

 [image: cover]

 Advanced Java

 Manish Soni

 	

PREFACE

	

	Welcome to "Advanced Java" Java has evolved significantly since its inception, becoming one of the most popular programming languages for a good reason. This book aims to take you beyond the basics of Java, introducing advanced concepts, techniques, and tools to help you become a proficient Java developer. Whether you're new to Java or an experienced developer looking to enhance your skills, this book will be your guide. We will cover a diverse range of topics, from advanced object-oriented programming and concurrency to database connectivity, web development, and modern Java frameworks.

	Our objective is to do more than just teach you how to write Java code; we want to help you become a Java craftsman or craftswoman, capable of creating complex, efficient, and elegant software solutions. You'll gain the knowledge and practical experience needed to confidently address real-world challenges. The journey begins with advanced object-oriented programming principles and design patterns, where you'll learn to design your software for scalability, maintainability, and flexibility using industry-standard practices.

	Concurrency is a critical aspect of modern software development, and this book will delve into multithreading, synchronization, and concurrent data structures, providing you with the tools to write high-performance, parallelized applications. Mastering database connectivity is essential for any Java developer. You'll learn to work with databases, including advanced SQL queries, JDBC, and connection pooling, enabling you to build robust, data-driven applications.

	Web development is another fundamental component of modern Java programming. You'll explore technologies like Servlets, JSP, and Java Server Faces (JSF), and we'll introduce the Spring Framework, a comprehensive toolset for developing enterprise-level applications. Throughout the book, we'll emphasize best practices, coding standards, and design guidelines to help you write not only functional but also maintainable and elegant code. You'll learn how to leverage tools and libraries to enhance your productivity and streamline your development process.

	As you embark on this journey into "Advanced Java," remember that mastering any craft requires time and practice. Java is a versatile and powerful tool, and with dedication and persistence, you can unlock its full potential. We encourage you to engage with the hands-on exercises and embrace the challenges that advanced Java programming presents. By the end of this book, we hope you'll have expanded not only your technical skills but also your mindset as a software developer.

	Let's begin this adventure together and explore the world of "Advanced Java".

	

Table of Contents

	PREFACE

	CHAPTER 1 - Network Basics and Socket Overview

	CHAPTER 2 - JDBC Programming

	CHAPTER 3 - Introduction of Java EE Overview

	CHAPTER 4 - Enterprise Application Development in Java

	CHAPTER 5 - Building and Deploying JAR and WAR Files

	CHAPTER 6 - Basics of Web Application Development

	CHAPTER 7 - Web Container and Web Application Project Setup

	CHAPTER 8 - Servlets

	CHAPTER 9 - Session Management

	CHAPTER 10 - Java Server Pages (JSP)

	CHAPTER 11 - Struts Framework (version 2.x)

	CHAPTER 12 - Hibernate Framework (version 3.x)

	CHAPTER 13 - Spring Framework (version 3.x)

	CHAPTER 14 - Spring Boot Framework (Version 2.x)

	CHAPTER 15 - Advanced Web Services and Messaging

	CHAPTER 16 - Viva – Voce of Advanced Java

	

CHAPTER 1 - Network Basics and Socket Overview

	

	1.1 Introduction to Networking

	Networking serves as a gateway into the realm of networking within the context of Java programming, focusing on advanced concepts and techniques for building robust, scalable, and secure networked applications.

	This introductory section lays the groundwork for understanding the fundamental principles, tools, and practices essential for leveraging Java's powerful networking capabilities. Java, renowned for its platform independence, versatility, and extensive standard library, provides comprehensive support for networking through its built-in APIs (Application Programming Interfaces). These APIs enable developers to create a wide range of networked applications, from simple client-server interactions to complex distributed systems.

	

	At the heart of Java's networking capabilities lies the java.net package, which offers classes and interfaces for implementing various networking protocols, handling socket communications, and managing network resources. Understanding the java.net package is crucial for harnessing the full potential of Java's networking capabilities. Introduction to Networking for Advanced Java include

	Socket Programming: Socket programming forms the foundation of network communication in Java. Sockets facilitate communication between client and server applications by establishing connections and transmitting data streams. Understanding socket programming allows developers to create networked applications that can exchange data reliably and efficiently.

	TCP/IP and UDP Protocols: Java supports both TCP/IP (Transmission Control Protocol/Internet Protocol) and UDP (User Datagram Protocol), two fundamental networking protocols used for communication over the internet. TCP/IP provides reliable, connection-oriented communication, while UDP offers lightweight, connectionless communication. Mastery of these protocols enables developers to choose the most suitable approach for their networking needs.

	Concurrency and Multithreading: Networking applications often require concurrent handling of multiple client connections and asynchronous communication. Java's multithreading capabilities, facilitated by the java.lang.Thread class and the java.util.concurrent package, allow developers to implement scalable and responsive networked applications that can handle concurrent tasks efficiently.

	Security and Encryption: Network security is paramount in today's interconnected world. Java provides robust support for implementing security measures such as encryption, authentication, and secure communication protocols (e.g., SSL/TLS). Understanding how to incorporate security features into Java networking applications helps protect sensitive data and prevent unauthorized access.

	Remote Method Invocation (RMI): RMI is a Java-specific technology for enabling communication between distributed Java objects over a network. By leveraging RMI, developers can create distributed applications where objects residing on different machines can interact seamlessly. Understanding RMI empowers developers to build distributed systems with ease.

	Web Services and APIs: Java offers extensive support for developing web services and APIs (Application Programming Interfaces) using technologies such as Java EE (Enterprise Edition) and RESTful web services. These technologies enable the creation of interoperable, scalable, and loosely coupled networked applications that can integrate seamlessly with other systems and platforms.

	

	1.1.1 Network Layers Overview

	In an "Advanced Java Networking", a comprehensive understanding of network layers is vital for developers aiming to build high-performance, scalable, and efficient networked applications. This section provides an in-depth overview of the layered architecture of modern networking protocols, emphasizing the OSI (Open Systems Interconnection) model and its relevance to Java networking.

	The OSI model serves as a conceptual framework for understanding how communication protocols interact within a networked environment. It consists of seven layers, each responsible for specific functions and abstraction levels, facilitating modular design, interoperability, and ease of implementation. By understanding the OSI model, developers can design robust and flexible networking solutions that adhere to industry standards and best practices.

	

	The following is a breakdown of the OSI model layers and their relevance to advanced Java networking:

	

	

	[image: Image]

	Figure 1.1

	

	Physical Layer

	This layer deals with the physical transmission of data over the network medium, including electrical signals, voltage levels, and physical connectors.

	In advanced Java networking, developers may interact with physical layer concepts indirectly through network interface controllers (NICs) and low-level hardware interactions, though most interactions occur at higher layers of abstraction.

	

	Data Link Layer

	The data link layer is responsible for framing data into packets, error detection, and media access control (MAC) addressing.

	Advanced Java networking applications often rely on data link layer protocols such as Ethernet for local network communication. Java libraries abstract away low-level details, allowing developers to focus on higher-level functionality.

	

	Network Layer

	The network layer facilitates routing of packets between different networks, addressing, and congestion control.

	Advanced Java networking may involve interactions with network layer protocols such as IP (Internet Protocol) and routing algorithms. Java provides APIs for socket programming and network configuration, enabling developers to implement network layer functionalities within their applications.

	

	Transport Layer

	This layer ensures reliable and efficient end-to-end communication between hosts, handling flow control, error recovery, and segmentation.

	In advanced Java networking, developers commonly utilize transport layer protocols such as TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) for communication between applications. Java's java.net package offers classes and interfaces for socket programming and transport layer interactions.

	

	Session Layer

	The session layer establishes, maintains, and terminates communication sessions between applications, providing synchronization and checkpointing mechanisms.

	Advanced Java networking may involve session layer functionalities implemented through application protocols and middleware frameworks. Java's concurrency utilities and network APIs enable developers to manage communication sessions effectively within their applications.

	

	Presentation Layer

	This layer handles data representation, encryption, and compression, ensuring compatibility between different systems.

	In advanced Java networking, developers may utilize presentation layer concepts indirectly through data serialization, encryption libraries, and protocol negotiation mechanisms. Java provides APIs for data manipulation and conversion, facilitating interoperability between heterogeneous systems.

	

	Application Layer

	The application layer provides network services directly to end-users, including file transfer, email, web browsing, and remote access.

	Advanced Java networking involves the development of application layer protocols, APIs, and services using Java EE (Enterprise Edition), web frameworks, and middleware technologies. Java libraries and frameworks simplify the development of networked applications, allowing developers to focus on application logic and functionality.

	

	1.1.2 Understanding Network Protocols

	Before we touch upon Java-specific classes, it's essential to understand the protocols that govern communication between devices. The most widely used protocol suite is TCP/IP, which stands for Transmission Control Protocol/Internet Protocol. TCP/IP ensures reliable, ordered, and error-checked delivery of a stream of bytes between applications running on hosts communicating over an IP network.

	Network protocols serve as the foundation of communication in computer networks, enabling devices to exchange data seamlessly and reliably. These protocols define various aspects of communication, including addressing, data encapsulation, error detection and correction, flow control, and security. By understanding network protocols, developers can design, implement, and troubleshoot networked applications effectively, ensuring compatibility, reliability, and security.

	Key aspects of understanding network protocols for an advanced Java audience include:

	TCP/IP Protocol Suite

	The TCP/IP (Transmission Control Protocol/Internet Protocol) suite is the foundation of modern networking, governing communication across the internet and many private networks.

	In advanced Java networking, developers interact extensively with TCP/IP protocols, particularly TCP for reliable, connection-oriented communication and UDP for lightweight, connectionless communication.

	Java's networking APIs, such as the java.net package, provide comprehensive support for implementing TCP/IP-based applications, including socket programming, IP addressing, and protocol-specific configurations.

	HTTP and HTTPS Protocols

	HTTP (Hypertext Transfer Protocol) and its secure counterpart HTTPS are application layer protocols used for transmitting data over the World Wide Web.

	Advanced Java networking often involves building web applications and services that communicate using HTTP/HTTPS protocols. Java frameworks like Spring and JAX-RS facilitate the development of web-based applications, handling HTTP request/response cycles, session management, and security features.

	Java provides libraries for HTTP client and server implementations, enabling developers to integrate web functionality into their applications seamlessly.

	FTP and SFTP Protocols

	FTP (File Transfer Protocol) and SFTP (SSH File Transfer Protocol) are used for transferring files between systems over a network.

	Advanced Java networking may involve implementing FTP/SFTP clients or servers for automated file transfers. Java libraries like Apache Commons Net and JSch provide support for FTP/SFTP operations, simplifying the development of file transfer applications.

	SMTP and IMAP Protocols

	SMTP (Simple Mail Transfer Protocol) and IMAP (Internet Message Access Protocol) are used for sending and retrieving email messages, respectively.

	Advanced Java networking may include integrating email functionality into applications, such as sending automated emails or processing incoming messages. JavaMail API provides comprehensive support for SMTP, IMAP, and POP3 (Post Office Protocol) operations, allowing developers to build robust email applications.

	DNS Protocol

	DNS (Domain Name System) resolves domain names to IP addresses, facilitating hostname resolution on the internet.

	Advanced Java networking may involve DNS-related tasks, such as resolving domain names programmatically or implementing DNS client/server functionality. Java's networking APIs provide support for DNS resolution and hostname manipulation, enabling developers to interact with DNS services effectively.

	Security Protocols (SSL/TLS)

	SSL (Secure Sockets Layer) and its successor TLS (Transport Layer Security) are cryptographic protocols used for securing communication over a network.

	Advanced Java networking often requires implementing secure communication using SSL/TLS protocols. Java's javax.net.ssl package provides APIs for SSL/TLS configuration, certificate management, and secure socket communication, ensuring data confidentiality and integrity.

	

	1.2 Socket Communication

	Socket communication is a key concept in network programming, enabling data exchange between applications running on different systems across a network. In advanced Java, socket communication involves a more in-depth understanding of various protocols, threading, and performance considerations. A socket is an endpoint for communication between two machines. In Java, the java.net package provides two main classes for socket programming:

	Socket for client-side communication.

	ServerSocket for server-side communication.

	Basic Socket Programming

	Creating a Server Socket

	ServerSocket serverSocket = new ServerSocket(portNumber);

	Socket clientSocket = serverSocket.accept(); // Waits for a client connection

	Creating a Client Socket

	Socket socket = new Socket("hostname", portNumber);

	Communication Streams

	// For reading from the socket

	BufferedReader in = new BufferedReader(new InputStreamReader(clientSocket.getInputStream()));

	// For writing to the socket

	PrintWriter out = new PrintWriter(clientSocket.getOutputStream(), true);

	

	1.3 TCP/IP Client Sockets with Socket

	TCP/IP client sockets in Java are used to establish a connection to a server over the network, allowing for data exchange between the client and server. Here's a comprehensive guide to creating and using TCP/IP client sockets with the Socket class in Java.

	Setting Up a TCP/IP Client Socket

	Import Required Packages

	import java.io.*;

	import java.net.*;

	Creating a Client Socket

	String serverAddress = "localhost"; // or the server's IP address

	int portNumber = 12345; // the server's port number

	try (Socket socket = new Socket(serverAddress, portNumber)) {

	 // Connection established

	} catch (IOException e) {

	 e.printStackTrace();

	}

	
		Setting Up Input and Output Streams

	try (Socket socket = new Socket(serverAddress, portNumber);

	 PrintWriter out = new PrintWriter(socket.getOutputStream(), true);

	 BufferedReader in = new BufferedReader(new InputStreamReader(socket.getInputStream()))) {

	 // Communication logic here

	} catch (IOException e) {

	 e.printStackTrace();

	}

	Communication Logic

	try (Socket socket = new Socket(serverAddress, portNumber);

	 PrintWriter out = new PrintWriter(socket.getOutputStream(), true);

	 BufferedReader in = new BufferedReader(new InputStreamReader(socket.getInputStream()));

	 BufferedReader stdIn = new BufferedReader(new InputStreamReader(System.in))) {

	 String userInput;

	 System.out.println("Type a message: ");

	 while ((userInput = stdIn.readLine()) != null) {

	 out.println(userInput); // Send to server

	 System.out.println("Server response: " + in.readLine()); // Receive from server

	 }

	

	} catch (IOException e) {

	 e.printStackTrace();

	}

	Complete TCP/IP Client Example

	Here's a complete example of a TCP/IP client that connects to a server, sends user input, and prints the server's response.

	import java.io.*;

	import java.net.*;

	public class TCPClient {

	 public static void main(String[] args) {

	 String serverAddress = "localhost"; // or the server's IP address

	 int portNumber = 12345; // the server's port number

	 try (Socket socket = new Socket(serverAddress, portNumber);

	 PrintWriter out = new PrintWriter(socket.getOutputStream(), true);

	 BufferedReader in = new BufferedReader(new InputStreamReader(socket.getInputStream()));

	 BufferedReader stdIn = new BufferedReader(new InputStreamReader(System.in))) {

	 System.out.println("Connected to the server at " + serverAddress + " on port " + portNumber);

	 String userInput;

	 System.out.println("Type a message (type 'bye' to quit): ");

	 while ((userInput = stdIn.readLine()) != null) {

	 if ("bye".equalsIgnoreCase(userInput)) {

	 break; // Exit the loop if the user types 'bye'

	 }

	 out.println(userInput); // Send to server

	 System.out.println("Server response: " + in.readLine()); // Receive from server

	 }

	 System.out.println("Client disconnected.");

	 } catch (IOException e) {

	 e.printStackTrace();

	 }

	 }

	}

	

	1.4 TCP/IP Server Sockets

	Creating a TCP/IP server socket in Java involves setting up a server that listens for incoming client connections on a specific port. Once a connection is established, the server can communicate with the client using input and output streams. Here’s a detailed explanation of how to create and use TCP/IP server sockets with the Server Socket and Socket classes in Java.

	Setting Up a TCP/IP Server Socket

	
		Import Required Packages

	import java.io.*;

	import java.net.*;

	
		Creating a Server Socket

	int portNumber = 12345; // The server's port number

	

	try (ServerSocket serverSocket = new ServerSocket(portNumber)) {

	 System.out.println("Server is listening on port " + portNumber);

	 while (true) {

	 Socket clientSocket = serverSocket.accept(); // Waits for a client connection

	 new ClientHandler(clientSocket).start(); // Handle the client connection in a new thread

	 }

	} catch (IOException e) {

	 e.printStackTrace();

	}

	
		Handling Client Connections

	class ClientHandler extends Thread {

	 private Socket clientSocket;

	 public ClientHandler(Socket socket) {

	 this.clientSocket = socket;

	 }

	 @Override

	 public void run() {

	 try (PrintWriter out = new PrintWriter(clientSocket.getOutputStream(), true);

	 BufferedReader in = new BufferedReader(new InputStreamReader(clientSocket.getInputStream()))) {

	 String inputLine;

	 while ((inputLine = in.readLine()) != null) {

	 System.out.println("Received: " + inputLine);

	 out.println("Echo: " + inputLine); // Echo the received message

	 }

	 } catch (IOException e) {

	 e.printStackTrace();

	 }

	 }

	}

	

	Complete TCP/IP Server Example

	Here’s a complete example of a TCP/IP server that listens for client connections and echoes received messages back to the clients.

	import java.io.*;

	import java.net.*;

	public class TCPServer {

	 public static void main(String[] args) {

	 int portNumber = 12345; // The server's port number

	 try (ServerSocket serverSocket = new ServerSocket(portNumber)) {

	 System.out.println("Server is listening on port " + portNumber);

	 while (true) {

	 Socket clientSocket = serverSocket.accept(); // Waits for a client connection

	 System.out.println("New client connected");

	 new ClientHandler(clientSocket).start(); // Handle the client connection in a new thread

	 }

	 } catch (IOException e) {

	 e.printStackTrace();

	 }

	 }

	}

	class ClientHandler extends Thread {

	 private Socket clientSocket;

	 public ClientHandler(Socket socket) {

	 this.clientSocket = socket;

	 }

	 @Override

	 public void run() {

	 try (PrintWriter out = new PrintWriter(clientSocket.getOutputStream(), true);

	 BufferedReader in = new BufferedReader(new InputStreamReader(clientSocket.getInputStream()))) {

	 String inputLine;

	 while ((inputLine = in.readLine()) != null) {

	 System.out.println("Received: " + inputLine);

	 out.println("Echo: " + inputLine); // Echo the received message

	 }

	 } catch (IOException e) {

	 e.printStackTrace();

	 }

	 }

	}

	

	1.5 Datagrams in Java

	Datagrams in Java are a means of implementing connectionless network communication using the User Datagram Protocol (UDP). Unlike TCP, which establishes a connection and ensures reliable data transfer, UDP sends data packets, called datagrams, without establishing a connection, making it faster but less reliable. Java provides two primary classes for working with datagrams. DatagramPacket and DatagramSocket. The DatagramPacket class encapsulates data, destination IP address, and port number into a packet that can be sent or received. It supports creating packets from byte arrays and extracting data from received packets. The DatagramSocket class is responsible for sending and receiving these datagram packets. A DatagramSocket can be bound to a specific port, enabling it to listen for incoming packets or send packets to a specified address and port. This makes datagrams ideal for applications that require fast, lightweight communication without the overhead of connection management, such as online gaming, real-time systems, and broadcasting messages to multiple clients. Although UDP does not guarantee delivery, order, or error checking, its simplicity and speed are advantageous in scenarios where timely delivery is more critical than reliability. In essence, datagrams in Java provide a straightforward and efficient mechanism for handling network communication in time-sensitive applications.

	Java provides the java.net package, which contains the necessary classes to create and manipulate datagrams. Here is an overview of the primary classes involved

	DatagramSocket: This class represents a socket for sending and receiving datagram packets.

	DatagramPacket: This class represents a datagram packet, which contains data either to be sent or received.

	Sending and Receiving Datagrams

	

	Sending a Datagram

	To send a datagram, you create a DatagramSocket and a DatagramPacket. Here's an example

	import java.net.DatagramPacket;

	import java.net.DatagramSocket;

	import java.net.InetAddress;

	public class DatagramSender {

	 public static void main(String[] args) {

	 try {

	 // Create a socket to send the datagram

	 DatagramSocket socket = new DatagramSocket();

	 // The message to be sent

	 String message = "Hello, this is a test message";

	 byte[] buffer = message.getBytes();

	 // The IP address of the receiver

	 InetAddress receiverAddress = InetAddress.getByName("localhost");

	 // Create a packet with the data, the receiver's address, and port number

	 DatagramPacket packet = new DatagramPacket(buffer, buffer.length, receiverAddress, 9876);

	 // Send the packet

	 socket.send(packet);

	 // Close the socket

	 socket.close();

	 } catch (Exception e) {

	 e.printStackTrace();

	 }

	 }

	}

	

	

	Receiving a Datagram

	To receive a datagram, you also create a DatagramSocket and a DatagramPacket, but you need to specify the port number to listen on:

	import java.net.DatagramPacket;

	import java.net.DatagramSocket;

	public class DatagramReceiver {

	 public static void main(String[] args) {

	 try {

	 // Create a socket to receive the datagram on port 9876

	 DatagramSocket socket = new DatagramSocket(9876);

	 // Create a buffer to hold the incoming data

	 byte[] buffer = new byte[1024];

	 // Create a packet to receive the data into

	 DatagramPacket packet = new DatagramPacket(buffer, buffer.length);

	 // Receive the packet

	 socket.receive(packet);

	 // Convert the received data to a string

	 String receivedMessage = new String(packet.getData(), 0, packet.getLength());

	 System.out.println("Received message: " + receivedMessage);

	 // Close the socket

	 socket.close();

	 } catch (Exception e) {

	 e.printStackTrace();

	 }

	 }

	}

	

	Key Points

	No Connection Required: Unlike TCP, UDP does not establish a connection before sending data, which makes it faster but less reliable.

	Data Loss: Packets sent via UDP may be lost or arrive out of order.

	Broadcast and Multicast: UDP supports broadcasting (sending data to all devices in a subnet) and multicasting (sending data to multiple specific devices).

	

	Advanced Usage

	For more advanced usage, you might need to handle scenarios such as:

	Handling Timeouts: Setting timeouts on the socket to avoid blocking indefinitely.

	Fragmentation and Reassembly: Handling larger messages that need to be split across multiple datagrams.

	Security: Implementing security measures to ensure data integrity and authenticity.

	

	Here's an example of setting a timeout

	socket.setSoTimeout(5000); // Set a timeout of 5 seconds

	

	1.6 InetAddress

	The InetAddress class represents an IP address, which can be either IPv4 or IPv6. It provides methods to resolve hostnames to IP addresses and vice versa, enabling developers to handle network operations. Key functionalities include getByName() to resolve hostnames, getLocalHost() for the local machine's address, and getAllByName() for multiple addresses associated with a hostname. InetAddress also supports checking reachability with isReachable(). By abstracting the complexities of raw IP addresses, InetAddress facilitates efficient network programming, including establishing socket connections and managing network interfaces.

	Code: InetAddress ip = InetAddress.getByName("www.example.com");

	Core Features and Methods

	Obtaining InetAddress Objects

	

	By Hostname: Resolves the hostname to its corresponding IP address.

	InetAddress address = InetAddress.getByName("www.example.com");

	This method performs a DNS lookup and may throw UnknownHostException if the hostname cannot be resolved.

	By IP Address: Creates an InetAddress object from a byte array representing the raw IP address.

	byte[] ip = {127, 0, 0, 1}; // IPv4 address for localhost

	InetAddress address = InetAddress.getByAddress(ip);

	For IPv6, the byte array length should be 16.

	By Local Host: Retrieves the IP address of the local machine.

	InetAddress localAddress = InetAddress.getLocalHost();

	This method may throw UnknownHostException if the local host name cannot be resolved into an address.

	All IP Addresses for a Hostname: Retrieves all IP addresses associated with a hostname.

	InetAddress[] addresses = InetAddress.getAllByName("www.example.com");

	

	Commonly Used Methods

	getHostName(): Returns the hostname associated with the IP address.

	String hostname = address.getHostName();

	

	getCanonicalHostName(): Returns the fully qualified domain name (FQDN) for the IP address.

	String canonicalHostname = address.getCanonicalHostName()

	

	getHostAddress(): Returns the textual representation of the IP address.

	String ipString = address.getHostAddress();

	

	getAddress(): Returns the raw IP address as a byte array.

	byte[] ipAddress = address.getAddress();

	

	Advanced Usage Examples

	1. Resolving Hostnames and IP Addresses

	import java.net.InetAddress;

	public class InetAddressExample {

	public static void main(String[] args) {

	 try {

	 InetAddress address = InetAddress.getByName("www.example.com");

	 System.out.println("Hostname: " + address.getHostName());

	 System.out.println("Canonical Hostname: " + address.getCanonicalHostName());

	 System.out.println("IP Address: " + address.getHostAddress());

	 } catch (Exception e) {

	 e.printStackTrace();

	 }

	 }

	}

	

	2. Handling Multiple IP Addresses

	When dealing with services that might have multiple IP addresses (for load balancing or redundancy), you can retrieve all associated addresses:

	import java.net.InetAddress;

	public class MultipleIPAddressesExample {

	 public static void main(String[] args) {

	 try {

	 InetAddress[] addresses = InetAddress.getAllByName("www.google.com");

	 for (InetAddress address : addresses) {

	 System.out.println("IP Address: " + address.getHostAddress());

	 }

	 } catch (Exception e) {

	 e.printStackTrace();

	 }

	 }

	}

	

	InetAddress and Network Programming

	Example: Connecting to a Server

	The InetAddress class is often used in conjunction with sockets to specify the target address for a connection.

	import java.net.InetAddress;

	import java.net.Socket;

	public class ClientExample {

	 public static void main(String[] args) {

	 try {

	 InetAddress serverAddress = InetAddress.getByName("www.example.com");

	 Socket socket = new Socket(serverAddress, 80);

	 // Use the socket for communication

	 socket.close();

	 } catch (Exception e) {

	 e.printStackTrace();

	 }

	 }

	}

	

	Handling IPv4 and IPv6 Addresses

	The InetAddress class seamlessly handles both IPv4 and IPv6 addresses. Java will automatically resolve and use the appropriate type based on the network configuration and address provided.

	Example: Checking Address Type

	import java.net.InetAddress;

	import java.net.Inet6Address;

	import java.net.Inet4Address;

	public class IPAddressTypeExample {

	 public static void main(String[] args) {

	 try {

	 InetAddress address = InetAddress.getByName("www.google.com");

	 if (address instanceof Inet6Address) {

	 System.out.println("This is an IPv6 address.");

	 } else if (address instanceof Inet4Address) {

	 System.out.println("This is an IPv4 address.");

	 } else {

	 System.out.println("Unknown IP address type.");

	 }

	 } catch (Exception e) {

	 e.printStackTrace();

	 }

	 }

	}

	

	Reverse DNS Lookup

	Performing a reverse DNS lookup can help find the hostname associated with an IP address.

	import java.net.InetAddress;

	public class ReverseDNSLookupExample {

	 public static void main(String[] args) {

	 try {

	 InetAddress address = InetAddress.getByName("8.8.8.8");

	 System.out.println("Hostname: " + address.getHostName());

	 } catch (Exception e) {

	 e.printStackTrace();

	 }

	 }

	}

	

	Network Interface Interaction

	InetAddress can be used with the NetworkInterface class to get detailed information about the network interfaces on a machine.

	Example: Network Interface Details

	import java.net.InetAddress;

	import java.net.NetworkInterface;

	import java.util.Enumeration;

	public class NetworkInterfaceExample

	 {

	 public static void main(String[] args) {

	 try {

	 Enumeration<NetworkInterface> interfaces = NetworkInterface.getNetworkInterfaces();

	 while (interfaces.hasMoreElements()) {

	 NetworkInterface networkInterface = interfaces.nextElement();

	 System.out.println("Interface: " + networkInterface.getName());

	 Enumeration<InetAddress> addresses = networkInterface.getInetAddresses();

	 while (addresses.hasMoreElements()) {

	 InetAddress address = addresses.nextElement();

	 System.out.println(" Address: " + address.getHostAddress());

	 }

	 }

	 }

	catch (Exception e)

	{

	 e.printStackTrace();

	 }

	 }

	}

	

	Socket Communication in Practice

	When a client and a server communicate over a network using sockets, the typical sequence of steps is as follows:

	
		Server creates a ServerSocket and binds it to a specific port number.

		Server invokes the accept() method of ServerSocket to wait for client requests.

		Client creates a Socket and attempts to connect to the server's IP address and port number.

		Server's accept() method returns a new Socket object that is connected to the client's socket.

		Data is read from and written to the socket's input and output streams.

		Both client and server close their socket connections once communication is complete.

	

	1.7 URLs and URL Connection

	In Java, a URL (Uniform Resource Locator) is the address of a resource on the Internet. It not only tells you the location of that resource but also how to retrieve it. A URL is composed of several parts: the protocol, the host, the port (optional), the path, and the query string (optional).

	

	1.7.1 The URL Class

	The URL (Uniform Resource Locator) class in Java is part of the java.net package and represents a URL, which is a pointer to a "resource" on the World Wide Web. The resource can be something as simple as a file or a directory, or it can be a reference to a more complicated object, such as a query to a database or a search engine.

	Once you have a URL object, you can retrieve various components of the URL, like the protocol, host, port, and file path, using the appropriate methods provided by the class.

	

	URL Class Structure

	A typical URL has the following structure protocol://hostname:port/path?query#fragment

	Where:

	protocol: The protocol to use (e.g., http, https, ftp).

	hostname: The domain name or IP address of the server.

	port: The port number on the server (optional, default for HTTP is 80).

	path: The file or resource to retrieve.

	query: The query string (optional, used for passing parameters).

	fragment: The reference to a section of the resource (optional).

	

	Key Methods of the URL Class

	Creating a URL

	URL url = new URL("http://www.example.com:80/docs/resource1.html?name=Network#DOWNLOADING");

	

	Getting URL Components

	String protocol = url.getProtocol(); // "http"

	String host = url.getHost(); // "www.example.com"

	int port = url.getPort(); // 80 (returns -1 if no port is specified)

	String path = url.getPath(); // "/docs/resource1.html"

	String query = url.getQuery(); // "name=Network"

	String fragment = url.getRef(); // "DOWNLOADING"

	

	Opening a Connection

	URLConnection connection = url.openConnection();

	

	1.7.2 The URLConnection Class

	The URLConnection class represents a communication link between the application and a URL. It is an abstract class that provides methods to interact with the resource at the URL. This includes methods for reading from and writing to the resource, as well as setting request properties and getting response headers.

	To interact with the resource pointed to by a URL, Java uses the URLConnection class, which represents a communication link between the application and a URL. Instances of this class can be used both to read from and write to the resource referred to by the URL.

	Common Usage of URLConnection

	Opening a Connection

	URL url = new URL("http://www.example.com");

	URLConnection connection = url.openConnection();

	connection.connect(); // Optional, implicitly called by getInputStream()

	

	Reading from a URLConnection

	The URLConnection class provides input and output streams. If you want to read data from a URL, you can do so through the input stream obtained from the URLConnection.

	Code-

	InputStream inputStream = urlConnection.getInputStream();

	BufferedReader reader = new BufferedReader(new InputStreamReader(inputStream));

	String inputLine;

	while ((inputLine = reader.readLine()) != null) {

	 System.out.println(inputLine);

	}

	reader.close();

	The above code snippet opens a stream and reads from the URL line by line.

	Writing to a URLConnection

	To send data to a URL, you would write to the URLConnection's output stream. However, before writing, you must configure the URLConnection to allow output

	Code-

	urlConnection.setDoOutput(true);

	DataOutputStream out = new DataOutputStream(urlConnection.getOutputStream());

	out.writeBytes("parameter1=value1¶meter2=value2");

	out.flush();

	out.close();

	Setting Request Properties

	You can set various request properties on a URLConnection, such as setting request methods (GET, POST, etc.), setting request headers, and so on.

	Code-

	urlConnection.setRequestMethod("GET");

	urlConnection.setRequestProperty("Content-Type", "application/x-www-form-urlencoded");

	Handling URLConnection Responses

	You can also read response codes and messages from the URLConnection to determine if the request was successful.

	Code-

	int responseCode = urlConnection.getResponseCode();

	String responseMessage = urlConnection.getResponseMessage();

	

	Exercise

	Exercise 1 – MCQ

	1. What is a socket in network programming?

	a) A protocol for secure data transmission

	b) A hardware component for network connections

	c) An endpoint for communication between two machines

	d) A type of network cable

	2. Which of the following is true about TCP/IP sockets?

	a) They do not guarantee message delivery.

	b) They transmit data in an unencrypted format.

	c) They provide a connection-oriented, reliable stream of data.

	d) They are primarily used for broadcasting messages.

	3. Which method is used to connect a client socket to a server socket?

	a) bind()

	b) connect()

	c) listen()

	d) accept()

	4. In Java, which class is used to create a client socket?

	a) ServerSocket

	b) Socket

	c) DatagramSocket

	d) URL

	5. Which method is used by a server to listen for incoming client connections?

	a) connect()

	b) bind()

	c) accept()

	d) listen()

	b) Which of the following is required to create a ServerSocket in Java?

	a) The client's IP address

	b) The server's IP address

	c) The port number the server will listen on

	d) The protocol (TCP or UDP) to use

	7. What is a Datagram in Java networking?

	a) connection-oriented packet

	b) A secure data transmission method

	c) A small packet of information sent over the network

	d) A high-speed data transfer protocol

	8. Which class is used for sending and receiving datagram packets in Java?

	a) DatagramPacket

	b) DatagramSocket

	c) Socket

	d) ServerSocket

	9. Which of the following methods is used to retrieve the IP address of a hostname?

	a) InetAddress.getByName()

	b) InetAddress.getLocalHost()

	c) URL.getHost()

	d) URLConnection.getIP()

	10. What does the InetAddress class represent in Java networking?

	a) A TCP/IP protocol

	b) b) A URL's domain name

	c) An IP address

	d) A physical network interface

	

	Exercise 2 -True False

	1. A socket is a software endpoint that establishes bidirectional communication between a server and one or more clients.

	2. TCP/IP client sockets can only send data after a connection has been established with a server socket.

	3. The ServerSocket class is used to create a client socket that can request to connect to a server.

	4. Datagram sockets are used for connectionless socket programming and are based on the UDP protocol.

	5. The InetAddress class in Java is used to work with both IPv4 and IPv6 addresses.

	6. A single instance of InetAddress can represent both a hostname and its corresponding IP address.

	7. URLConnection is a direct subclass of URL and is used to send and receive data over the web.

	8. It's possible to specify a timeout value for a connection attempt made by a client socket.

	9. Server sockets automatically accept incoming connections without any method invocation needed by the programmer.

	10. URLs and URLConnections support both HTTP and HTTPS protocols for data transmission.

	

	Exercise 3- Fill in the blanks

	1. In Java, a ________ is an endpoint for communication between two machines.

	2. The ________ class is used to create a client socket that connects to a server in a TCP/IP network.

	3. In server-side programming, the ________ class is used to listen for incoming connection requests from clients.

	4. The ________ class in Java is used for sending and receiving datagram packets over a network.

	5. The ________ class provides methods to get the IP address of a hostname.

	6. __________ is used to convert human-readable domain names to IP addresses.

	7. The __________ protocol is responsible for dynamically assigning IP addresses to devices on a network.

	8. The process of converting domain names to IP addresses is facilitated by __________.

	9. The process of closing a socket connection in Java is accomplished using the __________ method of the Socket class.

	10. A __________ is a unique identifier associated with each application running on a host and using a network connection.

	

	Exercise 4 – Match case

	1. Used for connection-oriented communication

	2. Represents a URL in Java

	3. Listens for incoming connections on a specified port

	4. Sends and receives packets of information

	

	A. DatagramSocket

	B. ServerSocket

	C. URL

	D. Socket

	

	Exercise 5 – One word answer

	1. What Java class is used for creating datagram sockets for sending and receiving UDP packets?

	2. Which method of the URL class is used to establish a connection to the resource referred by the URL?

	

	Exercise 6 – Small answer

	1. How do you retrieve the IP address of a host name using Java?

	2. Describe how to send a GET request to a web server and read the response using Java.

	

	Exercise 7 – Long answer

	1. Explain the process of establishing a TCP connection between a client and a server in Java, including the steps for setting up the server to listen for connections and how the client initiates the connection. Detail the role of the ServerSocket and Socket classes in this process.

	2. Describe how to implement a simple chat application using UDP sockets in Java. Outline the steps necessary for sending and receiving messages between a client and a server, including the creation of DatagramSocket objects, the construction and handling of DatagramPacket objects for sending and receiving messages, and the considerations for ensuring communication reliability in the inherently unreliable UDP protocol.

	

	Answers:

	Exercise 1: 1) c 2) c 3) b 4) b 5) c 6) c 7) c 8) b 9) a 10) c

	Exercise 2: 1) True 2) True 3) False 4) True 5) True 6) False 7) False 8) True 9) False 10) True

	Exercise 3: 1) socket 2) Socket 3) ServerSocket 4) DatagramSocket 5) InetAddress 6) DNS 7) DHCP (Dynamic Host Configuration Protocol) 8) DNS (Domain Name System) 9) Close() 10) port number

	Exercise 4: 1 - D. Socket 2 - C. URL 3 - B. ServerSocket 4 - A. DatagramSocket

	Exercise 5: 1) DatagramSocket 2) openConnection

	

	Online Resources

	

	Online Practice Paper

	Link: https://forms.gle/p1ZvDdS6PGg7WSpg8

	QR Code:

	[image: Image]

	

	YouTube Video Link

	

	Link: https://www.youtube.com/playlist?list=PLzlh_31VWEFrVCJw3kRCEX-irsYWE6lxR

	QR Code:

	[image: Image]

	

	

	

CHAPTER 2 - JDBC Programming

	

	2.1 The JDBC Connectivity Model

	The JDBC (Java Database Connectivity) model is a crucial aspect of advanced Java programming, facilitating interaction between Java applications and a wide range of databases. JDBC provides a standardized API for database-independent connectivity, ensuring that Java programs can access data stored in relational databases in a seamless and efficient manner.

	

	JDBC is an API that enables Java applications to execute SQL statements, retrieve results, and propagate changes back to the database. It supports a variety of SQL operations, including querying, updating, and managing data, as well as database metadata. The JDBC API is designed to provide a common interface for database access, regardless of the underlying database management system (DBMS).

	

	[image: jdbc connectivity model]

	Figure 2.1

	

	2.1.1 Components of the JDBC Connectivity Model

	The JDBC Connectivity Model comprises several components that work together to enable connectivity between Java applications and a wide range of databases.

	JDBC API

	The JDBC API provides the application-to-JDBC Manager connection. This API includes two major sets of interfaces

	i). The java.sql package contains classes and interfaces for the core JDBC API.

	ii). The javax.sql package includes interfaces and classes for advanced features such as connection pooling, distributed transactions, and rowset operations.

	

	JDBC Driver Manager

	The Driver Manager is a very important part of the JDBC Connectivity Model. It can establish a connection between a Java application and the JDBC drivers. The Driver Manager is responsible for keeping track of the drivers that are available and handling requests from application to the appropriate drivers.

	The DriverManager class manages a list of database drivers and establishes a connection to the database. It tries to connect to the database using the drivers listed in its internal registry.

	Connection connection = DriverManager.getConnection(url, username, password);

	

	JDBC Test Suite

	This is a suite of tests that a JDBC driver must pass to ensure that the driver complies with the JDBC API.

	The JDBC Test Suite consists of a series of tests designed to verify that JDBC drivers conform to the JDBC API. These tests cover a wide range of functionalities, including connection management, SQL statement execution, transaction handling, and error handling. The primary goal is to ensure that a JDBC driver can interact with a database in a consistent and predictable manner.

	Components of the JDBC Test Suite

	Setup and Configuration

	Configuration files to specify database connection details, such as URL, username, and password.

	Scripts to initialize and clean up the test database environment.

	Connection Tests

	Tests to validate the driver’s ability to establish, maintain, and close connections.

	Verification of connection properties, such as auto-commit mode and isolation levels.

	Statement Tests

	Tests for executing various types of SQL statements, including SELECT, INSERT, UPDATE, and DELETE.

	Verification of Statement, PreparedStatement, and CallableStatement functionalities.

	Transaction Tests

	Tests to verify transaction management, including commit, rollback, and savepoints.

	Checking behaviour under different isolation levels.

	ResultSet Tests

	Tests for retrieving and navigating through result sets.

	Verification of cursor movement, data type retrieval, and updatability.

	Metadata Tests

	Tests to validate database and result set metadata retrieval.

	Verification of DatabaseMetaData and ResultSetMetaData functionalities.

	Error Handling Tests

	Tests to ensure proper handling and reporting of SQL exceptions and warnings.

	Verification of the driver’s ability to handle various error scenarios gracefully.

	Performance Tests

	Benchmark tests to measure the performance of the driver under different workloads.

	Stress tests to evaluate the driver’s stability under high load conditions.

	

	JDBC-ODBC Bridge

	The JDBC-ODBC Bridge is a driver provided by the Java Development Kit (JDK) that allows Java applications to connect to databases via the Open Database Connectivity (ODBC) interface. This bridge driver translates JDBC method calls into ODBC function calls, enabling connectivity between Java applications and databases that support ODBC.

	The JDBC-ODBC Bridge is known as the Type 1 JDBC driver. It is a native code driver that requires the ODBC driver to be installed on the client machine. The bridge was provided primarily to facilitate legacy database access and to allow developers to connect to databases that did not have a pure Java JDBC driver available.

	

	Architecture

	The architecture of the JDBC-ODBC Bridge involves several layers

	Java Application: The application uses JDBC API to interact with the database.

	JDBC-ODBC Bridge Driver: This driver translates JDBC calls into ODBC calls.

	ODBC Driver Manager: Manages ODBC drivers and routes ODBC calls to the appropriate database driver.

	ODBC Driver: A driver provided by the database vendor that translates ODBC calls into database-specific calls.

	Database: The actual database system that processes queries and returns results.

	

	[image: Java JDBC Driver ~ GNIIT Solutions]

	Figure 2.2

	

	Usage

	Load the JDBC-ODBC Bridge Driver

	Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

	Establish a Connection

	String url = "jdbc:odbc:DataSourceName";

	Connection connection = DriverManager.getConnection(url, "username", "password");

	Create a Statement

	Statement statement = connection.createStatement();

	Execute a Query

	ResultSet resultSet = statement.executeQuery("SELECT * FROM tablename");

	Process the Result Set

	while (resultSet.next()) {

	System.out.println(resultSet.getString("columnname"));

	}

	Close the Connection

	resultSet.close();

	statement.close();

	connection.close();

	

	Advantages

	Legacy Support: The JDBC-ODBC Bridge provides a way to connect to legacy databases that only support ODBC.

	Availability: It was included in the JDK, making it readily available for developers.

	

	Limitations

	Platform Dependence: The JDBC-ODBC Bridge relies on native code and the ODBC driver, making it platform-dependent.

	Performance: Due to the multiple layers of translation, performance can be slower compared to other JDBC driver types.

	Security: Native code drivers can pose security risks.

	Deprecation: The JDBC-ODBC Bridge was deprecated in JDK 8 and removed in JDK 9, so it is not available in modern Java environments.

	Complexity: Requires proper configuration of ODBC data sources, which can be cumbersome.

	

	2.1.2 JDBC Drivers

	JDBC drivers are the core of the JDBC Connectivity Model. They are used to connect to the database. There are four types of JDBC drivers:

	Type 1: JDBC-ODBC bridge driver

	Type 2: Native-API/partly Java driver

	Type 3: Net-protocol/all-Java driver

	Type 4: Native-protocol/all-Java driver

	Each type has its own advantages and disadvantages, and the choice of driver depends on the specific needs of the application and the environment.

	

	2.1.3 Establishing a Connection

	To establish a connection to a database using JDBC, the following steps are typically followed:

	Load the Driver: The JDBC driver should be loaded at the beginning of the program by calling Class.forName().

	Class.forName("com.mysql.jdbc.Driver");

	Establish a Connection: After loading the driver, a connection should be established by using DriverManager.getConnection().

	Connection con = DriverManager.getConnection(

	 "jdbc:mysql://localhost:3306/yourdatabase", "username", "password");

	Create a Statement: Once the connection is established, a Statement object should be created to send SQL statements to the database.

	Statement stmt = con.createStatement();

	Execute a Query: SQL queries are executed using the Statement object created in the previous step.

	ResultSet rs = stmt.executeQuery("SELECT * FROM tablename");

	Process the Results: The results returned by the query should be processed.

	while(rs.next()){

	 // Retrieve by column name

	 int id = rs.getInt("id");

	 String name = rs.getString("name");

	 // Display values

	 System.out.print("ID: " + id);

	 System.out.println(", Name: " + name);

	}

	Close the Connection: Finally, it's important to close the ResultSet, Statement, and Connection objects to avoid any memory leaks.

	rs.close();

	stmt.close();

	con.close();

	2.1.4 Handling Exceptions

	When dealing with database connections, it is important to handle exceptions properly. JDBC operations throw a SQLException when an error occurs during database access. The SQLException contains information such as a description of the error, an SQLSTATE code, and an error code that is specific to the database.

	It is good practice to use try-catch blocks to catch SQLException and perform cleanup in the finally block.

	Code-

	try {

	 // Load driver, establish connection, create statement, execute queries

	} catch(SQLException se) {

	 // Handle errors for JDBC

	 se.printStackTrace();

	} catch(Exception e) {

	 // Handle errors for Class.forName

	 e.printStackTrace();

	} finally {

	 // finally block used to close resources

	 try {

	 if(stmt!=null) stmt.close();

	 } catch(SQLException se2) {

	 } // nothing we can do

	 try {

	 if(con!=null) con.close();

	 } catch(SQLException se) {

	 se.printStackTrace();

	 } // end finally try

	}

	

	Transaction Management

	Transaction management is a critical aspect of database operations, ensuring data integrity and consistency during complex operations. In JDBC (Java Database Connectivity), transaction management allows developers to control the execution of multiple SQL statements as a single unit of work. This means that either all statements execute successfully, or none of them do, thereby maintaining the integrity of the database.

	Key Concepts

	Atomicity: Ensures that all operations within a transaction are completed; if not, the transaction is aborted.

	Consistency: Guarantees that the database remains in a consistent state before and after the transaction.

	Isolation: Ensures that transactions are isolated from each other until they are completed.

	Durability: Ensures that the results of a completed transaction are permanently stored in the database.

	

	JDBC Transaction Management Steps

	Disable Auto-Commit Mode

	By default, JDBC uses auto-commit mode, where each SQL statement is committed immediately after execution. For transaction management, auto-commit mode must be disabled i.e.,

	connection.setAutoCommit(false);

	Execute SQL Statements

	Execute the required SQL statements as part of the transaction.

	Statement stmt = connection.createStatement();

	stmt.executeUpdate("INSERT INTO users (id, name) VALUES (1, 'John')");

	stmt.executeUpdate("UPDATE accounts SET balance = balance - 100 WHERE user_id = 1");

	Commit the Transaction

	If all statements execute successfully, commit the transaction to persist the changes.

	connection.commit();

	Rollback the Transaction

	If any statement fails, rollback the transaction to undo all changes made during the transaction.

	connection.rollback();

	Handle Exceptions

	Ensure proper handling of exceptions to manage transaction outcomes.

	try {

	 connection.setAutoCommit(false);

	 // Execute SQL statements

	 connection.commit();

	} catch (SQLException e) {

	 connection.rollback();

	 e.printStackTrace();

	} finally {

	 connection.setAutoCommit(true);

	}

	

	2.2 Creating a SQL Query

	Once the connection to the database is established, the next step is to execute SQL statements. This is done by creating a Statement or PreparedStatement object.

	Using Statement Objects

	Create a Statement Object: The Statement object is used to send SQL queries to the database.

	Code: Statement stmt = conn.createStatement();

	Formulate the SQL Query: Write the SQL query as a String.

	Code: String sql = "SELECT * FROM Users";

	Using PreparedStatement Objects

	PreparedStatement objects are a subclass of Statement that offer performance improvements and are more secure against SQL injection attacks.

	Prepare the Statement: Unlike a regular Statement, a PreparedStatement is compiled by the database immediately and can be parameterized.

	String psql = "SELECT * FROM Users WHERE username = ?";

	PreparedStatement pstmt = conn.prepareStatement(psql);

	Set Parameters: If you have any parameters in your SQL query, set them using the appropriate setter methods.

	pstmt.setString(1, "johndoe");

	Getting the Results

	After the SQL query is formulated and executed, the next step is to retrieve the results.

	Executing the Query

	Execute the Query: Use executeQuery() to execute the SQL statement, which returns a ResultSet object for SELECT statements.

	ResultSet rs = stmt.executeQuery(sql); // For Statement

	// or

	ResultSet rs = pstmt.executeQuery(); // For PreparedStatement

	

	Processing the ResultSet

	The ResultSet object represents a database result set, which is usually generated by executing a statement that queries the database.

	Iterate Over the Results: Use a while loop to iterate through the ResultSet.

	while (rs.next()) {

	String user = rs.getString("username");

	String email = rs.getString("email");

	// Process the row.

	}

	Retrieve Column Values: Use getter methods such as getString() or getInt() to retrieve column values from the current row.

	int id = rs.getInt("id");

	Handle Exceptions: It is essential to handle SQLException when dealing with result sets.

	try {

	// Execute query and process result set

	} catch (SQLException e) {

	e.printStackTrace();

	// Handle any SQL errors

	}

	Closing Resources

	It is crucial to close the ResultSet, Statement, and Connection objects after use to free up database resources.

	finally {

	 try {

	 if (rs != null) rs.close();

	 if (stmt != null) stmt.close();

	 if (pstmt != null) pstmt.close();

	 if (conn != null) conn.close();

	 } catch (SQLException e) {

	 e.printStackTrace();

	 }

	}

	

	2.3 Getting the Results

	Once a connection to the database is established and a SQL query has been sent, the next critical step is to retrieve and manipulate the results. This is a core part of database interaction and is essential for any application that needs to display or use data from a database.

	

	Retrieving Data with ResultSet

	The retrieval of results from a query is handled by the ResultSet object in JDBC. A ResultSet object maintains a cursor pointing to its current row of data. Initially, the cursor is positioned before the first row. The next() method moves the cursor to the next row, and because it returns false when there are no more rows in the ResultSet object, it can be used in a while loop to iterate through the result set.

	Code-

	Statement stmt = conn.createStatement();

	ResultSet rs = stmt.executeQuery("SELECT * FROM Employees");

	while (rs.next()) {

	 int id = rs.getInt("id");

	 String name = rs.getString("name");

	 // process each row

	}

	

	Processing ResultSet Data

	To get values from the current row in ResultSet, you can use the various get methods, such as getInt, getString, or getDouble, specifying the column name or the column index as an argument.

	Code-

	int age = rs.getInt(3); // Using column index

	String email = rs.getString("email"); // Using column name

	

	Handling SQLExceptions

	Always include error handling in your database access code to manage exceptions that could occur, such as connectivity issues or query errors.

	Code-

	try {

	 // ... execute query and process results

	} catch (SQLException e) {

	 e.printStackTrace();

	 // Handle database access errors

	}

	

	2.3 Updating Database Data

	Updating database data from a Java application is a fundamental operation that is just as important as retrieving data. The JDBC (Java Database Connectivity) API provides Statement and PreparedStatement objects to execute update operations, including INSERT, UPDATE, and DELETE statements. These objects facilitate interaction with the database to modify its content efficiently and securely.

	

	Using Statements

	To perform an update using a Statement object, you would use the executeUpdate() method, which returns an integer representing the number of rows affected by the operation.

	Code-

	Statement stmt = conn.createStatement();

	int rowsAffected = stmt.executeUpdate("UPDATE Employees SET age = 35 WHERE id = 101");

	System.out.println("Rows affected: " + rowsAffected);

	

	Using PreparedStatements for Updates

	For updates, especially those that take parameters, using a PreparedStatement is more efficient and secure.

	Code-

	String query = "INSERT INTO Employees (name, age, department) VALUES (?, ?, ?)";

	PreparedStatement pstmt = conn.prepareStatement(query);

	pstmt.setString(1, "John Doe");

	pstmt.setInt(2, 30);

	pstmt.setString(3, "Human Resources");

	int rowsAffected = pstmt.executeUpdate();

	System.out.println("Rows inserted: " + rowsAffected);

	

	Batch Updates

	For operations that involve multiple updates, batch updates can be used for performance optimization.

	Code-

	conn.setAutoCommit(false);

	Statement stmt = conn.createStatement();

	stmt.addBatch("INSERT INTO Employees VALUES (106, 'Jane', 28)");

	stmt.addBatch("UPDATE Employees SET age = 29 WHERE name = 'John'");

	stmt.addBatch("DELETE FROM Employees WHERE name = 'Doe'");

	int[] count = stmt.executeBatch();

	conn.commit();

	conn.setAutoCommit(true);

	

	Transaction Management

	It's important to manage transactions when updating data to ensure data integrity. JDBC allows you to commit or roll back transactions manually.

	Code-

	try {

	 conn.setAutoCommit(false);

	 // ... perform various updates

	 conn.commit(); // Commit transaction

	} catch (SQLException e) {

	 if (conn != null) {

	 try {

	 conn.rollback(); // Rollback transaction on error

	 } catch (SQLException ex) {

	 ex.printStackTrace();

	 }

	 }

	 e.printStackTrace();

	} finally {

	 conn.setAutoCommit(true);

	}

	

	2.5 Error Checking and the SQLException Class

	Error checking is an essential aspect of database programming, ensuring that any issues during database operations are detected and handled appropriately. In JDBC (Java Database Connectivity), the SQLException class plays a pivotal role in managing database-related errors. Understanding how to use this class effectively is crucial for developing robust and reliable Java applications that interact with databases.

	

	2.5.1 Error Checking and the SQLException Class

	The JDBC API provides the SQLException class to handle errors that occur in the database access layer. This class captures information about database access errors, and developers must understand how to handle these exceptions appropriately to create robust applications.

	The SQLException Class

	SQLException is a checked exception that extends java.lang.Exception. It provides information about database access errors or other errors that occur while interacting with a database. Here are some key points about the SQLException class:

	Hierarchical Nature: SQLException can have a cause, allowing nested exceptions.

	Information Provided: It provides detailed information such as the SQL state, error code, and a descriptive message.

	Chained Exceptions: Multiple exceptions can be chained together to provide a detailed context for errors.

	

	2.5.2 Understanding SQLException

	When a JDBC operation encounters an error, it throws an SQLException. This exception can provide several pieces of information about the error, including:

	SQL State: An SQLSTATE value, which is a five-character alphanumeric identifier defined by the SQL standard to indicate the nature of the error.

	Error Code: A database-specific error code.

	Message: A descriptive message explaining the error.

	

	Key Methods of SQLException

	getMessage(): Returns a description of the error.

	String message = sqlException.getMessage();

	getSQLState(): Returns the SQL state, a five-character string defined by the ANSI SQL standard.

	String sqlState = sqlException.getSQLState();

	getErrorCode(): Returns the vendor-specific error code.

	int errorCode = sqlException.getErrorCode();

	getNextException(): Retrieves the next SQLException in the chain.

	SQLException nextException = sqlException.getNextException();

	printStackTrace(): Prints the stack trace of the SQLException.

	sqlException.printStackTrace();

	

	2.5.3 Handling SQLExceptions

	Proper handling of SQL exceptions involves catching them in a try-catch block, extracting useful information, and taking appropriate action (e.g., logging the error, rolling back transactions, notifying the user). Here's an example of how to handle SQLException in JDBC

	import java.sql.Connection;

	import java.sql.DriverManager;

	import java.sql.SQLException;

	import java.sql.Statement;

	public class JDBCErrorHandlingExample {

	 public static void main(String[] args) {

	 String url = "jdbc:mysql://localhost:3306/mydb";

	 String username = "user";

	 String password = "password";

	 Connection connection = null;

	 Statement statement = null;

	 try {

	 connection = DriverManager.getConnection(url, username, password);

	 statement = connection.createStatement();

	 // Attempt to execute an SQL statement

	 String sql = "INSERT INTO users (id, name, email) VALUES (1, 'John Doe', 'john@example.com')";

	 int rowsInserted = statement.executeUpdate(sql);

	 System.out.println("Rows inserted: " + rowsInserted);

	 } catch (SQLException e) {

	 // Handle SQLException

	 while (e != null) {

	 System.err.println("SQL State: " + e.getSQLState());

	 System.err.println("Error Code: " + e.getErrorCode());

	 System.err.println("Message: " + e.getMessage());

	 e.printStackTrace();

	 e = e.getNextException();

	 }

	 } finally {

	 // Close resources

	 try {

	 if (statement != null) statement.close();

	 if (connection != null) connection.close();

	 } catch (SQLException e)

	{

	 e.printStackTrace();

	 }

	 }

	 }

	}

	

	Best Practices for SQLException

	Use Specific Catch Blocks: Catch specific SQL exceptions if your code can recover from them.

	Log the Error Details: Always log the error details to troubleshoot issues effectively.

	Clean Up Resources: Ensure that database connections, statements, and result sets are closed properly, ideally in the finally block or using try-with-resources statement.

	

	2.6 The SQLWarning Class

	SQLWarning is a subclass of SQLException in the Java Database Connectivity (JDBC) API. While SQLException is used to represent serious errors that occur during database operations, SQLWarning is used to handle warnings that are less severe and do not stop the execution of an application. Warnings typically indicate conditions that might need attention but are not critical enough to halt program execution.

	Key Characteristics of SQLWarning

	Non-fatal: Unlike SQLException, SQLWarning does not indicate a fatal error. It is used for conditions that are not severe enough to stop the execution.

	Chained Warnings: Multiple warnings can be chained together, allowing you to traverse through all the warnings associated with a particular database operation.

	Associated with Connection, Statement, and ResultSet: Warnings can be associated with different JDBC objects such as Connection, Statement, and ResultSet.

	

	2.6.1 Understanding SQLWarning

	SQLWarnings do not stop the execution of an application, as they are not thrown like exceptions but rather attached to the Connection, Statement, and ResultSet objects. They indicate issues that are not critical but may require attention, such as deprecations, minor data truncations, etc.

	Key Methods of SQLWarning

	getNextWarning(): Retrieves the next SQLWarning in the chain.

	SQLWarning nextWarning = sqlWarning.getNextWarning();

	getMessage(): Returns a description of the warning.

	String message = sqlWarning.getMessage();

	getSQLState(): Returns the SQL state of the warning.

	String sqlState = sqlWarning.getSQLState();

	getErrorCode(): Returns the vendor-specific error code.

	int errorCode = sqlWarning.getErrorCode();

	printStackTrace(): Prints the stack trace of the SQLWarning.

	sqlWarning.printStackTrace();

	

	2.6.2 Retrieving SQLWarnings

	To retrieve warnings, you can use the getWarnings method on the Connection, Statement, or ResultSet object. After processing the warning, you should call the clearWarnings method to dismiss it.

	try {

	 // ... JDBC operations

	 SQLWarning warning = conn.getWarnings();

	 while (warning != null) {

	 System.out.println("Message: " + warning.getMessage());

	 System.out.println("SQL State: " + warning.getSQLState());

	 System.out.println("Error Code: " + warning.getErrorCode());

	 warning = warning.getNextWarning();

	 }

	} catch (SQLException se)

	{

	 // Handle the SQLException

	}

	finally {

	 try {

	 if (conn != null) conn.clearWarnings();

	 } catch (SQLException se)

	{

	 se.printStackTrace();

	 }

	}

	

	Best Practices for SQLWarning

	Check for Warnings: Always check for and process warnings after connection establishment, query execution, and result set retrieval.

	Log Warnings: Like errors, warnings should be logged for review.

	Clear Warnings: After processing, clear the warnings to prevent old warnings from affecting subsequent operations.

	

	Benefits of Handling SQLWarnings

	Awareness of Potential Issues: Handling warnings allows developers to be aware of potential issues in their SQL operations that may not be severe enough to stop execution but could affect the results or performance.

	Improved Debugging: Logging warnings can help in debugging and maintaining the application by providing insights into non-critical issues that occur during database interactions.

	User Notifications: By handling and possibly notifying users of warnings, applications can provide more transparency and potentially prevent misunderstandings or misuse of the application.

	Proactive Issue Resolution: Being aware of and addressing warnings can help in proactively resolving issues that might become severe over time or under different conditions.

	

	Practical Use Cases for SQLWarnings

	Data Truncation: A warning might be issued if data is truncated when inserted into a database column with a length limit.

	Deprecated Features: Warnings can alert developers to the use of deprecated SQL features or syntax that should be updated.

	Connection Issues: Network or connection issues that do not prevent the application from running but could affect performance might generate warnings.

	Performance Recommendations: The database might provide warnings with recommendations for query optimizations or performance improvements.

	

	
	.1 The Statement Interface

	In the context of Java Database Connectivity (JDBC), the Statement interface is used to execute SQL queries against a database. It is a key part of the JDBC API, allowing Java applications to send SQL commands to a database and process the results.

	Creating a Statement Object

	To create a Statement object, you need to invoke the createStatement method on an active Connection object:

	Code-

	Statement stmt = conn.createStatement();

	Executing Queries

	The Statement object allows you to execute SQL queries using the executeQuery method, which returns a ResultSet object containing the data produced by the query

	Code-

	String query = "SELECT * FROM employees";

	ResultSet rs = stmt.executeQuery(query);

	Executing Update Statements

	For SQL commands that modify the database (INSERT, UPDATE, DELETE), use the executeUpdate method, which returns an integer indicating the number of rows affected:

	Code-

	String update = "UPDATE employees SET age = 30 WHERE id = 101";

	int rowsAffected = stmt.executeUpdate(update);

	Handling Exceptions

	All operations on a Statement object can throw an SQLException, so they must be used within a try-catch block

	Code-

	try {

	 // operations using Statement

	} catch (SQLException e)

	{

	 // handle exception

	}

	
		Closing Statement

	It is important to close Statement objects to release database resources

	Code: stmt.close();

	

	Key Characteristics of the Statement Interface

	Execution of SQL Commands: The Statement interface is used to execute both static SQL queries and SQL commands, such as SELECT, INSERT, UPDATE, and DELETE.

	Handling Result Sets: It can handle the results returned by SELECT queries, encapsulated in ResultSet objects.

	No Parameters: Unlike PreparedStatement, Statement does not support parameters. It is primarily used for executing static SQL queries without any placeholders.

	

	2.8 PreparedStatement

	A PreparedStatement represents a precompiled SQL statement that can be executed multiple times with high efficiency. It is a subclass of Statement and is suitable for executing SQL statements multiple times with different parameters.

	Creating a PreparedStatement Object

	A PreparedStatement is created by calling the prepareStatement method on a Connection object with the SQL query as an argument

	Code-

	String psql = "INSERT INTO employees (name, age) VALUES (?, ?)";

	PreparedStatement pstmt = conn.prepareStatement(psql);

	Setting Parameters

	Before execution, you need to specify the values for the placeholders (denoted by ?) using the appropriate set methods:

	Code-

	pstmt.setString(1, "John Doe");

	pstmt.setInt(2, 25);

	Executing the PreparedStatement

	To execute the prepared statement, call executeQuery for SELECT statements or executeUpdate for INSERT, UPDATE, and DELETE statements

	Code-

	int rowsInserted = pstmt.executeUpdate();

	Closing PreparedStatement

	Similar to Statement objects, PreparedStatement objects must be closed after their use:

	Code-

	Pstmt.close();

	

	2.8.1 Advantages of PreparedStatement

	Precompiled SQL Statements

	Efficiency: PreparedStatement objects are precompiled by the database, meaning the SQL query is parsed and compiled only once. This precompilation reduces the overhead of parsing and compiling SQL statements each time they are executed, which can lead to significant performance improvements for repeated execution of the same query.

	Reuse: The precompiled SQL statement can be executed multiple times with different parameters, making it more efficient for batch processing and repeated query execution.

	SQL Injection Prevention

	Security: One of the major advantages of PreparedStatement is its ability to prevent SQL injection attacks. SQL injection is a common attack vector where malicious users can inject arbitrary SQL code through input parameters. PreparedStatement automatically escapes input parameters, ensuring that user-provided data is treated as data and not executable code.

	Parameter Binding: By using parameter placeholders (e.g., ?) in the SQL query and setting the values using setter methods (setString, setInt, etc.), PreparedStatement safely handles input values.

	Parameterization

	Ease of Use: PreparedStatement allows for parameterized queries using placeholders, which can be dynamically set at runtime. This makes the code cleaner and easier to maintain, especially for complex queries.

	Flexibility: You can reuse the same PreparedStatement object with different parameter values, simplifying code when executing the same SQL statement multiple times with different data.

	Performance Enhancements

	Batch Processing: PreparedStatement supports batch processing, where multiple SQL statements can be executed in a single batch. This reduces the number of database round-trips and improves performance.

	Caching: Some database systems cache the execution plans of PreparedStatement objects, further enhancing performance by avoiding repeated parsing and optimization.

	Improved Readability and Maintainability

	Cleaner Code: Using PreparedStatement leads to more readable and maintainable code by separating the SQL logic from the data values. This separation makes the code easier to understand and debug.

	Consistent Parameter Handling: With PreparedStatement, parameter values are set consistently using specific setter methods, reducing the risk of errors related to SQL syntax and data type mismatches.

	

	2.8 CallableStatement

	In Java JDBC (Java Database Connectivity), a CallableStatement is an interface that extends PreparedStatement. It represents a precompiled SQL statement that can be executed either as a stored procedure or as a callable SQL function. CallableStatement provides a way to call stored procedures, which are stored and managed in the database.

	Creating a CallableStatement

	To create a CallableStatement object, you call the prepareCall method on a Connection object, passing in the SQL statement to call the stored procedure.

	Code: String call = "{ CALL updateEmployeeSalary(?, ?) }";

	CallableStatement cstmt = conn.prepareCall(call);

	In the SQL, the {} braces enclose a call to the stored procedure named updateEmployeeSalary, which takes two parameters.

	Setting Parameters

	Parameters can be input (set before execution), output (retrieved after execution), or both. Use appropriate set methods for input parameters and registerOutParameter for output parameters.

	Code: cstmt.setInt(1, 101); // Set input parameter

	cstmt.registerOutParameter(2, Types.DECIMAL); // Register output parameter

	Executing CallableStatement

	To execute the CallableStatement, you can use the execute method. After execution, output parameters can be retrieved using the appropriate get methods.

	Code: cstmt.execute();

	BigDecimal newSalary = cstmt.getBigDecimal(2); // Retrieve output parameter

	Exception Handling

	As with Statement and PreparedStatement, you must handle exceptions

	Code:

	try {

	 // Call stored procedure and retrieve results

	} catch (SQLException e) {

	 // handle exception

	} finally {

	 // Clean up resources

	 cstmt.close();

	}

	

	Key Features of CallableStatement

	Stored Procedure Execution: The primary purpose of CallableStatement is to execute stored procedures defined in the database. Stored procedures are precompiled SQL statements stored in the database and can perform complex operations.

	Parameterization: Like PreparedStatement, CallableStatement supports parameterized queries, allowing you to pass input parameters to the stored procedure.

	Output Parameters: Callable procedures can return one or more values, known as output parameters. CallableStatement provides methods to register output parameters and retrieve their values after execution.

	Function Calls: CallableStatement can also be used to call SQL functions defined in the database. Functions can return a single value, which can be retrieved using the appropriate getter methods.

	Batch Execution: CallableStatement supports batch execution, allowing you to execute multiple stored procedures or function calls in a single batch, improving performance by reducing database round-trips.

	

	Example Usage of CallableStatement

	Here's an example demonstrating the use of CallableStatement to call a stored procedure that calculates the total salary of employees in a department

	import java.sql.CallableStatement;

	import java.sql.Connection;

	import java.sql.DriverManager;

	import java.sql.SQLException;

	import java.sql.Types;

	public class CallableStatementExample {

	 public static void main(String[] args) {

	 String url = "jdbc:mysql://localhost:3306/mydb";

	 String username = "user";

	 String password = "password";

	 try (Connection connection = DriverManager.getConnection(url, username, password)) {

	 // Prepare the SQL call to the stored procedure

	 String sql = "{CALL calculate_department_salary(?, ?)}"; // Assuming the stored procedure name is calculate_department_salary

	 CallableStatement callableStatement = connection.prepareCall(sql);

	 // Set input parameter (department ID)

	 callableStatement.setInt(1, 123);

	 // Register output parameter (total salary)

	 callableStatement.registerOutParameter(2, Types.DOUBLE);

	 // Execute the stored procedure

	 callableStatement.execute();

	 // Retrieve the output parameter value

	 double totalSalary = callableStatement.getDouble(2);

	 System.out.println("Total salary for department 123: " + totalSalary);

	 } catch (SQLException e) {

	 e.printStackTrace();

	 }

	 }

	}

	In this example, calculate_department_salary is assumed to be the name of the stored procedure in the database. The procedure takes the department ID as input and returns the total salary for that department as an output parameter.

	

	2.10 The ResultSet Interface

	In Java JDBC (Java Database Connectivity), the ResultSet interface represents a set of rows retrieved from a relational database after executing an SQL query. It provides methods for iterating over the rows, accessing column values, and navigating through the result set. The ResultSet object acts as a cursor that moves forward one row at a time.

	Key Features of ResultSet

	Row Iteration: The primary purpose of ResultSet is to iterate over the rows returned by a SQL query. It provides methods such as next() to move the cursor to the next row and previous() to move it to the previous row.

	Column Access: ResultSet allows access to column values of the current row using methods like getInt(), getString(), getDouble(), etc., which retrieve values based on the column index or column name.

	Metadata Retrieval: ResultSet provides metadata about the result set, such as the number of columns, column names, column types, etc. Methods like getMetaData() return a ResultSetMetaData object containing metadata information.

	Scrollable and Updatable: Depending on the type of Statement used to create the ResultSet, it can be scrollable (allows moving the cursor back and forth) and updatable (allows modifying the underlying data).

	Concurrency Control: ResultSet supports different levels of concurrency control, allowing multiple users to access and manipulate the result set concurrently. The concurrency level is determined by the Statement used to create the ResultSet.

	

	The ResultSet interface represents the result set of a database query. A ResultSet object maintains a cursor pointing to its current row of data and allows for the iterative retrieval of results.

	Navigating the ResultSet

	After executing a SQL query, you can navigate through the ResultSet using various methods:

	next(): Moves the cursor to the next row

	previous(): Moves to the previous row (if the result set type allows it)

	first(), last(), beforeFirst(), afterLast(): Moves to the specified position (for certain types of result sets)

	Retrieving Data from ResultSet

	To retrieve column values from the current row, use getter methods such as getInt, getString, or getBoolean, specifying the column name or index.

	Code:

	while (rs.next()) {

	 int id = rs.getInt("employee_id");

	 String name = rs.getString("employee_name");

	 // Process each row

	}

	

	Updating Data

	Some ResultSet objects are updatable, allowing modification of the underlying database data

	Code:

	rs.updateString("employee_name", "John Doe");

	rs.updateRow(); // Reflects the update in the database

	

	Handling Exceptions

	You must handle SQLExceptions when working with ResultSet:

	Code:

	try {

	 // Navigate and retrieve data from ResultSet

	} catch (SQLException e) {

	 // handle exception

	}

	

	Closing ResultSet

	It is crucial to close the ResultSet once you are done with it

	Code: rs.close();

	

	Example Usage of ResultSet

	Here's an example demonstrating the basic usage of ResultSet to iterate over the rows and retrieve column values

	import java.sql.Connection;

	import java.sql.DriverManager;

	import java.sql.ResultSet;

	import java.sql.SQLException;

	import java.sql.Statement;

	public class ResultSetExample {

	 public static void main(String[] args) {

	 String url = "jdbc:mysql://localhost:3306/mydb";

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

OEBPS/images/image.png

OEBPS/images/image3.png

OEBPS/images/image-1.png
Vendor
Database
Library

Figure- JDBC-ODBC Bridge Driver

OEBPS/cover.jpg
Advanced Java

Manish Soni

OEBPS/images/image2.png

OEBPS/images/image1.png
7 LAYERS OF THE OSI MODEL

APPLICATION END USER LAYER
HTTP, FTP, IRC, SSH, DNS
PRESENTATION SYNTAX LAYER
SSL, SSH, IMAP, FTP, MPEG, JPEG
SESSION SYNCH & SEND TO PORT APT'S,
SOCKETS, WINSOCK
TRANSPORT END-TO-END CONNECTIONS TCS,
UDP
NETWORK PACKETS IP, ICMP, IPSEC, IGMP
DATA LINK FRAMES ETHERNET, PPP, SWITCH,
BRIDGE
PHYSICAL PHYSICAL STRUCTURE COAX,

FIBER, WIRELESS

