
		
			[image: Cover.png]
		

	
		
			Clean Android Architecture

			Take a layered approach to writing clean, testable, and decoupled Android applications

			Alexandru Dumbravan

			[image:]

			BIRMINGHAM—MUMBAI

			Clean Android Architecture

			Copyright © 2022 Packt Publishing

			All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

			Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

			Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

			Group Product Manager: Rohit Rajkumar

			Publishing Product Manager: Nitin Nainani

			Senior Editor: Aamir Ahmed

			Content Development Editor: Feza Shaikh

			Technical Editor: Simran Udasi

			Copy Editor: Safis Editing

			Project Coordinator: Manthan Patel

			Proofreader: Safis Editing

			Indexer: Rekha Nair

			Production Designer: Shyam Sundar Korumilli

			Marketing Coordinator: Teny Thomas

			First published: June 2022

			Production reference: 2280922

			Published by Packt Publishing Ltd.

			Livery Place

			35 Livery Street

			Birmingham

			B3 2PB, UK.

			ISBN 978-1-80323-458-8

			www.packt.com

			This book is dedicated to all the developers who went the extra mile to learn, practice, hack, innovate, and then pass their knowledge on to others. This propelled our development world forward and made this book a possibility. This book is also dedicated to all the people in my life who supported me through the times I was staring desperately at a computer screen filled with compile errors.

			Alexandru Dumbravan

			Foreword

			“If you think good architecture is expensive, try bad architecture.”

			— Brian Foote, CEO of HUMBL

			We know deep down that this statement is true. Poorly architected code can cause problems in your application, but it can also make your code hard to understand, navigate, be improved upon, and difficult to use for other developers.

			“The glass is neither half empty nor half full. It’s simply larger than it needs to be.”

			— Grace Hopper

			Grace Hopper was an American computer scientist and Navy officer. She knew the importance of a well-structured and clean architecture. They’re flexible, higher performing, far more scalable, easier to test, and you can maintain them a lot faster and more easily. A clean architecture is focused on getting the application layers built as efficiently as possible, without leaving behind (as Grace might say) leftover cup.

			In a mobile application, clean architecture is more important than ever. You might find yourself battling against battery issues, memory consumption issues, security problems, compatibility, or environmental changes. Your mobile application needs to truly achieve portability.

			In Clean Android Architecture, Alexandru Dumbravan applies his experience of developing Android applications for over 10 years. He takes you through a quick tour of the core software design principles and through the key features in the Android framework and supporting libraries.

			Next, you’ll dig deep in data sources. It’s vital to understand the libraries and frameworks that are available for you to access and manage data. Then, Alexandru naturally transitions into data presentation. How do you present data to the user? You’ll break down how the user interface (UI) works and how to build your own UI solution.

			Later, you’ll learn how to manage dependencies. Part of the value that Alexandru brings to the book is that he shows you how these different challenges were handled in the past, and what has changed over time. You’ll then see how to build the domain layer to sit in the center of your application and to control your app logic. Next, you’ll build the data layer to create and manage your data. The presentation layer handles the UI and the input/output. Finally, you’ll put the modules together and test your application.

			By building an Android application with a clean architecture, you’ll be able to put every piece of your code to work, and you’ll end up with a far more scalable, performant, and maintainable application. This is a book that you’ll want to come back to, to make sure you’ve got each step of this process down. And once you do, well, we all know that the present and future is in mobile applications. So, the question is, where are you taking us?

			Ed Price Senior Program Manager of Architectural Publishing Microsoft, Azure Architecture Center (http://aka.ms/Architecture)Co-Author of 7 Books, including Meg the Mechanical Engineer, The Azure Cloud Native Architecture Mapbook (Packt), and ASP.NET Core 5 for Beginners (Packt)

			Contributors

			About the author

			Alexandru Dumbravan has been an Android developer since 2011 and has worked across a variety of Android applications that have contained features such as messaging, voice calls, file management, and file management. He continues to broaden his development skills while working in London for a popular fintech company.

			About the reviewers

			Revathi Gopalakrishnan is a software professional with 20 years of experience in the IT industry. She has worked extensively in mobile application development and has led various enterprise mobile enablement initiatives for large organizations and consumer applications for customers around the globe. She is also interested in emerging areas, such as machine learning, IoT, and robotic process automation. She has authored a book with Packt titled Mobile Machine Learning. Revathi resides in Chennai and enjoys spending her weekends with her husband and her two lovely daughters.

			Jose Miguel is a software engineer who specializes in mobile development, with 5 years of experience. He has an Android associate developer certification from Google. He is also involved in the start-up tech community as a mentor in the OpenLab Peru community, bringing guidance to new Android developers and entrepreneurs who want to gain certain expertise in the mobile world. He resides in Lima, Peru, and enjoys watching movies, reading comics, boxing, traveling, and learning about new cultures and people around the world.

		

	
		
			Table of Contents

			Preface

			Part 1 – Introduction

			Chapter 1: Getting Started with Clean Architecture

			Technical requirements

			The architecture of a legacy app

			Legacy analysis

			Software design principles

			SOLID principles

			Component cohesion principles

			Component coupling principles

			Exploring the evolution of Android

			Fragments

			The Gradle build system

			Networking

			Humble objects

			Functional paradigms

			Kotlin adoption

			Dependency injection

			Android architecture components

			Coroutines and flows

			Jetpack Compose

			Enter clean architecture

			Summary

			Chapter 2: Deep Diving into Data Sources

			Technical requirements

			Understanding Kotlin coroutines and Flows

			Kotlin coroutines

			Exercise 02.01 – Using Kotlin coroutines

			Kotlin Flows

			Exercise 02.02 – Using Kotlin Flows

			Using OkHttp and Retrofit for networking

			Exercise 02.03 – Using OkHttp and Retrofit

			Using the Room library for data persistence

			Exercise 02.04 – Using Room to persist data

			Understanding and using the DataStore library

			Exercise 02.05 – Using DataStore to persist data

			Summary

			Chapter 3: Understanding Data Presentation on Android

			Technical requirements

			Analyzing lifecycle-aware components

			Exercise 3.1 – Using ViewModel and LiveData

			Using Jetpack Compose to build UIs

			Exercise 3.2 – Navigating using Jetpack Compose

			Summary

			Chapter 4: Managing Dependencies in Android Applications

			Technical requirements

			Introduction to DI

			Using Dagger 2 to manage dependencies

			Using Hilt to manage dependencies

			Exercise 04.01 – Using Hilt to manage dependencies

			Summary

			Part 2 – Domain and Data Layers

			Chapter 5: Building the Domain of an Android Application

			Technical requirements

			Introducing the app's architecture

			Creating the domain layer

			Exercise 05.01 – Building a domain layer

			Summary

			Chapter 6: Assembling a Repository

			Technical requirements

			Creating the data layer

			Creating repositories

			Exercise 06.01 – Creating repositories

			Summary

			Chapter 7: Building Data Sources

			Technical requirements

			Building and using remote data sources

			Exercise 07.01 – Building a remote data source

			Building and integrating local data sources

			Exercise 07.02 – Building a local data source

			Summary

			Part 3 – Presentation Layer

			Chapter 8: Implementing an MVVM Architecture

			Technical requirements

			Presenting data in Android applications

			Presenting data with MVVM

			Exercise 08.01 – Implementing MVVM

			Presenting data in multiple modules

			Exercise 08.02 – Multi-module data presentation

			Summary

			Chapter 9: Implementing an MVI Architecture

			Technical requirements

			Introducing MVI

			Implementing MVI with Kotlin flows

			Exercise 09.01 – Transitioning to MVI

			Summary

			Chapter 10: Putting It All Together

			Technical requirements

			Inspecting module dependencies

			Exercise 10.01 – Reduce dependencies

			Instrumentation testing

			Exercise 10.02 – Instrumented testing

			Summary

			Other Books You May Enjoy

		

	

		
			Preface

			As an application's code base increases, it becomes harder for developers to maintain existing features and introduce new ones. In this clean architecture book, you'll learn how to identify when and how this problem emerges and how to structure your code to overcome it.

			The book starts by explaining clean architecture principles and Android architecture components and then explores the tools, frameworks, and libraries involved. You'll learn how to structure your application in the Data and Domain layers, the technologies that go in each layer, and the role that each layer plays in keeping your application clean. You'll understand how to arrange the code into these two layers and the components involved in assembling them. Finally, we'll cover the Presentation layer and the patterns that can be applied to have a decoupled and testable code base.

			By the end of this book, you'll be able to build an application following clean architecture principles and have the knowledge you need to maintain and test the application easily.

			Who this book is for

			This book is for Android developers who want to learn about managing the complexity of their applications and is also highly recommended for intermediate or advanced Android developers looking for a go-to guide for clean architecture and the integration of various Android technologies. New developers familiar with the fundamentals of Android app development will find this book useful, too.

			What this book covers

			Chapter 1, Getting Started with Clean Architecture, starts by presenting the evolution of Android apps with regards to how business logic was structured, and the problems caused by these approaches. It will then transition to how certain patterns were applied to tackle these issues, revealing other sets of issues. Finally, the concept of clean architecture will be introduce, as well as how its principles can be used to solve some of the problems presented previously.

			Chapter 2, Deep Diving into Data Sources, covers what Android tools and frameworks are available to use with regard to the implementation of the data layer and details and expands on the ones that will be used later in the book, such as Kotlin flows and coroutines, Retrofit, Room, and DataStore.

			Chapter 3, Understanding Data Presentation on Android, covers what Android tools and frameworks are available to use with regard to the implementation of the presentation layer and will detail and expand on the ones that will be used later in the book, such as Android ViewModel and Jetpack Compose.

			Chapter 4, Managing Dependencies in Android Applications, provides a quick overview of dependency injection and how it works. It briefly explores some of the dependency injection tools available for Android development, ending with the Hilt dependency injection framework, about which it goes into a more detailed explanation because it will be used in many of the exercises in the book.

			Chapter 5, Building the Domain of an Android Application, describes how to build a domain layer and what components are part of this layer. You will learn about entities and use cases or interactors and what roles they play when it comes to designing the architecture of your application.

			Chapter 6, Assembling a Repository, covers the Data layer and the responsibilities this layer has when it comes to managing an application's data, and how it can use the Repository pattern to achieve this.

			Chapter 7, Building Data Sources, continues the exploration into the Data layer and some examples of data sources that can be defined in Android. You will learn about using remote data sources to load data from various servers as well as local data sources such as Room and DataStore.

			Chapter 8, Implementing an MVVM Architecture, presents the MVVM architecture pattern and how it can be used in an application's presentation layer. You will learn how to use the Android ViewModel and LiveData to build an app with MVVM and integrate use cases into the ViewModel.

			Chapter 9, Implementing an MVI Architecture, presents the MVI architecture pattern and how it can be used in an application's presentation layer. You will learn how to use Kotlin flows and Android ViewModel to implement the MVI pattern.

			Chapter 10, Putting It All Together, covers the benefits of clean architecture by analyzing an example of an application that implements the concepts and then adding instrumentation tests with Espresso and Jetpack Compose. The introduction of UI tests serves as a good example of how we can inject and change certain behaviors in the application for testing purposes without needing to modify the application's code.

			To get the most out of this book

			You'll need the Android Studio IDE installed on your computer (version Arctic Fox 2020.3.1 Patch 3 or above) and Java 8 to be installed. Using later versions of Java such as Java 11 might cause errors when building some of the exercises. Knowing how to trigger builds on an emulator or device and Gradle Synchronizations from Android Studio is recommended before attempting the exercises presented in the book.

			[image:]

			You can expand on the final exercise of the book by optimizing the way the data is loaded, introducing in-memory caches, or integrating new network calls to fetch additional data for the users. You can also improve the instrumentation testing by adding interaction with the list of data and opening new screens and asserting that the correct data is displayed.

			If you are using the digital version of this book, we advise you to type the code yourself or access the code from the book's GitHub repository (a link is available in the next section). Doing so will help you avoid any potential errors related to the copying and pasting of code.

			Download the example code files

			The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Clean-Android-Architecture. If there's an update to the code, it will be updated on the existing GitHub repository.

			We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

			Code in Action

			The Code in Action videos for this book can be viewed at https://bit.ly/3LqAa30

			Download the color images

			We also provide a PDF file that has color images of the screenshots and diagrams used in this book. You can download it here: https://static.packt-cdn.com/downloads/9781803234588_ColorImages.pdf

			Conventions used

			There are a number of text conventions used throughout this book.

			Code in text: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "Inside the resources folder, create a subfolder called mockito-extensions. Inside this folder, create a file named org.mockito.plugins.MockMaker, and inside this file, add the text mock-maker-inline."

			A block of code is set as follows:

			data class User(

			 val id: String,

			 val firstName: String,

			 val lastName: String,

			 val email: String

) {

			 fun getFullName() = "$firstName $lastName"

			}

			When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

			…

			@Composable

			fun Screen(viewModel: MainViewModel = viewModel(factory = MainViewModelFactory())) {

			 viewModel.uiStateLiveData.observeAsState().value?.let {

			 UserList(uiState = it)

			 }

			}

			…

			Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in menus or dialog boxes appear in bold. Here is an example: "Create a new project in Android Studio using an Empty Compose Activity."

			Tips or Important Notes

			Appear like this.

			Get in touch

			Feedback from our readers is always welcome.

			General feedback: If you have questions about any aspect of this book, email us at customercare@packtpub.com and mention the book title in the subject of your message.

			Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit www.packtpub.com/support/errata and fill in the form.

			Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packt.com with a link to the material.

			If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

			Share Your Thoughts

			Once you've read Clean Android Architecture, we'd love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

			Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

		

	

		
			Part 1 – Introduction

			In this part, you will become familiar with the notion of clean architecture and the principles it provides. This part also explores the tools, frameworks, and libraries used later in the book.

			This part includes the following chapters:

			
					Chapter 1, Getting Started with Clean Architecture

					Chapter 2, Deep Diving into Data Sources

					Chapter 3, Understanding Data Presentation on Android

					Chapter 4, Managing Dependencies in Android Applications

			

		

		
			
			

		

	

		
			Chapter 1: Getting Started with Clean Architecture

			In this chapter, we'll take you back and show you how a feature would have been implemented in the past while analyzing the potential issues and problems with that approach. Then, we'll look at some key design principles for software development and apply those principles to our legacy examples. After that, we'll cover the evolution of the Android platform and the various libraries and frameworks that have emerged. We'll also see how they can be integrated while adhering to various software design principles.

			After that, we'll introduce clean architecture so that we know what our system needs to be improved and what questions we must ask, as developers, so that we can create a robust, scalable, maintainable, and testable application.

			In this chapter, we're going to cover the following main topics:

			
					The architecture of a legacy app

					Software design principles

					Exploring the evolution of Android

					Enter clean architecture

			

			By the end of this chapter, you will know about the evolution of Android development, its architecture, and its design concepts, as well as the concept of clean architecture and how it can be used to build flexible, maintainable, and testable applications.

			Technical requirements

			For this chapter, you will need Android Studio Arctic Fox 2020.3.1 Patch 3.

			The following are the hardware requirements for this chapter:

			
					Windows:	64-bit Microsoft® Windows® 8/10
	x86_64 CPU architecture; 2nd generation Intel Core or newer, or an AMD CPU with support for a Windows Hypervisor
	8 GB of RAM or more
	8 GB of available disk space minimum (IDE + Android SDK + Android Emulator)
	1,280 x 800 minimum screen resolution

					Mac:	macOS® 10.14 (Mojave) or higher
	ARM-based chips, or 2nd generation Intel Core or newer with support for Hypervisor.Framework
	8 GB of RAM or more
	8 GB of available disk space minimum (IDE + Android SDK + Android Emulator)
	1,280 x 800 minimum screen resolution

					Linux:	Any 64-bit Linux distribution that supports Gnome, KDE, or Unity DE; GNU C Library (glibc) 2.31 or later
	x86_64 CPU architecture; 2nd generation Intel Core or newer, or AMD processor with support for AMD Virtualization (AMD-V) and SSSE3
	8 GB of RAM or more
	8 GB of available disk space minimum (IDE + Android SDK + Android Emulator)
	1,280 x 800 minimum screen resolution

			

			The architecture of a legacy app

			In this section, we will look at how Android applications used to be built in the past and what difficulties developers had with the approach taken.

			Before we start analyzing an older application, we must distinguish the architecture and design of an application. To borrow from the construction industry, we can define architecture as a plan for the structure of a building; a design would be a plan to create each part of the building. Translating this into the world of software engineering, we can say that the architecture of an application or a system would be defining a plan that would incorporate the business and technical requirements, while software design deals with integrating all the components, modules, and frameworks into this plan. In an ideal world, you would want to recognize the architecture of an application in the same way you would recognize the architecture of your house.

			Now, let's look at the four main components of an Android application:

			
					Activities: These represent the entry points for interacting with the user.

					Services: These represent the entry points for having an app run in the background for all kinds of reasons, such as large downloads or audio playback.

					Broadcast Receivers: These allow the system to interact with an application for a variety of reasons.

					Content Providers: These represent a way for an application to manage application data.

			

			Using and relying on these components created a challenge for developers because an app's architecture became dependent on the Android framework, mainly when it came to implementing unit tests. To understand why this is a problem, let's look at an example of what some older application code would look like. Let's suppose you have been asked to fetch some data from a backend service. The data would be served in the form of JSON through an HTTP connection.

			It wasn't uncommon to see a class such as BaseRequest.java, which would execute the request and depend on abstraction in the form of JsonMapper.java, to convert the data from a String into a Plain Old Java Object (POJO). The following code represents an example of how fetching the data might be implemented:

			public class BaseRequest<O> {

			 private final JsonMapper<O> mapper;

			 protected BaseRequest(JsonMapper<O> mapper) {

			 this.mapper = mapper;

			 }

			 public O execute() {

			 try {

			 URL url = new URL("schema://host.com/path");

			 HttpURLConnection urlConnection =

			 (HttpURLConnection) url.openConnection();

			 int code = urlConnection.getResponseCode();

			 StringBuilder sb = new StringBuilder();

			 BufferedReader rd = new BufferedReader(new

			 InputStreamReader(urlConnection.

			 getInputStream()));

			 String line;

			 while ((line = rd.readLine()) != null) {

			 sb.append(line);

			 }

			 return mapper.convert(new JSONObject

			 (sb.toString()));

			 } catch (Exception e) {

			 …

			 } finally {

			 if (urlConnection != null) {

			 urlConnection.disconnect();

			 }

			 }

			 return null;

			 }

			}

			In the execute method, we would use HttpURLConnection to connect to the backend service and retrieve the data. Then, we would read it into a String, which would then be converted into a JSONObject and then passed to JsonMapper to be converted into a POJO.

			The JsonMapper.java interface would look something like this:

			interface JsonMapper<T> {

			 T convert(JSONObject jsonObject) throws JSONException;

			}

			This interface represents the abstraction of converting a JSONObject into any POJO.

			The use of generics allows us to apply this logic to any POJO. In our case, the POJO should look something like ConcreteData.java:

			public class ConcreteData {

			 private final String field1;

			 private final String field2;

			 public ConcreteData(String field1, String field2) {

			 this.field1 = field1;

			 this.field2 = field2;

			 }

			 public String getField1() {

			 return field1;

			 }

			 public String getField2() {

			 return field2;

			 }

			}

			The ConcreteData class will be responsible for holding the data we will receive from the backend service. In this case, we just have two String instance variables.

			Now, we need to create a concrete JsonMapper.java that will be responsible for converting a JSONObject into ConcreteData:

			public class ConcreteMapper implements JsonMapper<ConcreteData> {

			 @Override

			 public ConcreteData convert(JSONObject jsonObject) {

			 return new ConcreteData(jsonObject.optString

			 ("field1"), jsonObject.optString("field2"));

			 }

			}

			The convert method creates a new ConcreteData object, extracts the data from the JSONObject object, and populates the field1 and field2 values.

			Next, we must create a ConcreteRequest.java that will extend BaseRequest and use ConcreteMapper:

			public class ConcreteRequest extends BaseRequest<ConcreteData> {

			 public ConcreteRequest() {

			 super(new ConcreteMapper());

			 }

			}

			This class will inherit the execute method from BaseRequest and supply a new ConcreteMapper object so that we can convert the backend data into ConcreteData.

			Finally, we can use this in our Activity to execute the request and update our user interface (UI) with the result. Here, we have a limitation: we cannot execute long-running operations on the main (UI) thread and we cannot update our views from any other thread except the UI thread. This means that we would need something to help with this. Luckily, Android provides the AsyncTask class, which offers a set of methods for doing work on a separate thread and then processing the results on the main thread. However, we risk creating a context leak (if, for any reason, the Activity object is destroyed, then the garbage collector will not be able to collect the Activity object while AsyncTask is running since Activity has a dependency on AsyncTask) by using an inner AsyncTask class. To circumvent this, the recommended approach is to create a WeakReference for our Activity. This way, if the Activity object is destroyed either by the user or the system, its reference can be collected by the garbage collector.

			Now, let's look at the code for our MainActivity:

			public class MainActivity extends Activity {

			 private TextView textView;

			 @Override

			 protected void onCreate(Bundle savedInstanceState) {

			 super.onCreate(savedInstanceState);

			 setContentView(R.layout.activity_main);

			 this.textView = findViewById(R.id.text_view);

			 new LoadConcreteDataTask(this).execute();

			 }

			 private void update(ConcreteData concreteData) {

			 textView.setText(concreteData.getField1());

			 }

			}

			This class is responsible for loading the UI and starting LoadConcreteDataTask. The update method will then be called by LoadConcreteDataTask to show the data in the user interface.

			LoadConcreteDataTask must be an inner class of MainActivity:

			public class MainActivity extends Activity {

			 …

			 private static class LoadConcreteDataTask extends

			 AsyncTask<Void, Void, ConcreteData> {

			 private final WeakReference<MainActivity>

			 mainActivityWeakReference;

			 private LoadConcreteDataTask(MainActivity

			 mainActivity) {

			 this.mainActivityWeakReference = new

			 WeakReference<>(mainActivity);

			 }

			 @Override

			 protected ConcreteData doInBackground(Void...

			 voids) {

			 return new ConcreteRequest().execute();

			 }

			 @Override

			 protected void onPostExecute(ConcreteData

			 concreteData) {

			 super.onPostExecute(concreteData);

			 MainActivity mainActivity =

			 mainActivityWeakReference.get();

			 if (mainActivity != null) {

			 mainActivity.update(concreteData);

			 }

			 }

			 }

			}

			In LoadConcreteDataTask, we take advantage of the doInBackground method, which is executed on a separate thread to load our data and then update our UI in the onPostExecute method. We also hold a WeakReference to MainActivity so that it can be safely garbage collected when destroyed. This also means that we will need to check if the reference still exists before updating the user interface.

			The class diagram for the preceding code looks as follows:

			
				
					[image: Figure 1.1 – A class diagram for an older Android app]
				

			

			Figure 1.1 – A class diagram for an older Android app

			Here, we can see how the dependencies move from MainActivity toward the ConcreteRequest class, with one exception between MainActivity and LoadConcreteDataTask, where both classes depend on each other. This is a problem because the classes are then coupled together and making a change to one implies making a change to the other. Later in this chapter, we will look at some principles that can help us avoid such dependencies.

			Now that we have an idea of what a legacy application looks like, let's see what issues we may encounter if we follow this path.

			Legacy analysis

			In this section, we will analyze some of the problems that legacy applications have.

			Let's ask ourselves the following questions:

			
					What can we unit test?

					What happens if, instead of showing the value of field1 from ConcreteData, we need to show field1+field2?

					What happens when the requirements for this particular screen change and data needs to be retrieved from another endpoint on top of this one?

					What happens if we need to introduce caching or SQLite persistence?

					What happens if another activity needs this particular use case?

			

			Let's answer these questions:

			
					Answer 1: The answers to all of these questions will come with headaches. The first question is a mix of technical limitations and doubtful design techniques. The technical limitation comes from the fact that the code will execute on the device or an emulator, but we want our unit tests to be executed on our development machines. This is the reason we have the split between the androidTest and test directories. Theoretically, we can write our unit tests so that they can run on the emulator, but that takes more time and instability. We can now execute these types of tests in the cloud using technologies such as Firebase Test Lab, but that would inevitably cost us money and it's in our interest to avoid taking in such costs. Realistically, we are left with one option and that is to test as much as possible using local unit tests instead of instrumented ones. To solve this, we will need to separate the Android components we use from the Java components.

					Answer 2: The second question produces a similar problem. The easiest choice here would be to put that concatenation into MainActivity or add a method into the ConcreteData class that will return the concatenated result. But either of these will come with downsides. If we move the concatenation into MainActivity, we will put logic that can be unit tested into a class that is very hard and shouldn't be unit tested. If we create a method to concatenate in ConcreteData, we risk giving responsibility to this class that it shouldn't have since it's related more to the UI than the actual representation of the JSON itself. What if, in the future, the networking aspect is developed by another team? You would need to rely on that particular team to create this update.

					Answer 3: The answer to the third question looks straightforward as well. We must create new concrete implementations for the new data to be added and the associated request. Then, we will either create a separate class that will extend AsyncTask or execute both requests in the same LoadConcreteData class and then update the UI. If we create a separate AsyncTask, then we will need to make the activity responsible for managing the results and balance the two AsyncTasks, which again creates a problem concerning testing. If we execute the requests in the same AsyncTask, then the responsibility of AsyncTask increases, which we may want to avoid.

					Answer 4: The fourth question presents us with a new challenge. Let's say we add a new database class that contains all the methods to perform create, read, update, and delete (CRUD) operations. Which one of our classes would have a dependency on this class? The choices here would be between the two request classes and LoadConcreteDataTask. Here, we run into the same issues that we did in the previous questions. If we used the request classes, we would end up being more responsible for dealing with HTTP connections than handling calls to the database. If we use LoadConcreteDataTask, we make the answer to the fifth question even harder.

					Answer 5: Based on the previous answers, we notice that a lot of work may end up being moved to the LoadConcreteDataTask class. Now, let's imagine that another activity with a completely different UI and a different interpretation of that data will rely on the same use case. One solution is to duplicate LoadConcreteDataTask into the new activity. This is not a great idea because a change in the requirements will make the developers change all the tasks. A better approach would be to create a new abstraction that will remove the dependency between LoadConcreteDataTask and Activity. This would allow us to reuse the same class for both activities. Let's say that the activities would need different types of data for each interpretation. Here, we could follow the JsonMapper example and create an interface that would convert ConcreteData into a generic type, provide two implementations for each activity, and create the necessary POJOs to convert into.

			

			Another question that can be asked here is, "What amount of work would be necessary to export the business logic into another project?" This is an important question because it highlights how we should structure our code so that it can be reused by others without making it a pain for them to integrate. If we were to answer this, we must first ask, "Where's the business logic?" The answer would probably be LoadConcreteDataTask. Can we export that and publish it somewhere where other developers can get it?

			The answer is no, because of its dependency on MainActivity. This question highlights an important aspect of defining an architecture, namely drawing the boundaries around your components. A component can be defined as the smallest piece of deliverable code. In our case, it would be the equivalent of a module. Now, let's say we were in a place where we could ship out our LoadConcreteDataTask. A follow-up question would be, "Would the data be hosted on the same service?" followed by, "Is it in the same JSON format?" Here, we would need to draw a boundary between LoadConcreteDataTask and BaseRequest and remove such dependencies on how the data is retrieved.

			The reason these questions were raised and answered is that all those scenarios have happened in the past and they will all likely happen in the life cycle of an application. We, as developers, tend to answer those questions in our code differently based either on time constraints, the rigor imposed on the team we work in, our ambition to deliver something fast by constantly challenging ourselves, and our experience or the team's experience. The fact that we had the option to make a less desirable solution or to be stuck in a situation where we had to pick between the frying pan or the fire represents a problem. Sometimes, it is good to take a step back from our daily routine, ask ourselves some of these questions, do mind experiments to see how our code may end up in those scenarios, and assess what would happen if that would happen now or 1 or 2 years from now.

			A common scenario a lot of Android developers found themselves in was having a lack of businesses investing in testing because it would take too much time and there was a need to go to market. In many of these cases, the apps became harder to maintain over time, so more developers needed to be hired to keep the same productivity as a team compared to when they had fewer developers. When code is written with the notion that it needs to be unit tested, then the way we write that code becomes more rigorous and more maintainable. We start keeping track of how we create instances and separate the things we can test from the things we can't, we apply creational design patterns, and we also shorten the sizes of the methods in our classes, among other things.

			We now have an idea of how applications used to be written in the past and the problems that were caused by the approaches that were taken, such as issues with the testability and maintainability of an application due to dependencies on the Android framework. Next, we will look at some design principles that will prove useful in how we write an application.

			Software design principles

			In this section, we will analyze a set of design principles that are adopted by developers worldwide to improve their systems and can also be applied to Android development. We will mainly focus on the principles defined by Robert C Martin (also known as Uncle Bob) for classes and components because they are well suited to Android development.

			Based on the examples in the previous section, we understand that our code bases should be maintainable, understandable, and flexible. There is a set of software design principles that we can turn to for help when we develop classes or components. Think of a component as the minimum amount of code that can be released as part of a system. In Android, you can view them as individual modules. They don't necessarily need to be modules, but they can be organized as if they are.

			SOLID principles

			These are some of the most known design principles. The name is an acronym for a set of design principles that were collected by Robert C Martin. These principles are as follows:

			
					Single responsibility principle

					Open-closed principle

					Liskov substitution principle

					Interface segregation principle

					Dependency inversion principle

			

			Let's look at these principles in detail:

			
					Single Responsibility Principle: This states that a class should have one responsibility or one reason to change. Looking at our example, let's suppose someone makes a change to the BaseRequest class to change how the HTTP request is executed. Let's assume that we now have two different AsyncTasks that will load the data. Both of these will be impacted by the change in the BaseRequest class. A solution would be to delegate the execution of the request to different classes for each particular use case. This would also allow developers to work on different features related to backend communication without changing the same source file.

					Open-Closed Principle: This states that a class should be open for extension and closed for modification. Thinking back to our example, this principle would answer the question, "What would happen if an activity requires this particular use case?" The abstractions we discussed in how to answer that question would serve as a good example of implementing this principle.

					Liskov Substitution Principle: This states that a parent class should be replaced by a child class without changing the behavior of the system. An example of this principle is if you have a class called Bird and a sub-class called Duck. If you are using references of Bird in your code and substitute those usages with Duck, then your code should remain unchanged. A famous example of a violation of this principle is having a Rectangle class with two members named width and height and a sub-class named Square. In reality, a square is a rectangle, but our modeling of a square wouldn't be a rectangle because the rules in Square would mean that the width and height will always have to be the same. If you were to swap these two dependencies, then your code would break.

					Interface Segregation Principle: This states that we should avoid using large interfaces and instead break them up into smaller interfaces. The idea here is that code shouldn't depend on methods it doesn't use. An example of this is defining interfaces whose methods don't need to be implemented. A good example of this is the approach that's taken in Android user interfaces by separating OnClickListener, OnLongClickListener, and OnTouchListener.

					Dependency Inversion Principle: This states that we should depend on abstractions rather than concretions. The idea here is to depend as much as possible on abstract classes and interfaces. This can be very difficult to achieve considering that we rely on concretions a lot of the time. Here, we should identify parts of the code that are constantly developed and subject to change and introduce layers of abstractions between our code and these classes. A good way to protect against this is through dependency injection frameworks such as Dagger and Hilt, which generate factories to create volatile components.

			

			SOLID principles are used across the object-oriented programming (OOP) field to create applications that are flexible and able to incorporate new features and requirements. The principles that follow represent an expansion of SOLID.

			Component cohesion principles

			We can define cohesion by how well the classes in a component belong together or what classes belong in a certain component. In the past, components were assembled based on the context without any particular guiding principle. This would cause issues such as a change in the dependencies of a component triggering a change in the dependants of this component, without this having any relevance to the dependants.

			The three principles are as follows:

			
					Reuse/Release Equivalence Principle (REP): This states that we group classes in a component that can be released together. In Android development, this would translate to making sure that every module you create should be able to be published and used by other developers.

					Common Closure Principle (CCP): This states that components should have one reason to change. This principle is an application of the single responsibility principle for components.

					Common Reuse Principle (CRP): This states that a component should only have classes that should be used together. This represents the interface segregation principle for your component. In Android, this would mean that you should make sure that the users of your Android modules depend on all your classes in the module, not just some.

			

			When these principles are incorporated, they end up conflicting with each other. REP and CCP tend to make components bigger, while CRP tends to make them smaller. The idea is to always match the current requirements of the application and find the middle ground between these principles. After that, you should constantly monitor how new requirements would affect this middle ground.

			Now that we've seen how SOLID can be applied to building a particular component through the component cohesion principles, let's learn how to manage a set of components.

			Component coupling principles

			These principles deal with how to manage the relationships between our components in an Android application. In Android, this would be represented by how to manage the Gradle dependencies between different modules. The principles are as follows:

			
					Acyclic Dependencies Principle: This states that we should avoid cyclic dependencies between components. Applying this to Android would mean that the dependencies that our modules have most not be cyclical (for example, module A depends on module B, which depends on module A). Fortunately, this rule is currently enforced by the build system, which doesn't allow cyclical dependencies. A solution to this would be to create a new module in which we apply the dependency inversion principle and make one of the modules depend on the abstraction and create the implementation in the second module. If this is not possible, we can create a new module that can depend on both existing modules. An example of this can be seen in the following diagram:

			

			
				
					[image: Figure 1.2 – Cyclic module dependency]
				

			

			Figure 1.2 – Cyclic module dependency

			
					Stable Dependencies Principle: This states that less stable modules should depend on more stable modules. A component's stability is defined as the ratio between outgoing dependencies (dependency on other components) and the total number of dependencies. The closer the number is to 0, the more stable a component becomes. This means that stable components should avoid having changes made because this will cause potential issues for the components that depend on the stable ones. One solution to avoid the dependencies between stable components and volatile components would be using abstract components. These are components that will contain nothing but abstractions.

					Stable Abstractions Principle: This states that components that are likely to change should be more concrete and that stable components should be more abstract. This principle represents an application of the open-closed principle. We would want our high-level architecture decisions to be flexible enough to be changed without having to modify existing source code. We can achieve this using abstract classes. The abstractness of a component is defined as the ratio between the number of abstract classes and interfaces inside a component and the total number of classes in the component. The closer to 1 the value gets, the more abstract the component becomes. A component with 0 stability and 0 abstractness represents a zone of pain because it is very hard to change. A component with 1 stability and 1 abstractness is called a zone of uselessness because we have an independent component with no implementations. The aim is to get as many components as possible in either the 0 stability and 1 abstractness or 1 stability and 0 abstractness range.

			

			With that, we have looked at some of the key design principles that should help us tackle problems that we face while developing an application. The SOLID principles show us how we should structure our code into classes, while the component cohesion principles and component coupling principles show us how we should structure our classes into separate modules, as well as how we should establish the relationships between those modules. In the next section, we will see how these principles lead to the evolution of the Android platform and what an application may look like now.

			Exploring the evolution of Android

			In this section, we will look at key releases and changes that have been made to the Android framework and supporting libraries that have shaped the development of applications and how applications have evolved because of these changes.

			We started by looking at an example of what the code in an older Android application looked like before looking at the design principles we should incorporate into our work. Now, let's see how the Android framework evolved and how some of our questions from the beginning have been answered. We will analyze some of the newer libraries, frameworks, and technologies that we can incorporate into an Android application.

			Fragments

			The introduction of fragments was meant to solve important issues developers were facing – that is, the activity code would become too big and hard to manage. They were released on Android Honeycomb, which was an Android release that only targeted tablets. The introduction of fragments was also meant to solve the issue of having different displays for activities in landscape versus activities in portrait. Fragments are meant to control portions of an activity's user interface.

			Another improvement fragments brought was the ability to change and replace fragments at runtime. There was even a separate back stack for Fragments that the activity would be responsible for. This comes at a couple of costs: the life cycle of the fragment was even more complex than the life cycle of the activity, where you would have fragments that had their views destroyed but the fragments themselves weren't. Another cost was the communication between two fragments. If you needed to update the user interface being handled by Fragment1 because of a change in Fragment2, you would need to communicate through the activity. This meant that every time a Fragment needed to be reused by a different activity, then the activity would be forced to adapt to this:

			
				
					[image: Figure 1.3 – Activity and fragment life cycle]
				

			

			Figure 1.3 – Activity and fragment life cycle

			In the preceding figure, we can see the difference between the lifecycle of activities and the lifecycle of fragments. We can observe how fragments have their own internal lifecycle for managing the views that they display between the onCreateView method and onDestroyView methods. This is often the reason why in many applications, you will see these methods used to load data and on the opposite site unsubscribing from any operations that might trigger a change in the user interface.

			The Gradle build system

			Initially, Android development used the Eclipse IDE and Ant as its build system. This came with certain limitations for applications. Things such as flavors were not available at the time. The release of Android Studio, along with the Gradle build system, provided new opportunities and features. This allows us to write extra scripts and easily integrate plugins and tools, such as performance monitoring of an application, Google Play services, Firebase Crashlytics, and more. This is often done through ".gradle" files. These files are written in a language called Groovy. Another improvement that was added was the usage of the ".gradle.kts" extensions, where we can provide the same configurations using the Kotlin language. The following code shows what the build.gradle file for a module looks like:

			plugins {

			 id 'com.android.application'

			}

			android {

			 compileSdk 31

			 defaultConfig {

			 minSdk 21

			 targetSdk 31

			 versionCode 1

			 versionName "1.0"

			 }

			 buildTypes {

			 release {

			 }

			 }

			 compileOptions {

			 }

			}

			dependencies {

			 implementation ""

			}

			In the plugins section, we can define external plugins that will provide certain methods and scripts that our project can use. Examples include annotation processing plugins, the Parcelize plugin, and Room plugins. In this case, the com.android.application plugin offers us the android configuration, which we can then use to specify the app version, what Android versions we want the app to be accessible from, various compilation options, and configurations for how the app should be built for the end user. In the dependencies section, we specify which external libraries we want to add to the project.

			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

	

OEBPS/Fonts/MinionPro-Bold.otf

OEBPS/image/B18320_Preface_Table.png
Software/hardware covered in the book

Operating system requirements

Android SDK 21-32

Windows, macOS, or Linux

Java 8

Kotlin 1.5.31

OEBPS/image/Figure_1.01_B18320.jpg
BaseRequest JsonMapper

F - — ¥

7Y 7Y

MainActivity LoadConcreteDataTask ConcreteRequest ConcreteMapper

b--- F—— > F—— >

I

I

v

ConcreteData

OEBPS/Fonts/MyriadPro-Semibold.otf

OEBPS/toc.xhtml

		

		Contents

			

						Clean Android Architecture

						Foreword

						Contributors

						About the author

						About the reviewers

						Preface

					

								Who this book is for

								What this book covers

								To get the most out of this book

								Download the example code files

								Code in Action

								Download the color images

								Conventions used

								Get in touch

								Share Your Thoughts

					

				

						Part 1 – Introduction

						Chapter 1: Getting Started with Clean Architecture

					

								Technical requirements

								The architecture of a legacy app

							

										Legacy analysis

							

						

								Software design principles

							

										SOLID principles

										Component cohesion principles

										Component coupling principles

							

						

								Exploring the evolution of Android

							

										Fragments

										The Gradle build system

										Networking

										Humble objects

										Functional paradigms

										Kotlin adoption

										Dependency injection

										Android architecture components

										Coroutines and flows

										Jetpack Compose

							

						

								Enter clean architecture

								Summary

					

				

						Chapter 2: Deep Diving into Data Sources

					

								Technical requirements

								Understanding Kotlin coroutines and Flows

							

										Kotlin coroutines

										Exercise 02.01 – Using Kotlin coroutines

										Kotlin Flows

										Exercise 02.02 – Using Kotlin Flows

							

						

								Using OkHttp and Retrofit for networking

							

										Exercise 02.03 – Using OkHttp and Retrofit

							

						

								Using the Room library for data persistence

							

										Exercise 02.04 – Using Room to persist data

							

						

								Understanding and using the DataStore library

							

										Exercise 02.05 – Using DataStore to persist data

							

						

								Summary

					

				

						Chapter 3: Understanding Data Presentation on Android

					

								Technical requirements

								Analyzing lifecycle-aware components

							

										Exercise 3.1 – Using ViewModel and LiveData

							

						

								Using Jetpack Compose to build UIs

							

										Exercise 3.2 – Navigating using Jetpack Compose

							

						

								Summary

					

				

						Chapter 4: Managing Dependencies in Android Applications

					

								Technical requirements

								Introduction to DI

								Using Dagger 2 to manage dependencies

								Using Hilt to manage dependencies

							

										Exercise 04.01 – Using Hilt to manage dependencies

							

						

								Summary

					

				

						Part 2 – Domain and Data Layers

						Chapter 5: Building the Domain of an Android Application

					

								Technical requirements

								Introducing the app's architecture

								Creating the domain layer

							

										Exercise 05.01 – Building a domain layer

							

						

								Summary

					

				

						Chapter 6: Assembling a Repository

					

								Technical requirements

								Creating the data layer

								Creating repositories

							

										Exercise 06.01 – Creating repositories

							

						

								Summary

					

				

						Chapter 7: Building Data Sources

					

								Technical requirements

								Building and using remote data sources

							

										Exercise 07.01 – Building a remote data source

							

						

								Building and integrating local data sources

							

										Exercise 07.02 – Building a local data source

							

						

								Summary

					

				

						Part 3 – Presentation Layer

						Chapter 8: Implementing an MVVM Architecture

					

								Technical requirements

								Presenting data in Android applications

								Presenting data with MVVM

							

										Exercise 08.01 – Implementing MVVM

							

						

								Presenting data in multiple modules

							

										Exercise 08.02 – Multi-module data presentation

							

						

								Summary

					

				

						Chapter 9: Implementing an MVI Architecture

					

								Technical requirements

								Introducing MVI

								Implementing MVI with Kotlin flows

							

										Exercise 09.01 – Transitioning to MVI

							

						

								Summary

					

				

						Chapter 10: Putting It All Together

					

								Technical requirements

								Inspecting module dependencies

							

										Exercise 10.01 – Reduce dependencies

							

						

								Instrumentation testing

							

										Exercise 10.02 – Instrumented testing

							

						

								Summary

								Why subscribe?

					

				

						Other Books You May Enjoy

					

								Packt is searching for authors like you

					

				

			

		

		

		Landmarks

			

						Cover

						Table of Contents

			

		

	

OEBPS/Fonts/MinionPro-Regular.otf

OEBPS/Fonts/MinionPro-BoldIt.otf

OEBPS/Fonts/CourierStd-Bold.otf

OEBPS/Fonts/MinionPro-It.otf

OEBPS/Fonts/MyriadPro-Light.otf

OEBPS/Fonts/MyriadPro-Regular.otf

OEBPS/image/Figure_1.02_B18320.jpg
module1

module2
module3

OEBPS/image/Figure_1.03_B18320.jpg
onreste

onCreate

ontart

onResume

onPause

onsiop

onDesoyview

onDestroy

onDestoy

onbetach

OEBPS/Fonts/MyriadPro-SemiboldIt.otf

OEBPS/image/Packt_Logo.png
Packt)

OEBPS/Fonts/CourierStd.otf

OEBPS/image/Cover.png
Clean Android
Architecture

Take a layered approach to writing clean, testable,
and decoupled Android applications

Alexandru Dumbravan
Foreword by Ed Price, Senior Program Manager in Architectural Publishing
Microsoft | Azure Architecture Center and Well-Architected Framework

