
		
			[image: B19190_MockupCover_Low_res.png]
		

	
		
			Graph Data Science with Neo4j

			Learn how to use Neo4j 5 with Graph Data Science library 2.0 and its Python driver for your project

			Estelle Scifo

			[image:]

			BIRMINGHAM—MUMBAI

			Graph Data Science with Neo4j

			Copyright © 2023 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Publishing Product Manager: Ali Abidi

			Senior Editor: Nathanya Dias

			Technical Editor: Rahul Limbachiya

			Copy Editor: Safis Editing

			Project Coordinator: Farheen Fathima

			Proofreader: Safis Editing

			Indexer: Hemangini Bari

			Production Designer: Shankar Kalbhor

			Marketing Coordinator: Vinishka Kalra

			First published: January 2023

			Production reference: 1310123

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-80461-274-3

			www.packtpub.com

			Contributors

			About the author

			Estelle Scifo is a Neo4j Certified Professional and Neo4j Graph Data Science certified user. She is currently a machine learning engineer at GraphAware where she builds Neo4j-related solutions to make customers happy with graphs.

			Before that, she worked in several fields, starting out with research in particle physics, during which she worked at CERN on uncovering Higgs boson properties. She received her PhD in 2014 from the Laboratoire de l’Accélérateur Linéaire (Orsay, France). Continuing her career in industry, she worked in real estate, mobility, and logistics for almost 10 years. In the Neo4j community, she is known as the creator of neomap, a map visualization application for data stored in Neo4j. She also regularly gives talks at conferences such as NODES and PyCon. Her domain expertise and deep insight into the perspective of a beginner’s needs make her an excellent teacher.

			There is only one name on the cover, but a book is not the work of one person. I would like to thank everyone involved in making this book a reality. Beyond everyone at Packt, the reviewers did an incredible job of suggesting some very relevant improvements. Thank you, all!

			I hope this book will inspire you as much as other books of this genre have inspired me.

			About the reviewers

			Dr. David Gurzick is the founding chair of the George B. Delaplaine Jr. School of Business and an associate professor of management science at Hood College. He has a BS in computer science from Frostburg State University, an M.S. in computer science from Hood College, a PhD in information systems from the University of Maryland, Baltimore County, and is a graduate of Harvard’s business analytics program. As a child of the internet, he grew up on AOL and programmed his way through dot.com. He now helps merge technology and business strategy to enable innovation and accelerate commercial success as the lead data scientist at Genitive.ai and as a director of the Frederick Innovative Technology Center, Inc (FITCI).

			Sean William Grant is a product and analytics professional with over 20 years of experience in technology and data analysis. His experience ranges from geospatial intelligence with the United States Marine Corps, product management within the aviation and autonomy space, to implementing advanced analytics and data science within organizations. He is a graph data science and network analytics enthusiast who frequently gives presentations and workshops on connected data. He has also been a technical advisor to several early-stage start-ups. Sean is passionate about data and technology, and how it can elevate our understanding of ourselves.

			Jose Ernesto Echeverria has worked with all kinds of databases, from relational databases in the 1990s to non-SQL databases in the 2010s. He considers graph databases to be the best fit for solving real-world problems, given their strong capability for modeling and adaptability to change. As a polyglot programmer, he has used languages such as Java, Ruby, and R and tools such as Jupyter with Neo4j in order to solve data management problems for multinational corporations. A long-time advocate of data science, he expects this long-awaited book to cover the proper techniques and approach the intersections of this discipline, as well as help readers to discover the possibilities of graph databases. When not working, he enjoys spending time with friends and family.

		

	
		
			Table of Contents

			Preface

			Part 1 – Creating Graph Data in Neo4j

			1

			Introducing and Installing Neo4j

			Technical requirements

			What is a graph database?

			Databases

			Graph database

			Finding or creating a graph database

			A note about the graph dataset’s format

			Modeling your data as a graph

			Neo4j in the graph databases landscape

			Neo4j ecosystem

			Setting up Neo4j

			Downloading and starting Neo4j Desktop

			Creating our first Neo4j database

			Creating a database in the cloud – Neo4j Aura

			Inserting data into Neo4j with Cypher, the Neo4j query language

			Extracting data from Neo4j with Cypher pattern matching

			Summary

			Further reading

			Exercises

			2

			Importing Data into Neo4j to Build a Knowledge Graph

			Technical requirements

			Importing CSV data into Neo4j with Cypher

			Discovering the Netflix dataset

			Defining the graph schema

			Importing data

			Introducing the APOC library to deal with JSON data

			Browsing the dataset

			Getting to know and installing the APOC plugin

			Loading data

			Dealing with temporal data

			Discovering the Wikidata public knowledge graph

			Data format

			Query language – SPARQL

			Enriching our graph with Wikidata information

			Loading data into Neo4j for one person

			Importing data for all people

			Dealing with spatial data in Neo4j

			Importing data in the cloud

			Summary

			Further reading

			Exercises

			Part 2 – Exploring and Characterizing Graph Data with Neo4j

			3

			Characterizing a Graph Dataset

			Technical requirements

			Characterizing a graph from its node and edge properties

			Link direction

			Link weight

			Node type

			Computing the graph degree distribution

			Definition of a node’s degree

			Computing the node degree with Cypher

			Visualizing the degree distribution with NeoDash

			Installing and using the Neo4j Python driver

			Counting node labels and relationship types in Python

			Building the degree distribution of a graph

			Improved degree distribution

			Learning about other characterizing metrics

			Triangle count

			Clustering coefficient

			Summary

			Further reading

			Exercises

			4

			Using Graph Algorithms to Characterize a Graph Dataset

			Technical requirements

			Digging into the Neo4j GDS library

			GDS content

			Installing the GDS library with Neo4j Desktop

			GDS project workflow

			Projecting a graph for use by GDS

			Native projections

			Cypher projections

			Computing a node’s degree with GDS

			stream mode

			The YIELD keyword

			write mode

			mutate mode

			Algorithm configuration

			Other centrality metrics

			Understanding a graph’s structure by looking for communities

			Number of components

			Modularity and the Louvain algorithm

			Summary

			Further reading

			5

			Visualizing Graph Data

			Technical requirements

			The complexity of graph data visualization

			Physical networks

			General case

			Visualizing a small graph with networkx and matplotlib

			Visualizing a graph with known coordinates

			Visualizing a graph with unknown coordinates

			Configuring object display

			Discovering the Neo4j Bloom graph application

			What is Bloom?

			Bloom installation

			Selecting data with Neo4j Bloom

			Configuring the scene in Bloom

			Visualizing large graphs with Gephi

			Installing Gephi and its required plugin

			Using APOC Extended to synchronize Neo4j and Gephi

			Configuring the view in Gephi

			Summary

			Further reading

			Exercises

			Part 3 – Making Predictions on a Graph

			6

			Building a Machine Learning Model with Graph Features

			Technical requirements

			Introducing the GDS Python client

			GDS Python principles

			Input and output types

			Creating a projected graph from Python

			Running GDS algorithms from Python and extracting data in a dataframe

			write mode

			stream mode

			Dropping the projected graph

			Using features from graph algorithms in a scikit-learn pipeline

			Machine learning tasks with graphs

			Our task

			Computing features

			Extracting and visualizing data

			Building the model

			Summary

			Further reading

			Exercise

			7

			Automatically Extracting Features with Graph Embeddings for Machine Learning

			Technical requirements

			Introducing graph embedding algorithms

			Defining embeddings

			Graph embedding classification

			Using a transductive graph embedding algorithm

			Understanding the Node2Vec algorithm

			Using Node2Vec with GDS

			Training an inductive embedding algorithm

			Understanding GraphSAGE

			Introducing the GDS model catalog

			Training GraphSAGE with GDS

			Computing new node representations

			Summary

			Further reading

			Exercises

			8

			Building a GDS Pipeline for Node Classification Model Training

			Technical requirements

			The GDS pipelines

			What is a pipeline?

			Building and training a pipeline

			Creating the pipeline and choosing the features

			Setting the pipeline configuration

			Training the pipeline

			Making predictions

			Computing the confusion matrix

			Using embedding features

			Choosing the graph embedding algorithm to use

			Training using Node2Vec

			Training using GraphSAGE

			Summary

			Further reading

			Exercise

			9

			Predicting Future Edges

			Technical requirements

			Introducing the LP problem

			LP examples

			LP with the Netflix dataset

			Framing an LP problem

			LP features

			Topological features

			Features based on node properties

			Building an LP pipeline with the GDS

			Creating and configuring the pipeline

			Pipeline training and testing

			Summary

			Further reading

			10

			Writing Your Custom Graph Algorithms with the Pregel API in Java

			Technical requirements

			Introducing the Pregel API

			GDS’s features

			The Pregel API

			Implementing the PageRank algorithm

			The PageRank algorithm

			Simple Python implementation

			Pregel Java implementation

			Implementing the tolerance-stopping criteria

			Testing our code

			Test for the PageRank class

			Test for the PageRankTol class

			Using our algorithm from Cypher

			Adding annotations

			Building the JAR file

			Updating the Neo4j configuration

			Testing our procedure

			Summary

			Further reading

			Exercises

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			Data science today is a core component of many companies and organizations taking advantage of its predictive power to improve their products or better understand their customers. It is an ever-evolving field, still undergoing intense research. One of the most trending research areas is graph data science (GDS), or how representing data as a connected network can improve models.

			Among the different tools on the market to work with graphs, Neo4j, a graph database, is popular among developers for its ability to build simple and evolving data models and query data easily with Cypher. For a few years now, it has also stood out as a leader in graph analytics, especially since the release of the first version of its GDS library, allowing you to run graph algorithms from data stored in Neo4j, even at a large scale.

			This book is designed to guide you through the field of GDS, always using Neo4j and its GDS library as the main tool. By the end of this book, you will be able to run your own GDS model on a graph dataset you created. By the end of the book, you will even be able to pass the Neo4j Data Science certification to prove your new skills to the world.

			Who this book is for

			This book is for people who are curious about graphs and how this data structure can be useful in data science. It can serve both data scientists who are learning about graphs and Neo4j developers who want to get into data science.

			The book assumes minimal data science knowledge (classification, training sets, confusion matrices) and some experience with Python and its related data science toolkit (pandas, matplotlib, and scikit-learn).

			What this book covers

			Chapter 1, Introducing and Installing Neo4j, introduces the basic principles of graph databases and gives instructions on how to set up Neo4j locally, create your first graph, and write your first Cypher queries.

			Chapter 2, Using Existing Data to Build a Knowledge Graph, guides you through loading data into Neo4j from different formats (CSV, JSON, and an HTTP API). This is where you will build the dataset that will be used throughout this book.

			Chapter 3, Characterizing a Graph Dataset, introduces some key metrics to differentiate one graph dataset from another.

			Chapter 4, Using Graph Algorithms to Characterize a Graph Dataset, goes deeper into understanding a graph dataset by using graph algorithms. This is the chapter where you will start to use the Neo4j GDS plugin.

			Chapter 5, Visualizing Graph Data, delves into graph data visualization by drawing nodes and edges, starting from static representations and moving on to dynamic ones.

			Chapter 6, Building a Machine Learning Model with Graph Features, talks about machine learning model training using scikit-learn. This is where we will first use the GDS Python client.

			Chapter 7, Automating Feature Extraction with Graph Embeddings for Machine Learning, introduces the concept of node embedding, with practical examples using the Neo4j GDS library.

			Chapter 8, Building a GDS Pipeline for Node Classification Model Training, introduces the topic of node classification within GDS without involving a third-party tool.

			Chapter 9, Predicting Future Edges, gives a short introduction to the topic of link prediction, a graph-specific machine learning task.

			Chapter 10, Writing Your Custom Graph Algorithms with the Pregel API in Java, covers the exciting topic of building an extension for the GDS plugin.

			To get the most out of this book

			You will need access to a Neo4j instance. Options and installation instructions are given in Chapter 1, Introducing and Installing Neo4j. We will also intensively use Python and the following packages: pandas, scikit-learn, network, and graphdatascience. The code was tested with Python 3.10 but should work with newer versions, assuming no breaking change is made in its dependencies. Python code is provided as a Jupyter notebook, so you’ll need Jupyter Server installed and running to go through it.

			For the very last chapter, a Java JDK will also be required. The code was tested with OpenJDK 11.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

				
				
					
							
							Neo4j 5.x

						
							
							Windows, macOS, or Linux

						
					

					
							
							Python 3.10

						
							
							Windows, macOS or Linux

						
					

					
							
							Jupyter

						
							
							Windows, macOS or Linux

						
					

					
							
							OpenJDK 11

						
							
							Windows, macOS or Linux

						
					

				
			

			You will also need to install Neo4j plugins: APOC and GDS. Installation instructions for Neo4j Desktop are given in the relevant chapters. However, if you are not using a local Neo4j instance, please refer to the following pages for installation instructions, especially regarding version compatibilities:

			
					APOC: https://neo4j.com/docs/apoc/current/installation/

					GDS: https://neo4j.com/docs/graph-data-science/current/installation/

			

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Graph-Data-Science-with-Neo4j. If there’s an update to the code, it will be updated in the GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Mount the downloaded WebStorm-10*.dmg disk image file as another disk in your system.”

			A block of code is set as follows:

			
CREATE (:Movie {
 id: line.show_id,
 title: line.title,
 releaseYear: line.release_year
 }

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
LOAD CSV WITH HEADERS
FROM 'file:///netflix/netflix_titles.csv' AS line
WITH split(line.director, ",") as directors_list
UNWIND directors_list AS director_name
CREATE (:Person {name: trim(director_name)})

			Any command-line input or output is written as follows:

			
$ mkdir css
$ cd css

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Select System info from the Administration panel.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you’ve read Graph Data Science with Neo4J, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?
Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781804612743

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			Part 1 – Creating Graph Data in Neo4j

		

		
			In this first part, you will learn about Neo4j and set up your first graph database. You will also build a graph dataset in Neo4j using Cypher, the APOC library, and public knowledge graphs.

			This part includes the following chapters:

			
					Chapter 1, Introducing and Installing Neo4j

					Chapter 2, Using Existing Data to Build a Knowledge Graph

			

		

		
			
			

		

		
			
			

		

	

		
			1

			Introducing and Installing Neo4j

			Graph databases in general, and Neo4j in particular, have gained increasing interest in the past few years. They provide a natural way of modeling entities and relationships and take into account observation context, which is often crucial to extract the most out of your data. Among the different graph database vendors, Neo4j has become one of the most popular for both data storage and analytics. A lot of tools have been developed by the company itself or the community to make the whole ecosystem consistent and easy to use: from storage to querying, to visualization to graph data science. As you will see through this book, there is a well-integrated application or plugin for each of these topics.

			In this chapter, you will get to know what Neo4j is, positioning it in the broad context of databases. We will also introduce the aforementioned plugins that are used for graph data science.

			Finally, you will set up your first Neo4j instance locally if you haven’t done so already and run your first Cypher queries to populate the database with some data and retrieve it.

			In this chapter, we’re going to cover the following main topics:

			
					What is a graph database?

					Finding or creating a graph database

					Neo4j in the graph databases landscape

					Setting up Neo4j

					Inserting data into Neo4j with Cypher, the Neo4j query language

					Extracting data from Neo4j with Cypher pattern matching

			

			Technical requirements

			To follow this chapter well, you will need access to the following resources:

			
					You’ll need a computer that can run Neo4j locally; Windows, macOS, and Linux are all supported. Please refer to the Neo4j website for more details about system requirements: https://neo4j.com/docs/operations-manual/current/installation/requirements/.

					Any code listed in the book will be available in the associated GitHub repository – that is, https://github.com/PacktPublishing/Graph-Data-Science-with-Neo4j – in the corresponding chapter folder.

			

			What is a graph database?

			Before we get our hands dirty and start playing with Neo4j, it is important to understand what Neo4j is and how different it is from the data storage engine you are used to. In this section, we are going to discuss (quickly) the different types of databases you can find today, and why graph databases are so interesting and popular both for developers and data professionals.

			Databases

			Databases make up an important part of computer science. Discussing the evolution and state-of-the-art areas of the different implementations in detail would require several books like this one – fortunately, this is not a requirement to use such systems effectively. However, it is important to be aware of the existing tools related to data storage and how they differ from each other, to be able to choose the right tool for the right task. The fact that, after reading this book, you’ll be able to use graph databases and Neo4j in your data science project doesn’t mean you will have to use it every single time you start a new project, whatever the context is. Sometimes, it won’t be suitable; this introduction will explain why.

			A database, in the context of computing, is a system that allows you to store and query data on a computer, phone, or, more generally, any electronic device.

			As developers or data scientists of the 2020s, we have mainly faced two kinds of databases:

			
					Relational databases (SQL) such as MySQL or PostgreSQL. These store data as records in tables whose columns are attributes or fields and whose rows represent each entity. They have a predefined schema, defining how data is organized and the type of each field. Relationships between entities in this representation are modeled by foreign keys (requiring unique identifiers). When the relationship is more complex, such as when attributes are required or when we can have many relationships between the same objects, an intermediate junction (join) table is required.

					NoSQL databases contain many different types of databases:	Key-value stores such as Redis or Riak. A key-value (KV) store, as the name suggests, is a simple lookup database where the key is usually a string, and the value can be a more complex object that can’t be used to filter the query – it can only be retrieved. They are known to be very efficient for caching in a web context, where the key is the page URL and the value is the HTML content of the page, which is dynamically generated. KV stores can also be used to model graphs when building a native graph engine is not an option. You can see KV stores in action in the following projects:	IndraDB: This is a graph database written in Rust that relies on different types of KV stores: https://github.com/indradb/indradb

	Document-oriented databases such as MongoDB or CouchDB. These are useful for storing schema-less documents (usually JSON (or a derivative) objects). They are much more flexible compared to relational databases, since each document may have different fields. However, relationships are harder to model, and such databases rely a lot on nested JSON and information duplication instead of joining multiple tables.

			

			The preceding list is non-exhaustive; other types of data stores have been created over time and abandoned or were born in the past years, so we’ll need to wait to see how useful they can be. We can mention, for instance, vector databases, such as Weaviate, which are used to store data with their vector representations to ease searching in the vector space, with many applications in machine learning once a vector representation (embedding) of an observation has been computed.

			Graph databases can also be classified as NoSQL databases. They bring another approach to the data storage landscape, especially in the data model phase.

			Graph database

			In the previous section, we talked about databases. Before discussing graph databases, let’s introduce the concept of graphs.

			A graph is a mathematical object defined by the following:

			
					A set of vertices or nodes (the dots)

					A set of edges (the connections between these dots)

			

			The following figure shows several examples of graphs, big and small:

			
				
					[image: Figure 1.1 – Representations of some graphs]
				

			

			Figure 1.1 – Representations of some graphs

			As you can see, there’s a Road network (in Europe), a Computer network, and a Social network. But in practice, far more objects can be seen as graphs:

			
					Time series: Each observation is connected to the next one

					Images: Each pixel is linked to its eight neighbors (see the bottom-right picture in Figure 1.1)

					Texts: Here, each word is connected to its surrounding words or a more complex mapping, depending on its meaning (see the following figure):

			

			
				
					[image: Figure 1.2 – Figure generated with the spacy Python library, which was able to identify the relationships between words in a sentence using NLP techniques]
				

			

			Figure 1.2 – Figure generated with the spacy Python library, which was able to identify the relationships between words in a sentence using NLP techniques

			A graph can be seen as a generalization of these static representations, where links can be created with fewer constraints.

			Another advantage of graphs is that they can be easily traversed, going from one node to another by following edges. They have been used for representing networks for a long time – road networks or communication infrastructure, for instance. The concept of a path, especially the shortest path in a graph, is a long-studied field. But the analysis of graphs doesn’t stop here – much more information can be extracted from carefully analyzing a network, such as its structure (are there groups of nodes disconnected from the rest of the graph? Are groups of nodes more tied to each other than to other groups?) and node ranking (node importance). We will discuss these algorithms in more detail in Chapter 4, Using Graph Algorithms to Characterize a Graph Dataset.

			So, we know what a database is and what a graph is. Now comes the natural question: what is a graph database? The answer is quite simple: in a graph database, data is saved into nodes, which can be connected through edges to model relationships between them.

			At this stage, you may be wondering: ok, but where can I find graph data? While we are used to CSV or JSON datasets, graph formats are not yet common and it might be misleading to some of you. If you do not have graph data, why would you need a graph database? There are two possible answers to this question, both of which we are going to discuss.

			Finding or creating a graph database

			Data scientists know how to find or generate datasets that fit their needs. Randomly generating a variable distribution while following some probabilistic law is one of the first things you’ll learn in a statistics course. Similarly, graph datasets can be randomly generated, following some rules. However, this book is not a graph theory book, so we are not going to dig into these details here. Just be aware that this can be done. Please refer to the references in the Further reading section to learn more.

			Regarding existing datasets, some of them are very popular and data scientists know about them because they have used them while learning data science and/or because they are the topic of well-known Kaggle competitions. Think, for instance, about the Titanic or house price datasets. Other datasets are also used for model benchmarking, such as the MNIST or ImageNet datasets in computer vision tasks.

			The same holds for graph data science, where some datasets are very common for teaching or benchmarking purposes. If you investigate graph theory, you will read about the Zachary’s karate club (ZKC) dataset, which is probably one of the most famous graph datasets out there (side note: there is even a ZKC trophy, which is awarded to the first person in a graph conference that mentions this dataset). The ZKC dataset is very simple (30 nodes, as we’ll see in Chapter 3, Characterizing a Graph Dataset, and Chapter 4, Using Graph Algorithms to Characterize a Graph Dataset, on how to characterize a graph dataset), but bigger and more complex datasets are also available.

			There are websites referencing graph datasets, which can be used for benchmarking in a research context or educational purpose, such as this book. Two of the most popular ones are the following:

			
					The Stanford Network Analysis Project (SNAP) (https://snap.stanford.edu/data/index.html) lists different types of networks in different categories (social networks, citation networks, and so on)

					The Network Repository Project, via its website at https://networkrepository.com/index.php, provides hundreds of graph datasets from real-world examples, classified into categories (for example, biology, economics, recommendations, road, and so on)

			

			If you browse these websites and start downloading some of the files, you’ll notice the data comes in unfamiliar formats. We’re going to list some of them next.

			A note about the graph dataset’s format

			The datasets we are used to are mainly exchanged as CSV or JSON files. To represent a graph, with nodes on one side and edges on the other, several specific formats have been imagined.

			The main data formats that are used to save graph data as text files are the following:

			
					Edge list: This is a text file where each row contains an edge definition. For instance, a graph with three nodes (A, B, C) and two edges (A-B and C-A) is defined by the following edgelist file:
A B

C A

					Matrix Market (with the .mtx extension): This format is an extension of the previous one. It is quite frequent on the network repository website.

					Adjacency matrix: The adjacency matrix is an NxN matrix (where N is the number of nodes in the graph) where the ij element is 1 if nodes i and j are connected through an edge and 0 otherwise. The adjacency matrix of the simple graph with three nodes and two edges is a 3x3 matrix, as shown in the following code block. I have explicitly displayed the row and column names only for convenience, to help you identify what i and j are:
 A B C

A 0 1 0

B 0 0 0

C 1 0 0

			

			Note

			The adjacency matrix is one way to vectorize a graph. We’ll come back to this topic in Chapter 7, Automatically Extracting Features with Graph Embeddings for Machine Learning.

			
					GraphML: Derived from XML, the GraphML format is much more verbose but lets us define more complex graphs, especially those where nodes and/or edges carry properties. The following example uses the preceding graph but adds a name property to nodes and a length property to edges:
<?xml version='1.0' encoding='utf-8'?>

<graphml xmlns="http://graphml.graphdrawing.org/xmlns"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"

>

 <!-- DEFINING PROPERTY NAME WITH TYPE AND ID -->

 <key attr.name="name" attr.type="string" for="node" id="d1"/>

 <key attr.name="length" attr.type="double" for="edge" id="d2"/>

 <graph edgedefault="directed">

 <!-- DEFINING NODES -->

 <node id="A">

 <!-- SETTING NODE PROPERTY -->

 <data key="d1">"Point A"</data>

 </node>

 <node id="B">

 <data key="d1">"Point B"</data>

 </node>

 <node id="C">

 <data key="d1">"Point C"</data>

 </node>

 <!-- DEFINING EDGES

 with source and target nodes and properties

 -->

 <edge id="AB" source="A" target="B">

 <data key="d2">123.45</data>

 </edge>

 <edge id="CA" source="C" target="A">

 <data key="d2">56.78</data>

 </edge>

 </graph>

</graphml>

			

			If you find a dataset already formatted as a graph, it is likely to be using one of the preceding formats. However, most of the time, you will want to use your own data, which is not yet in graph format – it might be stored in the previously described databases or CSV or JSON files. If that is the case, then the next section is for you! There, you will learn how to transform your data into a graph.

			Modeling your data as a graph

			The second answer to the main question in this section is: your data is probably a graph, without you being aware of it yet. We will elaborate on this topic in the next chapter (Chapter 2, Using Existing Data to Build a Knowledge Graph), but let me give you a quick overview.

			Let’s take the example of an e-commerce website, which has customers (users) and products. As in every e-commerce website, users can place orders to buy some products. In the relational world, the data schema that’s traditionally used to represent such a scenario is represented on the left-hand side of the following screenshot:

			
				
					[image: Figure 1.3 – Modeling e-commerce data as a graph]
				

			

			Figure 1.3 – Modeling e-commerce data as a graph

			The relational data model works as follows:

			
					A table is created to store users, with a unique identifier (id) and a username (apart from security and personal information required for such a website, you can easily imagine how to add columns to this table).

					Another table contains the data about the available products.

					Each time a customer places an order, a new row is added to an order table, referencing the user by its ID (a foreign key with a one-to-many relationship, where a user can place many orders).

					To remember which products were part of which orders, a many-to-many relationship is created (an order contains many products and a product is part of many orders). We usually create a relationship table, linking orders to products (the order product table, in our example).

			

			Note

			Please refer to the colored version of the preceding figure, which can be found in the graphics bundle link provided in the Preface, for a better understanding of the correspondence between the two sides of the figure.

			In a graph database, all the _id columns are replaced by actual relationships, which are real entities with graph databases, not just conceptual ones like in the relational model. You can also get rid of the order product table since information specific to a product in a given order such as the ordered quantity can be stored directly in the relationship between the order and the product node. The data model is much more natural and easier to document and present to other people on your team.

			Now that we have a better understanding of what a graph database is, let’s explore the different implementations out there. Like the other types of databases, there is no single implementation for graph databases, and several projects provide graph database functionalities.

			In the next section, we are going to discuss some of the differences between them, and where Neo4j is positioned in this technology landscape.

			Neo4j in the graph databases landscape

			Even when restricting the scope to graph databases, there are still different ways to envision such data stores:

			
					Resource description framework (RDF): Each record is a triplet of the Subject Predicate Object type. This is a complex vocabulary that expresses a relationship of a certain type (the predicate) between a subject and an object; for instance:
Alice(Subject) KNOWS(Predicate) Bob(Object)

			

			Very famous knowledge bases such as DBedia and Wikidata use the RDF format. We will talk about this a bit more in the next chapter (Chapter 2, Using Existing Data to Build a Knowledge Graph).

			
					Labeled-property graph (LPG): A labeled-property graph contains nodes and relationships. Both of these entities can be labeled (for instance, Alice and Bob are nodes with the Person label, and the relationship between them has the KNOWS label) and have properties (people have names; an acquaintance relationship can contain the date when both people first met as a property).

			

			Neo4j is a labeled-property graph. And even there, like MySQL, PostgreSQL, and Microsoft SQL Server are all relational databases, you will find different vendors proposing LPG graph databases. They differ in many aspects:

			
					Whether they use a native graph engine or not: As we discussed earlier, it is possible to use a KV store or even a SQL database to store graph data. In this case, we’re talking about non-native storage engines since the storage does not reflect the graphical nature of the data.

					The query language: Unlike SQL, the query language to deal with graph data has not yet been standardized, even if there is an ongoing effort being led by the GQL group (see, for instance, https://gql.today/). Neo4j uses Cypher, a declarative query language developed by the company in 2011 and then open-sourced in the openCypher project, allowing other databases to use the same language (see, for instance, RedisGraph or Amazon Neptune). Other vendors have created their own languages (AQL for ArangoDB or CQL for TigerGraph, for instance). To me, this is a key point to take into account since the learning curve can be very different from one language to another. Cypher has the advantage of being very intuitive and a few minutes are enough to write your own queries without much effort.

					Their (integrated or not) support for graph analytics and data science.

			

			A note about performances

			Almost every vendor claims to be the best one, at least in some aspects. This book won’t create another debate about that. The best option, if performances are crucial for your application, is to test the candidates with a scenario close to your final goal in terms of data volume and the type of queries/analysis.

			Neo4j ecosystem

			The Neo4j database is already very helpful by itself, but the amount of extensions, libraries, and applications related to it makes it the most complete solution. In addition, it has a very active community of members always keen to help each other, which is one of the reasons to choose it.

			The core Neo4j database capabilities can be extended thanks to some plugins. Awesome Procedures on Cypher (APOC), a common Neo4j extension, contains some procedures that can extend the database and Cypher capabilities. We will use it later in this book to load JSON data.

			The main plugin we will explore in this book is the Graph Data Science Library. Its predecessor, the Graph Algorithm Library, was first released in 2018 by the Neo4j lab team. It was quickly replaced by the Graph Data Science Library, a fully production-ready plugin, with improved performance. Algorithms are improved and added regularly. Version 2.0, released in 2021, takes graph data science even further, allowing us to train models and build analysis pipelines directly from the library. It also comes with a handy Python client, which is very convenient for including graph algorithms into your usual machine learning processes, whether you use scikit-learn or other machine learning libraries such as TensorFlow or PyTorch.

			Besides the plugins, there are also lots of applications out there to help us deal with Neo4j and explore the data it contains. The first application we will use is Neo4j Desktop, which lets us manage several Neo4j databases. Continue reading to learn how to use it. Neo4j Desktop also lets you manage your installed plugins and applications.

			Applications installed into Neo4j Desktop are granted access to your active database. While reading this book, you will use the following:

			
					Neo4j Browser: A simple but powerful application that lets you write Cypher queries and visualize the result as a graph, table, or JSON:

			

			
				
					[image: Figure 1.4 – Neo4j Browser]
				

			

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

		
	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/toc.xhtml

		

		Contents

			

						Graph Data Science with Neo4j

						Contributors

						About the author

						About the reviewers

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1 – Creating Graph Data in Neo4j

						Chapter 1: Introducing and Installing Neo4j

					

								Technical requirements

								What is a graph database?

							

										Databases

										Graph database

							

						

								Finding or creating a graph database

							

										A note about the graph dataset’s format

										Modeling your data as a graph

							

						

								Neo4j in the graph databases landscape

							

										Neo4j ecosystem

							

						

								Setting up Neo4j

							

										Downloading and starting Neo4j Desktop

										Creating our first Neo4j database

										Creating a database in the cloud – Neo4j Aura

							

						

								Inserting data into Neo4j with Cypher, the Neo4j query language

								Extracting data from Neo4j with Cypher pattern matching

								Summary

								Further reading

								Exercises

					

				

						Chapter 2: Importing Data into Neo4j to Build a Knowledge Graph

					

								Technical requirements

								Importing CSV data into Neo4j with Cypher

							

										Discovering the Netflix dataset

										Defining the graph schema

										Importing data

							

						

								Introducing the APOC library to deal with JSON data

							

										Browsing the dataset

										Getting to know and installing the APOC plugin

										Loading data

										Dealing with temporal data

							

						

								Discovering the Wikidata public knowledge graph

							

										Data format

										Query language – SPARQL

							

						

								Enriching our graph with Wikidata information

							

										Loading data into Neo4j for one person

										Importing data for all people

							

						

								Dealing with spatial data in Neo4j

								Importing data in the cloud

								Summary

								Further reading

								Exercises

					

				

						Part 2 – Exploring and Characterizing Graph Data with Neo4j

						Chapter 3: Characterizing a Graph Dataset

					

								Technical requirements

								Characterizing a graph from its node and edge properties

							

										Link direction

										Link weight

										Node type

							

						

								Computing the graph degree distribution

							

										Definition of a node’s degree

										Computing the node degree with Cypher

										Visualizing the degree distribution with NeoDash

							

						

								Installing and using the Neo4j Python driver

							

										Counting node labels and relationship types in Python

										Building the degree distribution of a graph

										Improved degree distribution

							

						

								Learning about other characterizing metrics

							

										Triangle count

										Clustering coefficient

							

						

								Summary

								Further reading

								Exercises

					

				

						Chapter 4: Using Graph Algorithms to Characterize a Graph Dataset

					

								Technical requirements

								Digging into the Neo4j GDS library

							

										GDS content

										Installing the GDS library with Neo4j Desktop

										GDS project workflow

							

						

								Projecting a graph for use by GDS

							

										Native projections

										Cypher projections

							

						

								Computing a node’s degree with GDS

							

										stream mode

										The YIELD keyword

										write mode

										mutate mode

										Algorithm configuration

										Other centrality metrics

							

						

								Understanding a graph’s structure by looking for communities

							

										Number of components

										Modularity and the Louvain algorithm

							

						

								Summary

								Further reading

					

				

						Chapter 5: Visualizing Graph Data

					

								Technical requirements

								The complexity of graph data visualization

							

										Physical networks

										General case

							

						

								Visualizing a small graph with networkx and matplotlib

							

										Visualizing a graph with known coordinates

										Visualizing a graph with unknown coordinates

										Configuring object display

							

						

								Discovering the Neo4j Bloom graph application

							

										What is Bloom?

										Bloom installation

										Selecting data with Neo4j Bloom

										Configuring the scene in Bloom

							

						

								Visualizing large graphs with Gephi

							

										Installing Gephi and its required plugin

										Using APOC Extended to synchronize Neo4j and Gephi

										Configuring the view in Gephi

							

						

								Summary

								Further reading

								Exercises

					

				

						Part 3 – Making Predictions on a Graph

						Chapter 6: Building a Machine Learning Model with Graph Features

					

								Technical requirements

								Introducing the GDS Python client

							

										GDS Python principles

										Input and output types

										Creating a projected graph from Python

							

						

								Running GDS algorithms from Python and extracting data in a dataframe

							

										write mode

										stream mode

										Dropping the projected graph

							

						

								Using features from graph algorithms in a scikit-learn pipeline

							

										Machine learning tasks with graphs

										Our task

										Computing features

										Extracting and visualizing data

										Building the model

							

						

								Summary

								Further reading

								Exercise

					

				

						Chapter 7: Automatically Extracting Features with Graph Embeddings for Machine Learning

					

								Technical requirements

								Introducing graph embedding algorithms

							

										Defining embeddings

										Graph embedding classification

							

						

								Using a transductive graph embedding algorithm

							

										Understanding the Node2Vec algorithm

										Using Node2Vec with GDS

							

						

								Training an inductive embedding algorithm

							

										Understanding GraphSAGE

										Introducing the GDS model catalog

										Training GraphSAGE with GDS

							

						

								Computing new node representations

								Summary

								Further reading

								Exercises

					

				

						Chapter 8: Building a GDS Pipeline for Node Classification Model Training

					

								Technical requirements

								The GDS pipelines

							

										What is a pipeline?

							

						

								Building and training a pipeline

							

										Creating the pipeline and choosing the features

										Setting the pipeline configuration

										Training the pipeline

							

						

								Making predictions

							

										Computing the confusion matrix

							

						

								Using embedding features

							

										Choosing the graph embedding algorithm to use

										Training using Node2Vec

										Training using GraphSAGE

							

						

								Summary

								Further reading

								Exercise

					

				

						Chapter 9: Predicting Future Edges

					

								Technical requirements

								Introducing the LP problem

							

										LP examples

										LP with the Netflix dataset

										Framing an LP problem

							

						

								LP features

							

										Topological features

										Features based on node properties

							

						

								Building an LP pipeline with the GDS

							

										Creating and configuring the pipeline

										Pipeline training and testing

							

						

								Summary

								Further reading

					

				

						Chapter 10: Writing Your Custom Graph Algorithms with the Pregel API in Java

					

								Technical requirements

								Introducing the Pregel API

							

										GDS’s features

										The Pregel API

							

						

								Implementing the PageRank algorithm

							

										The PageRank algorithm

										Simple Python implementation

										Pregel Java implementation

										Implementing the tolerance-stopping criteria

							

						

								Testing our code

							

										Test for the PageRank class

										Test for the PageRankTol class

							

						

								Using our algorithm from Cypher

							

										Adding annotations

										Building the JAR file

										Updating the Neo4j configuration

										Testing our procedure

							

						

								Summary

								Further reading

								Exercises

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/Figure_1.03_B19190.jpg
A A

It always seems impossible uniil it s done
PRON ADV ~ VERB ADJ SCONJ PRON AUX VERB

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/B19190_QR_Free_PDF.jpg

OEBPS/image/Figure_1.05_B19190.jpg
calhost:7es7/neod) - Neod] Browser

Database Information peab)f

Use database

neokj$ MATCH (m:Movie {title: "The Matrix"})e

*ACTED_IN]-(a:Person) RETURN m, a

Overview
Node Labels

Node labets
- &= ® CID &=

Relationship Types

Relationship Types

Otslaying 6 nodes, O relationship

Property Keys

n——

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/image/B19190_MockupCover_Low_res.png
<packh

Graph Data Science
with Neo4j

Learn how to use Neo4j 5 with Graph Data Science library 2.0
and its Python driver for your project

<> ESTELLE SCIFO

OEBPS/Fonts/CourierStd.otf

OEBPS/image/Figure_1.04_B19190.jpg
Relational

USERS ORDERS
id username id | user_id | date
1 Alice 1 1 2023-01-12
PRODUCTS
id name price
1 Green Tea 23
2 Coffee 15
ORDER PRODUCT
id order_id | product_id | quantity
1 1 1 4
2 1 2 2

Graph

Order

id: 1
username: Alice

id: 1
date: 2023-01-12

CONTAINS
quantity: 4

id: 1
name: Green Tea
price: 2.3

OEBPS/image/Figure_1.01_B19190.jpg
a) Computer network b) Social network

22 (22 s .
' 4 224 i afae
o A R
% rayA e VAW ¢

c) Road network d) Image as a graph

