
		
			[image: Cover.jpg]
		

	
		
			Building Production-Grade Web Applications with Supabase

			A comprehensive guide to database design, security, real-time data, storage, multi-tenancy, and more

			David Lorenz

			[image:]

			Building Production-Grade Web Applications
with Supabase

			Copyright © 2024 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Kaustubh Manglurkar

			Publishing Product Manager: Chayan Majumdar

			Book Project Manager: Sonam Pandey

			Senior Editor: Hayden Edwards

			Technical Editor: K Bimala Singha

			Copy Editor: Safis Editing

			Indexer: Pratik Shirodkar

			Production Designer: Jyoti Kadam

			DevRel Marketing Coordinator: Anamika Singh and Nivedita Pandey

			First published: August 2024

			Production reference: 1260724

			Published by Packt Publishing Ltd.

			Grosvenor House

			11 St Paul’s Square

			Birmingham

			B3 1RB, UK.

			ISBN 978-1-83763-068-4

			www.packtpub.com

			To my spouse, Ella, for her endless support and love. To my mother and sister for their understanding. To Alexander Hachmann for the time provided. To Christoph Kolb for the support. To Kai Klostermann for being my best friend and supporter. To the Supabase team for providing me with their trust, help, and warm words.

			– David Lorenz

			Foreword

			Six years ago, I joined Mercedes-Benz.io, the company where David worked, and I had the privilege of collaborating with him for four years. It quickly became evident that he was a “beacon” developer—a professional others admired for his exceptional skills and leadership.

			David’s passion for knowledge is unparalleled. He eagerly explores the latest technological advancements, conducting thorough research on each topic to form well-founded conclusions. His dedication to understanding the intricacies of his craft sets him apart as a truly exceptional professional.

			As lead developers for our respective teams on the same project, we faced unique challenges. Our project had specific constraints, chief among them a commitment to the old-fashioned approach of vanilla JavaScript.

			“So what?”, you might ask. And it’s a fair question.

			In an industry where cutting-edge frontend frameworks reign supreme, our approach was akin to building a house with hand tools while others used power equipment. We often had to solve complex problems from the ground up, without the shortcuts and conveniences modern toolsets provide. This wasn’t just about writing code—it was about rediscovering and applying core principles that many developers had begun to take for granted.

			Moreover, our role extended beyond coding. We became mentors and educators, guiding our colleagues through the intricacies of framework-free development. This meant teaching not just how to solve problems, but why certain solutions worked, fostering a deeper understanding of fundamental concepts.

			It was in this challenging environment that David’s exceptional qualities truly shone. From the early days of my tenure, his ability to form and share strong, well-researched opinions on a wide range of topics became apparent. David didn’t just know the how; he understood the why, and he had a knack for explaining both clearly and concisely. His enthusiasm for sharing these insights is a core part of who he is—a trait you, dear reader, are about to experience firsthand through this book.

			In our fast-paced technological landscape, where the “flavor of the month” changes constantly and documentation often lags behind, individuals such as David are invaluable. They serve as anchors amidst the turbulent sea of evolving technologies, helping others navigate and understand the ever-changing currents. David’s ability to provide clarity and insight where it’s needed most isn’t just useful—it’s essential for staying ahead in our field.

			This book offers you a glimpse into the same level of insight and enthusiasm that David brought to our team every day, distilled into a format that’s accessible and practical for developers at all levels. Regardless of your current expertise with Supabase, this book promises to be a valuable resource. David provides the following:

			
					Clear explanations covering essential aspects of Supabase

					Practical guidance on integrating Supabase into your projects

					Strategies for building performant and scalable applications

					Insights on how Supabase can compete with more expensive solutions

			

			Throughout these pages, you’ll find David’s knowledge translated into actionable insights. Whether you’re new to Supabase or an experienced developer, this book aims to enhance your understanding and application of Supabase, empowering you to create robust, efficient, and cost-effective solutions.

			Jorge Varandas

			System Architect, Mercedes-Benz.io

			Contributors

			About the author

			David Lorenz is a web software architect and lecturer who began programming at age 11. Before completing university in 2014, he had built a CRM system that automated an entire company and worked with numerous agencies through his own company. In 2015, he secured his first employment as a senior web developer, where he played a pioneering role in using cutting-edge technology and was an early adopter of progressive web apps. In 2017, he became the leading frontend architect and team lead for one of the largest projects at Mercedes-Benz.io, involving massive-scale architecture. Today, David provides valuable insights and guidance to clients across various industries, using his extensive experience and exceptional problem-solving abilities.

			I want to thank the people who have been close to me and supported me, especially Ella and the team at Wahnsinn Design GmbH, as well as my mom and my sister.

			About the reviewers

			Kamil Pyrkosz is a multiplatform programmer who fell in love with Supabase the first time he used it, surprised by how easy and powerful it was. His passion for Supabase resulted in the creation of a YouTube channel, Kamil the Supabase enjoyer, where he makes Supabase tutorials and videos on other related topics.

			Thor (Thorsten) Schaeff is a software developer, startup advisor, and Angel investor. Having grown up around the SAP headquarters in Germany, he started building websites back in high school, later studied computer science and media, and interned with Google in London. He joined early Stripe in Dublin, building out various user-facing engineering teams across Europe and Southeast Asia, contributing to open source software, and mentoring and investing in early-stage startups along the way.

			Now settled in sunny Singapore, Thor works on DevRel and DX at Supabase, helping developers take advantage of the power of Postgres.

			We would also like to thank Jorge Varandas, Kai Klostermann, and Kushal Seth for their help in reviewing the book.

		

	
		
			Table of Contents

			Preface

			Part 1: Creating the Foundations of the Ticket System App

			1

			Unveiling the Inner Workings of Supabase and Introducing the Book’s Project

			Technical requirements (and some preamble)

			Understanding why Supabase is the stack you want

			Demystifying the inner workings of Supabase with Postgres

			Access logic within a route

			Access logic as a central service

			How Supabase handles access control

			How the access system works under the hood

			Supabase Studio – the convenient web dashboard

			Supabase Auth (GoTrue) – the authentication handler

			PostgREST – a REST and GraphQL API for your database

			Realtime – elevating the user experience

			Storage – simple and scalable object storage

			Image Proxy – helping to transform images on the fly

			Edge Functions – completing the optimization stack

			pg-meta – an internal helper service for the database

			Kong – the overarching service orchestrator

			Introducing the production-grade ticket system project

			Summary

			2

			Setting Up Supabase with Next.js

			Technical requirements

			Getting ready with Next.js

			Installing the Supabase CLI

			Running your first Supabase instance on your machine

			Initializing a new local Supabase instance

			Starting your first Supabase instance

			Managing multiple local Supabase instances

			Option 1 – the start-stop technique

			Option 2 – change ports

			Connecting to Supabase with the Supabase JavaScript client

			Initializing and testing the base Supabase JavaScript client within Next.js

			Understanding the base Supabase client

			Using the Supabase client with Pages Router and App Router

			Connecting directly to the database

			Using Supabase with TypeScript

			Connecting Supabase to other frameworks

			Nuxt 3

			Python

			Summary

			3

			Creating the Ticket Management Pages, Layout, and Components

			Technical requirements

			Setting up Pico.css with Next.js

			Building the login form

			Visualizing the Ticket Management UI

			Creating a shared UI layout with navigation elements

			Designing the Ticket List page

			Constructing the Ticket Details page

			Adding the comments section to the ticket details

			Implementing a page to create a new ticket

			Implementing a user overview

			Enhancing the navigation component

			Summary

			Part 2: Adding Multi-Tenancy and Learning RLS

			4

			Adding Authentication and Application Protection

			Technical requirements

			Adding authentication protection with Supabase

			Creating users

			Preparing the middleware for authentication

			Implementing the login functionality in our app

			Protecting access to the Ticket Management system

			Adding a log out button

			Logging out using the frontend

			Logging out using the backend

			Understanding server authentication

			Enhancing the password login

			Authenticating with magic links

			Sending magic links with signInWithOtp() on the frontend

			Why I usually don’t use signInWithOtp()

			Understanding a server-only magic link flow

			Implementing a server-only magic link flow with custom email content

			Adding password recovery

			Learning about the Site URL and redirect URLs

			How to configure site and redirect URLs

			Optional knowledge: adapting built-in templates

			Summary

			5

			Crafting Multi-Tenancy through Database and App Design

			Technical requirements

			What kind of multi-tenancy do we need?

			Designing the database for multi-tenancy

			Planning our database

			Creating the tenants table

			Designing the users table

			Designing the permission structure

			Committing your database state (if you don’t seed it, you lose it)

			Making our Next.js application tenant-aware

			Enhancing the middleware to safeguard dynamic routes

			Fixing all static routes in the application

			Making the login tenant-based

			Summary

			6

			Enforcing Tenant Permissions with RLS and Handling Tenant Domains

			Technical requirements

			Learning to work with RLS

			Fetching tenant data with the restrictive Supabase client

			Defining RLS policies to access tenants based on permissions

			Creating a permission-based RLS policy

			Understanding and solving RLS implications

			Shrinking RLS policies based on the implications

			Learning about RLS implications

			Minimizing RLS complexity with custom claims

			Extending app_metadata with tenant permissions

			Keeping custom claims in sync with the table data

			Making the authentication process tenant-based

			Preventing password login on a foreign tenant

			Preventing the magic link login for foreign tenants

			Rejecting to visit invalid and forbidden tenant URLs when signed in

			Matching a tenant per domain instead of per path

			Adding custom domains via the hosts file

			Mapping domains in our application

			Bringing back localhost with mapped domains

			Summary

			7

			Adding Tenant-Based Signups, including Google Login

			Technical requirements

			Understanding the impact of disabling signups

			Disabling signups generally

			Disabling specific signup methods

			Implementing the registration page

			Processing the registration with a Route Handler

			Reading and validating the form data

			Rejecting registration

			Handling account creation

			Adding the service user and permission rows

			Sending the activation email

			Redirecting the user to a success page

			Enabling OAuth/Sign-in with Google

			Obtaining Google OAuth credentials

			Configuring our Supabase instance with the OAuth credentials

			Adding a “Sign in with Google” option triggering the OAuth process

			Solving the crypto/HTTPS security problem

			Building a verification route to finalize the registration

			Dealing with invalid user registration

			Summary

			Part 3: Managing Tickets and Interactions

			8

			Implementing Dynamic Ticket Management

			Technical requirements

			Creating the tickets table in the database

			Creating tickets and using triggers

			Implementing the ticket creation logic

			Using triggers to derive and set the user ID

			Improving loading behavior after adding a ticket

			Enforcing checks on the database columns

			Viewing the ticket details

			Caching the author’s name with a trigger

			Improving the date and status view

			Listing and filtering tickets

			Enabling paging

			Sorting tickets

			Creating a ticket filter

			Deleting tickets

			Summary

			9

			Creating a User List with RPCs and Setting Ticket Assignees

			Technical requirements

			Adding a user list with an RPC

			Ensuring there are enough users to test

			Enhancing the table structure

			Fetching the users with an RPC

			Using the function with an RPC

			Allowing the setting and editing of an assignee to a ticket

			Adding assignee columns in the tickets table

			Creating the trigger function to cache the name

			Adding an assignee at ticket creation

			Showing the assignee in the details

			Updating the assignee

			Summary

			10

			Enhancing Interactivity with Realtime Comments

			Technical requirements

			Creating the comments table

			Adding a trigger to set the tenant automatically

			Adding and optimizing RLS policies

			Creating RLS helper functions

			Creating the policies

			Implementing comment creation

			Listing existing comments from the server

			Implementing Realtime comments

			Enabling Realtime and subscribing to it

			Updating the UI with Realtime data

			Triggering impersonated real-time updates with the Table Editor

			Embracing additional Realtime insights and learning about potential pitfalls

			Summary

			11

			Adding, Securing, and Serving File Uploads with Supabase Storage

			Technical requirements

			Creating and understanding Storage buckets

			Examining public buckets

			Exploring files within a bucket programmatically

			Learning how a basic RLS policy can be added to your bucket

			Understanding private buckets and revising our bucket choice

			Choosing a private or a public bucket?

			Enabling the addition of comments with file attachments

			Preparing the UI with file upload possibility

			Uploading files to storage

			Connecting uploaded files with the written comment

			Showing the connected files

			Serving image attachments directly in the UI

			Using Image Transformations

			Building a pseudo-CDN for private buckets

			Using the pseudo-CDN inside our UI

			Writing RLS policies directly on buckets and objects table

			Diving into advanced storage restrictions

			Summary

			Part 4: Diving Deeper into Security and Advanced Features

			12

			Avoiding Unwanted Data Manipulation and Undisclosed Exposures

			Technical requirements

			Understanding PostgREST’s OpenAPI Schema exposure

			Preventing schema exposure

			Removing schemas from usage via API

			Specifically exposing a schema to the API

			Being careful with current_user usage and understanding auth.role()

			Generating new Anonymous Keys, Service Role Keys, and database passwords

			Benefiting from Supabase Vault

			Creating secrets in the Vault and reading them

			Using the secret in the business logic/within your application

			Utilizing silent resets to avoid data manipulation

			Enabling column-level security/working with roles

			Understanding security on views and manually created tables

			Changing the max_rows configuration

			Understanding safe-guarded API updates or deletion

			Adding middleware inside Postgres for each API request

			Adding middleware for PostgREST

			Using the Security Advisor

			Allowing a listing of IPs for database connections

			Enforcing SSL on direct database connections

			Summary

			13

			Adding Supabase Superpowers and Reviewing Production Hardening Tips

			Technical requirements

			Making sense of search_path

			Comprehending search path in Postgres

			Grasping the importance of extra_search_path

			Familiarizing yourself with database extensions

			Installing an extension in the default extensions schema

			Installing extensions in their own schema

			Using the programmatic installation of extensions versus using the UI

			Adding an AI-based semantic ticket search

			Deciding on an embeddings provider

			Creating the embeddings column in the table

			Creating embeddings with OpenAI

			Comparing embeddings to find matching search results

			Using anonymous sign-ins

			Transforming external APIs into tables with foreign data wrappers

			Using webhooks

			Creating webhooks with dynamic URLs per environment

			Understanding Edge Functions

			Understanding when to use Edge Functions

			Creating an Edge Function that runs for new rows

			Triggering the Edge Function

			Using cronjobs to notify about due tickets

			Using pg_jsonschema for JSON data integrity

			Testing the database with pgTAP

			Setting the auth.storageKey to avoid migration problems

			Extending supabase.ts with custom typings

			Improving RLS and query performance

			Identifying database performance problems and bloat

			Working with complex table joins

			Reviewing the underestimated benefit of using an external database client

			Understanding migrations

			Utilizing database branching

			Disabling GraphQL or PostgREST (if you don’t need it)

			Using a dead-end built-in mailing setup

			Retrieving table data with the REST API and cURL

			Summary

			Index

			Other Books You May Enjoy

		

	

		
			Preface

			Technology and web development have always fascinated me. Over the past 23 years, I’ve navigated the evolving landscape of coding, starting from my self-taught beginnings at the age of 11. Back then, the internet presented different challenges, such as achieving a proper box model in Internet Explorer or using border-radius and transparent PNGs.

			As a web app architect, I carefully choose technology stacks. While I stay at the cutting edge of web development and closely observe new hypes, I don’t like to adopt them immediately. Instead, I evaluate them meticulously. My extensive JavaScript experience has given me a broad, well-informed perspective and taught me to trust my gut feeling, developed over years of diverse projects and challenges.

			My journey with Supabase has been unique as it’s one of the rare stacks I can use for nearly any project, no matter which additional stack surrounds it, thanks to its superpowered Postgres database with an “all batteries included” approach.

			This book is a culmination of my experiences, insights, and countless hours spent exploring Supabase. My hope is that it will not only guide you through the technical aspects but also inspire you to see the potential and possibilities that Supabase offers. We are at an exciting juncture in web development, and together, we will explore how Supabase can transform your projects and reshape the way you think about web development.

			Welcome to the world of Supabase!

			Who this book is for

			This book is perfect for developers looking for a hassle-free, universally applicable solution to build robust apps. By using the open source Supabase backend and its simple integration libraries, you can significantly accelerate your development process.

			What this book covers

			Chapter 1, Unveiling the Inner Workings of Supabase and Introducing the Book’s Project, explains why Supabase is the stack you want for your next project, demystifies its inner workings, and explores its interconnected services. You will also be introduced to the Multi-Tenant Ticket System project that we will be working on throughout the book.

			Chapter 2, Setting Up Supabase with Next.js, covers setting up and connecting to Supabase, running local instances, managing multiple instances, and integrating Supabase with your Next.js application, laying the groundwork for your ticket system project.

			Chapter 3, Creating the Ticket Management Pages, Layout, and Components, explains how to build the foundational design of your ticket system project using mock data, creating solid-looking pages and components with Next.js only.

			Chapter 4, Adding Authentication and Application Protection, integrates user authentication with Supabase, protecting your application, and you will also learn about sending customized authentication emails.

			Chapter 5, Crafting Multi-Tenancy through Database and App Design, covers how to design your database and the application to support multi-tenancy, including defining permissions and making the application tenant aware.

			Chapter 6, Enforcing Tenant Permissions with RLS and Handling Tenant Domains, focuses on implementing row-level security (RLS) to secure tenant-specific data, streamlining RLS with Custom Claims, and adapting your application to use domain-based tenant identification.

			Chapter 7, Adding Tenant-Based Signups, Including Google Login, takes you through implementing tenant-based user registration, enabling OAuth sign-in with Google, and handling invalid user registrations to enhance the onboarding process.

			Chapter 8, Implementing Dynamic Ticket Management, shows you how to create and manage tickets, implement ticket details and related data, and enhance the ticket list with paging, sorting, and searching features.

			Chapter 9, Creating a User List with RPCs and Setting Ticket Assignees, explores how to create a user list using remote procedure calls (RPCs), add assignees to tickets, and implement UPDATE RLS policies for enhanced security.

			Chapter 10, Enhancing Interactivity with Realtime Comments, guides you through creating a comments table, implementing real-time comment functionality, and optimizing RLS policies to enhance user interactivity and experience.

			Chapter 11, Adding, Securing, and Serving File Uploads with Supabase Storage, explains how to implement file uploads within ticket comments, secure files with RLS policies, and serve images using Supabase Storage and Image Transformations

			Chapter 12, Avoiding Unwanted Data Manipulation and Undisclosed Exposures, discusses advanced security techniques to protect your Supabase application, including managing roles, using Supabase Vault, implementing column-level security (CLS), and much more.

			Chapter 13, Adding Supabase Superpowers and Reviewing Production Hardening Tips, unleashes the full potential of your Supabase application with powerful techniques. You’ll discover how to integrate database extensions, optimize performance, implement AI-based features, and secure your workflows like never before.

			To get the most out of this book

			To get the most out of this book, you should have a solid understanding of at least one programming language and be familiar with JavaScript, as we will be building a Next.js app to explore Supabase’s features. However, since the concepts of Supabase are framework independent, this book is also incredibly insightful for experienced developers from non-JavaScript backgrounds who want to enhance their development speed.

			While familiarity with Postgres is also a plus, all SQL statements used in the book are thoroughly explained.

			
				
					
					
				
				
					
							
							Software/hardware covered in the book

						
							
							Operating system requirements

						
					

					
							
							Docker Desktop or orbstack

						
							
							Windows, macOS, or Linux

						
					

					
							
							npm/node

						
							
					

					
							
							An account on supabase.com

						
							
					

					
							
							DBeaver (recommended, not necessary)

						
							
					

				
			

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book’s GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Also, take your time and read the book carefully - there's no rush!

			Download the example code files

			You can download the example code files for this book from GitHub at https://github.com/PacktPublishing/Building-Production-Grade-Web-Applications-with-Supabase. If there’s an update to the code, it will be updated in the GitHub repository.

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “Change port to something unique, such as port=9100, and now, for this project, your Supabase Studio Service will run on localhost:9100.”

			A block of code is set as follows:

			
document = createNewTextDocument();
userId = getUserIdFromLoginSession();
getFgaClient() .subject({userId}) .addPermissions({objectType: 'document', objectId: document.id}) .relations(['save', 'delete', 'share'])
			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			
CREATE POLICY only_own_rows_thor
 FOR SELECT TO thor ON documents
 USING (owner = 42);
			Any command-line input or output is written as follows:

			
npm install supabase --save-dev
			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: “Within your project, just click on Authentication, then URL Configuration.”

			Tips or important notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Hiring the author: If you’d like the author to consult you, it’s best to reach out at https://activeno.de/.

			Join Us on Discord

			If you encounter any problems, need any help, or would just like to discuss the book with the author and other readers, you can join the book's Discord channel here: supa.guide/discord.

			Share Your Thoughts

			Once you’ve read Building Production-Grade Web Applications with Supabase, we’d love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we’re delivering excellent quality content.

			Download a free PDF copy of this book

			Thanks for purchasing this book!

			Do you like to read on the go but are unable to carry your print books everywhere?

			Is your eBook purchase not compatible with the device of your choice?

			Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

			Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

			The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

			Follow these simple steps to get the benefits:

			
					Scan the QR code or visit the link below

			

			
				
					[image:]
				

			

			https://packt.link/free-ebook/9781837630684

			
					Submit your proof of purchase

					That’s it! We’ll send your free PDF and other benefits to your email directly

			

		

	

		
			Part 1:Creating the Foundations of the Ticket System App

			In the first part of this book, we will embark on the journey of building the foundations for your ticket management app. You’ll explore the basics of Supabase, set up your development environment, and create a user-friendly interface. This part is all about laying the groundwork and getting you ready for more complex features ahead, so let’s dive in and start building!

			This part includes the following chapters:

			
					Chapter 1, Unveiling the Inner Workings of Supabase and Introducing the Book’s Project

					Chapter 2, Setting Up Supabase with Next.js

					Chapter 3, Creating the Ticket Management Pages, Layout, and Components

			

		

		
			
			

		

		
			
			

		

	

		
			1

			Unveiling the Inner Workings of Supabase and Introducing the Book’s Project

			In 2000, I started playing around with HTML, which had been around for 10 years at the time. Google, which was then only two years old, was already becoming popular. Back then, the internet was slow and expensive, and my connection was a snail-paced 56 Kbps, miles behind today’s lightning-fast 1 Gbps, which is 18,000 times faster.

			However, it was a great time to start with web development as the field wasn’t overly complex. Making dynamic websites typically meant using PHP and MySQL, and things such as “JavaScript Frameworks” did not even exist yet. At that time, authentication was simpler but not very secure, and HTTPS (which is represented by the padlock icon in your browser) was rare. To log in, you had to enter a username and password on a website, and the server created a session cookie to connect you to your account on the backend.

			Fast forward to today, when starting out with web development can be confusing. There are tons of libraries, frameworks, and tech choices to make. However, as most of them are some kind of interactive service, there are underlying needs such as file storage, databases, and authentication that are always the same for each project. That’s where Platform as a Service/Backend as a Service (PaaS/BaaS) comes in. Supabase is a standout option for this. Choosing Supabase will save you lots of time, as I can personally attest—usually multiple weeks or even months of work. Even if all you need is a database to store data in, PaaS solutions such as Supabase will allow you to iteratively add the capabilities of the PaaS solution to your application.

			Embarking on a new web project is like setting out on a thrilling adventure. In this chapter, I’ll guide you through the gates to Supabase, your gateway to a seamless, powerful, and scalable web development experience. Here, I’ll equip you with knowledge of, and insight into, each layer of Supabase. This will allow you to confidently choose Supabase as the foundation for your next web application. By unraveling the intricacies of the Supabase stack and delving into its internal workings, you’ll not only grasp what sets it apart but also gain a deeper knowledge for the book project that lies ahead. On top of that, from a software architectural standpoint, it will allow you to make better decisions since you will have a deeper understanding of the stack.

			So, in this chapter, we will first cover the following topics:

			
					Understanding why Supabase is the stack that you want

					Demystifying the inner workings of Supabase with Postgres

			

			After that, and after having seen a systems diagram of how Supabase is built, you’ll dive into learning more about its interconnected services:

			
					Supabase Studio – the convenient web dashboard

					Supabase Auth (GoTrue) – the authentication handler

					PostgREST – A REST and GraphQL API for the database

					Realtime – elevating the user experience

					Storage – simple and scalable object storage

					Image Proxy – helping to transform images on the fly

					Edge Functions– completing the optimization stack

					pg-meta – an internal helper service for the database

					Kong – the overarching service orchestrator

			

			In the final section of this chapter, you’ll then get an overview of the project that you are going to create.

			By the end of this chapter, you won’t just know how Supabase works; you’ll understand why it’s the stack that you’ll want to rely on!

			Technical requirements (and some preamble)

			This chapter contains code samples. However, you don’t need to remember them, as they simply serve the purpose of helping you understand the context of what’s explained better. Just expose yourself to their meaning and let go of trying to map it to a real implementation.

			In the upcoming chapters, the code will be real code samples, which can be found, sorted by branches, at https://github.com/PacktPublishing/Building-Production-Grade-Web-Applications-with-Supabase.

			Now for the preamble. In this chapter, we’ll dive into why Supabase is the ideal stack for building exceptional applications and explore its internal architecture.

			Don’t be intimidated by the length of this chapter—Supabase works seamlessly without you needing to remember all the details of this chapter. Approach this chapter like you would a novel: as something to read, enjoy, and have aha-moments with, rather than something that you need to implement immediately. This chapter is more theory-focused, while the next ones will be hands-on and practical.

			It might be tempting to skip this theoretical section, but doing so means missing out on very essential background knowledge. This foundation is crucial for fully grasping why things work the way they do. Stick with it—it’s worth your time!

			Understanding why Supabase is the stack you want

			Talking about an awesome product is one thing. Understanding its history of success is equally important, as this paves the way for the future that you will invest your time and effort into. Also, that same history is part of the reason why it resonates with the principles of many developers, as well as why it isn’t just yet another Software as a Service (SaaS) with a short life span but one of the most promising tools that the web has seen in recent years.

			In 2019, Paul Copplestone, the CEO of Supabase, worked on a Realtime extension for Postgres. This was part of a migration, in his former company, to move away from Google’s Firebase to Postgres. As this gained popularity, he asked his friend Ant Wilson if he’d be open to building an open-source company with the Postgres database at its core.

			Ant agreed, and they came up with the name Supabase, choosing this due to the planned “super database” nature of the tool (and with the potential for many memes based on the Nicki Minaj song Super Bass).

			The goal of the company? I think that this quote from Supabase will give you a feeling about their underlying goals at the time:

			At Supabase, we’re building some amazing tools that make Postgres as easy to use as Firebase [...]. Why are database interfaces so hard to use? The Supabase team has built products for 70-year-olds, so we’re confident we can make something easier for developers. (Supabase, June 2020)

			They were trying to establish an easy-to-use open-source Google Firebase alternative, going beyond just cloning it and coming up with their own innovative ideas.

			They started actively fiddling with that idea in January 2020. The first video I know of where Paul shows a first promising Alpha release (May 2020) was published less than three months after they had started building it and can be found here: https://www.youtube.com/watch?v=ck5MM_PD4Co

			At the time of writing this book, it has less than 800 views—apparently, not many people knew about Supabase in the early 2020s.

			The Alpha release was a wonderfully preconfigured, hosted Postgres database with a dashboard. Not just that; it was also an instant API for your database, allowing for easy access with the Supabase npm package. Unsurprisingly, it also had Realtime support.

			Only about 6 weeks later, they had overhauled the existing dashboard with a fresh UI and announced that they got into the Y Combinator Accelerator Program (https://www.ycombinator.com/about), which is one of the most famous startup founding accelerators, having boosted companies such as Heroku, AirBnB, and Dropbox. At that time, they also announced that the maintainer of PostgREST, Steve Chavez, had joined the Supabase team. Just a few weeks after that, he had helped in adding the authentication feature in Supabase.

			The speed of development with the given quality shows the experience of those people. Back then, they were primarily active on Hacker News and Twitter (now X) to push this idea. Twitter was the place where I got hooked the first time. Fast forward to about one year later. Not only did a lot of developers realize that this is an awesome and fast-growing platform to build on but investors were also impressed, leading to Supabase gaining 30 million dollars of funding. Supabase, being completely open source, has 116 million dollars of funding in total at the time of writing this book. This is quite unusual for a non-closed source platform.

			However, let’s dive deeper into Supabase’s capabilities today. I’ve led a lot of projects in my career of basically every scale, and all of them have ever-ongoing questions such as “Do we have the right tech stack for our needs?” in common. In many projects, developers recreate the same stacks repeatedly tailored to the supposedly specific needs of their software. However, at the end of the day, most software has more or less the same common day-one needs:

			
					Storing data in a database

					User authentication

					Saving files and serving them

					Permissions for handling data and files

					Running scheduled processes

					Connecting with APIs such as Stripe

					Logging data from services to be able to debug potential problems

					A web-based management UI

			

			Note

			Day-one needs are needs that projects will have from the start. Nowadays, Supabase also puts a lot of work into “day 100 needs” such as scalability, performance, observability, integrations, and so on.

			Rethinking and recreating solutions for these needs for each product every time costs a lot of time. Often this recreation process is justified by saying that every product has specific needs. That is true. However, at the same time, it doesn’t stay true when it comes to the aforementioned foundation of your application.

			Platforms such as Supabase, which solve these common needs with low complexity, overcome a big part of developing a product’s software architecture from scratch. So, you can therefore go from asking the question of “Where do I start?” to “Is there something I don’t see solved with the BaaS and what do we need to add or change to achieve it?” The latter question not only costs less time but also allows all developers to come back to well-known standards (instead of having to learn new conventions and APIs all the time), helping them focus on their product.

			Now some might argue as follows: “I can also build my own custom architectural setup and reuse that for my projects all the time. Then, I don’t have the added costs for the base setup—which is the same as if I’d be using a platform such as Supabase.” This is, sorry to disappoint, not true:

			
					You must maintain everything on your own

					Once you start the actual development of your application, your custom solution will already be outdated

					You won’t be as fast at adding new features to your custom platform

					As your own setup is not public nor well-known, there’s a bigger cost of developer onboarding and bigger costs of documentation

			

			All of these points obviously mean more time consumption and more costs with a custom solution.

			From my own experience, Supabase has significantly increased development speed, changing the way I work. An essential reason to choose Supabase is its open-source nature. Unlike closed-source alternatives such as Google Firebase, Supabase allows you to actively contribute ideas, code, or bug reports. This ensures that you’re not locked in. The community’s strong bond with Supabase further enhances its appeal.

			Now, let’s have a look at what Supabase consists of architecturally. The following diagram shows a visual representation of a Supabase instance. As a whole, the diagram represents the network that the Supabase services live in, namely Kong, GoTrue, PostgREST, Realtime, Storage, ImageProxy, Edge Functions, pg-meta, Studio, and the Postgres database.

			
				
					[image: Figure 1.1: A visualization of a Supabase instance setup]
				

			

			Figure 1.1: A visualization of a Supabase instance setup

			We will now go through these well-separated services one by one to understand their function within Supabase. We will start with the Postgres database, as this is the common denominator and central point of it all.

			Note

			Before moving on I would like to clarify the term services. Whenever I talk about Supabase services in this book, I am referring to isolated containers, as this is what they are. Each Supabase service lives in its own container. The database is one service, living in its own Docker container. Realtime is another service living in its own container, and so on, but all those services live together in a shared network.

			Demystifying the inner workings of Supabase with Postgres

			Postgres is, and always has been, one of the go-to databases. It has proven to be a reliable and fast partner for projects of any size. Hence, it’s no surprise that Supabase is not only using one but in fact is a Postgres database with a specific setup and specific extensions, enhanced with additional services.

			Everything related to Supabase (excluding files) is stored within that exact Postgres database. That’s why we will now jump into a mix of theoretical and practical thoughts about what differentiates Supabase, at its core, from just being a regular database.

			One very interesting fact is that the database within Supabase can be controlled by you and is extensible. Often, when you work with any kind of platform that provides you with a database, your access will be limited in regard to safeguarding you from making fatal changes. Supabase, however, gives you full access to its underlying Postgres database.

			Note

			Supabase has restrictions in place to try to prevent you from destroying your own infrastructure. This means there are certain structures and users that you will not be able to delete or modify in a way that would allow you to do so. However, the postgres database user, which you have control of with Supabase, does have admin rights. This means that it has access to all resources and can also modify all resources to the extent of not destroying crucial systems.

			The database can be extended with additional capabilities, which can be installed with the internal open-source package manager (https://database.dev/) or the click of a button (for example, extensions for testing the database, making HTTP requests, or executing cronjobs). It is worth noting that those extensions are just regular, but extremely powerful Postgres extensions—deliberately. However, that’s just one huge thing of many.

			One of the most exciting and clever concepts behind Supabase is that it gives you the possibility to give your users access to specific data in your database. For instance, you might grant access to a table but not to all of its rows.

			However, what does that mean? Isn’t that the case for every web app with authentication anyway? Don’t they all integrate fine-grained access with their databases? Not really. Nowadays, most web apps use routes or a central service and combine actual backend logic to achieve access control. The database itself usually does not constrain that.

			Enough talk though; let’s take a closer look.

			Access logic within a route

			First, we want to have a look at when access logic is implemented as part of a specific route of your app.

			Imagine that you have a text editor app called text.myapp, wherein users can write documents and share those documents to be edited by others. Now, imagine a user who wants to save a document with the 456 ID. This is done with a request to text.myapp/document/456/save. As an example, the following backend code logic shows how the app could make sure that only the owner or people with shared access can save the document:

			
// route = /document/[id]/save
if (isLoggedIn()) {
 canSave = false;
 userId = getUserIdFromLoginSession();
 db = getDbConnection();
 document = db
 .select('author').from('documents')
 .where({id: documentId});
 canSave = isEqual(document.author, userId);
 if (!canSave) {
 // check if shared, then also eligible to save
 canSave = db.exists('shared_docs')
 .whereEquals({ documentId, userId})
 }
 if (canSave) db.update(content).whereEquals({ documentId });
}
			So, when data (content in the code sample) is sent to the route for saving a specific document with a specific ID, the first check works out whether the user is logged in, while the second and third checks work out whether the user is either the owner of the document or if someone has shared this document with that user. In both cases, that user is allowed to update the document in the database.

			These logic snippets can make the code unreadable pretty quickly. That’s why abstraction into functions such as canEditDocument(documentId) is a must so that you only have something like this in the end:

			
// route = /document/[id]/save
if (isLoggedIn()) {
 canSave = canEditDocument(documentId);
 if (canSave) db.update(content).whereEquals({ documentId });
}
			With this, all of the checks would be inside the logic of canEditDocument. This makes it cleaner but definitely not less work.

			We’ll get back to this specific example in a moment, when we look at how Supabase can solve this specific sample. First, however, we’ll have a look at how permissions can be solved with a central permission system.

			Access logic as a central service

			Controlling who can do what with an explicit central permission system is usually found in more complex apps. I’m talking about so-called Role / Relationship Based Access Control (RBAC) or Fine Grained Authorization (FGA) systems. Though they have different names, they are essentially the same, being gatekeepers to set and check permissions explicitly and declaratively.

			In a more visual sense, let’s imagine access control via FGA in a school setting. The school is fully digital and uses NFC cards for people to get access to certain rooms. Teachers are allowed to go to the teachers’ room and the students’ room, while students are only allowed to go to the students’ room. However, some students are allowed to go to the teachers’ room on demand (temporarily). You can see this example illustrated in the following figure:

			
				
					[image: Figure 1.2: A visualization of an RBAC / FGA system accessing a teachers’ room in a school]
				

			

			Figure 1.2: A visualization of an RBAC / FGA system accessing a teachers’ room in a school

			As every teacher is added to the Teachers group and the Teachers group has the addPermission('teachers_room') and addPermission('students_room') permissions, this means that all teachers have permission to use both rooms.

			What’s the exact difference between this and the text editor example from before? Well, the previous text editor example had implied permissions: the author, who created the document, had access no matter what. If the author wanted to give access to other people, it was necessary to also create a table where shared users could be mapped to a document and then check whether an entry exists.

			That’s different from the teachers’ room example. Imagine that there’s a person who created this room in the access system. That doesn’t make that person a teacher, nor does it give them access. So, the author of the room does not have access. Also, just because you have access to that room doesn’t say anything about whether you are a teacher or not. The only way to get access to the teachers’ room is to have the teachers_room permission.

			It’s clear that the principal should also have access to the teacher’s room, and in systems with implicit rights, there would probably be something such as if (isPrincipal()) THEN canAccessTeachersRoom(). With FGA, however, if the principal needs to have access, the principal needs to be given the appropriate permission, for example, by being added to the teachers’ group or creating a school management group with that permission.

			Note

			The principle of managing rights explicitly, without making assumptions based on mental models, isn’t new. However, there are new tools that are tailored to solve that for applications with the complexity of today. It doesn’t come as a surprise that Google published a paper about it in 2019 (https://research.google/pubs/pub48190/) that quite a few of the existing access control services build upon, such as OpenFGA (https://openfga.dev) or Warrant (https://warrant.dev/).

			However, what if we have many resources to manage, such as the items in the teachers’ room (the microwave, the coffee machine, you name it)? Giving every single teacher access to each item individually would be quite cumbersome. Instead, you could give the teachers’ room itself access to the resources. Then, the teachers are only assigned to the room, which implies that they will have access to its items. Pretty straightforward, right?

			Be aware though; with that modeling, access to the teachers’ room would mean access to its items. Hence, if a student was given temporary access to that room, they would also have temporary access to the items. So, it makes sense to split this up into two groups: room access and room items access. With this separation, you can give students access to the room without access to the items. Here’s a visualization:

			
				
					[image: Figure 1.3: Splitting up the roles of room and room items with RBAC]
				

			

			Figure 1.3: Splitting up the roles of room and room items with RBAC

			Now, let’s try to map the FGA solution to our previous text editor example so you can get a handle on the major difference.

			When you create a new text document, the only reason you would have access to your own text document with an FGA-based permission system is because the code of the application has given you the rights, often called relations, explicitly. You can see an FGA sample here, where an author of a new document is given all rights (including saving, deleting, and sharing the document):

			
document = createNewTextDocument();
userId = getUserIdFromLoginSession();
getFgaClient()
 .subject({userId})
 .addPermissions({objectType: 'document', objectId: document.id})
 .relations(['save', 'delete', 'share'])
			Now, there’s no need to imply anything based on any kind of user role, such as being an author. Instead, we can ask the FGA system whether the current user has the right to save the document, like so:

			
userId = getUserIdFromLoginSession();
db = getDbConnection();
canSave = getFgaClient().check({
 object: {
 objectType: 'document',
 objectId: documentId
 },
 relation: 'save',
 subject: { userId }
 });
if (canSave) db.update(content).where({ documentId });
			Here, we are not executing specific database comparisons; we are executing an explicit permission check. This allows us to move away from thinking about which commands to execute or re-rechecking mental access models, and instead moves us toward just asking whether permission is granted. The big benefit here is that you could also temporarily revoke rights from an owner without removing them as an owner (e.g., because of an audit process).

			Now you understand why an FGA will allow you to think less and reduce complexity instead of trying to map mental models with the approach of “the person is an author, so the person must have access.” Next, I want to show you that Supabase falls in a mix of both categories leading to massively reduced complexity within your application code.

			How Supabase handles access control

			Supabase does not use a typical generalized FGA System. It has built access control into the database. The access check does not need to happen in your application code; it happens under the hood, but how?

			To answer this question, I’d like to show you the most minimal—but still functional—way of saving a text document using JavaScript, but only if the user has the proper rights:

			
const supabaseClient = createSupabaseClient();
supabaseClient.from('documents')
 .update({ content }).match({ documentId });
			You might be thinking that some code is missing, but it isn’t. Before continuing to read the explanation, I’d like to encourage you to think about it yourself first, visualizing in which way this could be possible, even though we are not checking anything.

			So, the given code can run on the frontend or backend and will be equally safe, but how so? How can a database connection in the frontend even be safe at all? Where are the checks that verify whether the user is allowed to execute the action?

			The reason why this works can be explained in multiple steps:

			
					When you use the Supabase client, it will know whether you are authenticated.

					The .from(..).update(..) code will send a request to the Database API, more specifically, in this case, to the documents table.

					Inside the Postgres database are helper functions, which parse the authentication data from the Auth Service and know exactly which user is currently logged in (or whether the user is logged in at all).

					By having permission policies defined in the database, the database will only allow access to the data access when the current user is authorized to do so, and will simply reject providing the data if not.

			

			It’s similar to RBAC, but here, the access service isn’t an additional service. Instead, it is part of the database and the control mechanism also sits in the database, at the lowest level of data.

			This is indeed innovative and a game changer because once your access control mechanisms are set inside of your database, you can use the database client—both on the frontend and backend—without having to think about permissions when executing commands (as given in the sample).

			Now that you know how it works on the surface, let’s look at it in more of a technical way.

			How the access system works under the hood

			Databases allow you to create multiple users and grant them specific rights to specific tables. So, in theory, you could create an actual database user for each user in your application. If your app had 20,000 users, you would have 20,000 database users (though there are pitfalls to this method, which you can see at https://dba.stackexchange.com/questions/89275/feasible-to-have-thousands-of-users-in-postgres).

			Now Postgres allows you to set permissions for each user in the database. For example, if you wanted to give a database user, thor, read rights on the documents table, you’d do this:

			
GRANT SELECT ON TABLE documents TO thor;
			However, this doesn’t solve fine-grained access because thor could read all documents in that table. Also, with those read rights, thor could not create documents.

			This is where Row Level Security (RLS) comes in, adding more fine-grained control. In Postgres, one can enable the RLS feature on a table; if it is enabled, all access to its data is denied by default.

			In our case, thor could access the table but would always get no data returned from it. For them to have access to the table data, we would need to create an RLS policy. Assuming that thor has the 42 user ID, the following sample would give thor access to just their own rows in that table:

			
CREATE POLICY only_own_rows_thor
 FOR SELECT TO thor ON documents
 USING (owner = 42);
			This policy-driven approach is what Supabase uses. We will see it in hands-on action—including all of its very interesting implications—starting in Chapter 6.

			As indicated, having a database user for each user of your application isn’t recommended. Supabase also bypasses this with a simple trick: it connects with a generic database user. You will create policies based on the built-in auth helper functions, which are connected to the authentication service. What might sound complicated at first becomes understandable with the following code snippet of a policy:

			
CREATE POLICY only_own_rows
 FOR SELECT TO authenticated ON documents
 USING (owner = auth.uid());
			The authenticated role is a shared database user, which Supabase uses for all logged-in users. Here, auth.uid() will always return the specific ID of the authentication service user (e.g., you) that is currently logged in. Hence, this solution works universally.

			Reminder

			The code samples are here to improve the explanations. There is no need to remember them or stress yourself over not understanding what they mean in action—this will be taught throughout the book.

			Let’s strip down what happens, step-by-step, when a user within your web application tries to access data from the database with Supabase:

			
					The user requests data from the database by sending an HTTP request to the Supabase API. The request, within Supabase, goes to a PostgREST Supabase service.

					The service checks and processes the user’s authentication.

					The service tells the database which user is logged in (or if no user is logged in) and what data is requested.

			

			The database uses this information to return data (or not), depending on its policies. The data is returned to the service and the service returns it to the user.

			You can see a visual illustration of this in the following figure:

			
				
					[image: Figure 1.4: A user fetching data from a database]
				

			

			Figure 1.4: A user fetching data from a database

			Even though RLS is a Postgres feature, Supabase has found the sweet spot, connecting it directly to user management (authentication service) that doesn’t require actual database users. This very clear, though unique integration allows you to add or change data from your users in your database carefree.

			Although this authentication system is probably one of my favorite things about Supabase, you’ll see in the upcoming sections how Supabase integrates the other services and makes its Postgres database the integral part that connects everything. It essentially becomes more than just a database: it’s a communication system and the cockpit of the services.

			With this understanding of the importance of access management within Supabase, we’ll move on to the explanation of the single Supabase services now.

			Supabase Studio – the convenient web dashboard

			At the heart of the Supabase stack, you’ll find Supabase Studio, an intuitive dashboard designed to streamline the management of your Supabase instance. However, it’s not a necessity—if you’re a command line person and love to hack SQL commands and HTTP requests much more than using a convenient dashboard, you’d be free to ignore the dashboard. Hence, of all the Supabase services, Studio is the only one you could completely delete without negative impacts on your Supabase infrastructure as it isn’t required by the other services.

			Studio excels at simplifying complex tasks, from creating and managing table data to handling users and credentials, and even executing raw SQL commands for those who prefer that level of control. In Figure 1.5, you can catch a glimpse of the Studio start page for one of my projects, showcasing a quick statistical overview of its usage:

			
				
					[image: Figure 1.5: Supabase Studio]
				

			

			Figure 1.5: Supabase Studio

			Note

			In this fast-paced world, UIs are always bound to change quickly, so I will refrain from providing too many static explanatory screenshots of the dashboard in this book.

			Throughout this book, Studio will be our go-to tool for creating our database structure, handling user management and permissions, and much more. By leveraging Studio, you’ll not only increase your efficiency but also gain the capability to navigate through the complexities of Supabase with ease.

			Enumerating every capability of Studio is a challenge, especially as Supabase consistently enriches its features, expanding the list further. Nonetheless, let’s offer a brief look at some essential tasks that Studio effectively manages on your behalf:

			
					Managing database tables, including creating tables, inserting and updating data, and exporting data as .csv

					Managing the database beyond just tables, including creating access policies (RLS), adding custom functions, activating extensions, adding triggers, downloading or activating backups, and so on

					Executing SQL queries on the underlying Postgres database as the admin user

					Managing authentication settings, including login providers (email, phone, Google Login, Apple Login, GitHub Login, SSO, and so on)

					Managing file storage, including defining access policies (RLS), applying upload limits, browsing and manipulating existing files, and so on

					Creating reports, including getting usage and performance insights about your Supabase instance and building custom report dashboards for it inside of Studio

					Seeing all Supabase-related logs and building custom log queries

					Viewing general project settings, including API information or connection data

					Restarting your instance and changing the credentials

			

			In essence, Supabase Studio is your partner for managing just about anything within your instance, as making Supabase usage as convenient as possible is one of the primary goals of the Supabase Team.

			Next, we will have a look at the Supabase Auth service that is responsible for managing user authentication and how it differentiates its task from the access control happening in the database.

			Supabase Auth (GoTrue) – the authentication handler

			Supabase Auth, formerly known as GoTrue, is an auth API server written in Go. It’s what I refer to as the authentication service. It was originally created by Netlify. However, Supabase forked it and now builds upon it (https://github.com/supabase/auth).

			In the next chapter, you’ll be setting up your first Supabase JavaScript client, which has a lot of convenient methods for the features of your Supabase instance. When you call the convenient supabaseClient.signUp(..) method, it requests the Auth server at its /auth/signup endpoint. Even though you can (and should) always use convenient functions such as signUp(..), it is interesting to know that everything in Supabase is based on REST APIs and hence you are not dependent on any specific framework.

			Auth itself does not care about permissions, it cares only about authentication, such as sign-ups, login, recovery, profile changes, and so on. The job of giving or denying access to a user is done inside of the database, as we’ve learned already. This access control that happens in the database is based on the authentication information that Auth communicates to the database.

			Just to make it clear again: Auth tells the database, “Here, this is David” and the database knows whether David should have access to certain data. It provides endpoints that revolve around the possibility of users to sign in and manage the authentication sessions, for example, by verifying active logins and forwarding the information to the other services within the Supabase stack.

			In the next section, you’ll get to know the service that builds an automatic API on top of your database to allow fetching data from it.

			PostgREST – a REST and GraphQL API for your database

			The driver of any web application is selecting, updating, and inserting data from or into the Database. With Supabase, these actions are internal requests to the PostgREST service, which is reachable at the /rest/ endpoint. That service is the PostgREST project, which essentially makes any Postgres database accessible via the REST API (https://postgrest.org/en/stable/).

			However, how does it work? Relational databases consist of tables, just like an Excel spreadsheet. In one Excel file, there can be multiple tabs, each containing a table of columns and rows. Hence, the Excel file itself is like a container for different tables.

			In relational databases, this container is called a schema. By default, any table within a Postgres database is created in the default schema, which is named public. A simple visualization of a TodoItem table with an Upload table resembling a Todo database is given in Figure 1.6:

			
				
					[image: Figure 1.6: A public schema with two tables]
				

			

			Figure 1.6: A public schema with two tables

			Now, PostgREST can be told to inspect such a schema and create an easy-to-use abstraction layer in the form of an automatic REST API on top of it. This leads to the tables and their data being effectively accessible via REST API. As the default schema in Postgres is public, Supabase also uses public by default.

			Then, PostgREST will expose endpoints that allow access to the database for that specific public schema. For example, let’s say that you want to insert a todo item in a TodoItem table via command line with a raw PostgREST request:

			
curl "http://POSTGREST-URL/TodoItem" \
 -X POST -H "Content-Type: application/json" \
 -d '{ "title": "Learn Supabase" }'
			In this code sample, we tell PostgREST that we want to execute something on the TodoItem table. By specifying a POST request with the JSON data, we can ensure that it treats that JSON data as a row to insert into that table.

			Reminder

			It’s unlikely that you will touch these API endpoints directly. It’s important to see that they exist but the recommended way is using a Supabase client, which we will use all the time in this book.

			PostgREST within Supabase respects authentication, as seen in Figure 1.4. Hence, it doesn’t matter whether PostgREST exposes the possibility of publicly manipulating any table. If you have a policy in the database that forbids adding a new todo item for the current, potentially unauthenticated user, then the request will fail at the database level, returning an error. Clever!

			Note

			Even though the Supabase client is very convenient, some people want to use GraphQL instead. For this reason, Supabase has also developed the open source pg_graphql GraphQL Postgres extension. The result is that GraphQL queries are supported at the database level (https://supabase.com/blog/graphql-now-available) and hence, Supabase exposes this specific endpoint for convenience at /graphql. Each sample in this book where we work with database data can hence be easily converted to a GraphQL request if you want that. As it doesn’t add additional value to the explanation of Supabase, we will stick with the client-based samples though.

			With the knowledge that PostgREST will always be the API responsible for interacting with data from the database, we will continue learning how the Realtime service adds value to the stack of Supabase services.

			Realtime – elevating the user experience

			Nearly any sophisticated application will come to a point where it makes sense to deliver live updates to a user without delay, whether it be gaming, a collaborative whiteboard, or simply new comments in your favorite social platform such as Signal. The Supabase Realtime Server solves exactly that.

			It is an ultra-fast, open-source WebSocket communication implementation connecting to Postgres databases, written in Elixir Lang (https://elixir-lang.org/) by the CEO of Supabase, Paul Copplestone. It’s worth mentioning that nowadays, it’s driven by community contributors. It can be used for arbitrary real-time communication purposes and is able to handle millions of connections (https://supabase.com/docs/guides/realtime/architecture).

			Even more interesting is the fact that it listens for changes within the database, so you can actually push live changes happening in the database to the user without any noticeable delay.

			Of course, the same rules as for the other services apply. Realtime respects your authentication (GoTrue), and hence your access rights (RLS). One can only listen to changes in the database if one has the appropriate policies.

			Now that you know about Realtime, imagine that you want to create a file hoster application such as Dropbox, Google Drive, or OneDrive and send users live notifications about changes to files. Sure, that’s possible with Supabase, but you need a place for those files as well.

			Storage – simple and scalable object storage

			Supabase Storage is the service that allows you to store and manage files while respecting authentication. However, the service in itself isn’t actually storing the files, it’s only managing them.

			As we learned, the PostgREST service isn’t a database but only connects to it and provides an API on top of it to access the data from the Postgres database. The Storage service in the Supabase stack provides an API to manage the files which can be in arbitrary places or other servers. Let’s get a deeper understanding of it.

			A very common way of storing files is the Simple Storage Service (S3). S3 is an Amazon-specific development that allows for failsafe, distributed, replicated object storage—in simple terms, it’s a well-architected database for files.

			Although Supabase uses Amazon’s S3, nowadays, when talking about S3, one doesn’t necessarily mean Amazon S3. There are alternative implementations that use the same API, so S3 can also just mean an S3-compatible object storage with the same API.

			So, this Supabase Storage service will internally connect to the S3 and externally provide an API. This is conveniently used by the Supabase client methods to manage files within the S3 and saves the metadata of those (filename, ID, size, etc.) in the Supabase Postgres database.

			Again, I want to emphasize that this Storage service, much like all the other services exposing REST APIs, communicates the authentication data from Auth to the database when accessing a file. Hence, the permissions, using RLS, are respected and the files are protected. This again confirms that the database is the central communication hub of Supabase. I recommend quickly having another look at Figure 1.1 right now, as this can deepen the understanding of this connection.

			With the knowledge about the Storage service, we’ll now jump ahead to its partner in crime in helping to deliver transformed images: the Image Proxy.

			Image Proxy – helping to transform images on the fly

			The Image Proxy service is a standalone, but complementary, service to the Storage service. It is used internally by the aforementioned storage service to pre-render images; for example, if you only need a thumbnail of a saved image and not the full resolution, you can use the Image Proxy service.

			In the following figure, you’ll see a flow diagram illustrating what happens when you request a resized image from Supabase:

			
				
					[image: Figure 1.7: The service flow when requesting a resized image]
				

			

			Figure 1.7: The service flow when requesting a resized image

			In the figure, you requested a file called cat.jpg, which we assume is high-resolution, and you want it to be downscaled to a size of 120 pixels. In that case, the Storage service will download the file from the S3 and pass it on to the ImageProxy service, which returns it to the Storage service after the transformation. The Storage service will then pass the result on to the one who requested it.

			With the JS Client of Supabase, such a request looks like this:

			
supabase.storage.from('bucket').download('/folder/cat.jpg', {
 transform: { width: 120, height: 120 }
})
			In the next section, I’ll explain the Edge Functions service.

			Edge Functions – completing the optimization stack

			Edge Functions are small and lightweight pieces of code logic that are separate from your application code. Their name comes from the fact that they best perform on the edge (https://deno.com/blog/the-future-of-web-is-on-the-edge). Edge is a rather new term and refers to a paradigm of delivering a fast result by being as close to the executor as possible. That usually means that the piece of code that is supposed to execute is distributed to different server locations in the world. Depending on where it’s called from, the closest server takes the task.

			Supabase’s Edge Functions service allows you to add custom edge functions that you can then execute whenever you need them. However, that leaves us with a question: when do you use them, and if they are that fast, why isn’t everything on the edge?

			Edge functions can be considered to be background workers. They need to be small and have a limited processing time, execution time, and memory usage, which means that their field of use is constrained from the very beginning. Also, you cannot return HTML with a Supabase Edge Function, as text/html mime types are rewritten to text/plain, which would only show HTML source code in a browser.

			Note

			The mentioned limitation that you cannot serve actual web pages is due to the fact that Edge Functions in Supabase are meant to be logic-driven background workers, not page or app servers. So, this constraint is intentional, as your actual application is best hosted on platforms such as Netlify, render.com, Railway, Vercel, you name it.

			So, from that perspective, we can derive the following: we cannot use it to host any kind of frontend activities and we cannot use it to do tasks that take long or where the CPU usage is high. This sounds pretty useless at first, but ultimately, this is part of the enormous optimizations that can only be achieved through certain limitations.

			Now, let’s say that for instance, you want to do regular, scheduled database cleanups of users that weren’t active in your application in the last two years. That’s a simple database execution task, but it’s not necessarily a task that should be part of your application logic, as it isn’t really application logic but rather housekeeping logic. This, being a small and isolated task, is a perfect task to hand over to a simple, minimal Edge Function logic, as they should be crafted to fulfill a task that is rather light.

			Processing an image, for example, isn’t something an edge function would ideally do, as it can be quite a resource-intensive task and would usually simply fail without a result.

			In this book, you’ll obviously experience edge functions in action. As edge functions are complementary in the Supabase stack, there is no necessity to use them other than optimizing your workflows.

			It is also worth noting that edge functions are written in Deno, which is essentially TypeScript. Since the logic of such functions is usually very small, it doesn’t necessarily add much complexity to implement one even if your application is written in a completely different language.

			According to what we’ve now learned, having edge functions can be beneficial but is complementary and definitely not a must. In the next section, you’ll get to know the pg-meta service, which adds management APIs for all things in the database that are not strictly related to data.

			pg-meta – an internal helper service for the database

			When you use the dashboard to create a new table or add some more columns to a table, you would think that this is done via PostgREST, right? Well, PostgREST is built for data management, not database management.

			Instead, database management is the task of the pg-meta service. It is a REST API that allows all kinds of manipulations on the database that is used by the other Supabase services. For example, when you create a new table with Studio, it talks to the pg-meta service by making a POST Request to /pg-meta/tables. It is secured and only accessible for the internal services or admins (e.g., when you log in to Studio, you are an admin).

			However, why is pg-meta needed when all the services in the Supabase stack could also access the database directly? The following are some key reasons:

			
					It abstracts away any underlying changes. In theory, you could even completely replace the database with a different database because the pg-meta API stays the same.

					Within the Supabase stack, it’s a convention and best practice for services to communicate with REST APIs. Each service has a clear responsibility and should not directly manipulate data if it’s not specifically the responsibility of that service to do so.

					If this service wasn’t available, the Supabase team would need to build such an API for the dashboard (Studio) anyway, because it needs access to manage the Database from a frontend UI. Hence, a generic solution was built that can be used by all services equally.

			

			That’s all that you need to know at this point. In this concise section, you learned that the pg-meta service complements the PostgREST service to also add the possibility of managing the database beyond just managing its data.

			In the upcoming section, you’ll get to know Kong, which plays a big role in taking care of all of the services that you know about by now.

			Kong – the overarching service orchestrator

			The Supabase services are Docker containers, and those containers live in their own Docker network.So, whenever I say “Supabase service,” I’m referring to a Docker container. The fact that all Supabase services live within the same Docker network means that if one service, such as Storage, has a server running with an API for managing files in its container at localhost:3000, all the other services can access the API of that service with serviceName:3000 (so storage:3000). That also means that all the services can talk to each other via their REST APIs.

			Usually, in production environments (such as supabase.com itself), none of the services are directly accessible to the outside, so from the outside, I cannot just use an API at storage:3000. Only containers that explicitly expose themselves to the public will be accessible to the outside, but none of the services in Supabase are—and this is best practice.

			Now Kong, the API gateway, is also just a service within that network of Supabase services such as Studio, Storage, PostgREST, and so on. However, Kong exposes itself to the outside, and since it has access to the other services, it can expose specific parts of the services on specific routes. This is called proxying.

			So, imagine that Kong itself is reachable at https://your-supabase.domain/. Then, it can map the internal storage:3000 service (which Kong has access to) to your-supabase.domain/storage. Although the Storage service as a whole isn’t accessible to the public, Kong can make parts of it accessible to the public, as it has access to the other services and exposes itself to the public.

			Kong controls access to the service. It’s basically the same as delivering packages. Any online seller won’t bring you the package you ordered. They all use a proxy, such as DHL, UPS, FedEx, or similar services. The proxy delivers your package and guards and protects packages in general.

			The advantage is that it doesn’t matter where the underlying services provide and receive data—Kong can map it to a convenient path. So, Kong is basically the guardian of the services. It also ensures that certain services (such as pg-meta) are only accessible by logged-in Super Admins and it can ensure that certain services are not accessible to the outside when there is no need for them to be.

			You now have an extensive overview of Supabase and its services behind the curtains. At this point, you most likely already stand out from other people who only scratch the surface of Supabase, which is awesome! You’ll see that this deeper knowledge will help make decision-making even better in the future.

			There’s just one thing missing in this introduction at this point: the project that you’ll build as you advance through this book. I’ll unveil it in the next section.

			Introducing the production-grade ticket system project

			In this book, you will build a production-ready, AI-enhanced multi-tenant ticket system with Next.js and Supabase, which you can take, deploy, extend, sell, or do whatever you like with.

			To illustrate how Supabase integrates into a real-world application, it was obvious that this book would have to build a real-world application. Hence, I had to choose a framework (Next.js) to build an application together with you rather than just pinpointing to Supabase features. This means that, in the beginning, it may feel a little bit like a Next.js tutorial, but rest assured that this feeling changes over the course of this book. Even if you use another set of technology, you should feel well-guided.

			Note

			The system that we will build will be functional, contain best practices, and be secure for production usage.

			However, what do I mean by a ticket system? We’re not talking about event tickets or bus tickets here; instead, we’re talking about work or issue tickets such as Improve the navigation in the app or Fix the missing payment button with statuses such as Not started, In progress, or Done. The tickets will look similar to the one in Figure 1.8:

			
				
					[image: Figure 1.8: A sample ticket]
				

			

			Figure 1.8: A sample ticket

			But now that we’ve clarified what tickets refer to, what does multi-tenant refer to?

			The project that we will create will be in the form of a SaaS product and should allow the creation and management of tickets bound to a specific client (tenant). That means that our final project will be able to determine whether you logged in on company-cool.domain or company-foobar.domain, and, depending on your permissions as a user, give you access to it and constrain the views to only show the respective tickets.

			So, what do we need for that? Narrowed down, we will build the following:

			
					Pages that take care of the authentication flow (Login, Registration, Password Recovery)

					A way to create new tickets

					An overview of existing tickets with the possibility of searching and filtering those

					A way of viewing ticket details and the possibility of adding comments, as well as receiving real-time comment activity on the ticket

					A page that lists the existing users of the current tenant (User’s Overview) for logged-in users to see who else can be working on tickets

			

			
				
					[image: Figure 1.9: An ultra-simplified representation of the multi-tenant system]
				

			

			Figure 1.9: An ultra-simplified representation of the multi-tenant system

			To be able to do so, there are a few things we will definitely want to consider:

			
					The signup process in our system needs to consider that users are only allowed to register with an email that has been approved by the tenant. In situations involving emails, especially during processes such as logging in via Magic Link, we will go beyond Supabase’s default mailing system and send emails that are completely customized.

					For ticket management, we’ll enhance the system to allow images, such as screenshots, to be attached to tickets, providing a visual context within the ticket details. Additionally, the overview page should clearly indicate whether a ticket has associated comments or attached images.

					From a technical standpoint, a single user account should seamlessly access multiple tenants without interfering with others. Introducing a bit of role management, only admin users of a tenant will have the privilege to delete any tickets, while other users can only delete their own tickets and comments.

					To enhance the ticket system’s usability, we’ll implement AI to identify similar existing tickets when creating a new one. Furthermore, a scheduler will be built to notify ticket creators via email if a ticket reaches its due date without being completed, adding a layer of convenience to the system.

			

			Along this path, there are going to be exciting things to be discovered and unraveled that you wouldn’t have guessed by reading the previous description, so get ready for a ride full of discovery and aha-moments—that’s a promise!

			Note

			Since this book covers everything that you need to fully understand Supabase, including the management of permissions, we will not build an admin UI for the company to manage the ticket system. However, I want to encourage you to undertake this as a next challenge after completing the book, maybe extending our simple ticket system so that you can actually convince paying clients to use it.

			Summary

			Wow, what a deep dive into the Supabase ecosystem! We peeled back the layers and got our hands dirty with the inner workings of this powerful platform. From the clever RLS in the database to the seamless chat between services via REST APIs, we saw how Supabase isn’t just smoke and mirrors—it’s smart engineering at its finest.

			We uncovered how Supabase blends traditional permission checks with fancy FGA, making data management a breeze for developers. Let’s not forget the star of the show: those REST APIs that tie everything together, including the Supabase client that we’ll be using. We learned about those in this chapter as well.

			However, we’re not just here to admire the architecture. All this knowledge is building toward something tangible: our multi-tenant ticket system. We’ve set the stage, and now it’s time to put the theory into practice.

			As we move on to the next chapter, get ready to roll up your sleeves. We’ll be spinning up our very first Supabase instance and connecting it to a Next.js project. It’s where the rubber meets the road, folks—a chance to see Supabase flex its muscles in a real-world scenario.

			Are you ready to get your hands dirty? Let’s go!

		

	

		
	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/image/B19648_01_05.jpg
*

@ 0 @© 0 B @B &

&

Org (Free | © Awesome Project &

Awesome Project

24hours v Statistics for past 24 hours

£ Database

Nov 22, 4pm

REST Requests

1661

Nov 21, 4pm

o* Auth
Auth Requests
128
Nov 21, 4pm Nov 22, 4pm

& Storage
Storage Requests
84
| hl |
Nov 21, 4pm Nov 22, 4pm

® Help | | D

4% Realtime

Realtime Requests

i

Feedback /oy

® Project Status

Nov 21, 4pm

Nov 22, 4pm

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/toc.xhtml

		

		Contents

			

						Building Production-Grade Web Applications

with Supabase

						Foreword

						Contributors

						About the author

						About the reviewers

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Conventions used

								Get in touch

								Join Us on Discord

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

						Part 1:Creating the Foundations of the Ticket System App

						Chapter 1: Unveiling the Inner Workings of Supabase and Introducing the Book’s Project

					

								Technical requirements (and some preamble)

								Understanding why Supabase is the stack you want

								Demystifying the inner workings of Supabase with Postgres

							

										Access logic within a route

										Access logic as a central service

										How Supabase handles access control

										How the access system works under the hood

							

						

								Supabase Studio – the convenient web dashboard

								Supabase Auth (GoTrue) – the authentication handler

								PostgREST – a REST and GraphQL API for your database

								Realtime – elevating the user experience

								Storage – simple and scalable object storage

								Image Proxy – helping to transform images on the fly

								Edge Functions – completing the optimization stack

								pg-meta – an internal helper service for the database

								Kong – the overarching service orchestrator

								Introducing the production-grade ticket system project

								Summary

					

				

						Chapter 2: Setting Up Supabase with Next.js

					

								Technical requirements

								Getting ready with Next.js

								Installing the Supabase CLI

								Running your first Supabase instance on your machine

							

										Initializing a new local Supabase instance

										Starting your first Supabase instance

							

						

								Managing multiple local Supabase instances

							

										Option 1 – the start-stop technique

										Option 2 – change ports

							

						

								Connecting to Supabase with the Supabase

JavaScript client

							

										Initializing and testing the base Supabase JavaScript client within Next.js

										Understanding the base Supabase client

										Using the Supabase client with Pages Router and App Router

							

						

								Connecting directly to the database

								Using Supabase with TypeScript

								Connecting Supabase to other frameworks

							

										Nuxt 3

										Python

							

						

								Summary

					

				

						Chapter 3: Creating the Ticket Management Pages, Layout, and Components

					

								Technical requirements

								Setting up Pico.css with Next.js

								Building the login form

								Visualizing the Ticket Management UI

								Creating a shared UI layout with navigation elements

								Designing the Ticket List page

								Constructing the Ticket Details page

							

										Adding the comments section to the ticket details

							

						

								Implementing a page to create a new ticket

								Implementing a user overview

								Enhancing the navigation component

								Summary

					

				

						Part 2: Adding Multi-Tenancy and Learning RLS

						Chapter 4: Adding Authentication and Application Protection

					

								Technical requirements

								Adding authentication protection with Supabase

							

										Creating users

										Preparing the middleware for authentication

										Implementing the login functionality in our app

										Protecting access to the Ticket Management system

							

						

								Adding a log out button

							

										Logging out using the frontend

										Logging out using the backend

							

						

								Understanding server authentication

								Enhancing the password login

								Authenticating with magic links

							

										Sending magic links with signInWithOtp() on the frontend

										Why I usually don’t use signInWithOtp()

										Understanding a server-only magic link flow

										Implementing a server-only magic link flow with custom email content

							

						

								Adding password recovery

								Learning about the Site URL and redirect URLs

							

										How to configure site and redirect URLs

							

						

								Optional knowledge: adapting built-in templates

								Summary

					

				

						Chapter 5: Crafting Multi-Tenancy through Database and App Design

					

								Technical requirements

								What kind of multi-tenancy do we need?

								Designing the database for multi-tenancy

							

										Planning our database

										Creating the tenants table

										Designing the users table

										Designing the permission structure

							

						

								Committing your database state (if you don’t seed it, you lose it)

								Making our Next.js application tenant-aware

							

										Enhancing the middleware to safeguard dynamic routes

										Fixing all static routes in the application

										Making the login tenant-based

							

						

								Summary

					

				

						Chapter 6: Enforcing Tenant Permissions with RLS and Handling Tenant Domains

					

								Technical requirements

								Learning to work with RLS

							

										Fetching tenant data with the restrictive Supabase client

										Defining RLS policies to access tenants based on permissions

										Creating a permission-based RLS policy

										Understanding and solving RLS implications

										Shrinking RLS policies based on the implications

										Learning about RLS implications

							

						

								Minimizing RLS complexity with custom claims

							

										Extending app_metadata with tenant permissions

										Keeping custom claims in sync with the table data

							

						

								Making the authentication process tenant-based

							

										Preventing password login on a foreign tenant

										Preventing the magic link login for foreign tenants

										Rejecting to visit invalid and forbidden tenant URLs when signed in

							

						

								Matching a tenant per domain instead of per path

							

										Adding custom domains via the hosts file

										Mapping domains in our application

										Bringing back localhost with mapped domains

							

						

								Summary

					

				

						Chapter 7: Adding Tenant-Based Signups, including Google Login

					

								Technical requirements

								Understanding the impact of disabling signups

							

										Disabling signups generally

										Disabling specific signup methods

							

						

								Implementing the registration page

								Processing the registration with a Route Handler

							

										Reading and validating the form data

										Rejecting registration

										Handling account creation

										Adding the service user and permission rows

										Sending the activation email

										Redirecting the user to a success page

							

						

								Enabling OAuth/Sign-in with Google

							

										Obtaining Google OAuth credentials

										Configuring our Supabase instance with the OAuth credentials

										Adding a “Sign in with Google” option triggering the OAuth process

										Solving the crypto/HTTPS security problem

										Building a verification route to finalize the registration

							

						

								Dealing with invalid user registration

								Summary

					

				

						Part 3: Managing Tickets and Interactions

						Chapter 8: Implementing Dynamic Ticket Management

					

								Technical requirements

								Creating the tickets table in the database

								Creating tickets and using triggers

							

										Implementing the ticket creation logic

										Using triggers to derive and set the user ID

										Improving loading behavior after adding a ticket

										Enforcing checks on the database columns

							

						

								Viewing the ticket details

							

										Caching the author’s name with a trigger

										Improving the date and status view

							

						

								Listing and filtering tickets

							

										Enabling paging

										Sorting tickets

										Creating a ticket filter

							

						

								Deleting tickets

								Summary

					

				

						Chapter 9: Creating a User List with RPCs and Setting Ticket Assignees

					

								Technical requirements

								Adding a user list with an RPC

							

										Ensuring there are enough users to test

										Enhancing the table structure

										Fetching the users with an RPC

										Using the function with an RPC

							

						

								Allowing the setting and editing of an assignee to a ticket

							

										Adding assignee columns in the tickets table

										Creating the trigger function to cache the name

										Adding an assignee at ticket creation

										Showing the assignee in the details

										Updating the assignee

							

						

								Summary

					

				

						Chapter 10: Enhancing Interactivity with Realtime Comments

					

								Technical requirements

								Creating the comments table

								Adding a trigger to set the tenant automatically

								Adding and optimizing RLS policies

							

										Creating RLS helper functions

										Creating the policies

							

						

								Implementing comment creation

								Listing existing comments from the server

								Implementing Realtime comments

							

										Enabling Realtime and subscribing to it

										Updating the UI with Realtime data

										Triggering impersonated real-time updates with the Table Editor

							

						

								Embracing additional Realtime insights and learning about potential pitfalls

								Summary

					

				

						Chapter 11: Adding, Securing, and Serving File Uploads with Supabase Storage

					

								Technical requirements

								Creating and understanding Storage buckets

							

										Examining public buckets

										Exploring files within a bucket programmatically

										Learning how a basic RLS policy can be added to your bucket

										Understanding private buckets and revising our bucket choice

										Choosing a private or a public bucket?

							

						

								Enabling the addition of comments with file attachments

							

										Preparing the UI with file upload possibility

										Uploading files to storage

										Connecting uploaded files with the written comment

										Showing the connected files

							

						

								Serving image attachments directly in the UI

							

										Using Image Transformations

										Building a pseudo-CDN for private buckets

										Using the pseudo-CDN inside our UI

							

						

								Writing RLS policies directly on buckets and objects table

								Diving into advanced storage restrictions

								Summary

					

				

						Part 4: Diving Deeper into Security and Advanced Features

						Chapter 12: Avoiding Unwanted Data Manipulation and Undisclosed Exposures

					

								Technical requirements

								Understanding PostgREST’s OpenAPI Schema exposure

							

										Preventing schema exposure

										Removing schemas from usage via API

										Specifically exposing a schema to the API

							

						

								Being careful with current_user usage and understanding auth.role()

								Generating new Anonymous Keys, Service Role Keys, and database passwords

								Benefiting from Supabase Vault

							

										Creating secrets in the Vault and reading them

										Using the secret in the business logic/within your application

							

						

								Utilizing silent resets to avoid data manipulation

								Enabling column-level security/working with roles

								Understanding security on views and manually created tables

								Changing the max_rows configuration

								Understanding safe-guarded API updates or deletion

								Adding middleware inside Postgres for each API request

							

										Adding middleware for PostgREST

							

						

								Using the Security Advisor

								Allowing a listing of IPs for database connections

								Enforcing SSL on direct database connections

								Summary

					

				

						Chapter 13: Adding Supabase Superpowers and Reviewing Production Hardening Tips

					

								Technical requirements

								Making sense of search_path

							

										Comprehending search path in Postgres

										Grasping the importance of extra_search_path

							

						

								Familiarizing yourself with database extensions

							

										Installing an extension in the default extensions schema

										Installing extensions in their own schema

										Using the programmatic installation of extensions versus using the UI

							

						

								Adding an AI-based semantic ticket search

							

										Deciding on an embeddings provider

										Creating the embeddings column in the table

										Creating embeddings with OpenAI

										Comparing embeddings to find matching search results

							

						

								Using anonymous sign-ins

								Transforming external APIs into tables with foreign data wrappers

								Using webhooks

							

										Creating webhooks with dynamic URLs per environment

							

						

								Understanding Edge Functions

							

										Understanding when to use Edge Functions

										Creating an Edge Function that runs for new rows

										Triggering the Edge Function

							

						

								Using cronjobs to notify about due tickets

								Using pg_jsonschema for JSON data integrity

								Testing the database with pgTAP

								Setting the auth.storageKey to avoid migration problems

								Extending supabase.ts with custom typings

								Improving RLS and query performance

								Identifying database performance problems and bloat

								Working with complex table joins

								Reviewing the underestimated benefit of using an external database client

								Understanding migrations

								Utilizing database branching

								Disabling GraphQL or PostgREST (if you don’t need it)

								Using a dead-end built-in mailing setup

								Retrieving table data with the REST API and cURL

								Summary

					

				

						Index

					

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

								Share Your Thoughts

								Download a free PDF copy of this book

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

						Index

			

		

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/image/B19648_01_01.jpg
Kong API Gateway

PostgREST

Edge

ImageProxy

]

Postgres Database

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/B19648_01_06.jpg
public

Todoltem

title

owner

Uploads

todo_tem_id
upload_path
uploaded_by

OEBPS/image/B19648_QR_Free_PDF.jpg

OEBPS/image/B19648_01_02.jpg
RBAC

Teacher 1

] Group: addPermission('teachers_room')
L

Student B

Student A

Got called to the Teachers Room

Group: Students

4{ addPermission(‘teachers_room', '3@mins') ‘

| hasPermission (user, 'teachers_room') ‘

o

OEBPS/image/Packt_Logo_New.png
<PACKD

OEBPS/image/B19648_01_07.jpg
resized catjpg <€—— IECITIENTY

/folder/cat. jpg
width=120.

height=120

ImageProxy

OEBPS/image/Cover.jpg
<packh

Building Production-Grade
Web Applications with Supabase

A comprehensive guide to database design, security,
real-time dataq, storage, multi-tenancy, and more

DAVID LORENZ

Foreword by Jorge Varandas, System Architect, Mercedes-Benz.io

OEBPS/image/B19648_01_03.jpg
RBAC

addPermission([

-+ Group: Teachers 'teachers_room',
- 'teachers_room_items"
1
-1 Group: Students
Student B addPernission(‘teachers_roon', '30mins')

Student A

Got called to the Teachers Room

OEBPS/image/B19648_01_04.jpg
“wanis Data from DB,

> v
M rosgrest [
Login e g
give back AccessToken :
authentiate e 1 SotUserOwa DB for miscal 1
l2.seLeCr + FRou cable;

== .

Authentication Process Database Data Access

OEBPS/Fonts/CourierStd.otf

OEBPS/image/B19648_01_09.jpg
Ticket System

company-cool.domain

‘company-foobar.domain

Tickets | Create new | Search | Users

Tickets | Create new | Search | Users

OEBPS/image/B19648_01_08.jpg
Author: David Lorenz 10.10.2030

Fix missing payment
button

Since the last deploy the payment button
for new subscribers seems to be missing.

Comment...

Add comment

