbank​ (oder serverbasiertes Datenbanksystem) bezeichnet wird. Dass eine Datenbank als Desktop-Datenbank bezeichnet wird, hat nichts damit zu tun, dass diese Datenbank als Einzelbenutzer-Datenbank ausgeführt wird. Es gibt durchaus Desktop-DBMS, die als Mehrbenutzer-Datenbanksystem verwendet werden können. Ein gutes Beispiel für ein Desktop-DBMS, das dazu in der Lage ist, mehrere Benutzer gleichzeitig zu verwalten, ist Access. Da Access alle Funktionen implementiert, die zur Verwaltung mehrerer gleichzeitiger, konkurrierender Datenbankzugriffe benötigt werden, stellt Access ein Desktop-DBMS dar, das gleichzeitig ein Mehrbenutzer-DBMS ist – obwohl mehrere Benutzer gleichzeitig auf dieselbe Datenbank zugreifen können, so wird das Datenbankmanagement-System auf jedem einzelnen Rechner ausgeführt.

 Eine weitere mögliche Klassifizierung von Datenbanksystemen kann über die verwaltete Menge an Daten bzw. die Anzahl der Benutzer erfolgen, die auf die Datenbank zugreifen. Greifen wenige Benutzer auf eine Datenbank zu, die lokal auf einem Arbeitsplatzrechner installiert ist, so spricht man von einer Desktop-Datenbank​ (nicht zu verwechseln mit der Desktop-Datenbank als Gegensatz zur serverbasierten Datenbank). Greifen bis zu etwa 50 Benutzer auf die Datenbank zu, so spricht man von einer Workgroup​- oder Abteilungsdatenbank​, wohingegen man bei einer Datenbank, auf die mehr als 50 Benutzer zugreifen, von einer Enterprise- oder Unternehmensdatenbank​ spricht.

 Eine weitere Möglichkeit, Datenbanksysteme zu klassifizieren, stellt der Ort dar, an dem die Daten des Datenbanksystems gespeichert werden. Werden die Daten auf einem zentralen Server gespeichert, so spricht man von einem zentralen​ (oder auch monolithischen) Datenbanksystem. Verteilen sich die Daten allerdings über mehrere Computer, so spricht man von einem verteilten Datenbanksystem​ (im Englischen als Distributed Database System (DDBS) bezeichnet – zur Verwaltung eines DDBS benötigt man ein Distributed Database Management System (DDBMS)).

 Die letzte mögliche Klassifizierung von Datenbanksystemen beschäftigt sich mit der Verwendung des Datenbanksystems. Wird das Datenbanksystem dazu benötigt, um direkt auf Benutzereingaben zu reagieren und soll interaktives Arbeiten mit dem Datenbanksystem möglich sein, so spricht man von einem transaktionalen Datenbanksystem​ (wird auch gerne als Produktivsystem​ bezeichnet). Im Gegensatz zu den transaktionalen Datenbanksystemen stehen die Datenbanksysteme, die helfen sollen, Entscheidungen zu treffen. Diese Datenbanksysteme werden als decision support systems​ (DSS) bezeichnet. Da die zugrunde liegende Struktur eines DSS sich von der Struktur eines transaktionalen Datenbanksystems unterscheidet, werden DSS auch oft als Data Warehouse​ bezeichnet.

 2.3 DBMS-Funktionen

 Wie Sie bereits in Abbildung 2.1 sehen konnten, stellt das DBMS​ einen zentralen Teil des Datenbanksystems dar, da das DBMS das einzige Element ist, das direkt auf die Daten zugreifen darf. Diese Architektur wurde gewählt, damit das DBMS die einzige Komponente des Systems ist, die sich um die Konsistenz und Integrität der Daten kümmert. Diese zentrale Rolle des DBMS wurde ganz bewusst gewählt und die Möglichkeit des single point of failures in Kauf genommen, um sozusagen einen »Türsteher« für den Zugriff auf die Daten zu kreieren. Nur ein zentrales Programm (oder eine Ansammlung von Programmen) kann alle Funktionen erfüllen, die notwendig sind, um die Integrität und Konsistenz der Daten zu gewährleisten. Die meisten der vom DBMS zur Verfügung gestellten Funktionen sind für den Anwender einer Datenbank unsichtbar und werden im Hintergrund ausgeführt, tragen aber wesentlich zur Gesamtfunktionalität des Systems bei.

 	
 Verwaltung der Sicherheit

 Ein DBMS muss natürlich die Sicherheit der in der Datenbank gespeicherten Daten gewährleisten, das heißt, es muss in der Lage sein, bestimmten Benutzern den Zugriff auf bestimmte Datenbankobjekte (z.B. Tabellen, Views, Prozeduren etc.) zu gewähren bzw. zu verweigern. Hierbei ist nicht nur der eigentliche Zugriff auf die Datenbankobjekte gemeint, sondern es ist auch wichtig, welche Aktion der Benutzer mit einem bestimmten Datenbankobjekt durchführen darf. So kann es z.B. sein, dass Benutzer A eine bestimmte Tabelle nur lesen darf, während ein Benutzer B die Erlaubnis hat, in derselben Tabelle Daten zu verändern oder zu löschen.

 [image:]

 Abb. 2.2: Die vielfältigen Funktionen eines DBMS

 	
 Verwaltung mehrerer Anwender

 Bei großen Datenbanksystemen ist es üblich, dass hundert oder sogar tausend Benutzer gleichzeitig auf die Datenbank zugreifen. In einem solchen Szenario ist es natürlich wahrscheinlich, dass verschiedene Benutzer auf dieselben Daten zugreifen müssen. Geschieht der Zugriff rein lesend, so stellt dies kein Problem dar. Schwieriger wird es allerdings, wenn zwei Benutzer gleichzeitig schreibend auf denselben Datensatz zugreifen möchten. Ist das DBMS nicht für den gleichzeitigen Zugriff mehrerer Benutzer ausgelegt, so kann eine solche Situation zur Korruption der Datenbank führen. Wird die Datenbank schlecht verwaltet, so gibt es Situationen wie »Wer zuletzt speichert, gewinnt«. Ein vernünftiges DBMS lässt derartige Situationen nicht zu. Ein Datensatz, der geändert wird, wird beim ersten schreibenden Benutzerzugriff gesperrt, damit kein anderer Benutzer schreibend auf diesen Datensatz zugreifen kann.

 	
 Datensicherung/Wiederherstellung

 Ein sehr wichtiger Punkt bei der Verwaltung von Daten ist die Datensicherung/Wiederherstellung. Daten werden gesichert, um diese zusätzlich zu schützen. Mögliche Gefahren für die Daten bestehen einerseits durch hardwarebedingte Ausfälle, andererseits (und das wird oft übersehen) aber auch durch Benutzerfehler. So ist eine Datensicherung selbst dann unumgänglich, wenn man ein redundant ausgelegtes Speichersystem (z.B. RAID 5) einsetzt. Ein redundantes Festplattensystem bietet zwar Schutz gegen den Ausfall von Festplatten, Benutzerfehler (z.B. das unbeabsichtigte Löschen wichtiger Datensätze) werden durch dieses Konstrukt jedoch nicht abgefangen. Moderne Datenbanksysteme enthalten spezielle Tools, die es dem Datenbankadministrator sowohl ermöglichen, die Datenbank zu sichern als auch wiederherzustellen.

 	
 Sprachen für Datenbankzugriff

 Eine Datenbank muss natürlich auch einen Weg bieten, wie Anwender auf die in der Datenbank gespeicherten Daten zugreifen können. Üblicherweise stellt der Hersteller des Datenbanksystems meist eine Abfragesprache bereit, über die der Anwender mit der Datenbank kommunizieren kann. Als Standard-Abfragesprache hat sich SQL etabliert, das auch als ANSI-Standard definiert ist. Obwohl heutzutage viele Datenbankanwendungen grafische Benutzeroberflächen besitzen, findet die eigentliche Kommunikation mit der Datenbank über SQL statt. Die Eingaben, die der Anwender über die grafische Benutzeroberfläche vornimmt, werden intern in SQL-Befehle umgesetzt und an die Datenbank geschickt. Neben dieser allgemeinen Schnittstelle bieten Datenbankhersteller so genannte APIs (Application Programmers Interface) an, die einen direkten Zugriff auf die Funktionen eines DBMS mittels prozeduraler oder objektorientierter Programmiersprachen wie z.B. C++, Delphi, C# oder Visual Basic erlauben.

 	
 Bereitstellung von Kommunikationswegen

 Ein weiterer wichtiger Punkt ist die Bereitstellung von Kommunikationswegen, über die Clientrechner mit dem Datenbankserver kommunizieren können. Üblicherweise wird hierzu ein Kommunikationsprotokoll implementiert, das auf den herkömmlichen Netzwerkprotokollen, wie z.B. TCP/IP, aufsetzt. Eine weitere wichtige Komponente, die eine Rolle bei der Kommunikation mit einer Datenbank spielt, ist die so genannte Middleware​. Unter Middleware versteht man eine Software-Komponente, die sozusagen als Mittler zwischen Datenbank und Datenbankanwendung fungiert und den Anwendungszugriff auf die Datenbank abstrahiert. So ist es möglich, mit einer einzigen Datenbankanwendung auf die Datenbanksysteme verschiedener Hersteller zuzugreifen. Diese Flexibilität wird durch die Verwendung von datenbankspezifischen Treibern erzielt. Typische Middlewares sind ODBC, ADO und ADO.NET.

 	
 Wahrung der Datenintegrität

 Sie haben im bisherigen Verlauf dieses Kapitels gesehen, dass eines der wichtigsten Themen der Datenhaltung die Wahrung der Datenintegrität ist. Moderne DBMS bieten die Möglichkeit, Regeln zu definieren, die die Datenintegrität gewährleisten. Hierdurch kann die Datenredundanz verringert und die Konsistenz der Daten maximiert werden. Diese Regeln werden im so genannten Katalog​ (oder auch Data Dictionary​) gespeichert. Der Katalog ist der Teil der Datenbank, in dem das DBMS Metainformationen ablegt.

 	
 Datenumwandlung/Präsentation

 Die Datenumwandlung bzw. Präsentation der Daten dient zur Trennung zwischen logischen und physikalischen Datentypen, d.h. zwischen dem Format, in dem die Daten eingegeben werden, und dem Format, in dem sie letztendlich gespeichert werden. Ein gutes Beispiel für die Umsetzung von logischen und physikalischen Datentypen stellt der Datumsdatentyp dar. In der Benutzeroberfläche wird ein Datumsdatentyp üblicherweise in einem uns vertrauten Datumsformat dargestellt (z.B. 01.02.2004). In der Datenbank jedoch wird dieser Datentyp physikalisch als Zahl (üblicherweise in julianischer Darstellung) gespeichert. Durch diese Vorgehensweise, dass logische Datentypen und physikalische Datentypen ineinander umgewandelt werden, erreicht das DBMS Datenunabhängigkeit.

 	
 Datenträgerverwaltung

 Wie Sie bereits an mehreren Stellen in diesem Kapitel gesehen haben, ist das einzige Programm, das auf die physikalisch gespeicherten Daten der Datenbank zugreifen darf, das DBMS. Das DBMS erzeugt auf der Festplatte die komplexen Strukturen, die gebraucht werden, um die Daten effizient und performant zu speichern. Hierdurch wird der Anwender vollständig von der Aufgabe befreit, Funktionen zu programmieren, die Daten auf die Festplatte schreiben oder von dieser lesen. In modernen Datenbanken werden nicht nur die eigentlichen Daten und die beschreibenden Metadaten, sondern auch andere Dinge, wie z.B. Datenbankdiagramme oder prozeduraler Code gespeichert.

 	
 Metadatenverwaltung

 Eine der wichtigsten Aufgaben des DBMS besteht darin, die Metadaten​, also die Beschreibungen der gespeicherten Daten, in der Datenbank zu verwalten. In der Regel kann (oder vielmehr sollte) man die Metadaten der Datenbank, die im Katalog (Data Dictionary​) gespeichert werden, niemals manuell ändern (wie alles, was in der Datenbank gespeichert wird, werden auch die Metadaten in Tabellen gespeichert), sondern nur über die dafür vorgesehenen Funktionen. Die Verwaltung der Datenbankobjekte durch das DBMS befreit den Anwendungsprogrammierer davon, dieses in seinen Anwendungsprogrammen zu implementieren, was wiederum den Vorteil hat, dass das Anwendungsprogramm komplett von der physikalischen Speicherung der Daten abgekoppelt ist. Das Anwendungsprogramm greift lediglich auf die logische Repräsentation der Strukturen in Form von Tabellen oder Feldern zu.

 2.4 Datenbankmodelle

 Wie Sie im vorherigen Abschnitt gesehen haben, stellt ein Datenbankmanagement-System eine Vielzahl sehr mächtiger Funktionen zur Verfügung, mit denen man Daten bequem verwalten kann und die die Anwendungsprogramme von der physikalischen Speicherung unabhängig machen. Bei der Entwicklung einer Datenbank ist es wichtig, die verwendeten Datenstrukturen und die sie verbindenden Beziehungen an das verwendete DBMS anzupassen, damit man das zugrunde liegende DBMS optimal ausnutzen kann. Die Effektivität einer Datenbank ergibt sich daraus, wie gut es der Datenbankentwickler verstanden hat, seine verwendeten Strukturen auf das DBMS zuzuschneiden. Aus diesem Grund ist es wichtig, dass der eigentlichen Implementierung des Systems eine Designphase vorangegangen ist, die auf die speziellen Anforderungen des zu verwendenden DBMS Rücksicht genommen hat. Was in einem Datenbankmodell gut funktioniert, kann sich in einem anderen Datenbankmodell​ schnell als Performancekiller erweisen.

 Das Design einer Datenbank wird wesentlich vereinfacht, wenn Sie Modelle verwenden. Unter einem Modell​ versteht man eine vereinfachte, abstrahierte Darstellung der Welt. Wichtig bei der Erstellung eines solchen Modells ist es, dass das Modell logisch in sich geschlossen ist. Ist dies nicht der Fall, so wird die aus einem solchen Modell erzeugte Datenbank den Anforderungen nicht gerecht, die in sie gesetzt werden.

 Wichtig

 Einer der wichtigsten Punkte, den man beim Erstellen einer Datenbankanwendung berücksichtigen sollte und der nicht oft genug betont werden kann, ist der, dass das zugrunde liegende Datenbankmodell stimmig und logisch sein muss. Wenn man eine Anwendung auf einem schlechten Modell aufsetzt, so kann diese Anwendung nicht gut werden. Nur ein vernünftiges Datenbankmodell stellt auch die Basis für eine gelungene Datenbankanwendung dar. Ein schlechtes Datenbankmodell kann die in ihm gespeicherten Daten nicht in wertvolle Informationen überführen.

 Unter einem Datenbankmodell​ versteht man eine abstrahierte Darstellung der Daten und der zwischen diesen Daten bestehenden Beziehungen. Es gibt gewisse Regeln, die von Modell zu Modell unterschiedlich sind, wie ein solches Datenbankmodell aufgebaut ist. Datenbankmodelle sind in konzeptionelle und implementative Modelle unterteilt.

 Konzeptionelle Modelle​ beschäftigen sich mit der logischen Struktur der Daten. Ziel ist es hier, die zu erfassenden Daten und die zwischen ihnen bestehenden Beziehungen zu verstehen und zu erfassen. Daher beschäftigen sich konzeptionelle Modelle eher mit der Frage, was in die Datenbank aufgenommen werden soll, als damit, wie dies zu geschehen hat. Ein Beispiel für ein konzeptionelles Modell ist das ER-Datenbankmodell.

 Implementative Modelle​ beschäftigen sich damit, wie die Daten in der Datenbank gespeichert werden und wie die zu erzeugenden Strukturen und deren Beziehungen zueinander aussehen. Beispiele für implementative Modelle sind das Netzwerkmodell oder das relationale Datenbankmodell.

 2.4.1 Hierarchische Datenbanken

 Eines der ersten Datenbankmodelle entstand in den sechziger Jahren des vorigen Jahrhunderts bei der Firma North American Rockwell, einem der Hauptlieferanten des Apollo-Raumprogramms. Dort wurden Informationen zu Millionen von Einzelteilen in einem gigantischen Dateisystem gespeichert. Untersuchungen ergaben, dass diese Speicherung höchst ineffizient ist, da über 60% der gespeicherten Informationen redundant waren. Also entschloss man sich, ein Datenbanksystem zu entwickeln. Die Entwicklung mündete in das Programm GUAM (General Update Access Method), das dann, nachdem IBM hinzugezogen wurde, in das Programm IMS (Information Management System) aufging.

 Obwohl hierarchische Datenbanken​ heute kaum noch verwendet werden, ist es wichtig, etwas über diese Art der Datenspeicherung zu lernen, da die hierarchischen Datenbanken als Basis für die Entwicklung neuerer Datenbankmodelle dienten und die Entwicklung dieser neuen Datenbanksysteme aus den Problemen und Beschränkungen des hierarchischen Modells folgten. Einige der bei den hierarchischen Datenbanken verwendeten Konzepte werden auch in modernen Datenbanken immer noch verwendet.

 Die Idee, auf der das hierarchische Datenbankmodell basiert, entwickelte sich direkt aus dem Hintergrund, aus dem heraus dieses Modell entwickelt wurde. Sie haben ja bereits oben gesehen, dass das hierarchische Datenbankmodell während des Apollo-Weltraumprogramms entwickelt wurde. Grundsätzlich hatte man die Idee, größere Fertigungseinheiten durch kleinere Fertigungseinheiten aufbauen zu wollen. Sehen Sie sich als Beispiel einmal ein Fahrrad an. Ein Fahrrad besteht aus einem Lenker, einem Sitz, einem Vorderrad, einem Hinterrad und einem Rahmen. Wenn man nun einmal das Vorderrad betrachtet, so kann man eine weitere Unterteilung treffen. Ein Vorderrad besteht aus einem Reifen, Speichen usw. Wenn Sie das Ganze in Form eines Baums aufzeichnen, so bekommen Sie eine hierarchische Struktur, so wie in Abbildung 2.3 zu sehen ist.

 [image:]

 Abb. 2.3: Hierarchische Struktur eines Fahrrades

 Natürlich stellt diese Abbildung nicht das komplette hierarchische Modell eines Fahrrades dar, aber ich denke, dass die Idee klar wird.

 Anhand von Abbildung 2.3 kann ich die Fachtermini verdeutlichen, die im hierarchischen Datenbankmodell verwendet werden. Generell werden die Elemente, die in einer hierarchischen Struktur angeordnet sind, als Knoten bezeichnet. Die gesamte hierarchische Struktur findet ihren Ursprung im obersten Knoten, dem Wurzelknoten​. In unserem Fall stellt der Wurzelknoten das komplette Produkt, also im Fall von Abbildung 2.3 ein Fahrrad dar. Dem Wurzelknoten sind alle anderen Knoten untergeordnet.

 Untergeordnete Knoten werden als Kindknoten​ bezeichnet. Der Knoten »Hinterrad« ist Kindknoten des Knotens »Fahrrad«. Ausgehend vom Knoten »Hinterrad« stellt der Knoten »Fahrrad« den Elternknoten des Knotens »Hinterrad« dar. Um die Kindknoten den Elternknoten richtig zuordnen zu können, werden diese zusätzlich durch die Angabe eines Grades näher klassifiziert. »Hinterrad« ist z.B. für den Knoten »Fahrrad« ein Kindknoten ersten Grades, während der Knoten »Speiche« ein Knoten zweiten Grades ist. Bei der Verknüpfung von Knoten zu einer hierarchischen Struktur gilt, dass ein Elternknoten beliebig viele Kindknoten haben kann, ein Kindknoten kann aber maximal nur einen Elternknoten besitzen. Besitzt ein Knoten keinen Elternknoten, so ist dieser Knoten der Wurzelknoten unserer hierarchischen Struktur. Knoten, die selbst keine Kindknoten besitzen, werden auch als Blattknoten​ bezeichnet.

 Da ein Computer einen linearen Adressraum besitzt, ist es nicht direkt möglich, eine hierarchische Struktur im Speicher eines Computers abzulegen. Um dennoch mit hierarchischen Strukturen arbeiten zu können, wurde das Konzept des Zeigers​ (Pointer​) eingeführt. Man kann mit Zeigern natürlich noch viele andere Dinge machen, wie z.B. Listen oder doppelt verkettete Listen, die nichts mit hierarchischen Strukturen zu tun haben. Diese interessieren uns aber in diesem Zusammenhang nicht. Hierbei handelt es sich einfach um einen Speicherplatz, dessen Inhalt auf einen anderen Speicherplatz verweist. Im Prinzip kann man einen Zeiger mit der Seitennummer im Index eines Buches vergleichen. Die Seitennummer, die im Index eines Buches steht, verweist auf eine Seite, auf der sich die gewünschte Information befindet.

 Um eine hierarchische Struktur im Speicher eines Computers ablegen zu können, können wir eine Datenstruktur entwickeln, die aus Nutzdaten und einem Zeiger besteht. Hierbei ist zu beachten, dass der Zeiger immer auf das nächste Element der hierarchischen Struktur zeigt. Die Reihenfolge der einzelnen Elemente bekommen Sie, indem Sie beim Durchlaufen des Baums immer den jeweils linken Kindknoten als nächsten Knoten auswählen. Ist dieser Knoten ein Blattknoten, so gehen Sie zum Elternknoten zurück und wählen dann dort den rechten Knoten. Dies führen Sie so lange durch, bis Sie den kompletten Baum durchlaufen haben. Diese Art, einen Baum zu durchlaufen, wird auch als Preorder-Durchlauf​ bezeichnet.

 Führen wir bei unserem Beispiel, der hierarchischen Struktur eines Fahrrades, einen Preorder-Durchlauf durch, so erhalten wir den in Abbildung 2.4 dargestellten Pfad.

 [image:]

 Abb. 2.4: Die hierarchische Struktur des Fahrrades als Pfad dargestellt

 Wenn Sie sich vorstellen, dass Daten in dieser Weise gespeichert werden, so ist es erstrebenswert, Daten, auf die häufig zugegriffen wird, so weit wie möglich links im Baum anzuordnen, damit diese möglichst schnell gefunden werden.

 Das hierarchische Datenmodell ist natürlich nicht auf die Beschreibung von Stücklisten oder Fertigungsprozessen beschränkt, wie es durch das Beispiel vielleicht suggeriert wird. Ein weiterer, sehr verbreiteter Anwendungsbereich des hierarchischen Modells kann im Bankwesen gefunden werden.

 Vergleichen Sie das hierarchische Datenmodell mit den bisher betrachteten flachen Dateien und der Datenspeicherung im Dateisystem, so können Sie einige interessante Vorteile ausmachen.

 Zunächst haben wir im Fall einer hierarchischen Datenbank ein zentrales Datenbankmanagement-System, über das der Datenbankadministrator systemweit die Sicherheit der Daten definieren kann, das heißt, die Sicherheit der Daten liegt nicht mehr in den Händen der Anwendungsprogrammierer, sondern sie ist im Datenbankmanagement-System zentralisiert. Über die hierarchische Struktur wird die Datenintegrität sozusagen erzwungen. Ein Kindknoten muss stets einen Elternknoten haben. Über diesen kann er immer referenziert werden. Da die Datentypen innerhalb der hierarchischen Datenbank verwaltet werden, ermöglicht die hierarchische Datenbank Datenunabhängigkeit. Das hierarchische Datenmodell ist besonders dann gut geeignet, wenn es darum geht, eine große Menge Daten zu verwalten, die untereinander in 1:N-Beziehungen stehen, und auf diesen Daten eine große Anzahl an Transaktionen durchgeführt werden soll. Unter einer 1:M-Beziehung versteht man eine Beziehung, bei der eine bestimmte Entität mit vielen anderen Entitäten in Beziehung steht. 1:N-Beziehungen werden weiter unten ausführlich erläutert. Eine der Bedingungen, damit das hierarchische Datenmodell gut funktioniert, ist allerdings, dass sich die 1:M-Beziehungen zwischen den einzelnen Elementen nicht verändern dürfen.

 Diesen Vorteilen stehen natürlich auch Nachteile gegenüber, die dazu geführt haben, dass hierarchische Datenbanken in den frühen 1980ern durch andere Datenbanksysteme ersetzt wurden. Zwei der wichtigsten Punkte hier waren sicherlich das schwierige Management von hierarchischen Datenbanken und die komplexe Implementation solcher Systeme. Obwohl das hierarchische Datenbankmodell die Datenabhängigkeit in den Griff bekommen hat, mussten Programmierer und Datenbankadministratoren immer noch eine sehr genaue Vorstellung der physikalischen Struktur der Datenbank besitzen. Des Weiteren erforderte eine Umorganisation der hierarchischen Struktur (etwas das Tauschen von Unterbäumen), dass alle Anwendungsprogramme an diese Änderungen angepasst werden mussten, das heißt, es gibt keine strukturelle Unabhängigkeit. Um bestimmte Daten zu finden, muss der Programmierer auf einem Pfad durch den Baum navigieren. Bevor auf einen Kindknoten zugegriffen werden kann, müssen all seine Elternknoten durchlaufen werden. Dies bedingt, dass der Anwendungsprogrammierer die hierarchische Struktur der Datenbank genau kennt. Die Änderung der Datenbankstruktur führt dazu, dass die programmierten Datenzugriffspfade nicht mehr stimmen und die Anwendungsprogramme umprogrammiert werden müssen. Diese strukturelle Abhängigkeit schlägt sich bis zum Anwender des Datenbanksystems durch. Auch dieser muss genau wissen, wo sich die Daten, die er verwenden möchte, in der Datenbank befinden.

 Außerdem wurden durch die hierarchische Struktur Delete-Anomalien begünstigt. Wird ein bestimmter Unterbaum gelöscht, so werden alle Knoten unterhalb des Wurzelknotens des Unterbaums gelöscht. Dies kann dazu führen, dass aus Versehen Daten unbeabsichtigt gelöscht werden, wenn sich diese irgendwo im zu löschenden Unterbaum befinden.

 Die Abhängigkeiten, die in einem hierarchischen Datenmodell dargestellt werden können, beschränken sich auf 1:M-Beziehungen, das heißt, ein Elternknoten kann beliebig viele Kindknoten haben, während ein Kindknoten nur einen einzigen Elternknoten besitzen darf. Viele Beziehungen des täglichen Lebens lassen sich aber nicht in einer 1:M-Beziehung darstellen. Stellen Sie sich nur einmal den Fall vor, dass ein Berater mehrere Firmen beraten kann, eine Firma aber auch von mehreren Beratern beraten werden darf. In diesem Fall handelt es sich um eine M:N-Beziehung, die nicht in einer hierarchischen Datenbank dargestellt werden kann.

 Gegen Ende der Ära der hierarchischen Datenbanksysteme gab es zwar Versuche, die Beschränkung aufzuheben, dass ein Kindknoten nur jeweils einen Elternknoten besitzen darf. Leider hat dies aber nicht den erhofften Erfolg gebracht, da die Programmierung und das Management solcher Datenbanken noch komplizierter wurden, als sie ohnehin schon waren.

 Ein weiterer Punkt, der das Ende der hierarchischen Datenbanken einläutete, war, dass es zu der Zeit, als diese Datenbanken eingesetzt wurden, keine wirklich vernünftigen Standards gab. Hatte man eine Datenbankanwendung auf einem bestimmten System entwickelt, so war es fast unmöglich, diese Anwendung auf das Datenbanksystem eines anderen Herstellers zu portieren. Ein solcher Portierungsvorgang kam meistens einer kompletten Neuentwicklung des Systems sehr nah.

 2.4.2 Netzwerk-Datenbanken

 Um die Limitationen, die sich aus der Struktur des hierarchischen Datenbankmodells ergeben, zu überwinden und die Entwicklung von Datenbankanwendungen einfacher und komfortabler zu machen, wurde das Netzwerk-Datenbankmodell​ entwickelt. Wie Sie bereits im Abschnitt über die hierarchischen Datenbanken gesehen haben, war einer der Hauptkritikpunkte, dass hierarchische Datenbanken nicht in der Lage sind, eine N:M-Beziehung vernünftig darzustellen. Da es in typischen Datenbankanwendungen aber immer wieder die Notwendigkeit gibt, eine N:M-Beziehung darzustellen, musste hier eine Lösung gefunden werden. Ein anderer großer Kritikpunkt stellte das Fehlen von einheitlichen Standards dar, das die einfache Portierung von Datenbanken auf andere Systeme verhinderte.

 Hinweis

 Um diese Probleme zu bearbeiten, fand 1971 die »Conference on Data Systems Languages«, kurz CODASYL​, statt. Ein Ergebnis der Arbeit der CODASYL-Gruppe war die Entwicklung der Sprache COBOL, die vom ANSI-Institut als Standard angenommen wurde. Aus der CODASYL-Gruppe entstand die Database Task Force (DBTF), die sich mit einer Vereinheitlichung von Datenbanksystemen beschäftigte. Die Arbeit dieser Gruppe lieferte als Ergebnis drei wichtige Konzepte, die auch heute noch in Datenbanksystemen zu finden sind. Zunächst schlug die Gruppe ein allumfassendes Schema vor, das die komplette Organisation der Datenbank umfasst und dem Datenbankadministrator erlaubt, auf alle Objekte, die in der Datenbank vorhanden sind, zuzugreifen und diese zu verwalten.

 Des Weiteren hatte man erkannt, dass sich, ausgehend von einer zentralen Unternehmensdatenbank, Anwendungsprogramme immer nur mit einem Teil der Datengesamtheit beschäftigten. So gab es z.B. Programme, die Lohnabrechnungen machten, und Programme, die z.B. für die Fakturierung zuständig waren. Aufgrund der unterschiedlichen Anforderungen griffen diese Programme natürlich auch auf unterschiedliche Teile der Datenbank zu. Daten, die für das Lohnabrechnungsprogramm von zentraler Bedeutung sind, sind für das Fakturierungsprogramm völlig uninteressant. So entstand das Konzept des Subschemas, das heißt, Anwendungsprogramme konnten sich auf das Subschema beschränken, das für die Erledigung ihrer Aufgaben wichtig war. Subschemata findet man heute als Views in einer etwas anderen Form.

 Schlussendlich wurde eine standardisierte Sprache zur Verwaltung und Manipulation der in der Datenbank vorhandenen Daten verabschiedet. Über diese standardisierte Sprache sollte die erhoffte Vereinheitlichung eingeführt werden. Es war geplant, dass es über die Vereinheitlichung der Sprache zu einer Unabhängigkeit vom verwendeten Datenbankmanagement-System kommen sollte. Dummerweise wurden die von der DBTF verabschiedeten Standards von den einzelnen Herstellern recht frei ausgelegt, so dass im Endeffekt die erhoffte Vereinfachung und Vereinheitlichung nicht erreicht werden konnte.

 Im Prinzip entspricht das Netzwerkmodell in weiten Teilen dem hierarchischen Datenbankmodell. Es gibt aber einen wichtigen Unterschied. Während im hierarchischen Datenbankmodell ein Kindknoten jeweils nur einen einzigen Elternknoten besitzen kann, so ist es im Netzwerkmodell durchaus möglich, dass ein Kindknoten mehrere Elternknoten haben kann.

 Um den Unterschied zur hierarchischen Datenbank deutlich zu machen, wurde für das Netzwerkmodell eine neue Terminologie eingeführt. Eine Beziehung zwischen zwei Elementen wurde als Menge​ bezeichnet. Der Elternknoten wurde in Besitzer​ der Menge umgetauft und der Kindknoten in Mitglied​ der Menge. Über diese Terminologie ist es möglich, dass ein einzelnes Element gleichzeitig Mitglied in verschiedenen Mengen sein darf. Lassen Sie uns als Beispiel die Abbildung 2.5 betrachten.

 [image:]

 Abb. 2.5: Netzwerk-Datenbank

 In unserer Beispiel-Firma (siehe Kapitel 1 – Das Fallbeispiel) kann ein Kunde von mehreren Beratern beraten werden. Jeder Berater kümmert sich üblicherweise um mehrere Kunden. Betrachtet man eine einzelne Kundenbeziehung, so sind jeweils immer ein Berater und ein Kunde daran beteiligt. Da aber, wie schon gesagt, mehrere Berater mit einem speziellen Kunden und ein spezieller Berater mit mehreren Kunden zusammenarbeiten können, besteht sowohl zwischen Kundenbeziehung und Berater als auch zwischen Kundenbeziehung und Kunde eine 1:M-Beziehung. Ein anderes Beispiel, bei dem eine M:N-Beziehung vonnöten ist, ist die Zuordnung zwischen Arbeitsgruppe und Berater. In unserer Beispiel-Firma existieren verschiedene Arbeitsgruppen, in denen die angestellten Berater organisiert sind. In einer einzelnen Arbeitsgruppe können mehrere Berater organisiert sein und ein einzelner Berater kann Mitglied in mehreren Arbeitsgruppen sein.

 Da das Netzwerkmodell eine Erweiterung des hierarchischen Datenbankmodells darstellt, ist es nicht weiter verwunderlich, dass viele der positiven Eigenschaften des hierarchischen Datenbankmodells auch dem Netzwerkmodell zu Eigen sind. Über die Erweiterung, dass ein Kindknoten auch mehrere Elternknoten besitzen darf, wird eine der größten Limitationen des hierarchischen Datenbankmodells überwunden, die Beschränkung auf 1:N-Beziehungen. Da ein Mengenmitglied mehr als einen Besitzer haben kann, ist es wesentlich einfacher, von Besitzer zu Besitzer zu wechseln. Dies macht den Preorder-Durchlauf überflüssig und ermöglicht einen wesentlich flexibleren Zugriff auf die Daten der Datenbank.

 Da es in einer Netzwerk-Datenbank nicht möglich ist, dass ein Mengenmitglied definiert wird, ohne dass es einen Besitzer der Menge gibt, wird die Integrität der Datenbank verbessert. Durch die Einführung von Subschemata und den verbesserten Datenzugriff wird die Komplexität der Anwendungsentwicklung reduziert. Im Gegensatz zur hierarchischen Datenbank ist es bei der Netzwerk-Datenbank nicht mehr notwendig, dass der Anwendungsentwickler die komplette physikalische Struktur der Datenbank kennen muss. Er muss lediglich den Teil der Datenbank (das Subschema) kennen, den er für die Lösung seines Problems benötigt.

 Die durch die DBTF definierten Standards wurden zwar nicht komplett von den Datenbankherstellern implementiert, dennoch sind Netzwerk-Datenbanksysteme trotz allem besser standardisiert als hierarchische Datenbanken, das heißt, es ist eher möglich, eine Netzwerk-Datenbank auf ein anderes DBMS zu portieren, als es bisher mit den hierarchischen Datenbanken möglich war.

 Netzwerk-Datenbanken beseitigten zwar einige der Schwächen von hierarchischen Datenbanken, allerdings werden trotz allem die wesentlichen Schwächen beibehalten. Auch beim Netzwerkmodell muss man zu den Daten navigieren, auf die man zugreifen möchte (auch wenn dies nicht mehr so komplex wie bei der hierarchischen Datenbank ist). Daher müssen sowohl die Entwickler als auch die Anwender auch bei der Netzwerk-Datenbank die Struktur der Daten kennen. Im Gegensatz zur hierarchischen Datenbank ist es aber nicht mehr notwendig, die gesamte Struktur zu kennen, sondern nur den Teil, der zum Lösen der Aufgabe notwendig ist. Hierdurch ergibt sich, wie auch schon bei der hierarchischen Datenbank eine strukturelle Abhängigkeit, das heißt, wenn die Struktur der Datenbank verändert wird, müssen alle Anwendungsprogramme angepasst werden.

 2.4.3 Relationale Datenbanken

 Wie bereits im vorherigen Abschnitt beschrieben, ist eines der größten Probleme der Netzwerk-Datenbanken die fehlende strukturelle Unabhängigkeit. Jede kleine Änderung an der Struktur der Datenbank hat eine Änderung an allen Anwendungsprogrammen zur Folge, die auf die Datenbank zugreifen. Da sich natürlich die Gegebenheiten, die in der Datenbank verwaltet wurden, über die Zeit änderten, waren Änderungen an der Datenbank und damit auch an den Programmen eher die Regel als die Ausnahme.

 Eine weitere Folge der strukturellen Abhängigkeit war, dass nur einige wenige Spezialisten Datenbanksysteme überhaupt effektiv nutzen konnten. Für die breite Masse der Anwender war es viel zu kompliziert, sich die Struktur der Datenbank zu merken.

 Wie es oft bei technischen Entwicklungen der Fall ist, kommt der Appetit beim Essen, das heißt, durch den immer weiter voranschreitenden Einsatz von hierarchischen und Netzwerk-Datenbanksystemen stiegen natürlich auch die Anforderungen an diese Systeme und es wurde der Ruf nach Ad-hoc-Abfragemöglichkeiten immer lauter, den weder die hierarchischen noch die Netzwerk-Datenbanken beantworten konnten.

OEBPS/Images/1_Abbildung_1.6.jpg
Dateninkonsistenz

12345
12345
12364
12345
12345
12345

=
45.00 € Marketing. Strategie

OEBPS/Images/2_Abbildung_2.5.jpg
Arbeitsgruppe Berater Kunde

Arbeitsgruppenmenge

Mitgliedermenge Beratermenge Kundenmenge
1:M 1:M 1:M 1:M
Arbeitsgruppen-

Kunden-

Mitglied beziehung

OEBPS/Images/1_Abbildung_1.1.jpg
Datenbank

Metadaten

. Abfrage Kordon
ﬁ DBMS —
(Datenbankmanagement- H Berater Nutzdaten
_ B)

ystem
Daten ———— Projekte

Anwender

OEBPS/Images/1_Abbildung_1.7.jpg
Kaiserstrasse &, Musterhausen 12345

g
Am Weiher 3. Musterhausen | 12345 Ingo Fuchs | 19.04.2003 4 Stunden |45.00€ Marketing, Strategie
Alte Poststr. 5, Musterhausen | 12345 Helena Meier 04.10.2004 1Stunde 50.00€ Finanzierung, IT
Gothestr. 7. Musterburg 12364 Ingo Fuchs | 18.07.2003 1Stunde 45.00€ | Marketing, Strategie
Am Weiher 3. Musterhausen | 12345 Helena Meier 17.04.2003 2 Stunden 50,00 € Finanzierung. IT
Alte Poststr. 5, Musterhausen | 12345 Helena Meier 04.10.2004 3 Stunden (50.00€ Finanzierung. IT

Am Weiher 3. Musterhausen | 12345 Ingo Fuchs | 16.04.2004 1Stunde 4500€ Marketing. Strategie

OEBPS/Images/2_Abbildung_2.1.jpg
Personen

I~ N\

. \ I
Software \J sL \I J,
Anwendungsprogramm @

/

AN

DBMS
Betriebssystem

N ,

“Daten

Daten

Hardware

"4
?’ ..

Server

OEBPS/Images/1_Abbildung_1.2.jpg
J] pastei Gearbeiten Ansicht Enfigen Fomat Extras Shape Datenbark Fenster
SR=E: ETE T2 P J\-ﬂv"v\‘ﬂ v T =of
ol st | F £ U]

T

[Entitatsbeziehung

e T i
K pmma

W < b W)\ ABC-Datenbankdesign A_VEws
T

OEBPS/Images/1_Abbildung_1.3.jpg
Kundenverwaltungsprogramm Lohnabrechnung

Kundenkontakt-Datei Lohnabrechnungsdatei

OEBPS/Images/_Abbildung_d6e2.jpg

OEBPS/Images/2_Abbildung_2.2.jpg
Metadatenverwaltung

Verwaltung der Sicherheit

Datentragerverwaltung

D dl
Prasentation

Verwaltung mehrerer
Anwender

Datensicherung/
Wiederherstellung

Wahrung der
Datenintegritat

Sprachen fiir
Datenbankzugriff

Bereitstellung von
Kommunikationswegen

OEBPS/Images/1_Abbildung_1.4.jpg
Daten

KUNDE * [KUNDE_TELEFON ™
Emil Schridt 02311020449 Kaiserstrasse 5_Musterhausen 12345
Hans Maller 02212416932 | Am Weiher 3. Musterhausen 12345 Ingo Fuchs | 19.04.2003 45.00€ [Marketing. Strategie
Johanna Schulze 04101241201 Lto Poststr & 1234 Helona Meier 04 10 2004 i Sinde E000€ Finanzienng T Datei
Warkus Schute [04514-123414___ Goethestr. 7. Musterburg___ 12364 Ingo Fuchs _ 18.07.2003 T Stunde _|45.00€ | Marketing. Strategie |
Flans WOler 02212375, T eer e FieTera Werer 1704200 Tonden (5000 € Fmanzierng 1T
Johanna Schuize 0410-1241221 Ale Poststr. 5. Musterhausen | 12345 Helena Meier 04.10.2004 3 Stunden 50.00€ Finanzierung. IT
> |Hans Maller 02212416932 Am Weiher 3, Musterhausen | 12345 Ingo Fuchs | 16.04.2004 1Stunde 45,00 € | Marketing, Strategie

Datensatz

OEBPS/Images/1_Abbildung_1.5.jpg
Kaiserstrasse &, Musterhausen 12345

g
Am Weiher 3. Musterhausen | 12345 Ingo Fuchs | 19.04.2003 4 Stunden |45.00€ Marketing, Strategie
Alte Poststr. 5, Musterhausen | 12345 Helena Meier 04.10.2004 1Stunde 50.00€ Finanzierung, IT
Gothestr. 7. Musterburg 12364 Ingo Fuchs | 18.07.2003 1Stunde 45.00€ | Marketing, Strategie
Am Weiher 3. Musterhausen | 12345 Helena Meier 17.04.2003 2 Stunden 50,00 € Finanzierung. IT
Alte Poststr. 5, Musterhausen | 12345 Helena Meier 04.10.2004 3 Stunden (50.00€ Finanzierung. IT

Am Weiher 3. Musterhausen | 12345 Ingo Fuchs | 16.04.2004 1Stunde 4500€ Marketing. Strategie

OEBPS/Images/cover_D3589DEB_AABE3B35.jpg
ran
Geisler

m|tp 5. Auflage

Datenbanken

Grundlagen und Design

OEBPS/Images/2_Abbildung_2.4.jpg
S o RN -
S s [

N e [o [o]

Gliihbirne

Ricklicht

OEBPS/Images/2_Abbildung_2.3.jpg
| Wurzelknoten
Fahrrad

[I I
sitz Lenker Vorderrad Hinterrad Rahmen
Kindknoten
[1

1
Reifen Speichen Reifen Speichen Lampe
Blattknoten V

Gehause Glahbime Gehause Glahbime

OEBPS/Images/10_AADRM.jpg
HR

Verlagsgruppe
Hithig Jehle Rehm

Hinweis des Verlages zum Urheberrecht und
Digitalen Rechtemanagement (DRM)

Der Verlag raumt Ihnen mit dem Kauf des ebooks das
Recht ein, die Inhalte im Rahmen des geltenden
Urheberrechts zu nutzen. Dieses Werk, einschlieBlich
aller seiner Teile, ist urheberrechtlich geschiitzt. Jede
Verwertung auBerhalb der engen Grenzen des Urhe-
berrechtsgesetzes ist ohne Zustimmung des Verlages
unzul@ssig und strafbar. Dies gilt insbesondere fiir Ver-
vielfaltigungen, Ubersetzungen, Mikroverfilmungen und
Einspeicherung und Verarbeitung in elektronischen
Systemen.

Der Verlag schiitzt seine ebooks vor Missbrauch des
Urheberrechts durch ein digitales Rechtemanagement.
Bei Kauf im Webshop des Verlages werden die ebooks
mit einem nicht sichtbaren digitalen Wasserzeichen
individuell pro Nutzer signiert.

Bei Kauf in anderen ebook-Webshops erfolgt die Signa-
tur durch die Shopbetreiber. Angaben zu diesem DRM
finden Sie auf den Seiten der jeweiligen Anbieter.

OEBPS/Images/mitp.png
mitp

OEBPS/Images/9786.png

