

 [image: Cover of Real-World Web Development with .NET 9 by Mark J. Price]

 Real-World Web Development with .NET 9

 First Edition

 Build websites and services using mature and proven ASP.NET Core MVC, Web API, and Umbraco CMS

 Mark J. Price

 [image:]

 Real-World Web Development with .NET 9

 First Edition

 Copyright © 2024 Packt Publishing

 All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

 Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

 Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

 Senior Publishing Product Manager: Suman Sen

 Acquisition Editor – Peer Reviews: Swaroop Singh

 Project Editor: Janice Gonsalves

 Content Development Editor: Matthew Davies

 Copy Editor: Safis Editing

 Technical Editor: Simanta Rajbangshi

 Proofreader: Safis Editing

 Indexer: Pratik Shirodkar

 Presentation Designer: Rajesh Shirsath

 Developer Relations Marketing Executive: Priyadarshini Sharma

 First published: December 2024

 Production reference: 1181224

 Published by Packt Publishing Ltd.

 Grosvenor House

 11 St Paul’s Square

 Birmingham

 B3 1RB, UK.

 ISBN 978-1-83588-038-8

 www.packt.com

 Contributors

 About the author

 Mark J. Price is a Microsoft Specialist: Programming in C# and Architecting Microsoft Azure Solutions, with over 20 years of experience. Since 1993, he has passed more than 80 Microsoft programming exams and specializes in preparing others to pass them. Between 2001 and 2003, Mark was employed to write official courseware for Microsoft in Redmond, USA. His team wrote the first training courses for C# while it was still an early alpha version. While with Microsoft, he taught “train-the-trainer” classes to get Microsoft Certified Trainers up to speed on C# and .NET. Mark has spent most of his career training a wide variety of students, from 16-year-old apprentices to 70-year-old retirees, with the majority being professional developers. Mark holds a BSc. degree in Hons Computer Science.

 Thank you to all my readers. Your support means I get to write these books and celebrate your successes.

 Special thanks to the readers who give me actionable feedback via my GitHub repository and email and interact with me and the book communities on Discord. You help make my books even better with every edition.

 Extra special thanks to Troy, a reader who became a colleague, and more importantly, a good friend.

 About the reviewer

 Vishnu VG is a .NET programmer and software architect with over 17 years of experience in the IT industry. Based in Thiruvananthapuram, Kerala, India, his expertise lies in C# .NET, .NET Core, cloud platforms like AWS and Azure (holding an AWS Associate Certificate), Linux, serverless architectures, and container technologies. He is proficient in managing both on-premises and hybrid enterprise systems.

 Beyond his technical skillset, Vishnu is a professional who actively engages with the developer community. Since 2021, he has held the title of AWS Community Builder. He is also passionate about knowledge sharing through his YouTube channel and podcast, both called Coding Talks with Vishnu VG.

 Learn more on Discord

 To join the Discord community for this book – where you can share feedback, ask questions to the author, and learn about new releases – follow the QR code below:

 https://packt.link/RWD9

 [image:]

 Contents

 	Preface

 	Where to find the code solutions

 	What this book covers

 	What you need for this book

 	Downloading the color images of this book

 	Conventions

 	Get in touch

 	Leave a Review!

 	Download the free PDF and supplementary content

 	Introducing Web Development Using Controllers

 	Understanding ASP.NET Core

 	A brief history of ASP.NET Core

 	Classic ASP.NET versus modern ASP.NET Core

 	Building websites using ASP.NET Core

 	Comparison of file types used in ASP.NET Core

 	Building websites using a content management system

 	Building web applications using SPA frameworks

 	Building web and other services

 	Cloud providers and deployment tools

 	Structuring projects and managing packages

 	Structuring projects in a solution

 	Structuring folders in a project

 	Folder structure based on technological concerns

 	Folder structure based on features

 	Folder structure summary

 	Central Package Management

 	Making good use of the GitHub repository for this book

 	Understanding the solution code on GitHub

 	Downloading solution code from the GitHub repository

 	Using Git with VS Code and the command prompt

 	Cloning the book solution code repository

 	Building an entity model for use in the rest of the book

 	Northwind database SQL scripts

 	Installing Docker and the Azure SQL Edge container image

 	Running the Azure SQL Edge container image

 	Running a container using the user interface

 	Connecting to Azure SQL Edge in a Docker container

 	Connecting from Visual Studio

 	Connecting from VS Code

 	Creating the Northwind database using a SQL script

 	Removing Docker resources

 	Setting up the EF Core CLI tool

 	Creating a class library for entity models

 	Creating a class library for a database context

 	Setting the user and password for SQL Server authentication

 	Registering dependency services

 	Improving the class-to-table mapping

 	Testing the class libraries using xUnit

 	Practicing and exploring

 	Exercise 1.1 – Online material

 	Exercise 1.2 – Practice exercises

 	Troubleshooting web development

 	Exercise 1.3 – Test your knowledge

 	Know your webbreviations

 	Exercise 1.4 – Explore topics

 	Summary

 	Building Websites Using ASP.NET Core MVC

 	Setting up an ASP.NET Core MVC website

 	Creating an ASP.NET Core MVC website

 	Creating the authentication database for SQL Server LocalDB

 	Changing the port numbers and starting the website

 	Understanding browser requests during development

 	Exploring visitor registration

 	Reviewing an MVC website project structure

 	Reviewing the ASP.NET Core Identity database

 	Configuring files included in an ASP.NET Core project

 	Project file build actions

 	Exploring an ASP.NET Core MVC website

 	ASP.NET Core MVC initialization

 	What does UseMigrationsEndPoint do?

 	Controlling the hosting environment

 	The default MVC route

 	Controllers and actions

 	The responsibilities of a controller

 	Routing to controllers

 	The ControllerBase class

 	The Controller class

 	Reviewing the project template controller

 	The view search path convention

 	Logging using the dependency service

 	Using entity and view models

 	View model example

 	Implementing views

 	How cache busting with Tag Helpers works

 	Prototyping with Bootstrap

 	Breakpoints and containers

 	Rows and columns

 	Color themes

 	Tables

 	Buttons and links

 	Badges

 	Alerts

 	Good practice for Bootstrap

 	Customizing an ASP.NET Core MVC website

 	Defining a custom style

 	Setting up the category images

 	Razor syntax and expressions

 	Defining a typed view

 	Testing the home page with categories

 	Cross-functional filters

 	Using a filter to define a custom route

 	Temporarily storing data

 	Practicing and exploring

 	Exercise 2.1 – Online material

 	Exercise 2.2 – Practice exercises

 	Practice building UIs with Bootstrap

 	Exercise 2.3 – Test your knowledge

 	Exercise 2.4 – Explore topics

 	Summary

 	Model Binding, Validation, and Data Using EF Core

 	Model binding and validation

 	How model binding works

 	How validation rules are defined

 	Passing parameters using a route value

 	Disambiguating action methods

 	Model binders in detail

 	Passing a route parameter

 	Passing a form parameter

 	Avoiding over-posting aka mass assignment attacks

 	Returning HTTP error status codes

 	BadRequest

 	NotFound

 	Unauthorized

 	Forbid

 	Conflict

 	UnprocessableEntity

 	StatusCode

 	Problem

 	ValidationProblem

 	Modifying data using EF Core and ASP.NET Core

 	Displaying Northwind suppliers

 	Inserting, updating, and deleting suppliers

 	Manually trying to insert, update, and delete

 	Protecting against CSRF attacks

 	How CSRF attacks work

 	How anti-forgery tokens prevent CSRF

 	How to use Html.AntiForgeryToken()

 	Querying a database and using display templates

 	Improving scalability using asynchronous tasks

 	Threads and tasks on a web server

 	Making controller action methods asynchronous

 	Practicing and exploring

 	Exercise 3.1 – Online material

 	Exercise 3.2 – Practice exercises

 	Practice implementing MVC by implementing a category detail page

 	Exercise 3.3 – Test your knowledge

 	Exercise 3.4 – Explore topics

 	Summary

 	Building and Localizing Web User Interfaces

 	Defining web user interfaces with Razor Views

 	Using shared layouts with Razor Views

 	Defining views with HTML Helper methods

 	Defining web user interfaces with Tag Helpers

 	Comparing HTML Helpers and Tag Helpers

 	Exploring the Anchor Tag Helper

 	Exploring the Cache Tag Helpers

 	Exploring the Environment Tag Helper

 	Exploring Forms-related Tag Helpers

 	Localizing web user interfaces with ASP.NET Core

 	Working with cultures

 	Localizing your user interface

 	Web user interface localization

 	Creating resource files

 	If you are using Visual Studio

 	If you are using VS Code

 	Other resource file tools

 	Managing resource files

 	Localizing Razor Views with an injected view localizer

 	Understanding the Accept-Language header

 	Practicing and exploring

 	Exercise 4.1 – Online material

 	Exercise 4.2 – Practice exercises

 	Practice creating a custom Tag Helper

 	Practice unit testing MVC controllers

 	Exercise 4.3 – Test your knowledge

 	Exercise 4.4 – Explore topics

 	Summary

 	Authentication and Authorization

 	Introducing authentication and authorization

 	Key concepts of authentication and authorization

 	Identity management

 	Authentication schemes

 	Role-based and claims-based authorization

 	Security best practices

 	Cookie-based authentication

 	Password verifier best practices

 	Implementing authentication and authorization

 	Defining policies

 	External authentication

 	Securing APIs with JWT

 	Securing controller action methods using filters

 	Enabling role management and creating a role programmatically

 	Cross-functional filters

 	Authorization filter (IAuthorizationFilter)

 	Resource filter (IResourceFilter)

 	Action filter (IActionFilter)

 	Exception filter (IExceptionFilter)

 	Result filter (IResultFilter):

 	Common benefits of all filters

 	Practicing and exploring

 	Exercise 5.1 – Online material

 	Exercise 5.2 – Practice exercises

 	Auth0 integration

 	Exercise 5.3 – Test your knowledge

 	Exercise 5.4 – Explore topics

 	Summary

 	Performance Optimization Using Caching

 	Introducing caching with ASP.NET Core

 	General caching guidelines

 	Reviewing types of caching

 	Caching HTTP responses for websites

 	Common cache-control directives

 	Controlling cache-control directives in ASP.NET Core

 	Exploring cache-control directives

 	Seeing the effect of cache-control directives

 	Summary of caching types

 	Output caching

 	Output caching endpoints

 	Output caching MVC views

 	Varying output cached data by query string

 	Disabling output caching to avoid confusion

 	Object caching

 	Caching objects using in-memory caching

 	Expirations for in-memory caching

 	Exploring in-memory object caching

 	Caching objects using distributed caching

 	Hybrid object caching

 	Creating data repositories with caching for entities

 	Configuring the customer repository

 	More techniques to improve scalability

 	Horizontal scaling with load balancing

 	Asynchronous programming

 	Database optimizations

 	Message queues and background services

 	Auto-scaling in the cloud

 	CDN

 	Health checks and monitoring

 	Practicing and exploring

 	Exercise 6.1 – Online material

 	Exercise 6.2 – Practice exercises

 	Practicing improving scalability by understanding and implementing async action methods

 	Exercise 6.3 – Test your knowledge

 	Exercise 6.4 – Explore topics

 	Summary

 	Web User Interface Testing Using Playwright

 	Introducing web user interface testing

 	Types of web UI testing

 	What should you test in a web UI?

 	Challenges and good practices with web UI testing

 	The roles of developers and testers

 	Developers and web UI testing

 	Testers and web UI testing

 	Collaboration between developers and testers

 	Real-life applications of web user interface testing

 	E-commerce websites: preventing cart and checkout failures

 	Financial applications: ensuring data integrity and accuracy

 	Healthcare portals: guaranteeing user and data safety

 	Banking applications: avoiding security and transaction errors

 	Government and public sector: ensuring accessibility compliance

 	SaaS platforms: preventing downtime and data loss

 	Travel and booking platforms: ensuring smooth transactions

 	Testing web user interfaces using Playwright

 	What can Playwright do?

 	Benefits for .NET developers

 	Alternatives to Playwright

 	Common Playwright testing types

 	Common Playwright testing methods

 	Common Playwright locator methods

 	Common Playwright locator automation methods

 	Testing common scenarios

 	Page navigation and title verification

 	Interacting with a web user interface

 	Filling input boxes and clicking elements

 	Form submission, authentication, and validation

 	Responsive design testing

 	Emulating screen sizes

 	Emulating devices

 	Emulating locale, time zone, and geolocation

 	Emulating dark mode and color schemes

 	Customizing the user agent, disabling JavaScript, and going offline

 	Single-Page Applications (SPAs) and dynamic content

 	Generating tests with the Playwright Inspector

 	Practicing and exploring

 	Exercise 7.1 – Online-only material

 	Exercise 7.2 – Practice exercises

 	Exercise 7.3 – Test your knowledge

 	Exercise 7.4 – Explore topics

 	Summary

 	Configuring and Containerizing ASP.NET Core Projects

 	Configuring dependency services

 	Introducing dependency injection

 	Why use DI?

 	Injection mechanisms of DI in .NET

 	Examples in modern .NET

 	Constructor injection example

 	Property injection example

 	Method injection example

 	Dependency graphs and service resolution

 	Registering dependency service lifetimes

 	When are exceptions thrown?

 	Registering services for features using extension methods

 	When you cannot use constructor injection

 	Using scoped services in middleware

 	Resolving services at startup

 	DI and MVC controller action methods

 	DI and MVC views

 	Disposing services

 	Best practices for DI

 	Configuring the HTTP pipeline

 	Understanding endpoint routing

 	Benefits of endpoint routing

 	Configuring endpoint routing

 	Reviewing the default endpoint routing configuration

 	Setting up the HTTP pipeline

 	Summarizing key middleware extension methods

 	Visualizing the HTTP pipeline

 	Implementing an anonymous inline delegate as middleware

 	Configuring options

 	Configuration sources

 	Configuration classes and interfaces

 	How to manually set up configuration

 	Understanding IConfiguration and IConfigurationRoot

 	IConfiguration for combined settings from all providers

 	IConfigurationRoot for more advanced scenarios

 	Showing providers and settings

 	Configuration overriding in production deployments

 	Configuration overriding in Docker

 	Configuration overriding in Kubernetes

 	Loading configuration using the Options pattern

 	Using IOptionsSnapshot and IOptionsMonitor

 	Configuration validation

 	Using custom configuration providers

 	Containerizing ASP.NET Core projects

 	How containers work and their benefits

 	Docker and .NET Aspire

 	Installing Docker and using prebuilt images

 	Aspire project types

 	Aspire resource types

 	Developer dashboard for monitoring

 	Adding Aspire to an existing solution

 	Deployment with Aspire

 	Practicing and exploring

 	Exercise 8.1 – Online material

 	Exercise 8.2 – Practice exercises

 	Exercise 8.3 – Test your knowledge

 	Exercise 8.4 – Explore topics

 	Summary

 	Building Web Services Using ASP.NET Core Web API

 	Introducing web services

 	Aspects of RESTful services

 	Statelessness

 	Resource-based

 	Uniform interface

 	Client-server architecture

 	Cacheability

 	Layering

 	Representation of resources

 	Idempotency

 	Hypermedia as the Engine of Application State (HATEOAS)

 	Why REST matters

 	Understanding HTTP versions

 	HTTP/0.9 (1991)

 	HTTP/1.0 (1996)

 	HTTP/1.1 (1997, updated in 1999)

 	HTTP/2 (2015)

 	HTTP/3 (2020)

 	Understanding HTTP requests and responses for web APIs

 	GET requests

 	Common response status codes

 	Caching requests example

 	POST, PUT, and other requests

 	Creating an ASP.NET Core Web API with controllers project

 	Trying out the weather forecast web service’s functionality

 	Creating a web service for the Northwind database

 	Controlling XML serialization

 	Routing web service requests to action methods

 	Route constraints

 	Short-circuit routes

 	Understanding action method return types

 	Configuring the customer repository and Web API controller

 	Specifying problem details

 	Documenting and trying out web services

 	Making GET requests using a browser

 	Making GET requests using HTTP/REST tools

 	Making other requests using HTTP/REST tools

 	Passing environment variables

 	Understanding the OpenAPI Specification

 	Generating clients using an OpenAPI specification

 	Caching and logging

 	Caching HTTP responses for web services

 	Enabling HTTP logging

 	Support for logging additional request headers in W3CLogger

 	Logging and security principles

 	Avoid logging sensitive information

 	Mask or obfuscate sensitive data

 	Avoid logging request and response bodies for sensitive endpoints

 	Use structured logging for sensitive data management

 	Log security events without sensitive data

 	Beware of third-party library logging

 	Log errors with caution

 	Consuming web services using HTTP clients

 	Understanding HttpClient

 	Configuring HTTP clients using HttpClientFactory

 	Getting customers as JSON in the controller

 	Starting multiple projects

 	If you are using Visual Studio

 	If you are using VS Code

 	Starting the web service and MVC client projects

 	Relaxing the same origin security policy using CORS

 	Configuring HTTP logging for the web service

 	Creating a .NET client

 	Understanding CORS

 	Understanding other CORS policy options

 	Understanding identity services

 	JWT bearer authorization

 	Authenticating service clients using JWT bearer authentication

 	Practicing and exploring

 	Exercise 9.1 – Online material

 	Improved route tooling

 	Implementing advanced features for web services

 	Exercise 9.2 – Practice exercise

 	Creating and deleting customers with HttpClient

 	Exercise 9.3 – Test your knowledge

 	Exercise 9.4 – Explore topics

 	Summary

 	Building Web Services Using ASP.NET Core OData

 	Understanding OData

 	Understanding the OData standard

 	Benefits of OData

 	Standardized querying

 	Cross-platform interoperability and integration with Microsoft ecosystem

 	Self-describing and rich metadata

 	Supports RESTful principles and CRUD operations

 	Supports multiple data formats

 	Built-in support for data relationships

 	Extensibility

 	Standard security features

 	Disadvantages of OData

 	Building a web service that supports OData

 	Defining OData models for the EF Core models

 	Testing the OData models

 	Creating and testing OData controllers

 	Exploring OData services using HTTP/REST tools

 	Creating an HTTP file for making requests

 	Understanding OData queries

 	OData standard query options

 	OData operators

 	OData functions

 	Exploring OData queries

 	Using logs to review the efficiency of OData requests

 	Implementing versions and data modifications

 	Versioning OData controllers

 	Enabling entity inserts, updates, and deletes

 	Building clients for OData services

 	Calling services in the Northwind MVC website

 	Revisiting the introductory query

 	Practicing and exploring

 	Exercise 10.1 – Online material

 	Exercise 10.2 – Practice exercises

 	Exercise 10.3 – Test your knowledge

 	Exercise 10.4 – Explore topics

 	Summary

 	Building Web Services Using FastEndpoints

 	Introducing FastEndpoints

 	Pros and cons of FastEndpoints

 	What makes it “fast”?

 	How to define an endpoint

 	Example FastEndpoints endpoint implementation

 	Implementing FastEndpoints

 	Adding FastEndpoints to an empty ASP.NET Core project

 	Enabling FastEndpoints and defining endpoints

 	Configuring FastEndpoints

 	Configuration methods and properties

 	Mapping requests and responses to entity models

 	Practicing and exploring

 	Exercise 11.1 – Online material

 	Exercise 11.2 – Practice exercises

 	Exercise 11.3 – Test your knowledge

 	Exercise 11.4 – Explore topics

 	Summary

 	Web Service Integration Testing

 	Basics of integration testing

 	Testing terminology

 	Attributes of all good tests

 	Test outcomes

 	Why false positives and false negatives are bad

 	Test doubles, mocks, and stubs

 	Which external systems to test

 	Sharing fixtures in integration tests

 	Understanding web service functional and end-to-end testing

 	End-to-end test scenario

 	Functional test scenario

 	Test automation

 	Integration testing with data stores

 	Developer instances of the database and migrations

 	Data lifecycle

 	Testing web services using xUnit

 	Unit testing using xUnit

 	Common xUnit attributes

 	Web service hosting with WebApplicationFactory

 	Enabling an ASP.NET Core project to be tested

 	Creating the test project

 	Mocking in tests

 	Libraries for mocking

 	Using NSubstitute to create test doubles

 	Mocking with NSubstitute example

 	Testing services using dev tunnels

 	Installing the dev tunnel CLI

 	Exploring a dev tunnel with the CLI and an echo service

 	Exploring a dev tunnel with an ASP.NET Core project

 	Practicing and exploring

 	Exercise 12.1 – Online-only material

 	Exercise 12.2 – Practice exercises

 	Create integration tests for three web service technologies

 	Exercise 12.3 – Test your knowledge

 	Exercise 12.4 – Explore topics

 	Summary

 	Web Content Management Using Umbraco

 	Understanding the benefits of a CMS

 	Understanding basic CMS features

 	Understanding enterprise CMS features

 	Understanding CMS platforms

 	Introducing Umbraco CMS

 	Why is Umbraco popular?

 	Umbraco versions and setup

 	Installing Umbraco CMS

 	Creating and initializing a new Umbraco project

 	Unattended installs

 	Defining document types

 	Example document types

 	Creating a document type

 	Setting up languages

 	Defining a document template

 	Reviewing the website

 	Adding a home page as content

 	Creating and publishing a French variant home page

 	Working with media

 	Good media practices

 	Organizing media using folders

 	Using tags to enhance searchability

 	Optimizing image sizes before uploading

 	Using meaningful file names and alt text

 	Leveraging image cropping and variants

 	Avoiding duplicate media uploads

 	Removing unused media regularly

 	Using Umbraco’s built-in permissions for media access

 	Training editors on best practices and providing resources

 	Uploading images to Umbraco CMS

 	Practicing and exploring

 	Exercise 13.1 – Online material

 	Exercise 13.2 – Practice exercises

 	Exercise 13.3 – Test your knowledge

 	Exercise 13.4 – Explore topics

 	Summary

 	Customizing and Extending Umbraco

 	Techniques for customizing and extending Umbraco

 	Building custom property editors for enhanced content creation

 	Integrating third-party APIs to enhance functionality

 	Custom workflow automation for content approval

 	Multilingual capabilities with custom language switching

 	Customizing Umbraco behavior using settings

 	Content settings

 	Security settings

 	Imaging settings

 	Global settings

 	Content version cleanup

 	Working with views and Razor syntax

 	What is IPublishedContent?

 	Core functionality of IPublishedContent

 	Using IPublishedContent with ModelsBuilder

 	Rendering fields in a strongly typed view

 	Rendering complex field types

 	Rendering Rich Text Editor (RTE) fields

 	Rendering Multi-Node Tree Picker (MNTP) fields

 	Handling Media Picker fields

 	Handling Nested Content and Block List editors

 	Common considerations

 	Accessing member data

 	Using Models Builder

 	The UmbracoHelper class

 	Retrieving content by ID

 	Retrieving media by ID

 	Rendering a content template

 	Getting dictionary values

 	Querying content using LINQ

 	Checking member authorization

 	UmbracoHelper summary

 	Practicing and exploring

 	Exercise 14.1 – Online material

 	Exercise 14.2 – Practice exercises

 	The Starter Kit

 	Extending Umbraco

 	Exercise 14.3 – Test your knowledge

 	Exercise 14.4 – Explore topics

 	Summary

 	Epilogue

 	Next steps on your web development learning journey

 	Companion books to continue your learning journey

 	Other books to take your learning further

 	The next edition for .NET 10

 	Good luck!

 	Index

 	Download the free PDF and supplementary content

 Landmarks

 	Cover

 	Index

 Preface

 There are programming books that are thousands of pages long that aim to be comprehensive references to the C# language, the .NET libraries, and app models like websites, services, and desktop and mobile apps.

 This book is different. It is concise and aims to be a brisk, fun read that is packed with practical hands-on walk-throughs of each subject. The breadth of the overarching narrative comes at the cost of some depth, but you will find many signposts to explore further if you wish.

 This book is simultaneously a step-by-step guide to learning modern C# and proven practices using cross-platform .NET, and a brief introduction to the fundamentals of modern web development, along with the creation of websites and services that can be built with these technologies. This book is most suitable for beginners to C# and .NET, as well as programmers who have worked with C# in the past but may feel left behind by the changes in the past few years.

 I will point out the cool corners and gotchas of C# and .NET so that you can impress colleagues and get productive fast. Rather than slowing down and boring some readers by explaining every little thing, I will assume that you are smart enough to Google an explanation for topics that are related but not necessary to include in a beginner-to-intermediate guide that has limited space in a printed book.

 Some chapters have links to additional related online-only content for those readers who would like more details. For example, Chapter 1, Introducing Web Development with Controllers, has an online section about web development on the client side using HTML, CSS, and JavaScript.

 Where to find the code solutions

 You can download solutions for the step-by-step guided tasks and exercises from the GitHub repository at the following link: https://github.com/markjprice/web-dev-net9.

 If you don’t know how to download or clone a GitHub repository, then I provide instructions at the end of Chapter 1, Introducing Web Development with Controllers.

 What this book covers

 Chapter 1, Introducing Web Development with Controllers, is about introducing you to mature and proven web development with .NET. This means a set of technologies that have been refined over a decade or more with plenty of documentation, support forums, and third-party investment, including ASP.NET Core Model-View-Controller (MVC), Web API services using controllers and OData, and popular frameworks like Umbraco CMS.

 Chapter 2, Building Websites Using ASP.NET Core MVC, introduces building websites with a modern HTTP architecture on the server side using ASP.NET Core MVC, including the models, views, and controllers that make up the main components of an ASP.NET Core MVC project, and how to use Bootstrap for quick user interface prototyping.

 Chapter 3, Model Binding, Validation, and Data Using EF Core, covers model binding, model validation, and retrieving and modifying data using EF Core in an ASP.NET Core MVC website project. These concepts work together to simplify the common tasks of taking user input, processing it, and storing or retrieving data from a database.

 Chapter 4, Building and Localizing Web User Interfaces, is about building web user interfaces with ASP.NET Core in more depth. You will learn more details about ASP.NET Core MVC views, Razor syntax, HTML and Tag Helpers, and how to internationalize your website so that its user interface is understandable all over the world.

 Chapter 5, Authentication and Authorization, discusses authentication and authorization and how to implement them for an ASP.NET Core MVC website project. This means how to provide a web user interface for a visitor to register an account with a password, and how they can log in to access secure areas of the website.

 Chapter 6, Performance Optimization Using Caching, explains optimizing the performance and scalability of your websites and web services by using caching of various types.

 Chapter 7, Web User Interface Testing Using Playwright, introduces you to web user interface testing and how to use Microsoft Playwright to write automated tests for web user interfaces.

 Chapter 8, Configuring and Containerizing ASP.NET Core Projects, discusses configuring and containerizing ASP.NET Core projects.

 Chapter 9, Building Web Services Using ASP.NET Core Web API, covers learning how to build web services, AKA HTTP (Hypertext Transfer Protocol) or Representational State Transfer (REST) services using ASP.NET Core Web API with controllers. You will then learn how to consume web services using HTTP clients, which could be any other type of .NET app, including a website, mobile, or desktop app.

 Chapter 10, Building Web Services Using ASP.NET Core OData, explains OData, a standard that makes it easy to expose data via the web to make it accessible to any client that can make an HTTP request.

 Chapter 11, Building Web Services Using FastEndpoints, teaches you about building web services using FastEndpoints, a popular third-party package that shuns controllers in favor of a more efficient way of defining the web service endpoints.

 Chapter 12, Web Service Integration Testing, introduces you to testing your web services. Unit tests are good at detecting errors in business logic in a class or method, but you also need to verify that larger parts of your codebase work together with each other and external systems. This is where integration testing becomes important for web services.

 Chapter 13, Web Content Management Using Umbraco, is about building ASP.NET Core website projects that integrate with Umbraco CMS, a popular third-party web content management system.

 Chapter 14, Customizing and Extending Umbraco, introduces customizing and extending Umbraco CMS.

 Epilogue describes your options for further study about .NET web development.

 Appendix, Answers to the Test Your Knowledge Questions, has the answers to the test questions at the end of each chapter. You can access this appendix as part of the supplementary content package available at: https://packt.link/supplementary-content-9781835880388 (instructions available at the end of the Preface and the book).

 What you need for this book

 You can develop and deploy C# and .NET apps using the cross-platform Visual Studio Code and the command-line tools on most operating systems, including Windows, macOS, and many varieties of Linux. An operating system that supports VS Code and an internet connection is all you need to follow along with this book.

 If you prefer alternatives, then the choice is yours whether to use Visual Studio or a third-party tool like JetBrains Rider.

 Downloading the color images of this book

 We also provide you with a PDF file that has color images of the screenshots and diagrams used in this book. The color images will help you better understand the changes in the output.

 You can access this graphics bundle as part of the supplementary content package available at: https://packt.link/supplementary-content-9781835880388 (instructions available at the end of the Preface and the book).

 Conventions

 In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

 CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “The Controllers, Models, and Views folders contain ASP.NET Core classes and the .cshtml files for execution on the server.”

 A block of code is set as follows:

 // storing items at index positions
names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

 When we wish to draw your attention to a particular part of a code block, the relevant lines or items are highlighted:

 // storing items at index positions
names[0] = "Kate";
names[1] = "Jack";
names[2] = "Rebecca";
names[3] = "Tom";

 Any command-line input or output is written as follows:

 dotnet new console

 Bold: Indicates a new term, an important word, or words that you see on the screen, for example, in menus or dialog boxes. For example: “Clicking on the Next button moves you to the next screen.”

 Important notes and links to external sources for further reading appear in a box like this.

 Good Practice: Recommendations for how to program like an expert appear like this.

 Get in touch

 Feedback from our readers is always welcome.

 General feedback: If you have questions about any aspect of this book, mention the book title in the subject of your message and email us at customercare@packtpub.com.

 Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata, select your book, click on the Errata Submission Form link, and enter the details.

 Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name.

 Please contact us at copyright@packt.com with a link to the material.

 If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

 Leave a Review!

 Thank you for purchasing this book from Packt Publishing—we hope you enjoy it! Your feedback is invaluable and helps us improve and grow. Once you’ve completed reading it, please take a moment to leave an Amazon review; it will only take a minute, but it makes a big difference for readers like you.

 Scan the QR code below to receive a free ebook of your choice.

 [image: A qr code with a square in the middle

Description automatically generated]
 https://packt.link/NzOWQ

 Download the free PDF and supplementary content

 Thanks for purchasing this book!

 Do you like to read on the go but are unable to carry your print books everywhere?

 Is your eBook purchase not compatible with the device of your choice?

 Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

 Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

 Additionally, with this book you get access to supplementary/bonus content for you to learn more. You can use this to add on to your learning journey on top of what you have in the book.

 The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily.

 Follow these simple steps to get the benefits:

 	Scan the QR code or visit the link below:

 [image:]
 https://packt.link/supplementary-content-9781835880388

 	Submit your proof of purchase.

 	Submit your book code. You can find the code under the Summary section of Chapter 7.

 	That’s it! We’ll send your free PDF, supplementary content, and other benefits to your email directly.

 1

 Introducing Web Development Using Controllers

 This book is about mature and proven web development with .NET. This means a set of technologies that have been refined over a decade or more with plenty of documentation, support forums, and third-party investment.

 These technologies are:

 	ASP.NET Core: A set of shared components for building websites and services.

 	ASP.NET Core MVC: An implementation of the model-view-controller design pattern for complex yet well-structured website development.

 	ASP.NET Core Web APIs: For building controller-based web services that conform to the HTTP/REST service conventions.

 	ASP.NET Core OData: For building data access web services using an open standard.

 	Umbraco CMS: A third-party, open source, Content Management System (CMS) platform built on ASP.NET Core.

 With these technologies, you will learn how to build cross-platform websites and web services using .NET 8 or .NET 9, the two actively supported versions of .NET.

 You can choose either because some of the newer features that we will learn about, like the HybridCache class, have backward compatibility with .NET 8. Others, like the new MapStaticAssets method that optimizes files like stylesheets and JavaScript, only work with .NET 9. I will warn you in these cases.

 The benefit of choosing .NET 8 is that it is a Long-Term Support (LTS) release, meaning it is supported for three years. .NET 8 will reach its end of life in November 2026.

 The benefit of choosing the latest .NET 9 is significant performance improvements and better support for containerization for cloud hosting compared to earlier versions. .NET 9 will reach its end of life in May 2026.

 Throughout this book, I use the term modern .NET to refer to .NET 9 and its predecessors, like .NET 6, that derive from .NET Core. I use the term legacy .NET to refer to .NET Framework, Mono, Xamarin, and .NET Standard. Modern .NET is a unification of those legacy platforms and standards.

 Who are you? While writing this book, I have assumed that you are a .NET developer who is employed by a consultancy or a large organization. As such, you primarily work with mature and proven technologies like MVC rather that the newest shiny technologies pushed by Microsoft like Blazor. I also assume that you have little professional interest in being a web designer or content editor.

 I recommend that you work through this and subsequent chapters sequentially because later chapters will reference projects in earlier chapters, and you will build up sufficient knowledge and skills to tackle the more challenging problems in later chapters. For example, the last section in this chapter will walk you through creating a pair of class libraries that define a database entity model that will be used in all subsequent chapters.

 In this chapter, we will cover the following topics:

 	Understanding ASP.NET Core

 	Structuring projects and managing packages

 	Making good use of the GitHub repository for this book

 	Building an entity model for use in the rest of the book

 Warning! Prerequisites for this book are knowledge of C# and .NET fundamentals, and I assume you have already set up your development environment to use Visual Studio 2022, Visual Studio Code, or JetBrains Rider. Throughout this book, I will use the names Visual Studio, VS Code, and Rider to refer to these three code editors respectively. If you have not set up your development environment, then you can learn how at the following link:

 https://github.com/markjprice/web-dev-net9/blob/main/docs/ch01-setup-dev-env.md

 Understanding ASP.NET Core

 To understand ASP.NET Core, it is useful to first see where it came from.

 A brief history of ASP.NET Core

 ASP.NET Core is part of a 30-year history of Microsoft technologies used to build websites and services that work with data that have evolved over the decades:

 	ActiveX Data Objects (ADO) was released in 1996 and was Microsoft’s attempt to provide a single set of Component Object Model (COM) components for working with data. With the release of .NET Framework in 2002, an equivalent was created named ADO.NET, which is still today the faster method to work with data in .NET with its core classes, DbConnection, DbCommand, and DbDataReader. ORMs like EF Core use ADO.NET internally.

 	Active Server Pages (ASP) was released in 1996 and was Microsoft’s first attempt at a platform for dynamic server-side execution of website code. ASP files contain a mix of HTML and code that executes on the server written in the VBScript language.

 	ASP.NET Web Forms was released in 2002 with .NET Framework and was designed to enable non-web developers, such as those familiar with Visual Basic, to quickly create websites by dragging and dropping visual components and writing event-driven code in Visual Basic or C#, as shown in Figure 1.1. Web Forms is not available on modern .NET and it should be avoided for new web projects even with .NET Framework due to limitations on cross-platform compatibility and modern development practices.

 	Windows Communication Foundation (WCF) was released in 2006 and enables developers to build SOAP and REST services. SOAP is powerful but complex, so it should be avoided in new projects unless you need advanced features, such as distributed transactions and complex messaging topologies. SOAP is still widely used in existing enterprise solutions, so you may come across it. I would be interested in hearing from you about this, since I am considering adding a chapter in a future edition of this book if there is enough interest.

 	ASP.NET MVC was released in 2009 to cleanly separate the concerns of web developers between the models, which temporarily store the data; the views, which present the data using various formats in the UI; and the controllers, which fetch the model and pass it to a view. This separation enables improved reuse and unit testing, and fits more naturally with web development without hiding the reality with an additional complex layer of event-driven user interface.

 	ASP.NET Web API was released in 2012 and enables developers to create HTTP services (a.k.a. REST services) that are simpler and more scalable than SOAP services.

 	ASP.NET SignalR was released in 2013 and enables real-time communication for websites by abstracting underlying technologies and techniques, such as WebSockets and long polling. This enables website features such as live chat or updates to time-sensitive data such as stock prices across a wide variety of web browsers, even when they do not support an underlying technology such as WebSockets.

 	ASP.NET Core was released in 2016 and combines modern implementations of .NET Framework technologies such as MVC, Web API, and SignalR with alternative technologies such as Razor Pages, gRPC, and Blazor, all running on modern .NET. Therefore, ASP.NET Core can execute cross-platform. ASP.NET Core has many project templates to get you started with its supported technologies. Over the past decade, the ASP.NET Core team has greatly improved performance and reduced memory footprint to make it the best platform for cloud computing. In some ways, Blazor is a return to Web Forms-style user interface development, as shown in Figure 1.1:

 [image:]
 Figure 1.1: Evolution of web user interface technologies in .NET

 Good Practice: Choose ASP.NET Core to develop websites and web services because it includes web-related technologies that are mature, proven, and cross-platform.

 Classic ASP.NET versus modern ASP.NET Core

 Until modern .NET, ASP.NET was built on top of a large assembly in .NET Framework named System.Web.dll and it was tightly coupled to Microsoft’s Windows-only web server named Internet Information Services (IIS). Over the years, this assembly has accumulated a lot of features, many of which are not suitable for modern cross-platform development.

 ASP.NET Core is a major redesign of ASP.NET. It removes the dependency on the System.Web.dll assembly and IIS and is composed of modular lightweight packages, just like the rest of modern .NET. Using IIS as the web server is still supported by ASP.NET Core, but there is a modern option.

 You can develop and run ASP.NET Core applications cross-platform on Windows, macOS, and Linux. Microsoft has even created a cross-platform, super-performant web server named Kestrel.

 Kestrel is mostly open source. However, it depends on some underlying components and infrastructure that are not fully open source. Kestrel’s open source components include:

 	The core Kestrel server is open source, and its source code is available on GitHub under the ASP.NET repository. You can explore, modify, and even contribute to it: https://github.com/dotnet/aspnetcore/tree/main/src/Servers/Kestrel

 	Kestrel is part of the ASP.NET Core ecosystem, which is entirely open source under the .NET Foundation: https://github.com/dotnet/aspnetcore

 	Kestrel uses the .NET Sockets API for its transport layer, whose implementation is open source.

 Kestrel’s non-open source components include:

 	Some lower-level networking optimizations and APIs in Windows, which Kestrel can take advantage of, are not open source. For example, some of the advanced socket APIs are part of Windows’ closed-source infrastructure.

 	While the .NET runtime is largely open source, there are some proprietary components or dependencies—especially when running on Windows—that are not open source. This would include some optimizations and integrations specific to Microsoft’s cloud infrastructure or networking stack that are baked into Kestrel’s performance characteristics when running on Windows.

 	If you’re using Kestrel hosted in Azure, some integration points, telemetry, and diagnostic services are proprietary. For example, Azure-specific logging, application insights, and security features (though not strictly part of Kestrel itself) are not fully open source.

 Also, note that a non-open source alternative to Kestrel is HTTP.sys. This is a Windows-specific HTTP server and it is closed source. Applications can use HTTP.sys for edge cases requiring Windows authentication or other Windows-specific networking features, but this is outside of Kestrel itself.

 Building websites using ASP.NET Core

 Websites are made up of multiple web pages loaded statically from the filesystem or generated dynamically by a server-side technology such as ASP.NET Core. A web browser makes GET requests using Unique Resource Locators (URLs) that identify each page and can manipulate data stored on the server using POST, PUT, and DELETE requests.

 With many websites, the web browser is treated as a presentation layer, with almost all the processing performed on the server side. Some JavaScript might be used on the client side to implement form validation warnings and some presentation features, such as carousels.

 ASP.NET Core provides multiple technologies for building the user interface for websites:

 	ASP.NET Core Razor Pages is a simple way to dynamically generate HTML for simple websites.

 	ASP.NET Core MVC is an implementation of the Model-View-Controller (MVC) design pattern that is popular for developing complex websites. Microsoft’s first implementation of MVC on .NET was in 2009, so it is more than 15 years old now. Its APIs are stable, it has plentiful documentation and support, and many third parties have built powerful products and platforms on top of it and controller-based Web APIs. MVC is designed to work with the HTTP request/response model instead of hiding it so that you are encouraged to embrace the nature of web development rather than pretending it doesn’t exist, which can store up worse problems in the future.

 	Blazor lets you build user interface components using C# and .NET instead of a JavaScript-based UI framework like Angular, React, and Vue. Early versions of Blazor required a developer to choose a hosting model. The Blazor WebAssembly hosting model runs your code in the browser like a JavaScript-based framework would. The Blazor Server hosting model runs your code on the server and updates the web page dynamically using SignalR. Introduced with .NET 8 is a unified, full-stack hosting model that allows individual components to execute either on the server or client side, or even to adapt dynamically at runtime.

 So which should you choose?

 ”Blazor is now our recommended approach for building web UI with ASP.NET Core, but neither MVC nor Razor Pages are now obsolete. Both MVC & Razor Pages are mature, fully supported, and widely used frameworks that we plan to support for the foreseeable future. There is also no requirement or guidance to migrate existing MVC or Razor Pages apps to Blazor. For existing, well-established MVC-based projects, continuing to develop with MVC is a perfectly valid and reasonable approach.” – Dan Roth

 You can see the original comment post at the following link:

 https://github.com/dotnet/aspnetcore/issues/51834#issuecomment-1913282747

 Dan Roth is the Principal Product Manager on the ASP.NET team, so he knows the future of ASP.NET Core better than anyone else:

 https://devblogs.microsoft.com/dotnet/author/danroth27/

 I agree with the quote by Dan Roth. For me, there are two main choices:

 	For real-world websites and web services using mature and proven web development, choose controller-based ASP.NET Core MVC and Web API. For even more productivity, you can layer on top third-party platforms, for example, a .NET CMS like Umbraco. All these technologies are covered in this book.

 	For websites and web services using modern web development, choose Blazor for the web user interface and Minimal APIs for the web service. Choosing these is more of a risk because their APIs are still changing because they are relatively new. These technologies are covered in my other books, C# 13 and .NET 9 – Modern Cross-Platform Development Fundamentals and Apps and Services with .NET 8.

 Much of ASP.NET Core is shared across these two choices anyway, so you will only need to learn about those shared components once, as shown in Figure 1.2:

 [image:]
 Figure 1.2: Modern or mature controller-based (and shared) ASP.NET Core components

 JetBrains did a survey of 26,348 developers from all around the world and asked about web development technologies and ASP.NET Core usage by .NET developers. The results showed that most .NET developers still use mature and proven controller-based technologies like MVC and Web API. The newer technologies like Blazor were far behind. A chart from the report is shown in Figure 1.3:

 [image:]
 Figure 1.3: The State of Developer Ecosystem 2023 – ASP.NET Core

 It is also interesting to see which JavaScript libraries and cloud host providers are used by .NET developers. For example, 18% use React, 15% use Angular, and 9% use Vue, and all have dropped by a few percent since the previous year. I speculate that this is due to a shift to Blazor instead. For cloud hosting, 24% use Azure, and 12% use AWS. This makes sense for .NET developers since Microsoft puts more effort into supporting .NET developers on its cloud platform.

 More Information: You can read more about the JetBrains report, The State of Developer Ecosystem 2023, and see the results of the ASP.NET Core question at https://www.jetbrains.com/lp/devecosystem-2023/csharp/#csharp_asp_core.

 In summary, C# and .NET can be used on both the server side and the client side to build websites, as shown in Figure 1.4:

 [image:]
 Figure 1.4: The use of C# and .NET to build websites on both the server- and client-side

 To summarize what’s new in ASP.NET Core 9 for its mature and proven controller-based technologies, let’s end this section with another quote from Dan Roth:

 ”We’re optimizing how static web assets are handled for all ASP.NET Core apps so that your files are pre-compressed as part of publishing your app. For API developers we’re providing built-in support for OpenAPI document generation.” - Dan Roth

 Comparison of file types used in ASP.NET Core

 It is useful to summarize the file types used by these technologies because they are similar but different. If the reader does not understand some subtle but important differences, it can cause much confusion when trying to implement their own projects. Please note the differences in Table 1.1:

 	
 Technology

 	
 Special filename

 	
 File extension

 	
 Directive

 	
 Razor View (MVC)

 	
 	
 .cshtml

 	

 	
 Razor Layout

 	
 	
 .cshtml

 	

 	
 Razor View Start

 	
 _ViewStart

 	
 .cshtml

 	

 	
 Razor View Imports

 	
 _ViewImports

 	
 .cshtml

 	

 	
 Razor Component (Blazor)

 	
 	
 .razor

 	

 	
 Razor Component (Blazor with page routing)

 	
 	
 .razor

 	
 @page "<path>"

 	
 Razor Component Imports (Blazor)

 	
 _Imports

 	
 .razor

 	

 	
 Razor Page

 	
 	
 .cshtml

 	
 @page

 Table 1.1: Comparison of file types used in ASP.NET Core

 Directives like @page are added to the top of a file’s contents.

 If a file does not have a special filename, then it can be named anything. For example, you might create a Razor View named Customer.cshtml, or you might create a Razor Layout named _MobileLayout.cshtml.

 The naming convention for shared Razor files like layouts and partial views is to prefix with an underscore _. For example, _ViewStart.cshtml, _Layout.cshtml, or _Product.cshtml (this might be a partial view for rendering a product).

 A Razor Layout file like _MyCustomLayout.cshtml is identical to a Razor View. What makes the file a layout is being set as the Layout property of another Razor file, as shown in the following code:

 @{
 Layout = "_MyCustomLayout"; // File extension is not needed.
}

 Warning! Be careful to use the correct file extension and directive at the top of the file or you will get unexpected behavior.

 Building websites using a content management system

 Most websites have a lot of content, and if developers had to be involved every time some content needed to be changed, that would not scale well. Almost no real-world website built with .NET only uses ASP.NET Core. A professional .NET web developer therefore needs to learn about other platforms built on top of ASP.NET Core.

 A Content Management System (CMS) enables or CMS Administrators to define content structure and templates to provide consistency and good design while making it easy for a non-technical content owner to manage the actual content. They can create new pages or blocks of content, and update existing content, knowing it will look great for visitors with minimal effort.

 There are a multitude of CMSs available for all web platforms, like WordPress for PHP or Django for Python. CMSs that support modern .NET include Optimizely Content Cloud, Umbraco, Piranha, and Orchard Core.

 The key benefit of using a CMS is that it provides a friendly content management user interface. Content owners log in to the website and manage the content themselves. The content is then rendered and returned to visitors using ASP.NET Core MVC controllers and views, or via web service endpoints, known as a headless CMS, to provide that content to “heads” implemented as mobile or desktop apps, in-store touchpoints, or clients built with JavaScript frameworks or Blazor.

 This book covers the world’s most popular .NET CMS, Umbraco in Chapter 13, Web Content Management Using Umbraco, and Chapter 14, Customizing and Extending Umbraco. The quantifiable evidence—usage statistics from BuiltWith, GitHub activity, download numbers, community engagement, and search trends—all point to Umbraco as the most popular .NET-based CMS worldwide. You can see a list of almost 100,000 websites built using Umbraco at the following link:

 https://trends.builtwith.com/websitelist/Umbraco/Historical

 Umbraco is open source and hosted on GitHub. It has over 2.7k forks and 4.4k stars on its main repository, found at the following link:

 https://github.com/umbraco/Umbraco-CMS

 The active developer community and constant updates indicate its popularity among developers. Umbraco has reported more than six million downloads of its CMS, which is a significant metric compared to competitors in the .NET CMS space.

 More Information: You can learn more about alternative .NET CMSs in the GitHub repository at https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#net-content-management-systems.

 Building web applications using SPA frameworks

 Web applications are often built using technologies known as Single-Page Application (SPA) frameworks, such as Blazor, Angular, React, Vue, or a proprietary JavaScript library. They can make requests to a backend web service to get more data when needed and post updated data using common serialization formats such as XML and JSON. The canonical examples are Google web apps like Gmail, Maps, and Docs.

 With a web application, the client side uses JavaScript frameworks or Blazor to implement sophisticated user interactions, but most of the important processing and data access still happens on the server side because the web browser has limited access to local system resources.

 JavaScript is loosely typed and is not designed for complex projects, so most JavaScript libraries these days use TypeScript, which adds strong typing to JavaScript and is designed with many modern language features for handling complex implementations.

 The .NET SDK has project templates for JavaScript and TypeScript-based SPAs, but we will not spend any time learning how to build JavaScript and TypeScript-based SPAs in this book.

 If you are interested in building SPAs with an ASP.NET Core backend, Packt has other books that you might be interested in, as shown in the following list:

 	ASP.NET Core 8 and Angular - Sixth Edition: Full-stack web development with ASP.NET Core 8 and Angular: https://www.amazon.com/ASP-NET-Core-Angular-Full-stack-development/dp/1805129937/

 	ASP.NET Core 5 and React: Full-stack web development using .NET 5, React 17, and TypeScript 4, 2nd Edition: https://www.amazon.com/ASP-NET-Core-React-Full-stack-development-ebook/dp/B08KYKNGCC/

 	ASP.NET Core and Vue.js: Build real-world, scalable, full-stack applications using Vue.js 3, TypeScript, .NET 5, and Azure: https://www.amazon.com/ASP-NET-Core-Vue-js-real-world-applications-ebook/dp/B08QTVV8RK/

 Building web and other services

 In this book, you will learn how to build a controller-based web service using ASP.NET Core Web API, and then how to call that web service from an ASP.NET Core MVC website.

 There are no formal definitions, but services are sometimes described based on their complexity:

 	Service: All functionality needed by a client app in one monolithic service.

 	Microservice: Multiple services that each focus on a smaller set of functionalities. They are often deployed using containerization, which we will cover in Chapter 8, Configuring and Containerizing ASP.NET Core Projects.

 	Nanoservice: A single function provided as a service. Unlike services and microservices that are hosted 24/7/365, nanoservices are often inactive until called upon to reduce resources and costs.

 Cloud providers and deployment tools

 These days, websites and web services are often deployed to cloud providers like Microsoft Azure or Amazon Web Services. Hundreds of different tools are used to perform the deployments, like Azure Pipelines or Octopus Deploy.

 Cloud providers and deployment tools are out-of-scope for this book because there are too many choices and I don’t want to force anyone to learn about or pay for cloud hosting that they will never use for their own projects.

 Instead, this book covers containerization using Docker in Chapter 8, Configuring and Containerizing ASP.NET Core Projects. Once you have containerized an ASP.NET Core project, it is easy to deploy it to any cloud provider using any deployment or production management tool.

 Structuring projects and managing packages

 How should you structure your projects? In this book, we will build multiple projects using different technologies that work together to provide a single solution.

 With large, complex solutions, it can be difficult to navigate through all the code. So, the primary reason to structure your projects is to make it easier to find components. It is good to have an overall name for your solution that reflects the application or solution.

 We will build multiple projects for a fictional company named Northwind. We will name the solution MatureWeb and use the name Northwind as a prefix for all the project names.

 There are many ways to structure and name projects and solutions, for example, using a folder hierarchy as well as a naming convention. If you work in a team, make sure you know how your team does it.

 Structuring projects in a solution

 It is good to have a naming convention for your projects in a solution so that any developer can tell what each one does instantly. A common choice is to use the type of project, for example, class library, console app, website, and so on.

 Since you might want to run multiple web projects at the same time, and they will be hosted on a local web server, we need to differentiate each project by assigning different port numbers for their endpoints for both HTTP and HTTPS.

 Commonly assigned local port numbers are 5000 for HTTP and 5001 for HTTPS. We will use a numbering convention of 5<chapter>0 for HTTP and 5<chapter>1 for HTTPS. For example, for an ASP.NET Core MVC website project that we will create in Chapter 2, we will assign 5020 for HTTP and 5021 for HTTPS.

 We will therefore use the following project names and port numbers, as shown in Table 1.2:

 	
 Name

 	
 Ports

 	
 Description

 	
 Northwind.Common

 	
 N/A

 	
 A class library project for common types like interfaces, enums, classes, records, and structs, is used across multiple projects.

 	
 Northwind.EntityModels

 	
 N/A

 	
 A class library project for common EF Core entity models. Entity models are often used on both the server and client side, so it is best to separate dependencies on specific database providers.

 	
 Northwind.DataContext

 	
 N/A

 	
 A class library project for the EF Core database context with dependencies on specific database providers.

 	
 Northwind.UnitTests

 	
 N/A

 	
 An xUnit test project for the solution.

 	
 Northwind.Mvc

 	
 http 5020,

 https 5021

 	
 An ASP.NET Core project for complex websites that uses a mixture of static HTML files and MVC Razor Views.

 	
 Northwind.WebApi

 	
 http 5090,

 https 5091

 	
 An ASP.NET Core project for a Web API aka HTTP service. A good choice for integrating with websites because it can use any .NET app, JavaScript library, or Blazor to interact with the service.

 Table 1.2: Example project names for various project types

 Structuring folders in a project

 In ASP.NET Core projects, organizing the project structure is vital for maintainability and scalability. Two popular approaches are organizing by technological concerns and using feature folders.

 Folder structure based on technological concerns

 In this approach, folders are structured based on the type of components, such as Controllers, Models, Views, Services, and so on, as shown in the following output:

 /Controllers
 ShoppingCartController.cs
 CatalogController.cs
/Models
 Product.cs
 ShoppingCart.cs
/Views
 /ShoppingCart
 Index.cshtml
 Summary.cshtml
 /Catalog
 Index.cshtml
 Details.cshtml
/Services
 ProductService.cs
 ShoppingCartService.cs

 There are pros and cons to the technical concerns approach, as shown in the following list:

 	Pro – Familiarity: This structure is common and well-documented, and many sample projects use it, making it easier for developers to understand.

 	Pro – IDE support: SDKs and IDEs assume this structure and may provide better support and navigation for it.

 	Con – Scalability: As the project grows, finding related files can become difficult since they are spread across multiple folders.

 	Con – Cross-cutting concerns: Managing cross-cutting concerns like logging and validation can become cumbersome.

 The .NET SDK project templates use this technological concerns approach to folder structure. This means that many organizations use it by default despite it not being the best approach for their needs.

 Folder structure based on features

 In this approach, folders are organized by features or vertical slices, grouping all related files for a specific feature together, as shown in the following output:

 /Features
 /ShoppingCart
 ShoppingCartController.cs
 ShoppingCartService.cs
 ShoppingCart.cs
 Index.cshtml
 Summary.cshtml
 /Catalog
 CatalogController.cs
 ProductService.cs
 Product.cs
 Index.cshtml
 Details.cshtml

 There are pros and cons to the feature folders approach, as shown in the following list:

 	Pro – Modularity: Each feature is self-contained, making it easier to manage and understand. Adding new features is straightforward and doesn’t affect the existing structure. Easier to maintain since related files are located together.

 	Pro – Isolation: Helps in isolating different parts of the application, promoting better testability and refactoring.

 	Con – Learning curve: Less familiar to some developers, requiring a learning curve.

 	Con – Code duplication: Potential for code duplication if not managed properly.

 Feature folders are a common choice for modular monolith architecture. It makes it easier to later split the feature out into a separate project for deployment.

 Feature folders align well with the principles of Vertical Slice Architecture (VSA). VSA focuses on organizing code by features or vertical slices, each slice handling a specific business capability end-to-end. This approach often includes everything from the UI layer down to the data access layer for a given feature in one place, as described in the following key points:

 	Each slice represents an end-to-end implementation of a feature.

 	VSA promotes loose coupling between features, making the application more modular and easier to maintain.

 	Each slice is responsible for a single feature or use case, which fits well with SOLID’s Single Responsibility Principle (SRP).

 	VSA allows for features to be developed, tested, and deployed independently, which is beneficial for microservices or distributed systems.

 Folder structure summary

 Both organizational techniques have their merits, and the choice depends on the specific needs of your project. Technological concerns organization is straightforward and familiar but can become unwieldy as the project grows. Feature folders, while potentially introducing a learning curve, offer better modularity and scalability, aligning well with the principles of VSA.

 Feature folders are particularly advantageous in larger projects or those with distributed teams, as they promote better organization and isolation of features, leading to improved maintainability and flexibility in the long run.

 Central Package Management

 By default, with the .NET SDK CLI and most code editor-created projects, if you need to reference a NuGet package, you add the reference to the package name and version directly in the project file.

 Central Package Management (CPM) is a feature that simplifies the management of NuGet package versions across multiple projects within a solution. This is particularly useful for large solutions with many projects, where managing package versions individually can become cumbersome and error-prone.

 The key features and benefits of CPM include:

 	Centralized Control: CPM allows you to define package versions in a single file, typically Directory.Packages.props, which is placed in the root directory of your solution. This file centralizes the version information for all NuGet packages used across the projects in your solution.

 	Consistency: Ensures consistent package versions across multiple projects. By having a single source of truth for package versions, it eliminates discrepancies that can occur when different projects specify different versions of the same package.

 	Simplified Updates: Updating a package version in a large solution becomes straightforward. You update the version in the central file, and all projects referencing that package automatically use the updated version. This significantly reduces the maintenance overhead.

 	Reduced Redundancy: Removes the need to specify package versions in individual project files (.csproj). This makes project files cleaner and easier to manage, as they no longer contain repetitive version information.

 Good Practice: It is important to regularly update NuGet packages and their dependencies to address security vulnerabilities.

 Let’s set up Central Package Management for a solution that we will use throughout the rest of the chapters in this book:

 	Create a new folder named web-dev-net9 that we will use for all the code in this book. For example, on Windows, create a folder: C:\web-dev-net9.

 	In the web-dev-net9 folder, create a new folder named MatureWeb.

 	In the MatureWeb folder, create a new file named Directory.Packages.props.

 	In Directory.Packages.props, modify its contents, as shown in the following markup:
 <Project>
 <PropertyGroup>
 <ManagePackageVersionsCentrally>true</Man
agePackageVersionsCentrally>
 </PropertyGroup>
 <ItemGroup Label="For EF Core.">
 <PackageVersion
 Include="Microsoft.EntityFrameworkCore.SqlServer"
 Version="9.0.0" />
 <PackageVersion
 Include="Microsoft.EntityFrameworkCore.Sqlite"
 Version="9.0.0" />
 <PackageVersion
 Include="Microsoft.EntityFrameworkCore.Design"
 Version="9.0.0" />
 <PackageVersion
 Include="Microsoft.EntityFrameworkCore.Tools"
 Version="9.0.0" />
 </ItemGroup>
 <ItemGroup Label="For testing.">
 <PackageVersion Include="coverlet.collector"
 Version="6.0.2" />
 <PackageVersion Include="Microsoft.NET.Test.Sdk"
 Version="17.11.1" />
 <PackageVersion Include="xunit" Version="2.9.2" />
 <!--The following package was still a preview on .NET 9 release day.-->
 <PackageVersion
 Include="xunit.runner.visualstudio"
 Version="3.0.0-pre.49" />
 <PackageVersion Include="Microsoft.Playwright" Version="1.49.0" />
 <PackageVersion
 Include="Microsoft.AspNetCore.Mvc.Testing"
 Version="9.0.0" />
 </ItemGroup>
 <ItemGroup Label="For ASP.NET Core websites.">
 <PackageVersion Include=
 "Microsoft.AspNetCore.Diagnostics.EntityFrameworkCore"
 Version="9.0.0" />
 <PackageVersion Include=
 "Microsoft.AspNetCore.Identity.EntityFrameworkCore"
 Version="9.0.0" />
 <PackageVersion
 Include="Microsoft.AspNetCore.Identity.UI"
 Version="9.0.0" />
 </ItemGroup>
 <ItemGroup Label="For deployment.">
 <PackageVersion Include=
"Microsoft.VisualStudio.Azure.Containers.Tools.Targets"
 Version="1.21.0" />
 </ItemGroup>
 <ItemGroup Label="For caching.">
 <!--The following package was still a preview on .NET 9 release day.-->
 <PackageVersion
 Include="Microsoft.Extensions.Caching.Hybrid"
 Version="9.0.0-preview.9.24556.5" />
 </ItemGroup>
 <ItemGroup Label="For ASP.NET Core web services.">
 <PackageVersion
 Include="Microsoft.AspNetCore.OpenApi"
 Version="9.0.0" />
 <PackageVersion
 Include="NSwag.MSBuild" Version="14.1.0" />
 <PackageVersion Include=
 "Microsoft.AspNetCore.Authentication.JwtBearer"
 Version="9.0.0" />
 <PackageVersion
 Include="Microsoft.AspNetCore.OData"
 Version="9.0.0" />
 </ItemGroup>
 <ItemGroup Label="For FastEndpoints web services.">
 <PackageVersion Include="FastEndpoints"
 Version="5.31.0" />
 </ItemGroup>
 <ItemGroup Label="For Umbraco CMS.">
 <PackageVersion Include="Umbraco.Cms"
 Version="14.3.1" />
 <PackageVersion
 Include="Microsoft.ICU.ICU4C.Runtime"
 Version="72.1.0.3" />
 </ItemGroup>
</Project>

 Warning! The <ManagePackageVersionsCentrally> element and its true value must go all on one line. Also, you cannot use floating wildcard version numbers like 9.0-* as you can in an individual project. Wildcards are useful to automatically get the latest patch version, for example, monthly package updates on Patch Tuesday. But with CPM you must manually update the versions.

 For any projects that we add underneath the folder containing this file, we can reference the packages without explicitly specifying the version, as shown in the following markup:

 <ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer" />
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Design" />
</ItemGroup>

 You should regularly review and update the package versions in the Directory.Packages.props file to ensure that you are using the latest stable releases with important bug fixes and performance improvements. For example, the Microsoft.Extensions.Caching.Hybrid package was still in preview on the day of .NET 9’s release when I finished final drafts. By the time you read this, it is likely to be out of preview, so update its version number.

 Good Practice: I recommend that you set a monthly event in your calendar for the second Wednesday of each month. This will occur after the second Tuesday of each month, which is Patch Tuesday when Microsoft releases bug fixes and patches for .NET and related packages.

 For example, in December 2024, there are likely to be new versions, so you can go to the NuGet page for each of your packages. You can then update the versions if necessary, for example, as shown in the following markup:

 <ItemGroup Label="For EF Core.">
 <PackageVersion
 Include="Microsoft.EntityFrameworkCore.SqlServer"
 Version="9.0.1" />
 ...
</ItemGroup>

 Before updating package versions, check for any breaking changes in the release notes of the packages. Test your solution thoroughly after updating to ensure compatibility.

 Educate your team and document the purpose and usage of the Directory.Packages.props file to ensure everyone understands how to manage package versions centrally.

 You can override an individual package version by using the VersionOverride attribute on a <PackageReference /> element, as shown in the following markup:

 <ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer"
 VersionOverride="9.0.0" />
 ...
</ItemGroup>

 This can be useful if a newer version introduces a regression bug.

 More Information: You can learn more about CPM at the following link:

 https://learn.microsoft.com/en-us/nuget/consume-packages/central-package-management

 Making good use of the GitHub repository for this book

 Git is a commonly used source code management system. GitHub is a company, website, and desktop application that makes it easier to manage Git. Microsoft purchased GitHub in 2018, so it will continue to get closer integration with Microsoft tools.

 I created a GitHub repository for this book, and I use it for the following:

 	To store the solution code for the book that can be maintained after the print publication date.

 	To provide extra materials that extend the book, like errata fixes, small improvements, lists of useful links, and optional sections about topics that cannot fit in the printed book.

 	To provide a place for readers to get in touch with me if they have issues with the book.
 Good Practice: I strongly recommend that all readers review the errata, improvements, post-publication changes, and common errors pages before attempting any coding task in this book. You can find them at https://github.com/markjprice/web-dev-net9/blob/main/docs/errata/README.md.md.

 Understanding the solution code on GitHub

 The solution code in the GitHub repository for this book can be opened with any of the following code editors:

 	Visual Studio or Rider: Open the MatureWeb.sln solution file.

 	VS Code: Open the MatureWeb.sln folder.

 All the chapters in this book share a single solution file named MatureWeb.sln.

 All the code solutions can be found at the following link:

 https://github.com/markjprice/web-dev-net9/tree/main/code

 If you are new to .NET development, then the GitHub repository has step-by-step instructions for three code editors (Visual Studio, VS Code, and Rider), along with additional screenshots:

 https://github.com/markjprice/web-dev-net9/tree/main/docs/code-editors/

 Downloading solution code from the GitHub repository

 If you just want to download all the solution files without using Git, click the green Code button and then select Download ZIP, as shown in Figure 1.5:

 [image:]
 Figure 1.5: Downloading the repository as a ZIP file

 Good Practice: It is best to clone or download the code solutions to a short folder path, like C:\web-dev-net9\ or C:\book\, to avoid build-generated files exceeding the maximum path length. You should also avoid special characters like #. For example, do not use a folder name like C:\C# projects\. That folder name might work for a simple console app project but once you start adding features that automatically generate code, you are likely to have strange issues. Keep your folder names short and simple.

 Using Git with VS Code and the command prompt

 VS Code has integrations with Git, but it will use your operating system’s Git installation, so you must install Git 2 or later first before you get these features.

 You can install Git from the following link:

 https://git-scm.com/download

 If you like to use a GUI, you can download GitHub Desktop from the following link:

 https://desktop.github.com

 Cloning the book solution code repository

 Let’s clone the book solution code repository. In the steps that follow, you will use the VS Code terminal, but you could enter the commands at any command prompt or terminal window:

 	Create a folder named Repos-vscode in your User or Documents folder, or wherever you want to store your Git repositories.

 	Open the Repos-vscode folder at the command prompt or terminal, and then enter the following command:
 git clone https://github.com/markjprice/web-dev-net9.git

 Note that cloning all the solutions for all the chapters will take a minute or so, so please be patient.

 Building an entity model for use in the rest of the book

 Websites and web services usually need to work with data in a relational database or another data store. There are several technologies that could be used, from lower-level ADO.NET to higher-level EF Core. We will use EF Core since it is flexible and more familiar to .NET developers.

 In this section, we will define an EF Core entity data model for a database named Northwind stored in SQL Server. It will be used in most of the projects that we create in subsequent chapters.

 Northwind database SQL scripts

 The script for SQL Server creates 13 tables as well as related views and stored procedures. The SQL scripts are found at https://github.com/markjprice/web-dev-net9/tree/main/scripts/sql-scripts.

 There are multiple SQL scripts to choose from, as described in the following list:

 	Northwind4AzureSqlEdgeDocker.sql script: To use SQL Server on a local computer in Docker. The script creates the Northwind database. It does not drop it if it already exists because the Docker container should be empty anyway as a fresh one will be spun up each time. This is my recommendation. Instructions to install Docker and set up a SQL Edge image and container are in the next section of this book.

 	Northwind4SqlServer.sql script: To use SQL Server on a local Windows or Linux computer. The script checks if the Northwind database already exists and if necessary drops it before creating it. Instructions to install SQL Server Developer Edition (free) on your local Windows computer can be found in the GitHub repository for this book at https://github.com/markjprice/web-dev-net9/blob/main/docs/sql-server/README.md.

 	Northwind4AzureSqlDatabaseCloud.sql script: To use SQL Server with an Azure SQL Database resource created in the Azure cloud. You will need an Azure account; these resources cost money as long as they exist! The script does not drop or create the Northwind database because you should manually create the Northwind database using the Azure portal user interface. The script only creates the database objects, including the table structure and data.

 Installing Docker and the Azure SQL Edge container image

 Docker provides a consistent environment across development, testing, and production, minimizing the “it works on my machine” issue. Docker containers are more lightweight than traditional virtual machines, making them faster to start up and less resource-intensive.

 Docker containers can run on any system with Docker installed, making it easy to move databases between environments or across different machines. You can quickly spin up a SQL database container with a single command, making setup faster and more reproducible. Each database instance runs in its own container, ensuring that it is isolated from other applications and databases on the same machine.

 You can install Docker on any operating system and use a container that has Azure SQL Edge, a cross-platform minimal featured version of SQL Server that only includes the database engine. For personal, educational, and small business use, Docker Desktop is free to use. It includes the full set of Docker features, including container management and orchestration. The Docker Command-line Interface (CLI) and Docker engine are open source and free to use, allowing developers to build, run, and manage containers.

 Docker also has paid tiers that offer additional features, such as enhanced security, collaboration tools, more granular access control, priority support, and higher rate limits on Docker Hub image pull.

 The Docker image we will use has Azure SQL Edge based on Ubuntu 18.4. It is supported with Docker Engine 1.8 or later. Azure SQL Edge requires a 64-bit processor (either x64 or ARM64), with a minimum of one processor and 1 GB RAM on the host:

 	Install Docker Desktop from the following link: https://docs.docker.com/engine/install/

 	Start Docker Desktop, which could take a few minutes on the initial start, as shown in Figure 1.6:

 [image:]
 Figure 1.6: Docker Desktop v4.33.1 (August 2024) on Windows

 	At the command prompt or terminal, pull down the latest container image for Azure SQL Edge, as shown in the following command:
 docker pull mcr.microsoft.com/azure-sql-edge:latest

 	Wait for the image as it is downloading, as shown in the following output:
 latest: Pulling from azure-sql-edge
a055bf07b5b0: Pull complete
cb84717c05a1: Pull complete
35d9c30b7f54: Downloading [========================>] 20.46MB/42.55MB
46be68282524: Downloading [============>] 45.94MB/186MB
5eee3e29ad15: Downloading [======================================>] 15.97MB/20.52MB
15bd653c6216: Waiting
d8d6247303da: Waiting
c31fafd6718a: Waiting
fa1c91dcb9c8: Waiting
1ccbfe988be8: Waiting

 	Note the results, as shown in the following output:
 latest: Pulling from azure-sql-edge
2f94e549220a: Pull complete
830b1adc1e72: Pull complete
f6caea6b4bd2: Pull complete
ef3b33eb5a27: Pull complete
8a42011e5477: Pull complete
f173534aa1e4: Pull complete
6c1894e17f11: Pull complete
a81c43e790ea: Pull complete
c3982946560a: Pull complete
25f31208d245: Pull complete
Digest: sha256:7c203ad8b240ef3bff81ca9794f31936c9b864cc165dd187c23c5bfe06cf0340
Status: Downloaded newer image for mcr.microsoft.com/azure-sql-edge:latest
mcr.microsoft.com/azure-sql-edge:latest

 Running the Azure SQL Edge container image

 Now we can run the image:

 	At the command prompt or terminal, run the container image for Azure SQL Edge with a strong password and name the container azuresqledge, as shown in the following command:
 docker run --cap-add SYS_PTRACE -e 'ACCEPT_EULA=1' -e 'MSSQL_SA_PASSWORD=s3cret-Ninja' -p 1433:1433 --name azuresqledge -d mcr.microsoft.com/azure-sql-edge

 Good Practice: The password must be at least eight characters long and contain characters from three of the following four sets: uppercase letters, lowercase letters, digits, and symbols. Otherwise, the container cannot set up the SQL Edge engine and will stop working.

 On Windows 11, running the container image at the command prompt failed for me. See the next section titled Running a container using the user interface for steps that worked.

 	If your operating system firewall blocks access, then allow access.

 	In Docker Desktop, in the Containers section, confirm that the image is running, as shown in Figure 1.7:

 [image:]
 Figure 1.7: Azure SQL Edge running in Docker Desktop on Windows

 	At the command prompt or terminal, ask Docker to list all containers, both running and stopped, as shown in the following command:
 docker ps -a

 	Note the container is “Up” and listening externally on port 1433, which is mapped to its internal port 1433, as shown highlighted in the following output:
 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
183f02e84b2a mcr.microsoft.com/azure-sql-edge "/opt/mssql/bin/perm…" 8 minutes ago Up 8 minutes 1401/tcp, 0.0.0.0:1433->1433/tcp azuresqledge

 More Information: You can learn more about the docker ps command at https://docs.docker.com/engine/reference/commandline/ps/.

 Running a container using the user interface

 If you successfully ran the SQL Edge container, then you can skip this section and continue with the next section, titled Connecting to Azure SQL Edge in a Docker container.

 If entering a command at the prompt or terminal fails for you, try following these steps to use the user interface:

 	In Docker Desktop, navigate to the Images tab.

 	In the mcr.microsoft.com/azuresqledge row, click the Run action.

 	In the Run a new container dialog box, expand Optional settings, and complete the configuration, as shown in Figure 1.8 and in the following items:
 	Container name: azuresqledge, or leave blank to use a random name.

 	Ports:
 	Enter 1401 to map to :1401/tcp.

 	Enter 1433 to map to :1433/tcp.

 	Volumes: leave empty.

 	Environment variables (click + to add a second one):
 	Enter ACCEPT_EULA with value Y (or 1).

 	Enter MSSQL_SA_PASSWORD with value s3cret-Ninja.

 	Click Run.

 [image: A screenshot of a computer

Description automatically generated]
 Figure 1.8: Running a container for Azure SQL Edge with the user interface

 Connecting to Azure SQL Edge in a Docker container

 Use your preferred database tool to connect to Azure SQL Edge in the Docker container. Some common database tools are shown in the following list:

 	Windows only:
 	SQL Server Management Studio (SSMS): The most popular and comprehensive tool for managing SQL Server databases. Free to download from Microsoft.

 	SQL Server Data Tools (SSDT): Integrated into Visual Studio and free to use, SSDT provides database development tools for designing, deploying, and managing SQL Server databases.

 	Cross-platform for Windows, macOS, Linux:
 	VS Code’s MS SQL extension: Query execution, IntelliSense, database browsing, and connection to SQL Server databases.

 	Azure Data Studio: A cross-platform database management tool focused on query editing, data insights, and lightweight management.

 Some notes about the database connection string for SQL Edge:

 	Data Source, a.k.a. server: tcp:127.0.0.1,1433

 	You must use SQL Server Authentication, a.k.a. SQL Login. That is, you must supply a username and password. The Azure SQL Edge image has the sa user already created and you had to give it a strong password when you ran the container. We chose the password s3cret-Ninja.

 	You must select the Trust Server Certificate check box.

 	Initial Catalog, a.k.a. database: master or leave blank. (We will create the Northwind database using a SQL script so we do not specify that as the database name yet.)

 Connecting from Visual Studio

 To connect to SQL Edge using Visual Studio:

 	In Visual Studio, navigate to View | Server Explorer.

 	In the mini-toolbar, click the Connect to Database... button.

 	Enter the connection details, as shown in Figure 1.9:

 [image:]
 Figure 1.9: Connecting to your Azure SQL Edge server from Visual Studio

 Connecting from VS Code

 To connect to SQL Edge using VS Code:

 	In VS Code, navigate to the SQL Server extension. Note that the mssql extension might take a few minutes to initialize the first time.

 	In the SQL extension, click Add Connection....

 	Enter the server name tcp:127.0.0.1,1433, as shown in Figure 1.10:

 [image: A screenshot of a computer

Description automatically generated]
 Figure 1.10: Specifying the server name

 	Leave the database name blank by pressing Enter, as shown in Figure 1.11:

 [image: A screenshot of a computer

Description automatically generated]
 Figure 1.11: Specifying the database name (leave blank)

 	Select SQL Login, as shown in Figure 1.12:

 [image:]
 Figure 1.12: Choosing SQL Login to authenticate

 	Enter the user ID sa, as shown in Figure 1.13:

 [image: A screen shot of a computer

Description automatically generated]
 Figure 1.13: Entering the user ID of sa

 	Enter the password s3cret-Ninja, as shown in Figure 1.14:

 [image: A screenshot of a computer

Description automatically generated]
 Figure 1.14: Entering the password

 	Select Yes to save the password for the future, as shown in Figure 1.15:

 [image: A screenshot of a computer

Description automatically generated]
 Figure 1.15: Saving the password for future use

 	Enter a connection profile name, Azure SQL Edge in Docker, as shown in Figure 1.16:

 [image: A screenshot of a computer

Description automatically generated]
 Figure 1.16: Naming the connection

 	Click Enable Trust Server Certificate, as shown in Figure 1.17:

 [image: A screenshot of a computer

Description automatically generated]
 Figure 1.17: Trusting the local developer certificate

 	Note the success notification message.

 Creating the Northwind database using a SQL script

 Now you can use your preferred code editor (or database tool) to execute the SQL script to create the Northwind database in SQL Edge:

 	Open the Northwind4AzureSQLEdgeDocker.sql file.

 	Execute the SQL script:
 	If you are using Visual Studio, right-click in the script, then select Execute, and then wait to see the Command completed successfully message.

 	If you are using VS Code, right-click in the script, select Execute Query, select the Azure SQL Edge in Docker connection profile, and then wait to see the Commands completed successfully message.

 	Refresh the data connection:
 	If you are using Visual Studio, then in Server Explorer, right-click Tables and select Refresh.

 	If you are using VS Code, then right-click the Azure SQL Edge in Docker connection profile and choose Refresh.

 	Expand Databases, expand Northwind, and then expand Tables.

 	Note that 13 tables have been created, for example, Categories, Customers, and Products. Also note that dozens of views and stored procedures have also been created, as shown in Figure 1.18:

 [image: A screenshot of a computer

Description automatically generated]
 Figure 1.18: Northwind database created by SQL script in VS Code

 You now have a running instance of Azure SQL Edge containing the Northwind database that you can connect to from your ASP.NET Core projects.

 Removing Docker resources

 When you have completed all the chapters in the book, or you plan to use a full SQL Server or Azure SQL Database instead of a SQL Edge container, and you want to remove all the Docker resources, then follow these steps:

 	At the command prompt or terminal, stop the azuresqledge container, as shown in the following command:
 docker stop azuresqledge

 	At the command prompt or terminal, remove the azuresqledge container, as shown in the following command:
 docker rm azuresqledge

 Warning! Removing the container will delete all data inside it.

 	At the command prompt or terminal, remove the azure-sql-edge image to release its disk space, as shown in the following command:
 docker rmi mcr.microsoft.com/azure-sql-edge

 Setting up the EF Core CLI tool

 The .NET CLI tool named dotnet can be extended with capabilities useful for working with EF Core. It can perform design-time tasks like creating and applying migrations from an older model to a newer model and generating code for a model from an existing database.

 The dotnet-ef command-line tool is not automatically installed. You must install this package as either a global or local tool. If you have already installed an older version of the tool, then you should update it to the latest version:

 	At a command prompt or terminal, check if you have already installed dotnet-ef as a global tool, as shown in the following command:
 dotnet tool list --global

 	Check in the list if an older version of the tool has been installed, like the one for .NET 7, as shown in the following output:
 Package Id Version Commands

dotnet-ef 9.0.0 dotnet-ef

 	If an old version is installed, then update the tool, as shown in the following command:
 dotnet tool update --global dotnet-ef

 	If it is not already installed, then install the latest version, as shown in the following command:
 dotnet tool install --global dotnet-ef

 If necessary, follow any OS-specific instructions to add the dotnet tools directory to your PATH environment variable, as described in the output of installing the dotnet-ef tool.

 By default, the latest GA release of .NET will be used to install the tool. To explicitly set a version, for example, to use a preview, add the --version switch. For example, to update to the latest .NET 10 preview or release candidate version (that will be available from February 2025 to October 2025), use the following command with a version wildcard:

 dotnet tool update --global dotnet-ef --version 10.0-*

 Once the .NET 10 GA release happens in November 2025, you can just use the command without the --version switch to upgrade.

 You can also remove the tool, as shown in the following command:

 dotnet tool uninstall --global dotnet-ef

 Creating a class library for entity models

 You will now define entity data models in a class library so that they can be reused in other types of projects, including client-side app models.

 Good Practice: You should create a separate class library project for your entity data models from the class library for your data context. This allows easier sharing of the entity models between backend web servers and frontend desktop, mobile, and Blazor clients, while only the backend needs to reference the data context class library.

 We will automatically generate some entity models using the EF Core command-line tool:

 	Use your preferred code editor to create a new project and solution, as defined in the following list:
 	Project template: Class Library /classlib

 	Project file and folder: Northwind.EntityModels

 	Solution file and folder: MatureWeb

 You can target either .NET 8 (LTS) or .NET 9 (STS) for all the projects in this book but you should be consistent. If you choose .NET 9 for the class libraries, then choose .NET 9 for later MVC and Web API projects.

 	In the Northwind.EntityModels project, add package references for the SQL Server database provider and EF Core design-time support, as shown in the following markup:
 <ItemGroup>
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer" />
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.Design">
 <PrivateAssets>all</PrivateAssets>
 <IncludeAssets>runtime; build; native; contentfiles; analyzers; buildtransitive</IncludeAssets>
 </PackageReference>
</ItemGroup>

 	Delete the Class1.cs file.

 	Build the Northwind.EntityModels project to restore packages.

 	Make sure that the SQL Edge container is running because you are about to connect to the server and its Northwind database.

 	At a command prompt or terminal, in the Northwind.EntityModels project folder (the folder that contains the .csproj project file), generate entity class models for all tables, as shown in the following command:
 dotnet ef dbcontext scaffold "Data Source=tcp:127.0.0.1,1433;Initial Catalog=Northwind;User Id=sa;Password=s3cret-Ninja;TrustServerCertificat
e=true;" Microsoft.EntityFrameworkCore.SqlServer --namespace Northwind.EntityModels --data-annotations

 Note the following:

 	The command to perform: dbcontext scaffold

 	The connection string: "Data Source=tcp:127.0.0.1,1433;Initial Catalog=Northwind;User Id=sa;Password= s3cret-Ninja';TrustServerCertificate=true;"

 	The database provider: Microsoft.EntityFrameworkCore.SqlServer

 	The namespace: --namespace Northwind.EntityModels

 	To use data annotations as well as the Fluent API: --data-annotations

 Warning! dotnet-ef commands must be entered all on one line and in a folder that contains a project, or you will see the following error: No project was found. Change the current working directory or use the --project option. Remember that all command lines can be found at and copied from the following link:

 https://github.com/markjprice/web-dev-net9/blob/main/docs/command-lines.md

 Creating a class library for a database context

 You will now define a database context class library:

 	Add a new project to the solution, as defined in the following list:
 	Project template: Class Library /classlib

 	Project file and folder: Northwind.DataContext

 	Solution file and folder: MatureWeb

 	In the Northwind.DataContext project, statically and globally import the Console class, add a package reference to the EF Core data provider for SQL Server, and add a project reference to the Northwind.EntityModels project, as shown in the following markup:
 <ItemGroup Label="To simplify use of WriteLine.">
 <Using Include="System.Console" Static="true" />
</ItemGroup>
<ItemGroup Label="Versions are set at solution-level.">
 <PackageReference
 Include="Microsoft.EntityFrameworkCore.SqlServer" />
</ItemGroup>
<ItemGroup>
 <ProjectReference Include="..\Northwind.EntityModels
\Northwind.EntityModels.csproj" />
</ItemGroup>

 Warning! The path to the project reference should not have a line break in your project file.

 	In the Northwind.DataContext project, delete the Class1.cs file.

 	Build the Northwind.DataContext project to restore packages.

 	In the Northwind.DataContext project, add a class named NorthwindContextLogger.cs.

 	Modify its contents to define a static method named WriteLine that appends a string to the end of a text file named northwindlog-<date_time>.txt on the desktop, as shown in the following code:
 using static System.Environment;
namespace Northwind.EntityModels;
public class NorthwindContextLogger
{
 public static void WriteLine(string message)
 {
 string folder = Path.Combine(GetFolderPath(
 SpecialFolder.DesktopDirectory), "book-logs");
 if (!Directory.Exists(folder))
 Directory.CreateDirectory(folder);
 string dateTimeStamp = DateTime.Now.ToString(
 "yyyyMMdd_HHmmss");
 string path = Path.Combine(folder,
 $"northwindlog-{dateTimeStamp}.txt");
 StreamWriter textFile = File.AppendText(path);
 textFile.WriteLine(message);
 textFile.Close();
 }
}

 	Move the NorthwindContext.cs file from the Northwind.EntityModels project/folder to the Northwind.DataContext project/folder.

 In Visual Studio Solution Explorer, if you drag and drop a file between projects, it will be copied. If you hold down Shift while dragging and dropping, it will be moved. In VS Code EXPLORER, if you drag and drop a file between projects, it will be moved. If you hold down Ctrl while dragging and dropping, it will be copied.

 	In NorthwindContext.cs, note the second constructor can have options passed as a parameter, which allows us to override the default database connection string in any projects such as websites that need to work with the Northwind database, as shown in the following code:
 public NorthwindContext(
 DbContextOptions<NorthwindContext> options)
 : base(options)
{
}

 	In NorthwindContext.cs, in the OnConfiguring method, remove the compiler #warning about the connection string and then add statements to dynamically build a database connection string for SQL Edge in Docker, as shown in the following code:
 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
{
 if (!optionsBuilder.IsConfigured)
 {
 SqlConnectionStringBuilder builder = new();
 builder.DataSource = "tcp:127.0.0.1,1433"; // SQL Edge in Docker.
 builder.InitialCatalog = "Northwind";
 builder.TrustServerCertificate = true;
 builder.MultipleActiveResultSets = true;
 // Because we want to fail faster. Default is 15 seconds.
 builder.ConnectTimeout = 3;
 // SQL Server authentication.
 builder.UserID = Environment.GetEnvironmentVariable("MY_SQL_USR");
 builder.Password = Environment.GetEnvironmentVariable("MY_SQL_PWD");
 optionsBuilder.UseSqlServer(builder.ConnectionString);
 optionsBuilder.LogTo(NorthwindContextLogger.WriteLine,
 new[] { Microsoft.EntityFrameworkCore
 .Diagnostics.RelationalEventId.CommandExecuting });
 }
}

 	In the Northwind.DataContext project, add a class named NorthwindContextExtensions.cs. Modify its contents to define an extension method that adds the Northwind database context to a collection of dependency services, as shown in the following code:
 using Microsoft.Data.SqlClient; // To use SqlConnectionStringBuilder.
using Microsoft.EntityFrameworkCore; // To use UseSqlServer.
using Microsoft.Extensions.DependencyInjection; // To use IServiceCollection.
namespace Northwind.EntityModels;
public static class NorthwindContextExtensions
{
 /// <summary>
 /// Adds NorthwindContext to the specified IServiceCollection. Uses the SqlServer database provider.
 /// </summary>
 /// <param name="services">The service collection.</param>
 /// <param name="connectionString">Set to override the default.</param>
 /// <returns>An IServiceCollection that can be used to add more services.</returns>
 public static IServiceCollection AddNorthwindContext(
 this IServiceCollection services, // The type to extend.
 string? connectionString = null)
 {
 if (connectionString is null)
 {
 SqlConnectionStringBuilder builder = new();
 builder.DataSource = "tcp:127.0.0.1,1433"; // SQL Edge in Docker.
 builder.InitialCatalog = "Northwind";
 builder.TrustServerCertificate = true;
 builder.MultipleActiveResultSets = true;
 // Because we want to fail faster. Default is 15 seconds.
 builder.ConnectTimeout = 3;
 // SQL Server authentication.
 builder.UserID = Environment.GetEnvironmentVariable("MY_SQL_USR");
 builder.Password = Environment.GetEnvironmentVariable("MY_SQL_PWD");
 connectionString = builder.ConnectionString;
 }
 services.AddDbContext<NorthwindContext>(options =>
 {
 options.UseSqlServer(connectionString);
 options.LogTo(NorthwindContextLogger.WriteLine,
 new[] { Microsoft.EntityFrameworkCore
 .Diagnostics.RelationalEventId.CommandExecuting });
 },
 // Register with a transient lifetime to avoid concurrency
 // issues with Blazor Server projects.
 contextLifetime: ServiceLifetime.Transient,
 optionsLifetime: ServiceLifetime.Transient);
 return services;
 }
}

 	Build the two class libraries and fix any compiler errors.

 Setting the user and password for SQL Server authentication

 If you are using SQL Server authentication, i.e., you must supply a user and password, then complete the following steps:

 	In the Northwind.DataContext project, note the statements that set UserId and Password, as shown in the following code:
 // SQL Server authentication.
builder.UserId = Environment
 .GetEnvironmentVariable("MY_SQL_USR");
builder.Password = Environment
 .GetEnvironmentVariable("MY_SQL_PWD");.

 	Set the two environment variables at the command prompt or terminal, as shown in the following commands:
 	On Windows:

 setx MY_SQL_USR <your_user_name>
setx MY_SQL_PWD <your_password>

 	On macOS and Linux:

 export MY_SQL_USR=<your_user_name>
export MY_SQL_PWD=<your_password>

 	You will need to restart any command prompts, terminal windows, and applications like Visual Studio for this change to take effect.

 Good Practice: Although you could define the two environment variables in the launchSettings.json file of an ASP.NET Core project, you must then be extremely careful not to include that file in a GitHub repository! You can learn how to ignore files in Git at https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files.

 Registering dependency services

 You can register dependency services with different lifetimes, as shown in the following list:

 	Transient: These services are created each time they’re requested. Transient services should be lightweight and stateless.

 	Scoped: These services are created once per client request and are disposed of, then the response returns to the client.

 	Singleton: These services are usually created the first time they are requested and then shared, although you can provide an instance at the time of registration too.

 Introduced in .NET 8 is the ability to set a key for a dependency service. This allows multiple services to be registered with different keys and then retrieved later using that key:

 builder.Services.AddKeyedsingleton<IMemoryCache, BigCache>("big");
builder.Services.AddKeyedSingleton<IMemoryCache, SmallCache>("small");
class BigCacheConsumer([FromKeyedServices("big")] IMemoryCache cache)
{
 public object? GetData() => cache.Get("data");
}
class SmallCacheConsumer(IKeyedServiceProvider keyedServiceProvider)
{
 public object? GetData() => keyedServiceProvider
 .GetRequiredKeyedService<IMemoryCache>("small");
}

 In this book, you will use all three types of lifetime but we will not need to use keyed services.

 By default, a DbContext class is registered using the Scope lifetime, meaning that multiple threads can share the same instance. But DbContext does not support multiple threads. If more than one thread attempts to use the same NorthwindContext class instance at the same time, then you will see the following runtime exception thrown: A second operation started on this context before a previous operation completed. This is usually caused by different threads using the same instance of a DbContext. However, instance members are not guaranteed to be thread-safe.

 This happens in Blazor projects with components set to run on the server side because, whenever interactions on the client side happen, a SignalR call is made back to the server where a single instance of the database context is shared between multiple clients. This issue does not occur if a component is set to run on the client side.

 Improving the class-to-table mapping

 We will make some small changes to improve the entity model mapping and validation rules for SQL Server.

 Remember that all code is available in the GitHub repository for the book. Although you will learn more by typing the code yourself, you never have to. Go to the following link and press . to get a live code editor in your browser: https://github.com/markjprice/web-dev-net9.

 We will add a regular expression to validate that a CustomerId value is exactly five uppercase letters:

 	In Customer.cs, add a regular expression to validate its primary key CustomerId to only allow uppercase Western characters, as shown highlighted in the following code:
 [Key]
[StringLength(5)]
[RegularExpression("[A-Z]{5}")]
public string CustomerId { get; set; } = null!;

 	In Customer.cs, add the [Phone] attribute to its Phone property, as shown highlighted in the following code:
 [StringLength(24)]
[Phone]
public string? Phone { get; set; }

 The [Phone] attribute adds the following to the rendered HTML: type="tel". On a mobile phone, this makes the keyboard use the phone dialer instead of the normal keyboard.

 	In Order.cs, decorate the CustomerId property with the same regular expression to enforce five uppercase characters.

 Testing the class libraries using xUnit

 Several benefits of using xUnit are shown in the following list:

 	xUnit is open-source and has a strong community and active development team behind it. This makes it more likely that it will stay up to date with the latest .NET features and best practices. xUnit benefits from a large and active community, which means many tutorials, guides, and third-party extensions are available for it.

 	xUnit uses a more simplified and extensible approach compared to older frameworks. It encourages the use of custom test patterns and less reliance on setup and teardown methods, leading to cleaner test code.

 	Tests in xUnit are configured using .NET attributes, which makes the test code easy to read and understand. It uses [Fact] for standard test cases and [Theory] with [InlineData], [ClassData], or [MemberData] for parameterized tests, enabling data-driven testing. This makes it easier to cover many input scenarios with the same test method, enhancing test thoroughness while minimizing effort.

 	xUnit includes an assertion library that allows for a wide variety of assertions out of the box, making it easier to test a wide range of conditions without having to write custom test code. It can also be extended with popular assertion libraries, like FluentAssertions, that allow you to articulate test expectations with human-readable reasons.

 	By default, xUnit supports parallel test execution within the same test collection, which can significantly reduce the time it takes to run large test suites. This is particularly beneficial in continuous integration environments where speed is critical. However, if you run your tests in a memory-limited VPS (Virtual Private Server), then that impacts how much data the server can handle at any given time and how many applications or processes it can run concurrently. In this scenario, you might want to disable parallel test execution. Memory-limited VPS instances are typically used as cheap testing environments.

 	xUnit offers precise control over the test lifecycle with setup and teardown commands through the use of the constructor and destructor patterns and the IDisposable interface, as well as with the [BeforeAfterTestAttribute] for more granular control.

 Now let’s build some unit tests to ensure the class libraries are working correctly.

 Let’s write the tests:

 	Use your preferred coding tool to add a new xUnit Test Project [C#] / xunit project named Northwind.UnitTests to the MatureWeb solution.

 	In the Northwind.UnitTests project, delete the version numbers specified for the testing packages in the project file. (Visual Studio and other code editors will give errors if you have projects that should use CPM but specify their own package versions without using the VersionOverride attribute.)

 	In the Northwind.UnitTests project, add a project reference to the Northwind.DataContext project, as shown in the following configuration:
 <ItemGroup>
 <PackageReference Include="coverlet.collector" />
 <PackageReference Include="Microsoft.NET.Test.Sdk" />
 <PackageReference Include="xunit" />
 <PackageReference Include="xunit.runner.visualstudio" />
</ItemGroup>
<ItemGroup>
 <ProjectReference Include="..\Northwind.DataContext
\Northwind.DataContext.csproj" />
</ItemGroup>

 Warning! The project reference must go all on one line with no line break.

 	Build the Northwind.UnitTests project to build referenced projects.

 	Rename UnitTest1.cs to EntityModelTests.cs.

 	Modify the contents of the file to define two tests, the first to connect to the database and the second to confirm there are eight categories in the database, as shown in the following code:
 using Northwind.EntityModels; // To use NorthwindContext.
namespace Northwind.UnitTests;
public class EntityModelTests
{
 [Fact]
 public void DatabaseConnectTest()
 {
 using NorthwindContext db = new();
 Assert.True(db.Database.CanConnect());
 }
 [Fact]
 public void CategoryCountTest()
 {
 using NorthwindContext db = new();
 int expected = 8;
 int actual = db.Categories.Count();
 Assert.Equal(expected, actual);
 }
 [Fact]
 public void ProductId1IsChaiTest()
 {
 using NorthwindContext db = new();
 string expected = "Chai";
 Product? product = db.Products.Find(keyValues: 1);
 string actual = product?.ProductName ?? string.Empty;
 Assert.Equal(expected, actual);
 }
}

 	Run the unit tests:
 	If you are using Visual Studio, then navigate to Test | Run All Tests, and then view the results in Test Explorer.

 	If you are using VS Code, then in the Northwind.UnitTests project’s TERMINAL window, run the tests, as shown in the following command: dotnet test. Alternatively, use the TESTING window if you have installed C# Dev Kit.

 	Note that the results should indicate that three tests ran, and all passed, as shown in Figure 1.19:

 [image:]
 Figure 1.19: Three successful unit tests ran

 If any of the tests fail, then try fix the issue.

 Practicing and exploring

 Test your knowledge and understanding by answering some questions, getting some hands-on practice, and exploring this chapter’s topics with deeper research.

 Exercise 1.1 – Online material

 If you have any issues with the code or content of this book, or general feedback or suggestions for me for future editions, then please read the following short article:

 https://github.com/markjprice/web-dev-net9/blob/main/docs/ch01-issues-feedback.md

 If you are new to web development on the client side using HTML, CSS, and JavaScript, then you can start with an online section found at the following link:

 https://github.com/markjprice/web-dev-net9/blob/main/docs/ch01-web-dev.md

 One of the best sites for learning client-side web development is W3Schools, found at https://www.w3schools.com/.

 A summary of what’s new with ASP.NET Core 9 can be found at the following link:

 https://learn.microsoft.com/en-us/aspnet/core/release-notes/aspnetcore-9.0

 If you need to decide between ASP.NET Core web UIs, check this link:

 https://learn.microsoft.com/en-us/aspnet/core/tutorials/choose-web-ui

 You can learn about ASP.NET Core best practices at https://learn.microsoft.com/en-us/aspnet/core/fundamentals/best-practices.

 Exercise 1.2 – Practice exercises

 The following practice exercises help you to explore the topics in this chapter more deeply.

 Troubleshooting web development

 It is common to have temporary issues with web development because there are so many moving parts. Sometimes, variations of the classic “turn it off and on again” can fix these!

 	Delete the project’s bin and release folders.

 	Restart the web server to clear its caches.

 	Reboot the computer.

 Exercise 1.3 – Test your knowledge

 Answer the following questions:

 	What was the name of Microsoft’s first dynamic server-side-executed web page technology and why is it still useful to know this history today?

 	What are the names of two Microsoft web servers?

 	What are some differences between a microservice and a nanoservice?

 	What is Blazor?

 	What was the first version of ASP.NET Core that could not be hosted on .NET Framework?

 	What is a user agent?

 	What impact does the HTTP request-response communication model have on web developers?

 	Name and describe four components of a URL.

 	What capabilities does Developer Tools give you?

 	What are the three main client-side web development technologies and what do they do?

 Know your webbreviations

 What do the following web abbreviations stand for and what do they do?

 	URI

 	URL

 	WCF

 	TLD

 	API

 	SPA

 	CMS

 	Wasm

 	SASS

 	REST

 Exercise 1.4 – Explore topics

 Use the links on the following page to learn more details about the topics covered in this chapter:

 https://github.com/markjprice/web-dev-net9/blob/main/docs/book-links.md#chapter-1---introducing-web-development-using-controllers

 Summary

 In this chapter, you have:

 	Been introduced to some of the technologies that you can use to build websites and web services using C# and .NET.

 	Reviewed options for structuring ASP.NET Core projects.

 	Reviewed how to get help and download code solutions for this book.

 	Created class libraries to define an entity data model for working with the Northwind database using SQL Server.

 In the next chapter, you will learn the details about how to build a basic website using ASP.NET Core MVC.

 Learn more on Discord

 To join the Discord community for this book – where you can share feedback, ask questions to the author, and learn about new releases – follow the QR code below:

 https://packt.link/RWD9

 [image:]

 2

 Building Websites Using ASP.NET Core MVC

 This chapter is about building websites with a modern HTTP architecture on the server side using ASP.NET Core model-view-controller (MVC), including the models, views, and controllers that make up the main components of an ASP.NET Core MVC project, and how to use Bootstrap for quick user interface (UI) prototyping.

 This chapter will cover the following topics:

 	Setting up an ASP.NET Core MVC website

 	Exploring an ASP.NET Core MVC website

 	Prototyping with Bootstrap

 	Customizing an ASP.NET Core MVC website

 Setting up an ASP.NET Core MVC website

 The MVC design pattern is useful for complex websites, where a formal structure is needed to manage that complexity. ASP.NET Core MVC uses technologies like Razor syntax, but allows a cleaner separation of responsibilities, sometimes called technical concerns, as shown in the following list:

 	Models: Classes that represent the data entities and view models used on the website.

 	Views: Razor Views are .cshtml files that render data in view models into HTML for a dynamically-generated web page.
 Warning! When creating a Razor Views, you must not use the @page directive at the top of the file! If you do, then you have created a Razor Page and this behaves differently. For example, the controller will not pass the model and it will be null, throwing a NullReferenceException when you try to access any of its members.

 	Controllers: Classes that execute code when an HTTP request arrives at the web server. The controller methods usually instantiate a view model and pass that to a view in order to generate an HTTP response. This is returned to the web browser or other client that made the original request.

 Let’s review a simplified diagram to understand how these components work together to process an incoming HTTP request and send back an outgoing HTTP response, as shown in Figure 2.1:

 [image:]
 Figure 2.1: An ASP.NET Core MVC website responding to an HTTP request

 The HTTP request is processed as labeled in Figure 2.1 and as described in the following four steps:

 	Route: In Program.cs, there is a block of statements that configures the HTTP pipeline. A default route is configured so that if no relative path is specified, it assumes a controller name of Home (with a class name of HomeController) and an action method name of Index. If a relative path is specified, for example, /Products/Detail/3, then the controller name would be Products (with a class name of ProductsController), an action method name of Details, and an id parameter value of 3.

 	Controller: In <controller>Controller.cs, the controller class is instantiated and the action method is called. If the method has parameters, they are set automatically from parameters in the HTTP request. These can come from the route path, query string, and any posted <form> element or uploaded file.

 	Model: The action method constructs an instance of the appropriate model and passes it to a view. The controller returns the rendered view to the HTTP pipeline as a response including a status code like 200 OK or 400 Bad Request.

 	View: The appropriate view renders the model into a response format, typically HTML, but could be anything, like an image, PDF, JSON, or XML.

 The MVC design pattern as implemented in ASP.NET Core MVC might have been better named Route-Controller-Model-View (RCMV) to match the order of the components that are used in the process. But MVC sounds better.

 The best way to understand using the MVC design pattern is to see a working example.

 Creating an ASP.NET Core MVC website

 You will use a project template to create an ASP.NET Core MVC website project that has a database for authenticating and authorizing users using individual accounts. A visitor to the website can register their email, set a password, and then log in to the website using those credentials.

 Visual Studio defaults to using SQL Server LocalDB for the accounts database. VS Code (or more accurately, the dotnet CLI tool) uses SQLite by default and you can specify a switch to use SQL Server LocalDB instead.

 Let’s see it in action:

 	Use your preferred code editor to open the MatureWeb solution.

 	Add an MVC website project with authentication accounts stored in a local database, as defined in the following list:
 	Project template: ASP.NET Core Web App (Model-View-Controller) [C#] / mvc

 	Project file and folder: Northwind.Mvc

 	Solution file and folder: MatureWeb

 	Framework: .NET 9.0 (Standard Term Support) or .NET 8.0 (Long Term Support)

 	Authentication type: Individual Accounts / --auth Individual

 	Configure for HTTPS: Selected

 	Enable container support: Cleared

 	Do not use top-level statements: Cleared

 For VS Code, in the MatureWeb solution folder, use dotnet new mvc --auth Individual -o Northwind.Mvc and dotnet sln add Northwind.Mvc.

 For Rider, right-click the MatureWeb solution, navigate to Add | New Project…, and in the New Project dialog box, select ASP.NET Core Web Application, for Type, select Web App (Model-View-Controller), and for Auth, select Individual authentication, and then click Create.

 Warning! If you are using a Windows ARM machine, like the Surface Laptop 7 that I used to write this book, then you might also want to use this CLI command to create the project because SQL Server LocalDB does not work properly on ARM yet!

 	In the Northwind.Mvc.csproj project file, remove the Version attributes in <PackageReference> elements because they are set in the solution-level Directory.Packages.props file.

 	Add an element to import the System.Console class globally and statically.

 	If you are using Visual Studio, in Solution Explorer, toggle Show All Files. If you are using Rider, then hover the cursor over the Solution pane, and then click the eyeball icon. If you are using VS Code, then all folders are files are already visible.

 	Expand the obj folder, expand the Debug folder, expand the net9.0 folder, select the Northwind.Mvc.GlobalUsings.g.cs file, and note how the implicitly imported namespaces include all the ones for a console app or class library, as well as some ASP.NET Core ones, such as Microsoft.AspNetCore.Builder, as shown in the following code:
 // <autogenerated />
global using global::Microsoft.AspNetCore.Builder;
global using global::Microsoft.AspNetCore.Hosting;
global using global::Microsoft.AspNetCore.Http;
global using global::Microsoft.AspNetCore.Routing;
global using global::Microsoft.Extensions.Configuration;
global using global::Microsoft.Extensions.DependencyInjection;
global using global::Microsoft.Extensions.Hosting;
global using global::Microsoft.Extensions.Logging;
global using global::System;
global using global::System.Collections.Generic;
global using global::System.IO;
global using global::System.Linq;
global using global::System.Net.Http;
global using global::System.Net.Http.Json;
global using global::System.Threading;
global using global::System.Threading.Tasks;
global using static global::System.Console;

 	Close the file and collapse the obj folder.

 	Build the Northwind.Mvc project.

 	At the command prompt or terminal, use the help switch to see other options for this project template, as shown in the following command:
 dotnet new mvc --help

 	Note the results, as shown in the following partial output:
 ASP.NET Core Web App (Model-View-Controller) (C#)
Author: Microsoft
Description: A project template for creating an ASP.NET Core application with example ASP.NET Core MVC Views and Controllers. This template can also be used for RESTful HTTP services.

 There are many options, especially related to authentication, as shown in Table 2.1:

 	
 Switches

 	
 Description

 	
 -au or --auth

 	
 The type of authentication to use:

 None (default): This choice also allows you to disable HTTPS.

 Individual: Individual authentication that stores registered users and their passwords in a database (SQLite by default). We will use this in the project we create for this chapter.

 IndividualB2C: Individual authentication with Azure AD B2C.

 SingleOrg: Organizational authentication for a single tenant.

 MultiOrg: Organizational authentication for multiple tenants.

 Windows: Windows authentication. Mostly useful for intranets.

 	
 -uld or --use-local-db

 	
 Whether to use SQL Server LocalDB instead of SQLite. This option only applies if --auth Individual or --auth IndividualB2C is specified. The value is an optional bool with a default of false.

 	
 -rrc or --razor-runtime-compilation

 	
 This determines if the project is configured to use Razor runtime compilation in Debug builds. This can improve the performance of the startup process during debugging because it can defer the compilation of Razor Views. The value is an optional bool with a default of false.

 	
 -f or --framework

 	
 The target framework for the project. Values can be net9.0 (default) or net8.0. Older versions are no longer supported.

 Table 2.1: Additional switches for the dotnet new mvc project template

 Creating the authentication database for SQL Server LocalDB

 If you created the MVC project using Visual Studio, or you used dotnet new mvc with the -uld or --use-local-db switch, then the database for authentication and authorization will be stored in SQL Server LocalDB. But the database itself does not exist yet.

 If you created the MVC project using dotnet new or Rider, then the database for authentication and authorization will be stored in SQLite and the file has already been created, named app.db.

 The connection string for the authentication database is named DefaultConnection and it is stored in the appsettings.json file in the root folder for the MVC website project.

 For SQLite, see the following setting:

 {
 "ConnectionStrings": {
 "DefaultConnection": "DataSource=app.db;Cache=Shared"
 },

 If you created the MVC project using Visual Studio, then let’s create its authentication database now by following a few simple steps:

 	In the Northwind.Mvc project, in appsettings.json, note the database connection string named DefaultConnection, as shown highlighted in the following configuration:
 {
 "ConnectionStrings": {
 "DefaultConnection": "Server=(localdb)\\mssqllocaldb;Database=aspnet-Northwind.Mvc-440bc3c1-f7e7-4463-99d5-896b6a6500e0;Trusted_Connection=True;MultipleActiveResultSets=true"
 },
 "Logging": {
 "LogLevel": {
 "Default": "Information",
 "Microsoft.AspNetCore": "Warning"
 }
 },
 "AllowedHosts": "*"
}

 Your database name will use the pattern aspnet-[ProjectName]-[GUID] and have a different GUID value from the example above.

 	At a command prompt or terminal, in the Northwind.Mvc folder, enter the command to run database migrations so that the database used to store credentials for authentication is created, as shown in the following command:
 dotnet ef database update

 	Note the database is created with tables like AspNetRoles, as shown in the following partial output:

OEBPS/image/B31470_01_09.png
O Flo B View Gt Pt Dob aga 2 x ® - o x
198 B 8|2 - S ol e icrmaton o connec o e seeced data scuren or ek “Cramge” o chowse’s Ao B 5
ErTrm— S
e

[pe—

Srver v
fpr00114
Log onto thesever

r———

Tt Conmection

OEBPS/image/B31470_01_04.png
<:I |:> | http://www.example.com/

Website

HTMLS + CSS3 + JavaScript

(GET /about-us/

2000K

POST /place-order
201 Created

ASP.NET Core
MvC

or

ASP.NET Core
Blazor static SSR

or

Blazor Server

OEBPS/image/B31470_01_17.png
@ Code File Edit Selection View Go Run Terminal Window Help

~ connecrions
+ Add Connoction

~ auey HisToRY
No Queres Avalable

5 search
) Welcome X

Start

3 NewFie.

Open
3 Clone Git Repository.

X comnect ..

Recent

Chapter0s (Workspace) ~/app.
Chapter02 (Workspace) ~fapp:
Helloworld ~festidotnet7IChap
Chapter09 (Workspace) ~/app.
launcher ~Japps-services-net7
More,

L=l I3

Recommended

& GitHub Copilot

Supercharge your coding
experionce foras o 3.

[\ mssal: Encryption was enabled on this connection, review & X
your SSL and certficate configuraton or the target SQL
Server, o set “Trust server certiicate’ to true' i the
sotings fil. Note: A sf-signed certfcato ffers only
limitad protastion and s not a rogommandad practios for
production enironments. Do you want o enable Trust
server certfcate on this connection and retry?

OEBPS/image/B31470_01_12.png
X e e secion view o j oemE - o x
D s Satiogn
~ connecrions Integrated

O+ Add Comection Microsoft Entra d - Universsl w/ MFA Support

OEBPS/image/blockquote-top.png

OEBPS/image/B31470_01_08.png
Run a new container
mermicosoft com/szure.sabed

Optional settings.

Container name

Ports

Enter "0 i endomly genrsted host ors

1801cp

143310

Volumes

Host path Containerpath

Environment varisbles

ACCEPT_EULA

MSSQL_SA_PASSWORD

OEBPS/image/QR_Code2246428120509711359.png

OEBPS/image/B31470_01_14.png
soLseRver Password (Press Enter’to confrm or 'Escape’ {0 cancel)

+ Add Connection Start Recommended \

OEBPS/image/tip.png

OEBPS/image/B31470_01_01.png
Web Forms 2002

« .aspx pages

<% %> server-side
C# code

« Event-driven web

interactions like

Visual Basic in 19905

MVC 2009

- .cshtml views

+@{) serverside G#
code

* Native web

interactions (GET,

POST, and s0 on)

Blazor 2018

« .razor components
+@{ }serverside and
client-side C# code

« Event-driven web
interactions like
Visual Basic in 1990s

OEBPS/image/9781835880388.png
EXPERT INSIGHT

9
o
=
:
o

e
C
)
=
Q.

O
)
>
)

-

0

2

NET 9

th

Build websites and services using mature and proven
ASP.NET Core MVC, Web API, and Umbraco CMS

Wi

<packt

Mark J. Price

OEBPS/image/B31470_01_18.png
@ Code File Edit Selection View Go Run Terminal Window Help
eoe < B Search DEm®

sau senveR » = NortwindazuesQledgesal X % b [- = NorthwindaAzureSQledge.sal

~ connecrions + & Users > markjrice > Documents > Gitiub > spps-services-ne | 4 MESSAGES. oy

B, Azuro SaL Edga i Docker [y Started excuting query at e
D 2 e Copyrignt Wicrosaft, Inc. 1994 - M3 gy
2000 Commands complated
> Systom Databses S I nages reserves. ety .
@ Northwind P~ (rasasy Stried execuiing avery at Line
S Tobies s Commands complated
> 8 doo Categories ©SET NoconT v Succossuly
o.CustomerCust. Lo : Started executing query at Line
> BB dboCustomerCust . massy S
> B8 doo Customerdemo 5 set quoted_identifier o Commands complated
> B dooCustomors 1w Suscassuly
- o s o xecuting auery at L
VLI 12 /e Set DNTERORMAT 50 that the date e compltet
[+ Copyrght ic..ritoyl Strings are interpreted correctly Succosstuly.
regardess of Strted executing quey at Line
13 the defoult DATEFORMAT on the mazan S

Commands completed
Succassuly,
Totalexecution ime: 00:00:04.547

u oW
SET OATEFORAAT ndy

bSize:2 UTF-16LE CRLF

'SLCMD: Off 109:127.0.0.1,1433 : Northwind s & (3

Ln8, Col 1

OEBPS/image/B31470_01_13.png
@ Code File Edit Selecion View Go Run Terminal Window Help
eoe Do oo

sauserven Usor nama (Press Enter" o confinm or ‘Escape 1o cancel o

+ Add Connection Start Recommended

OEBPS/image/B31470_01_05.png
© Gt - morkricenebdev X+

Enterprise ¥ Pricing

2 markjprice / web-dev-net9 pusic D Notfcations ¥ Fok 0 %1 sur 2

O code O tssues 1 Pulrequests O Acions [Projects O Securty 1. nsights

P omain - P 18ranch ©0Tgs Q Gotofie About

&3 Clone.

Repository for the Packt Publishing book
@ markjprice Remove unnecessaru content

titled "Real-World Web Development with
HTTPS Github CLI

NET " by Mark J. Price.
W code/MatureWeb J

web-development | webmvc | dotnet
netpssgithun,confmaridpriceuab-dev-nets. it (D

e § umbrco odata dotnets

Clone using the web URL
1 sipts ! @ Resdne
[giignore | & Open with Gittub Desktop e Activy
25tars
ADME

D ReAoMEmd [Download ZIP.

R e e

1watching
A

OEBPS/image/B31470_01_10.png
@ Code File Edit Selecion View Go Run Terminal Window Help
eoe Do oo

tep1270011434

‘Server name or ADONET connection strng (Press ‘Entr”to confirm or ‘Escape’ to cancel) o

+ Add Connection Start Recommended

OEBPS/image/info.png

OEBPS/image/B31470_01_02.png
Umbraco CMS

GraphQL Modern

MvC

Web API

Mature,
controller-
based

OData

Razor Pages Blazor Minimal APIs

gRPC SignalR

Auth.

Caching

Config. | | Routing

Middleware DI

ASP.NET Core

OEBPS/image/blockquote-bottom.png

OEBPS/image/B31470_01_15.png
@ Code File Edit Selecion View Go Run Terminal Window Help

oo [Bave Password? 1 o' password vl b reuied each tim you connect noo®
B (e] o
« comecrions No

+ Add Connection e

OEBPS/image/B31470_02_01.png
GET https://localhost:5021/ >
!

HTTP Request

HTTP Response

(e

Middleware in HTTP Pipeline - Program.cs

app.MapControllerRoute(name: "default”,
pattern: "{controller=Home}/{action=Index}/{1d?}");

Controller - HomeController.cs

public class HomeController : Controller
public async Task<IActionResult> Index()
{

HomeIndexViewtiodel model = new() { ... };
return View(model);

" 4]

Razor View - Views\Home\Index.cshtml

<p>There have been @Model.VisitorCount visitors.</p>

© 0600 O

OEBPS/image/B31470_01_06.png
& docker Q Search for images, containers, . [Ctisk] @

Cortainers Containers . e
3 Images

& Volumes

R uids

7 Dockerscaut

B Exensons

Your running containers show up here

A container is an isolated environment for your code

What s a container? How do I run a container?

Smins bmins.

e RAM2.36GB CPUO.50% Disk -~ GB ay

YTy

OEBPS/image/B31470_01_19.png
O Fle Gt Viw Gt Poject Buld Debug Test Awbze Took Edensions Window Hop | O Serch: Matureweb ® - o x

©-0 @-SBE V- - b - Ay = P Northwind EntiyModels ~ > (7 « & GitHub Copilot 12 &) PREVIEW.

NottwindContortcs EntitModalTesteca & X - @ | souton ploer - ax
S atminditits Mot Uit i Modlits | © DotabneConmetinty + 8o =06 [£F]
& 1 using Northwind EntityModels; // To use NorthwindContext. = St e 1 5

Test Exporer SEE
o [Bses[ec] A-r@O @ - Search (1) o-

Durtion
windUniiets G) 131 sec
410 Northwind UnitTests ()

Tois

> Ron et

Group Summary 4

© cnigodelests () s Northind Uniests]
© CoegorCouniest sams Tests i group: C* NortindContentogercs
DotobaseComectest B6sec © Total Durtion: 13,1 sec LentityModes
3 Notwind Unitess
© producudnischaen sasec o

© 3Passed

OEBPS/image/B31470_01_03.png
Which ASP.NET Core technologies do you use?

This question was shown only to respondents who reported using ASP.NET

Core.

78%

64%

40%

20%

19%

16%

12%

9%

Web API
Mve

Razor pages

Minimal API

signalR

Blazor Server

Blazor WebAssembly

gRPC

OEBPS/image/B31470_01_11.png
@ Code File Edit Selecion View Go Run Terminal Window Help
ece

Do oo

[optona
sauserven atabase name (Pross ‘Entar”to confirm or ‘Escape’ to cancel) o

1 Database to connect (press Enter to connect to <default> database)

+ Add Connection Start Recommended

OEBPS/image/B31470_01_16.png
Selection View Go Run Terminal Window Help
Do oo

Azure SQL Edgo n Docker
Profi Nama (Press ‘Entor o confirm or ‘Escape 1o cancel) o

+ Add Connection

Start Recommended

OEBPS/image/New_Packt_Logo.png
<PACKD

OEBPS/image/review.png

OEBPS/image/B31470_01_07.png
Containers Containers i eauuct =
& images
2 Volumes Continer o usage ()
& cuide 50.04% / 1000% (10 cous avsabie)
17 Docker Scout

Q searen m
X Exensions

Name Image

RAM497GB CPUOAOY Disk

ch for images, containers,

azuresale et micros
700910178 sgledae

[cwiak

Containe memoryusage () Show charts
435.4MB / 7.34G8.

@ ony snow ruming comaiers

Port) CPU(%) Actions

e o m i w

Showing 1 item

D @wni o

OEBPS/image/qrcode_1.png

